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General comments: 

Your paper received very critical reviews that asked for substantial revisions. Note that the 

criticism does not only address the presentation of your study but also the contribution of your 

work to the field. 

 

Thank you for these comments and for the reviewers’ comments concerning our manuscript entitled “The 

role of snow cover on ice regime across Songhua River basin, Northeast China” (tc-2019-242). 

Those comments are all valuable and very helpful for revising and improving our paper, as well as the 

important guiding significance to our work. We carefully gone through the comments and made extensive 

corrections accordingly, marked as red in the manuscript. Again, please accept the gratitude of all 

authors from the bottom of the heart and your suggestion enlightened us to think over more deeply than 

ever before.  

 

Specific comments 

1) you need to go belong the linear regression analysis of the basic parameters; if a large spatio-

temporal dataset is used please consider clustering analysis and/or principal component analysis 

and/or Bayesian statistics.  

Response: Thank you for this helpful suggestion, and we had discussed the possibilities of the three 



methods as blow.  

 

We tried to analyze the distribution of complete frozen duration by method of k-means, and it is hard to 

explain the classification results through topography or climate features, and that’s why we did not use 

clustering analysis.   

 

Principal component analysis (PCA) could be used for two aspect in our work. The distribution of 

complete frozen duration could be decomposed by PCA, similar to the empirical orthogonal function 

(EOF) and rotated empirical orthogonal function (REOF). EOF and REOF focused on the eigenvector of 

original dataset, and PCA focused on the time coefficients, which could reflect the long-term trend of 

original dataset. The time coverage of our data is only five years, and is suitable for analyzing long-term 

trend. PCA could also be used for analyzing the relationship between ice regime and impact factors. But 

our work only considered two factors: air temperature and snow depth. That’s why PCA were not used 

in our work herein.  

 

We used Bayesian linear regression to build the equation between ice thickness and snow depth, air 

temperature. Two types of air temperature had been considered: the air temperature on bank and the air 

temperature on bank and the negative cumulative air temperature. Results, snow on ice played a dominant 

role when the river ice is completely frozen, followed by negative cumulative air temperature. You can 

check the changes in Part 2.3.3 and 3.2.2, and we added a new Figure 9 to illustrate the results from 

Bayesian linear regression 

 

2) you need to include a literature review describing what is the current state of knowledge in the 

field and how your study (or objective of your study) advances the current state of knowledge in 

the field. 

Response: Thank you for this helpful suggestion, we have updated the introduction as you suggested 

based on literature review and supplements new references and emphasized on the diversity knowledge 

on the role of snow cover during the ice process, seen the line 47-94 of Introduction.   

The surface-based networks, including climatic and hydrological stations, have been established for 

tracing climate and hydrological changes in Northeast China, which are limited by the accessibility of 

javascript:;


surface-based networks and the range of filed measurement. To evaluate the influence of ice regime on 

regional climate and human environment, a robust investigation and quantitative analysis on ice regime 

is necessary, which provide helpful information for projecting future changes in the ice regime.  

 

3) you need to provide a detailed description of the methods used (e.g. data pre and post processing, 

uncertainty analysis) 

Response: The authors really appreciated the comments. We added some comments on the two methods 

we used, and also explained their application limits, reliability, and pros, and cons as well, seen in Part 

2.3 (Line 143 to 185). Besides, we expanded the description of dataset we have used and used sub title 

to make it clear, seen in Part 2.2 (Line 112 to 141).  

 

4) you need to expand the discussion and conclusions sections so that they reflect/include all the 

key results from your analysis 

Response: We have significantly improved the conclusion, as you suggested, seen in Line 328 to 350 of 

Conclusions.  

 

5) you need to pay particular attention to the language and structure of the paper: use clear 

sentences and logical flow, avoid grammatical and spelling errors, avoid repetitions and 

redundancy, and definitely proof-read the manuscript before re-submission (I would also 

recommend giving your manuscript to a native English speaker for proof-reading if this is possible 

for you) 

 

Response:  

We really appreciate your suggestion, and we adjusted the structure of this paper. We have carefully 

revised the manuscript according to the reviewers' comments, and used an English-language editing 

service Panda Edit Network ( http://www.pandaedit.com/), to polish our language and writing styles. The 

certificate had been uploaded. We provided a comparison between the new version and the previous 

manuscript. 
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Abstract: The Songhua River Basin, located in Northeast China, is an area sensitive to global warming that 

could be impacted by changes in lake and river ice regimes. The regional role and trends of lake and river ice 

of this area have been scarcely investigated and are critical for aquatic ecosystems, climate variability, and 

human activities. Using ice records of local hydrological stations, we examined the spatial variations of the 

ice phenology and ice thickness in the Songhua River Basin from 2010 to 2015 and explored the role of snow 15 

depth and air temperature on ice regime. All of five river ice phenology indicators, including freeze-up start, 

freeze-up end, break-up start, break-up end and complete frozen duration, showed a latitudinal distribution 

and a changing direction from southeast to northwest. Five typical geographic zones were identified applying 

a rotated empirical orthogonal function. Maximum ice thickness had a higher correlation with ice phenology, 

especially with the break-up process. Six Bayesian regression models were built between ice thickness, air 20 

temperature, and snow depth in three sub-basins of the Songhua River Basin. Results showed significant and 

positive correlations between snow cover and ice thickness when freshwater was completely frozen. Rather 

than by air temperature, ice thickness was influenced by negative cumulative air temperature through the heat 

loss of ice formation and decay.  

Keywords. River ice, ice phenology, ice thickness, snow on ice, air temperature, rotated empirical orthogonal 25 

function 

1 Introduction 

The freeze-thaw process of surface ice of temperate lakes and rivers plays a crucial role in the interactions 

among the climate system(Yang et al., 2020), freshwater ecosystems (Kwok and Fahnestock, 1996) and the 

biological environment (Prowse and Beltaos, 2002). The presence of freshwater ice is closely associated with 30 

social and economic activities, ranging from human-made structures, water transportation, to winter 

recreation (Williams and Stefan, 2006;Lindenschmidt et al., 2017). Ice cover on rivers and lakes exerts large 

forces due to thermal expansion and could cause extensive infrastructure losses to bridges, docks, and 

shorelines (Shuter et al., 2012). Ice cover on waterbodies also provides a natural barrier between the 

atmosphere and water. Ice cover also blocks the solar radiation necessary for photosynthesis to provide 35 
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enough dissolved oxygen for fish, thus can have a negative effect on freshwater ecosystems and, in extreme 

cases, lead to winter kill of fish (Hampton et al., 2017). Generally, the duration of freshwater ice has shown 

a declining trend, with later freeze-up and earlier break-up throughout the northern hemisphere. For example, 

freeze-up has been occurring 0.57 days per decade later and break-up 0.63 days per decade earlier during the 

periods of 1846-1995 (Magnuson et al., 2000;Sharma et al., 2019;Beltaos and Prowse, 2009). To evaluate the 40 

influence of ice regimes on the regional climate and human environment, and provide helpful information for 

regional projections of climate and ice-river floods, a robust and quantitative analysis on ice processes is 

necessary. Despite the growing importance of river ice under global warming, very little work has been 

undertaken to explain the considerable variation of ice characteristics in Northeast China, where lakes and 

rivers are frozen for as long as five to six months a year. 45 

 

The earliest ice record in the literature dates back to 150 years ago (Magnuson et al., 2000). Ice development 

and ice diversity scales have been regarded as sensitive climate indicators. Ice phenology and ice thickness 

have been studied to gain a deeper understanding of ice processes. At medium and large scales, optical remote 

sensing data are widely used for deriving ice phenology (Song et al., 2014;Šmejkalová et al., 2016), while 50 

microwave remote sensing are used to estimate ice thickness and snow depth over ice (Zhang et al., 

2019;Kang et al., 2014).  Wide-range satellites make it possible to link ice characteristic with climate indices, 

such as air temperature (Yang et al., 2020) or large-scale teleconnections (Ionita et al., 2018), but their spatial 

resolutions are too large to detect ice thickness and snow depth accurately at small scales. For example, the 

microwave satellite data of AMSR-E have a spatial resolution of 25 km, but the largest width of Nenjiang 55 

River only ranges from 170 to 180 meters. The spatial resolution limits the application of satellite 

observations to precisely inverse ice thickness, let alone snow depth.  

 

In terms of point-based measurements, the most commonly used ground observations include regular 

observations, ice charts, volunteer monitoring and field measurements (Duguay et al., 2015). Ground 60 

observations depend on spatial distribution and representation, and are limited by the accessibility of surface-

based networks and the range of field measurement. Ice parameters differ greatly from point to point on a 

given river (Pavelsky and Smith, 2004), and the uneven distribution of hydrological stations poses an obstacle 

to gaining a comprehensive understanding of river ice.  Various models have been implemented to derive ice 

phenology and ice thickness, such as physically-based models (Park et al., 2016), linear regressions (Palecki 65 

and Barry, 1986;Williams and Stefan, 2006), logistic regressions (Yang et al., 2020) and artificial neural 

networks (Seidou et al., 2006;Zaier et al., 2010). These models consider the energy exchange and physical 

changes of freshwater ice and require detailed information and data support, including hydrological, 

meteorological, hydraulic and morphological information. Fixed stations are normally located around the 

river mouth of certain rivers, so these models are limited by the input data available (Pavelsky and Smith, 70 

2004). Both modelling and remote sensing monitoring require sufficient historical ice records to validate and 

improve accuracy and reliability.  

 

The ice cover of water bodies experiences three stages during which ice phenology, ice thickness and ice 

composition change greatly. These stages are: freeze-up, ice growth, and break-up (Duguay et al., 2015). 75 
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Although air temperature greatly influences the freeze-thaw cycle of river ice, the effect of snow cover can’t 

be ignored. Generally, snow depth outweighs air temperature during the ice forming process and increasing 

snow depth provides favourable conditions for thicker ice (Morris et al., 2005;Park et al., 2016). Compared 

to other studies, air temperature had a greater effect on ice thickness than snow depth and were attributed this 

to the high snowfall in the study area (Gao and Stefan, 2004). Besides, in situ observations at Russian river 80 

mouths where ice thickness decreased had not shown any significant correlation between ice thickness and 

snow depth (Shiklomanov and Lammers, 2014). Those studies analysed the relationship in view of spatial 

distributions and ignored the changing status of ice formation processes.  The relative influence of snow depth 

and air temperature on the ice regime deserves further exploration in Northeast China.  

 85 

The surface-based networks, including climatic and hydrological stations, have been established for tracing 

climate and hydrological changes in Northeast China, which are limited by the accessibility of surface-based 

networks and the range of filed measurement. To evaluate the influence of ice regime on regional climate and 

human environment, a robust investigation and quantitative analysis on ice regime is necessary, which 

provide helpful information for projecting future changes in the ice regime. The previous work explored the 90 

ice process in at one or more locations on a given river and ignored the changing regional pattern of ice 

development due to sparse location. The objectives of this study are to: (1) investigate and compare the spatial 

distribution of ice phenology and thickness in Northeast China; (2) quantitatively explore the influence of 

snow cover and air temperature on ice regime.  

 95 

2 Materials and methods 

2.1 Study area 

The Songhua River Basin is located in the middle of Northeast China (Figure 1), and includes Jilin Province, 

Heilongjiang Province, and the eastern part of Inner Mongolia Autonomous Region. The Songhua River is 

the third-longest river in China, and has three main tributaries: Nenjiang River, Main Songhua River, and 100 

Second Songhua River (Zhao et al., 2018;Khan et al., 2018). The basins of the three tributary rivers include: 

Nenjiang Basin (NJ), the Downstream Songhua River Basin (SD), and the Upstream Songhua River Basin 

(SU) (Figure 1). The Nenjiang River has a length of 1370 km, and the corresponding drainage has an area of 

2.55 ×106 thousand km2; the Main Songhua River has a length of 939 km and the downstream catchment of 

the Songhua River Basin (SD) has an area of 1.86 ×106 km2; the Second Songhua River has a length of 958 105 

km and the upstream catchment of the Songhua River Basin (SU) has an area of 6.19×106 km2 (Yang et al., 

2018;Chen et al., 2019). The whole Songhua River Basin is characterized by temperate and cold temperate 

climates: winter is long and cold; spring is windy and dry. Annual average air temperature ranges between 3 

to 5℃, while annual precipitation ranges from 400 to 800 cm from the southeast to the northwest. (Wang et 

al., 2015;Wang et al., 2018). 110 

[Figure 1 is added here] 
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2.2 Data Source  

2.2.1 Ice phenology 

The hydrographic bureau of the Chinese Ministry of Water Resources has established a remarkable 

observation network for ice regimes. The ice records of the Songhua River Basin were obtained from the 115 

annual hydrological report, including ice phenology, ice thickness, snow depth on ice and air temperature on 

bank (BAT) (Annual hydrological report, 2010-2015). To analyse the spatial pattern of the ice regime, we 

explored five river ice parameters with the corresponding day of year (DOY) from 158 stations. We located 

50, 36 and 72 stations in the NJ, SU and SD basins, respectively. For each record, five lake ice phenological 

events were derived from the annual hydrological report; the definitions referred to specification for 120 

observation of ice regimes in rivers and previous works (Cai et al., 2019;Yang et al., 2019;Duguay et al., 

2015) : 

◼ Freeze-up start (FUS) is considered the first day when floating ice can be observed with temperatures 

below 0 ℃;  

◼ Freeze-up end (FUE) is the day when a steady ice carapace can be observed on the river, and the area 125 

of ice cover is more than 80% in the view range; 

◼ Break-up start (BUS) is the first day when ice melting can be observed with surface ponding;  

◼ Break-up end (BUE) is the day when the surface is mainly covered by open water and the area of open 

water exceed 20%; 

◼ Complete frozen duration (CFD) is the ice cover duration when the lake is completely frozen during the 130 

winter, from FUE to BUS. 

2.2.2 Ice thickness 

To study seasonal changes in ice thickness (IT) and establish the regression model, we used ice thickness, 

snow depth and air temperature from 120 stations for the period ranging from 2010 to 2015. We used 37, 28 

and 55 stations located in the NJ, SU and SD basins, respectively. The hydrological report provided ice 135 

thickness, snow depth on ice and BAT every five days from November through April, totalling 37 

measurements in one cold season. The yearly maximum ice thickness (MIT) of the river centre and the 

corresponding DOY were calculated from five-day records. The average snow depth (ASD) was calculated 

from the mean of three or four measurements around the ice hole for ice thickness measurement without 

human disturbance. To enhance the performance of the regression model, negative cumulative air temperature 140 

was calculated from air temperature from November to March.  

2.3 Data analysis 

2.3.1 Kriging 

Kriging has been widely used to spatially interpolate in situ measurements of ice phenology to understand its 

spatial distribution (Choiński et al., 2015;Jenson et al., 2007). Kriging assumes a correlation between 145 

regionalized variables and variograms that reflects randomization and structuredness of regionalized variables. 

It estimates unknown values based on the best linear unbiased estimator with minimal variance,  expressed 

as: 
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iZ s（ ） is the variable at a measured point 150 

is , N is the number of measured points.
i is a weight for 

iZ s（ ）, and relies on the spatial arrangement of 

the measured values and the distance between the prediction location and the measured location (C.R. 

Paramasivam, 2019). The average values of five ice phenology indicators during the six years were 

interpolated to create isophenes, i.e., contour lines connecting locations with the same ice phenology.  

 155 

2.3.2 Rotated empirical orthogonal function (REOF) 

Empirical orthogonal function (EOF) decomposition is commonly used in climate and hydrological analyses 

(Bian et al., 2019;Yang et al., 2017). Its basic principle is to decompose the field containing p spatial points 

(variable) over time. If the sample size is n, then the data value xij including specific spatial point i and specific 

time j in the field can be regarded as the linear combination of spatial modes and temporal modes according 160 

to equation: 
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where bjp is the j th loading coefficient of the p th EOF mode. 

The major advantages of the EOF method is to separate the uncorrelated components that confuse the spatial 

information and make it hard to interpret a physical phenomenon. In order to solve these problems, a rotated 165 

EOF (REOF) rotates the original EOF matrix into a new matrix in which the squared elements of the 

eigenvectors are maximum, which can better reflect changes across different geographic regions and identify 

correlations. This paper presented the first four load vectors of the CFD decomposed by REOF and their 

corresponding principal components (PC) to identify the typical geographic zones in Northeast China.  

 170 

2.3.3 Bayesian linear regression 

Ice thickness had been modelled by air temperature and snow depth using Bayesian linear regression (BLR), 

which has been widely used in hydrological and environmental analyses (Zhao et al., 2013;Gao et al., 2014). 

BLR treats regression coefficients and the disturbance variance as random variables, rather than fixed but 

unknown quantities. This assumption leads to a more flexible model and intuitive inferences (Barber, 2008). 175 

The BLR model was implemented through two models: a prior probability model considered the probability 

distribution of the regression coefficients and the disturbance; a posterior model predicted the response using 

the prior probability mentioned below. The performance of the regression model was evaluated using the 

determination coefficient R2  and the root mean square error (RMSE). In this paper, the Y data were the five-

day ice thickness values, and the X data included snow depth over ice and air temperature on the river bank. 180 

The calculation of the regression used the in-situ measurements from November to March and excluded the 

ice records of April due to unsteady ice conditions. Two types of air temperature were considered: BAT and 

negative cumulative air temperature (ATC). Additionally, the Pearson correlation was calculated to analyse 

the relationship among the five ice phenology events and ice-related parameters, including MIT, ASD, and 

BAT(Gao and Stefan, 1999;Williams et al., 2004). 185 
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3 Results and discussion  

3.1 Spatial variations of river ice phenology 

3.1.1 Freeze-up and break-up process 

Figure 2 illustrates the average spatial distribution of FUS and FUE interpolated by kriging and the isophenes 

in the Songhua River Basin of Northeast China from 2010 to 2015. Figure 3 illustrates the spatial distribution 190 

of the BUS and BUE. The corresponding statistics are listed in Table 1. FUS ranged from October 28th to 

November 21st with a mean value of November 7th, and FUE ranged from November 7th to December 8th with 

a mean value of November 22nd. BUS ranged from March 24th to April 20th with a mean value of April 9th, 

and BUE ranged from March 31th to April 27th with a mean value of April 15th. These four parameters showed 

a latitudinal gradient: FUS and FUE decreased while BUS and BUE increased as the latitude increased, except 195 

in NJ. The middle part of NJ had the highest FUS and FUE and decreased to the southern and northern part. 

As the latitude decreased, the air temperature tended to increase, leading to later freeze-up and earlier break-

up with shorter ice-covered duration; vice versa. 

[Figure 2 is added here]  

[Figure 3 is added here] 200 

[Table 1 is added here]  

3.1.2 Complete frozen duration 

Figure 4(a) illustrates the average spatial distribution of CFD interpolated by kriging and the isophenes in the 

Songhua River Basin from 2010 to 2015. CFD ranged from 110.74 to 163.00 days with a mean value of 

137.86 days, increasing with latitude. Interestingly, the isophenes of CFD had different directionality, 205 

increasing from the southeast to northwest, which could also be found in the other four ice phenologists. Both 

FUS and FUE correlated negatively with latitude, with coefficients of -0.66 and -0.53, respectively (n=158, 

p < 0.001). BUS, BUE and CFD were all positively correlated with latitude with coefficients of 0.48, 0.57 

and 0.55, respectively (n=158, p < 0.001). High values indicated a delay in the ice phenology event. The 

general spatial trend was a tendency to advance as the latitude increased for the FUS and FUE, a tendency 210 

for delay for BUS and BUE, and a lengthening tendency for CFD. A decreasing solar radiation with latitude 

could explain this trend, which is directly connected with the ice thaw and melting processes. 

 

To find the spatial distribution of ice durations, average values of CFD between 2010 and 2015 were 

decomposed by REOF, and the spatial distribution of the first four PC are shown in Figures 4 (c)-(f) 215 

interpolated by kriging. The first to fourth PC modes accounted for 45.89%, 13.22%, 12.62%, and 12.00%, 

respectively, with the cumulative variance of 83.73%. The PC data ranged from -0.22 to 0.15, and the areas 

with high values presented a planar distribution, which were further regarded as five typical geographic zones 

considering the topography of Northeast China. Zone 1, located in the Three River Plain, where Heilongjiang, 

Wusuli, and Songhua River converge together, was identified from the first PC. Zone 2, located around 220 



7 

 

Heaven Lake of Changbai Mountain, in the southernmost part and which has the highest elevation of 2565 

m, was identified from the second PC mode. We excluded a planar distribution above Zone 2 because of the 

gentle terrain in the Songhua River Basin. The middle part of the Songhua River Basin accounts for a large 

area where no typical zones were found. The REOF was good at enhancing the high-value areas, and the PC 

data of this area around 0 were ignored. Zone 3, located on the eastern edge of the three basins with relatively 225 

high elevation along the ridge of Changbai Mountain, was identified from the third PC mode. Based on the 

fourth PC mode, Zone 4 was determined in the northernmost part along the ridge of Xiao Higgan Mountain 

where it meets with Da Higgan Mountain. Zone 5 almost covered the southern part of the NJ basin along the 

ridge of Da Higgan Mountain and appeared in the second, third, and fourth PC. The final distribution was 

identified from the convergence area of these three modes.  230 

[Figure 4 is added here] 

3.2 Variations of ice thickness  

3.2.1 Spatial pattern of ice thickness  

Figure 5 illustrates the spatial distribution of the yearly maximum ice thickness (MIT) of the river centre and 

the corresponding DOY. Table 2 summarized the statistical result of MIT and DOY. MIT ranged from 12 cm 235 

to 146 cm, with an average value of 78 cm. The MIT between 76 and 100 cm accounted for the largest 

percentage of 43.33%, followed by 31.67% of MIT between 50 and 75 cm. Five stations had MIT greater 

than 125 cm. Two stations were located in Zone 3 and three stations in Zone 4. The DOY of MIT had an 

average value of February 21st, and MIT mainly occurred 59 and 40 times in February and March, respectively. 

Four of the five highest MITs greater than 125 cm happened in March, which is consistent with the inter-240 

annual changes in ice development shown in Figure 6. The results suggested that the river ice is always 

thickest and most steady in February or March, which is the best suitable time for human activities such as 

ice fishing and entertainment. The ice thickness didn’t show the same latitudinal distribution as ice phenology, 

which suggested that more climate factor should be taken in to consideration, such as snow depth and wind. 

[Figure 5 is added here] 245 

[Table 2 is added here] 

 

3.2.2 Seasonal changes of ice thickness 

Figure 6 displays the seasonal changes of ice development using ice thickness, average snow depth on ice, 

and BAT every five days from 2010 to 2015. Among the three basins, NJ had the highest snow depth of -250 

29.15 ± 9.99℃, followed by -25.61 ± 9.02 ℃ in the SD, and -22.17 ± 7.33 cm in the SU. SD had the highest 

snow depth of 9.18 cm ± 3.39 cm on average level, followed by 8.35 cm ± 4.60 cm in SU, and 8.23cm ± 3.92 

cm in NJ. The changes in IT and ASD had similar overall trend, while BAT followed the opposite trend. Both 

IT and ASD increased from November and reached the peak in March, then dropped at the beginning of April. 

The ASD showed an obvious trend and reached the bottom in the middle of January, which is earlier than the 255 
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peaks of MIT and ASD. The NJ and the SD basins underwent greater fluctuations than the SU basin, because 

river ice may freeze and thaw alternatively at relatively low temperatures. The changes of ice characteristics 

differed greatly due to time and location; an analysis of the annual changes was not conducted because the 

time series were not long enough.  

[Figure 6 is added here] 260 

3.3 The relationship between ice regime and climate factors 

3.3.1 Correlation analysis  

Figure 7 displays the correlation matrix between lake ice phenology events and three parameters, covering 

yearly average values of ASD, BAT, and MIT with a dataset size of 120 stations. Colour intensity and sizes 

of the ellipses are proportional to the correlation coefficients. MIT had a higher correlation with four of the 265 

five indices than ASD and BAT, except with FUS, with which both MIT and BUE had the highest correlation 

of 0.63 (p<0.01, n=120). During the freeze-up process, two freeze-up dates had a negative correlation with 

MIT and ASD; during the break-up, two break-up dates had a positive correlation with MIT and ASD. CFD 

had a positive correlation with MIT and ASD. The situation of BAT was contrary to that of MIT and ASD. 

Regarding to the annual changes, no significant correlation was found between snow depth and five ice 270 

phenology events in Figure 7. 

[Figure 7 is added here] 

Figure 8 shows the bivariate scatter plots between yearly maximum ice thickness (MIT) and five ice 

phenology indicators with regression equations. The break-up process had a negative correlation with MIT, 

while freeze-up had a positive correlation. Besides, the break-up process had a higher correlation with MIT, 275 

and BUS had the highest correlation coefficients with MIT of 0.65 (p<0.01). CFD also had a positive 

correlation with MIT of 0.55 (P<0.01), which means that a thicker ice cover in winter leads to a delay in 

melting time in spring. The break-up not only depends on the spring climate conditions, but is also influenced 

by ice thickness during last winter. A thicker ice cover stores more heat in winter, taking a longer time to 

melt in spring. The limited performance of the regression model could be attributed to the difficulties in 280 

determining river ice phenology. Although a uniform observation protocol was required, the repaid transition 

between frozen river and open water for two or three days with floating ice and the inhomogeneities among 

different stations could not be ignored. 

[Figure 8 is added here] 

To further explore the role of snow cover, the monthly correlation coefficients between IT and ASD, and IT 285 

and BAT were calculated and listed in Table 3. The correlation coefficients between IT and ASD increased 

from November to March and reached a peak of 0.75 in March when ice was thickest. This indicated an 

increasingly important role of snow depth on ice thickness as the ice accumulated. The higher correlation 

coefficients between IT and BAT in November and December revealed that BAT played a more important 
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role in the freeze-up process. Moreover, whether the status of river ice was steady or not also could not be 290 

neglected when studying the role of snow cover.  

The positive correlation coefficient between snow depth and ice thickness (Table 3) revealed two opposite 

effects of snow depth during ice development: during the ice-growth process, snow depth protects the ice 

from cold air and slows down the growth rate of ice thickness; during the ice-decay process, the lake bottom 

ice stops to grow, and the snow mixes with surface ice into slush and promotes melting.  295 

[Table 3 is added here] 

3.3.2 Regression modelling 

Figure 9 illustrates the scatter plot between measured and predicted ice thickness using Bayesian linear 

regression in three sub-basins in Northeast China. R2 ranged from 0.81 to 0.95, and RMSE ranged from 0.08 

to 0.17. The model worked best in the SU basin, followed by the NJ and the SD basins. Figure 9 indicates 300 

that snow depth outweighed air temperature in terms of effect on ice thickness, which is consistent with 

previous studies.  Moreover, replacing BAT with ATC enhanced the model performance in all three basins, 

revealing a more important role of ATC than BAT.  

[Figure 9 is added here]  

The correlation between air temperature and ice regime was not as significant as in previous studies for 305 

several reasons. Average air temperatures were most commonly calculated over fixed time periods at regional 

scales, for example as moving averages for certain time periods. The seasonal changes of air temperature 

were ignored, as well as their effects within one cold season. The negative ATC behaved better than BAT 

when building the Bayesian regression equation, which suggested that heat exchanges between river surface 

and atmosphere dominated the ice process. Heat loss is mainly made up of sensible and latent heat exchange, 310 

which is proportional to negative ATC during the cooling process. During the complete frozen duration, snow 

depth along with wind speed began to influence the heat exchange and ice thickening. Air temperature exerted 

a lesser effect on spring break-up, which is more dependent on the ice thickness and snow depth. In summary, 

snow depth dominated the ice process when the river was completely frozen, while cumulative air temperature 

dominated during the transition process. 315 

4 Conclusions 

Five river ice phenology indicators, including FUE, FUS, BUE, BUS, and CFD, in the Songhua River Basin 

of Northeast China have been investigated using in situ measurements for the period 2010 to 2015 using 

kriging and REOF methods. The FUS and FUE decreased while the BUS, BUE, and CFD increased with 

latitude. The five river ice phenology indicators followed the latitudinal gradient and a changing direction 320 

from southeast to northwest. The highest MIT over 125 cm were distributed along the ridge of Da Hagan Lin 

and Changbai Mountain, and MIT occurred most often in February and March, which indicated that this is 

the safest period for human activities such as navigation and winter recreation. Five typical geographic zones 

were identified from the first four PC modes of CFD, covering Changbai Mountain, Three River Plain, Da 
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Higgan Mountain, and Xiao Higgan Mountain, providing a deeper understanding of river ice distribution and 325 

its relationship with geographic locations and topography in Northeast China.  

 

Within one cold season, ice thickness and snow depth showed similar seasonal changes, i.e. first increased 

and then decreased, while air temperature showed an opposite trend. The peaks of snow depth and ice 

thickness fell behind air temperature for almost one month. High correlation coefficients between yearly 330 

maximum ice thickness and ice phenology indicators revealed that ice phenology is closely related to ice 

thickness, especially in the break-up process. The yearly analysis failed to explain the relationship between 

ice regime and snow depth and air temperature. Based on monthly correlation analysis, snow cover played 

an increasingly important role as the ice cover become steady. Additionally, air temperature associated with 

ice phenology more closely than ice thickness.  335 

 

Six Bayesian regression models were built between ice thickness and air temperature and snow depth in three 

sub-basins of Songhua River, considering two types of air temperature: air temperature on bank and negative 

cumulative air temperature. Results showed that snow cover correlated with ice thickness significantly and 

positively during the periods when the freshwater was completely frozen, and negative cumulative air 340 

temperature influenced the thickness rather than air temperature through the heat loss of ice formation and 

decay. The negative ATC behaved better than BAT when building the Bayesian regression equation, which 

suggested that heat exchanges between the river surface and the atmosphere dominated the ice process. 

 

This study aimed at exploring the regional patterns of river ice development based on in situ measurements 345 

and was limited by data accessibility. Remote sensing data could provide long-term and wide-range 

information for ice thickness and ice phenology since 1980, expanding our study scope. The work herein will 

provide a valuable reference for the retrieval of ice development by remote sensing. Knowing the long-term 

change of river ice and the future projection  could provide information for evaluating the influence of climate 

on social-economics, ecological environment and human activists across the riparian zones. 350 
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Tables 

Table 1 Summary statistics of ice phenology interpolated by Kriging from 2010 to 2015. The ice 

phenology indicators included freeze-up start (FUS), freeze-up end (FUE), break-up start (BUS), break-

up end (BUE), complete frozen duration (CFD). NJ, SD and SU represent the Nenjiang Basin, the 

downstream Songhua River Basin (SD) and the upstream Songhua River Basin (SU). DOY denotes day 525 

of year. Std Dev. denotes standard deviation.  

Basins Statistics 
FUS 

(DOY) 

FUE 

(DOY) 

BUS 

(DOY) 

BUE 

(DOY) 

CFD 

(day) 

NJ 

Maximum 319.14 334.98 110.54 117.61 163.00 

Mean 307.02 324.58 98.65 106.64 139.39 

Minimum 301.41 311.30 84.53 90.40 119.11 

Std Dev. 3.91 5.69 8.16 6.80 13.22 

SD 

Maximum 321.08 334.36 110.01 102.84 154.06 

Mean 313.74 326.70 102.55 97.15 140.86 

Minimum 305.64 316.80 93.22 92.37 125.32 

Std Dev. 2.83 3.13 3.92 2.12 5.69 

SU 

Maximum 325.92 342.09 98.25 114.37 133.62 

Mean 320.39 334.35 91.93 106.43 122.61 

Minimum 313.79 327.68 83.46 95.69 110.74 

Std Dev. 2.34 3.09 3.21 4.24 4.85 

Total 

Maximum 325.92 342.09 110.54 117.61 163.00 

Mean 311.16 326.58 99.25 105.38 137.86 

Minimum 301.41 311.30 83.46 90.40 110.74 

Std Dev. 5.74 5.54 7.17 6.34 11.68 

 

Table 2 The Frequency of yearly maximum ice thickness from November to April. The row represents 

different year in cold season and the column represents yearly maximum ice thickness with the unit of 

cm.  530 

MIT 

Month 
<50 50-75 76-100 101-125 125-150 

December 4 1 0 1 0 

January 4 4 1 0 0 

February 4 25 26 3 1 

March 1 3 24 8 4 

April 0 2 1 0 0 

After April 0 3 0 0 0 

Total 13 38 52 12 5 
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Table 3 Correlation coefficient between maximum ice thickness (MIT) and average snow depth (ASD), 

and air temperature on bank (BAT) with a dataset size of 120 stations. The asterisk indicates the 

significant level of correlation coefficients, ** means significant at 99% level (p<0.01), and * means 

significant at 95% level (p<0.05). 535 

Correlation 

Coefficients 
November December January February March 

MIT vs. ASD 0.17 0.66* 0.53* 0.59* 0.75** 

MIT vs. BAT -0.90** -0.80** -0.55* -0.30 -0.45 
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Figures 

 

Figure 1 The geographic location of the Songhua River Basin showing (a) the elevation and (b) the 540 

location of 158 hydrological stations. The Songhua River Basin includes three sub-basins: Nenjiang 

River Basin (NJ), downstream Songhua River Basin (SD) and upstream Songhua River Basin (SU). 

Elevation data are from the Shuttle Radar Topography Mission (SRTM) with spatial resolution of 90 

meters.  

  545 
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Figure 2 The average spatial distribution of freeze-up start (FUS) (a) and freeze-up end (FUE) (b) in the 

Songhua River Basin of Northeast China from 2010 to 2015. The number labels indicate the day of year 

(DOY) of the isophenes.  550 

 

Figure 3 The average spatial distribution of break-up start (BUS) (a) and break-up end (BUE) (b) in the 

Songhua River Basin of Northeast China from 2010 to 2015. The number labels indicate the day of year 

(DOY) of the isophenes.  
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 555 

Figure 4 The spatial distribution of complete frozen duration (CFD) (a), five typical geographical zones 

(b), and first four principal components (c-f) decomposed by rotated empirical orthogonal function in 

the Songhua River Basin of Northeast China. 

http://www.baidu.com/link?url=0aCwm93Sb13Lj5AockK9JWZqbquKgjYFrDch6UTyWSTJKBRih74DxOdtiWQTTYscy00mO1K6s-erYUQODhV1ia6-srkxhwyLBaqYfqyHaC6x-hPUgQulmLHmg8EykbBC
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 560 

Figure 5 The spatial distribution of yearly maximum ice thickness (MIT) (a) of the river centre and the 

corresponding date (b).  
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Figure 6 Average seasonal changes in ice thickness (IT), average snow depth (ASD) and air temperature 565 

on bank (BAT) from November to April for the period 2010 - 2015.  
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Figure 7 Correlation matrix between maximum ice thickness (MIT), average snow depth (ASD) and air 

temperature on bank (BAT) and lake ice phenology events with data from 120 stations. The asterisk 570 

indicates the significance level of the correlation coefficients, ** means significant at 99% level (p<0.01), 

and * means significant at 95% level (p<0.05). 

 

 

 575 
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Figure 8 The bivariate scatter plots with linear regression lines between yearly maximum ice thickness 

(MIT) and ice phenology with dataset size of 120; r and p denote the correlation coefficient and p value 

of the regression line. The ice phenology events include freeze-up start (FUS), freeze-up end (FUE), 580 

break-up start (BUS), break-up end (BUE) and complete frozen duration (CFD). 
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Figure 9 Scatter plots between measured and predicted ice thickness using Bayesian linear regression in 585 

three sub-basins (NJ: Nenjiang Basin, SU: upstream Songhua River Basin, and SD: downstream 

Songhua River Basin) in Northeast China. The model treated ice thickness as the independent variable, 

and snow depth and air temperature as dependent variables. Two types of air temperature were used: 

BAT represents air temperature on bank; ATC represents negative cumulative air temperature. 
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 755 

Figure 8 The bivariate scatter plots with linear regression lines between yearly maximum ice thickness (MIT) 

and ice phenology with dataset size of 120;, r and p denote the corresponding correlation coefficient and p 

value of the regression line. The ice phenology events includeincludes freeze-up start (FUS), freeze-up end 

(FUE), break-up start (BUS), break-up end (BUE) and complete frozen duration (CFD). 
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Figure 9 The scatter plot between maximum ice thickness (MIT), average snow depth (ASD) and air 

temperature on bank (BAT) and the corresponding trend line. The data was selected under the criteria with 765 

air temperature below 2℃ and snow depth less than 20 cm.  

Figure 9 Scatter plots between measured and predicted ice thickness using Bayesian linear regression in 

three sub-basins (NJ: Nenjiang Basin, SU: upstream Songhua River Basin, and SD: downstream 
Songhua River Basin) in Northeast China. The model treated ice thickness as the independent variable, 

and snow depth and air temperature as dependent variables. Two types of air temperature were used: 770 

BAT represents air temperature on bank; ATC represents negative cumulative air temperature. 
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The comparision between the new version and the previous manuscript 

 

Abstract: The Songhua River Basin, located in Northeast China,basin is an areaa sensitive area to global 

warming in Northeast China that could be impactedindicated by changes in lake and river ice 

regimesdevelopment. The regional role and trends of lake and river ice characteristics of this area have been 5 

scarcely investigated and, which are critical for aquatic ecosystemsecosystem, climate variability, and human 

activities. UsingBased on the ice recordsrecord of local hydrological stations, we examined the spatial 

variations of the ice phenology and ice thickness in the Songhua River Basinbasin in Northeast China from 

2010 to 2015 and explored the role of ice thickness, snow depth during ice-on and air temperature on ice 

regimeice-off process. All of five river ice phenology indicators, including freeze-up start, freeze-up end, 10 

break-up start, break-up end and complete frozen duration, showed a latitudinal distribution and a changing 

direction from southeast to northwest. Five typical, and five typically geographic zones were identified 

applying abased on rotated empirical orthogonal function. Maximum ice thickness had a higher correlation 

with ice phenology, especially with the break-up process. Six Bayesianfive parameters than that of average 

snow depth and air temperature on bank. A linear regression models were builtfunction was established 15 

between ice thickness,  and snow depth on ice and indicated ice thickness was closely associated with snow 

depth on ice. The air temperature, and snow depth in three sub-basins of the Songhua River Basin. Results 

showed had higher correlation with ice phenology and influenced the lake ice phenology significantly, and 

snow cover did not show significant and positive correlations betweencorrelation with the ice phenology. 

However, snow cover andcorrelated with ice thickness significantly and positively during the periods when 20 

the freshwater wasis completely frozen. Rather than by air temperature, ice thickness was influenced by 

negative cumulative air temperature through the heat loss of ice formation and decay.  

Keywords. River ice, ice phenology, ice thickness, snow on ice, air temperature, rotated empirical orthogonal 

function 

1 Introduction 25 

The freeze-thaw process of surface ice of temperate lakes and rivers plays a crucial role in the interactions 

among the climate system(Yang et al., 2020), freshwater ecosystems (Kwok and Fahnestock, 1996) and the 

biological environment (Prowse and Beltaos, 2002). The presence of freshwater ice is closely associated with 

social and economic activities, ranging from human-made structures, water transportation, to winter 

recreation (Williams and Stefan, 2006;Lindenschmidt et al., 2017). Ice cover on rivers and lakes exerts large 30 

forces due to thermal expansion and could cause extensive infrastructure losses to bridges, docks, and 

shorelines (Shuter et al., 2012). Ice cover on waterbodies also provides a natural barrier between the 

atmosphere and water. Ice cover also blocks the solar radiation necessary for photosynthesis to provide 

enough dissolved oxygen for fish, thus can have a negative effect on freshwater ecosystems and, in extreme 

cases, lead to winter kill of fish The freeze and thaw process of surface ice of temperate lakes and rivers plays 35 

crucial roles in the interaction among climate system (Stephanie and Stefan Heinz, 2006), freshwater 

ecosystem (Kwok and Fahnestock, 1996) and biological environment. The existence of freshwater ice closely 

associate with social and economic activities ranging from human-made structures, water transportation to 
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winter recreation (Lindenschmidt et al., 2017; Williams and Stefan, 2006). The ice cover on rivers and lakes 

has exerted large forces due to thermal expansion and could cause extensive loss of the human-made 40 

structures, such as bridges, docks, shorelines, and so on (Shuter et al., 2012). Furthermore, ice cover on 

waterbodies provide a natural barrier between the atmosphere and the water and blocks the solar radiation 

necessary for photosynthesis and enough dissolved oxygen for fish, which have a negative effect on 

freshwater ecosystem, in extreme cases, leading to winter kills of fishes (Hampton et al., 2017; Xing et al., 

2009). Generally, the frozen duration of  freshwater ice has a shorten trend with later freeze-up and earlier 45 

break-up throughout the northern hemisphere, i.e., with freeze-up date 0.57 days per decade later and 0.63 

days per decade earlier during the periods of 1846-1995 (HamptonMagnuson et al., 20172000; Sharma et al., 

2019). Generally, the duration of freshwater ice has shown a declining trend, with later freeze-up and earlier 

break-up throughout the northern hemisphere. For example, freeze-up has been occurring 0.57 days per 

decade later and break-up 0.63 days per decade earlier during the periods of 1846-1995 (Magnuson et al., 50 

2000;Sharma et al., 2019;Beltaos and Prowse, 2009). To evaluate the influence of ice regimes on the regional 

climate and human environment, and provide helpful information for regional projections of climate and ice-

river floods, a robust and quantitative analysis on ice processes is necessary. Despite the growing importance 

of river ice under global warming, very little work has been undertaken to explain the considerable variation 

of ice characteristics in Northeast China, where lakes and rivers are frozen for as long as five to six months a 55 

year. 

 

The earliest ice record in the literature dates back to 150 years ago (Magnuson et al., 2000). Ice development 

and ice diversity scales have been regarded as sensitive climate indicators. Ice phenology and ice thickness 

have been studied to gain a deeper understanding of ice processes. At medium and large scales, optical remote 60 

sensing data are widely used for deriving ice phenology (Song et al., 2014;Šmejkalová et al., 2016), while 

microwave remote sensing are used to estimate ice thickness and snow depth over ice . Changes in ice 

characteristics and phenology have been considered as a sensitive proxy for global warming, which could be 

attributed to characteristics of water bodies, climate changes, and river discharges (Duguay et al., 2010). 

Northeast China belongs to one of the most intense areas for climate changes (Piao et al., 2010), but limited 65 

work has been carried out on analyzing the considerable variation of ice characteristics in Northeast China, 

where the lakes and rivers are frozen as long as five to six months.  

 

Along with ice phenology, ice thickness is also considered as a meaningful indicator for regional and global 

climate changes. Various models have been implemented to derive ice phenology and ice thickness, such as 70 

physically-based models, hydrodynamic models, regression models, radiation transfer model, and so on 

(Duguay et al., 2015). These models considered the energy exchange and physical changes of freshwater ice 

and required detailed ice measurements, which were carried out around the river mouth and specific rivers 

(Duguay et al., 2003).  Most commonly used ice observations include regular observation, ice charts, 

volunteer monitoring and field measurements (Duguay et al., 2015). The uneven distribution of hydrological 75 

stations limits the expansion of field measurement to regional and global applications. Remote sensing data 

have been widely used in deriving ice phenology, and ice thickness (ZhangBrown and Duguay, 2010; 

Dörnhöfer and Oppelt, 2016; Šmejkalová et al., 2019;Kang2016; Song et al., 2014).  Wide-range satellites 
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make it possible to link ice characteristic with climate indices, such as air temperature (Yang et al., 2020) or 

large-scale teleconnections (Ionita et al., 2018), but their spatial resolutions are too large to detect ice 80 

thickness and snow depth accurately at small scales. For example, the microwave satellite data of AMSR-E 

have a spatial resolution of 25 km, but the largest width of Nenjiang River only ranges from 170 to 180 meters. 

The spatial resolution limits the application of satellite observations to precisely inverse ice thickness, let 

alone snow depth.  

 85 

In terms of point-based measurements, the most commonly used ground observations include regular 

observations, ice charts, volunteer monitoring and field measurements (Duguay et al., 2015). Ground 

observations depend on spatial distribution and representation, and are limited by the accessibility of surface-

based networks and the range of field measurement. Ice parameters differ greatly from point to point on a 

given river (Pavelsky and Smith, 2004), and the uneven distribution of hydrological stations poses an obstacle 90 

to gaining a comprehensive understanding of river ice.  Various models have been implemented to derive ice 

phenology and ice thickness, such as physically-based models (Park et al., 2016), linear regressions , and its 

inability is limited by the temporal and spatial resolution of remote sensing image. Not only modeling but 

also remote sensing monitoring requires sufficient historical ice records to validate and improve the accuracy 

and reliability. Most commonly used ice observations include regular observation, ice charts, volunteer 95 

monitoring and field measurements (Duguay et al., 2015). If the sample size of ice records is big enough, 

monitoring spatiotemporal variations of ice characteristics and the regional trend is essential and feasible, 

which could provide the potential for analyzing the ice phenology in specific waterbodies. 

The most commonly vertical structure of ice cover is made up of congelation ice, snow-ice, snow, and water 

(Leppäranta, 2010). The ice cover of waterbodies is experiencing three stages: freeze-up, ice growth, and 100 

break-up, during which ice phenology, ice thickness, and ice composition changes greatly (Duguay et al., 

2015). The effect of snow depth and air temperature on ice thickens has been analyzed based on numerous 

models, such as regression models (Palecki and Barry, 1986; Williams and Stefan, 2006), thermodynamic ice 

model (Ménard et al., 2002b), and artificial neural networks (Palecki and Barry, 1986;Williams and 

Stefan,Seidou et al., 2006; Zaier et al., 2010), logistic regressions (Yang et al., 2020) and artificial neural 105 

networks (Seidou et al., 2006;Zaier et al., 2010). These models consider the energy exchange and physical 

changes of freshwater ice and require detailed information and data support, including hydrological, 

meteorological, hydraulic and morphological information. Fixed stations are normally located around the 

river mouth of certain rivers, so these models are limited by the input data available (Pavelsky and Smith, 

2004). Both modelling and remote sensing monitoring require sufficient historical ice records to validate and 110 

improve accuracy and reliability.  

 

The ice cover of water bodies experiences three stages during which ice phenology, ice thickness and ice 

composition change greatly. These stages are: freeze-up, ice growth, and break-up (Duguay et al., 2015). 

Although air temperature greatly influences the freeze-thaw cycle of river ice, the effect of snow cover can’t 115 

be ignored. Generally, snow depth outweighs air temperature during the ice forming process and increasing 

snow depth provides favourable conditions for thicker ice (Morris et al., 2005;Park et al., 2016). Compared 

to other studies, air temperature had a greater effect on ice thickness than snow depth and were attributed this 
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to the high snowfall in the study area (Gao and Stefan, 2004). Besides, in situ observations at Russian river 

mouths where ice thickness decreased had not shown any significant correlation between ice thickness and 120 

snow depth (Shiklomanov and Lammers, 2014). Those studies analysed the relationship in view of spatial 

distributions and ignored the changing status of ice formation processes.  The relative influence of snow depth 

and air temperature on the ice regime deserves further exploration in Northeast China.  

 

. The most commonly vertical structure of ice cover consists of congelation ice, snow-ice, snow and water 125 

(Leppäranta, 2010). Snow depth on ice and air temperature mainly controls the total ice thickness covering 

congelation ice and snow-ice. Snow on ice is a good insulator and has two-fold effects: during the freeze-up 

process and ice growth, the timing and amount of snow directly influence the ice thickness and promote ice 

thickening; during the break-up process, the snow has a lower light-transmitting property and prevents the 

ice from melting. Generally, snow depth plays a more crucial role than air temperature (Morris et al., 2005) 130 

and increasing snow depth provide favorable condition for thicker ice cover. In comparison with other works, 

the air temperature had more effect on ice thickness than snow depth and attributed this to the high snowfall 

of study area (Gao and Stefan, 2004). Whether snow depth or air temperature is the primary factor influencing 

ice formation and decay deserves further exploring in Northeast China.  

The surface-based networks, including climatic and hydrological stations, have been established for tracing 135 

climate and hydrological changes in Northeast China, which are limited by the accessibility of surface-based 

networks and the range of filed measurement. To evaluate the influence of ice regime on regional climate and 

human environment, a robust investigation and quantitative analysis on ice regime is necessary, which 

provide helpful information for projecting future changes in the ice regime. The previous work explored the 

ice process in at one or more locations on a given river and ignored the changing regional pattern of ice 140 

development due to sparse location.. The objectives of this study are to: (1) investigateexamine and compare 

the spatial distribution of ice phenology and dynamics of three sub-basins of Songhua River from 2010 to 

2015; (2) explore the relationship between ice thickness in Northeast China; (2) quantitativelyand ice 

phenology; (3) explore the influence of snow coverprimary factor influencing ice process and air temperature 

on ice regime. thickness. 145 

 

2 Materials and methods 

2.1 Study area 

The Songhua River Basin is(119°25′-134°00′E, 41°41′-51°38′N) located in the middle of Northeast China 

(Figure 1), and includes) involving Jilin Province, Heilongjiang Province, and the eastern part of Inner 150 

Mongolia Autonomous Region. The Songhua River (SHR) is the third-longest river in China, and hascovering 

three main tributariesstreams: Nenjiang River, Main, Songhua River, and Second Songhua River (Zhao et al., 

2018;Khan et al., 2018). The basins (Zhao et al., 2018). According to the spatial distribution of the three 

tributary rivers ’ basin, the corresponding basins include: Nenjiang Basin (NJ), the Downstream Songhua 

River Basin (SD), and the Upstream Songhua River Basin (SU)), namely (Figure 1). The Nenjiang RiverNJ 155 

has a length of 1370 km, and the corresponding drainage has an area of 2.,55 ×106 thousand km2; the Main 
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Songhua RiverMSR has a length of 939 km and the catchment named downstream catchment of the Songhua 

River Basin (SD) has an area of 1.86 ×106 km2; the Second Songhua River has SSHR have a length of 958 

km and the upstream catchment of the named upstream Songhua River Basin (SU) has an area of 6.19×106 

km2 (Yang et al., 2018;Chen et al., 2019).(Yang et al., 2018). The whole Songhua River Basin is 160 

characterizedSHR is featured by temperate and cold temperate climates: winter isclimate with long and cold; 

spring is winter and windy and dry. Annual average  spring. The air temperature ranges betweenhas annual 

average values of 3 to 5℃, while annualand the precipitation ranges from 400 to 800 cm from the southeast 

to the northwest.west (Wang et al., 2015;Wang et al., 2018)(Wang et al., 2015). 

[Figure 1 is added here] 165 

2.2 Data Source  

2.2.1 Ice phenology 

The hydrographic bureau ofin-situ lake ice records were available provided by the Chinese Ministry of Water 

Resources has established a remarkable observation network for ice regimes. The ice records of the Songhua 

River Basin were obtained from the annual hydrological report2010 to 2015, including ice phenology, ice 170 

thickness, snow depth on ice and air temperature on bank (BAT) (Annual hydrological report, 2010-2015). 

To analyse the spatial pattern of the ice regime, we explored five river ice parameters with the corresponding 

day of year (DOY) from 158 stations. We located 50, 36 and 72 stations in the NJ, SU and SD basins, 

respectively. For each record, five lake ice phenological events were derived from the annual hydrological 

report; the definitions referred to specification for observation of ice regimes in rivers and previous works 175 

(Cai et al., 2019;Yang et al., 2019;Duguay et al., 2015) :Ice phennolgoy  from 158 stations were ananlyzed 

in this paper, with 48, 36 and 71 stations located in NJ, SU and SD basins.  

FreezeIn-situ measurements provide five lake ice phenological events: freeze-up start (FUS)), freeze-up end 

(FUE), break-up start (BUS), break-up end (BUE) and complete frozen duration (CFD), and the definition 

are provided by specification for observation of ice regime in rivers (2015) as follows: 180 

- FUS is considered as the first day when floating ice can be observed ;   

 - FUE is considered as the day when the surface is mainly covered by ice with temperatures below 

0 ℃open water less than 20% of view range;  

 Freeze-up end (FUE) is the day when a steady ice carapace can be observed on the river, and the area 

of ice cover is more than 80% in the view range; 185 

 Break-up start (-BUS) is considered as the first day when ice melting can be observed with surface 

ponding; began to melt; 

 Break-up end (-BUE) is considered as the day when the surface is mainly covered by open water 

and thewith ice area less than 20% of open water exceed 20%;view range.  

 Complete frozen duration (CFD)-CFD is the ice cover duration between FUE and BUS when the 190 

lake is completely frozen during the winter, from FUE to BUS..  
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2.2.2 Ice thickness 

To study seasonal changes in ice thickness (IT) and establish the regression model, we used ice thickness, 

snow depth and air temperature from 120 stations for the period ranging from 2010 to 2015. We used 37, 28 

and 55 stations located in the NJ, SU and SD basins, respectively. The hydrological report provided ice 195 

thickness, snow depth on ice and BAT every five days from November through April, totalling 37 

measurements in one cold season. The yearly maximum ice thickness (MIT) of the river centre and center 

was involved in this paper, as well as the corresponding DOY were calculated from five-day records.of year 

(DOY) and air temperature on bank (BAT). The average snow depth (ASD) wasis calculated from the mean 

values of three3 or four4 measurements around the ice hole for ice thickness measurement without human 200 

disturbance. To enhance the performance of the regression model, negative cumulative air temperature was 

calculated from air temperature from November to March. The measurement was carried out every five days 

and lasted from November to April in cold season every year, totally 37 measurements in one cold season. 

MIT and ASD from 120 of 158 stations were avalible herein with 55, 28 and 37 stations in the SD, SU, and 

NJ respectively. 205 

2.3 Data analysis 

2.3.1 Kriging 

Kriging has been widely used to spatially interpolate in situ measurements of ice phenology to understand its 

spatial distribution (Choiński et al., 2015;Jenson et al., 2007). Kriging assumes a correlation between 

regionalized variables and variograms that reflects randomization and structuredness of regionalized variables. 210 

It estimates unknown values based on the best linear unbiased estimator with minimal variance,  expressed 

as: 

1

ˆ( )
N

o i i
i

Z s Z s


 （ ） 

where ˆ( )oZ s  is the estimate by kriging at an unknown point 
os , 

iZ s（ ） is the variable at a measured point 

is , N is the number of measured points.
i is a weight for 

iZ s（ ）, and relies on the spatial arrangement of 215 

the measured values and the distance between the prediction location and the measured location (C.R. 

Paramasivam, 2019). The average values of five ice phenology indicators during the six years were 

interpolated to create isophenes, i.e., contour lines connecting locations with the same ice phenology.  

 

2.3.2 Rotated empirical orthogonal function (REOF) 220 

Empirical orthogonal function (EOF) decomposition is commonly used in climatethe climatic and 

hydrological analysesanalysis (Bian et al., 2019; Yang et al., 2017). Its, whose basic principle is to decompose 

the field containing p spatial points (variable) to decompose over time. If the sample size is n, then the data 

value xij including specific spatial point i and specific time j in the field can be regarded as the linear 

combination of spatial modesfunction Sik and temporal modes according totime function tkj (k = 1,2,..., p), and 225 

the equation: is listed as below.  
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2

2
2 2 2

1 1

1 M m

jpb
j p

S b b
mM  

 （ - ） 

where ij ik kjx s t   

Rotated empirical orthogonal functionbjp is the j th loading coefficient of the p th EOF mode. 

The major advantages of the EOF method is to separate the uncorrelated components that confuse the spatial 230 

information and make it hard to interpret a physical phenomenon. In order to solve these problems, a rotated 

EOF (REOF) rotates the original EOF matrix intoto a new matrix in whichthat the squared elements of the 

eigenvectors are maximum, which can bettercould reflect changes across the change of different geographic 

regions and correlation distribution. 

2

2
2 2 2

1 1

1 M m

jpb
j p

S b b
mM  

 （ - ） 235 

bjp is the j th loading coefficient of the p th EOF mode.identify correlations. This The paper presented the 

first four load vectors of the CFD decomposed by REOF and their corresponding principal components 

(PC) to identify the typical geographic zones in Northeast China.  

 

2.3.3 Bayesian linear regression2 Kriging 240 

As a spatial interpolation, Kriging has been widely used to produce the spatial distribution of ice phenology 

based on in-situ measurement (Choiński et al., 2015; Jenson et al., 2007).  Kriging estimate the unknown 

values based on best linear unbiased estimator with minimal variance, is expressed as:  

1

ˆ( )
N

o i i
i

Z s Z s


 （ ） 

Ice thickness had been modelled by air temperature and snow depth using Bayesian linear regression (BLR), 245 

which has been widely used in hydrological and environmental analyses (Zhao et al., 2013;Gao et al., 2014). 

BLR treats regression coefficients and the disturbance variance as random variables, rather than fixed but 

unknown quantities. This assumption leads to a more flexible model and intuitive inferences (Barber, 2008). 

The BLR model was implemented through two models: a prior probability model considered the probability 

distribution of the regression coefficients and the disturbance; a posterior model predicted the response using 250 

the prior probability mentioned below. The performance of the regression model was evaluated using the 

determination coefficient R2  and the root mean square error (RMSE). In this paper, the Y data were the five-

day ice thickness values, and the X data included snow depth over ice and air temperature on the river bank. 

The calculation of the regression used the in-situ measurements from November to March and excluded the 

ice records of April due to unsteady ice conditions. Two types of air temperature were considered: BAT and 255 

negative cumulative air temperature (ATC). Additionally, the Pearson correlation was calculated to analyse 

the relationship among the five ice phenology events and ice-related parameters, including MIT, ASD, and 

BAT(Gao and Stefan, 1999;Williams et al., 2004). 
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3 Results and discussion  

3.1 Spatial variations of riverwhere ˆ( )oZ s  is the estimate by Kriging at an unknown point os , iZ s（ ） is the 260 

variable at a measured point is , N is the amount of measured point. i is a weight for iZ s（ ）, and relies on 

the arrangement of measured values and the distance between the prediction location and measured 

location(C.R. Paramasivam, 2019). Average values of fiver ice phenology during the six years were used to 

interpolate and to create the isophenes that were contour lines connecting locations with the same ice 

phenology.  265 

 

2.3.3 Partial least squares regression 

Partial least squares regression predicts the response of Y to X data. The method decomposes the X and Y 

data into scores and loadings and makes the correlation between different scores maximum. In this paper, Y 

data is maximum ice thickness, and X data includes snow depth on ice and air temperature on bank. Besides, 270 

Pearson correlation was conducted to analyze the relationship among five ice phenology and ice-related 

parameters, including MIT, ASD, and BAT (Gao and Stefan, 1999; Williams et al., 2004).  

3 Result and Discussion 

Five ice phenology 

3.1.1 Freeze-up and ice thickness described the ice condition during the freeze-up process and break-up 275 

process, and the relation between ice phenology, ice thickness, and snow depth and air temperature on bank 

were analyzed herein.   

3.1 Spatial distribution of ice process 

3.1.1 The spatial distribution of ice phenology 

Figure 2 illustrates the average spatial distribution of FUS and FUE interpolated by krigingKriging and the 280 

isophenesisosphere in the Songhua River Basinbasin of Northeast China from 2010 to 2015. Figure 3 

illustrates the spatial distribution of the BUS and BUE. The corresponding statistics are listed in Table 1. FUS 

ranged from October 28th to November 21st with athe mean value of November 7th, and FUE ranged from 

November 7th to December 8th with athe mean value of November 22nd. BUS ranged from March 24th to April 

20th with athe mean value of April 9th, and BUE ranged from March 31th to April 27th with athe mean value 285 

of April 15th. These four parameters showed a latitudinal gradientdistribution: FUS and FUE decreased while 

BUS and BUE increased as the latitude increased, except in NJ. The middle part ofon NJ had the highest FUS 

and FUE and decreased to the southern and northern part. As the latitude decreased, the air temperature tended 

to increase, leading to later freeze-up and earlier break-up with shorter ice-covered duration; vice versa. 

[, which could be observed from the DOY of isophane. BUS and BUE of the middle NJ didn’t show a similar 290 

pattern in Figure 23.  

[Figure 2 and 3 is added here]  
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[Figure 3 is added here] 

[Table 1 is added here]  

3.1.2 Complete frozen duration 295 

Figure 4(a) illustrates the average spatial distribution of CFD interpolated by krigingKriging and the 

isophenesisosphere in the Songhua River Basinbasin from 2010 to 2015. CFD ranged from 110.74 to 163.00 

days with athe mean value of 137.86 days, increasing withwhich increased from south to north as the latitude 

increased. Interestingly, the isophenesisophere of CFD had different directionality,a changing direction 

increasing from the southeast to northwest, which could also be found in the other four ice 300 

phenologistsphenology. Both FUS and FUE negatively correlated negatively with latitude, with coefficients 

of -0.66 and -0.53, respectivelynamely (n=158, p < 0.001). All of BUS, BUE and CFD were all positively 

correlatedhave positive coefficients with latitude with coefficientsvalues of 0.48, 0.57 and 0.55, respectively 

(n=158, p < 0.001). High values indicated aappearance delay in thefor ice phenology event. The general 

spatial trend was a tendency to could be seen that the FUS and FUE tended to advance as the latitude increased 305 

for the FUS and FUE, a tendency for delay for BUS and BUE, and a lengthening tendency for, BUS and BUE 

tended to delay, and CFD. A  tended to prolong. The decreasing solar radiation with latitude could explain 

this trend due to increasing latitude, which is directly connected with the ice thaw and melting 

processes.process.  

[Figure 4 is added here] 310 

 

To find the spatial distribution of ice durations, average values of CFD between 2010 and 2015 wereCFD is 

decomposed by REOF from 2010 to 2015, and the spatial distribution of the first fourto fourth PC mode are 

shown in Figures 43 (c)-() to 3 (f) interpolated by krigingKriging. The first to fourth principal component 

(PC) modes accountedaccount for 45.89%, 13.22%, 12.62%, and 12.00%, respectively, with the 315 

cumulativeaccumulative variance of 83.73%. The PC mode data ranged from -0.22 to 0.15, and the areasarea 

with high values presented a planar distribution, which were further regarded as five typical geographic zones 

considering the topography of Northeast China. Zone 1, was located in the Three River Plain, where 

Heilongjiang, Wusuli, and Songhua River converge together, was identified from the first PC mode. Zone 2, 

was located around Heaven Lake of Changbai Mountain,mountain, which was located in the southernmost 320 

part and which haswith the highest elevation of 2565 m, wasmeters, identified from the second PC mode. We 

excluded a planar distribution above Zone 2 from these zones because of the gentle terrain in the Songhua 

River Basinbasin. The middle part of the Songhua River Basin accounts for a large area where no typical 

zones were found. The REOF was good at enhancing the high-value areas, and the PC mode data of this area 

around 0 were ignored. Zone 3, was located on the eastern edge of the three basins with relatively high 325 

elevation along the ridge of Changbai Mountain, wasmountain, identified from the third PC mode. Based on 

the fourth PC mode, Zone 4 was determined in the northernmost part along the ridge of Xiao Higgan 

Mountain, where it meetsmeet with Da Higgan Mountain. Zone 5 almost covered the southern part of the NJ 

basin along the ridge of Da Higgan Mountain and appeared in the second, third, and fourth PC. The final 

distribution was identified from the convergence area of these three modes.  330 

[Figure 4 is added here] 

带格式的: 正文, 无

带格式的: 正文, 无

带格式的: 正文, 无



 

10 
 

3.1.2 VariationsThe spatial distribution of ice thickness  

3.2.1 Spatial pattern of ice thickness  

Figure 5 illustrates the spatial distribution of the yearly maximum ice thickness (MIT) of the river centrecenter 

and the corresponding day of year (DOY.). Table 21 summarized the statistical result of MIT and the DOY. 335 

MIT ranged from 12 cm to 146 cm, with an average value of 78 cm. The MIT between 76 and 100 cm 

accounted for the largest percentage of 43.33%, followed by 31.67% of MIT between 50 and 75 cm. Five 

stations had the MIT greaterover than 125 cm125cm. Two stations were located in Zone 3, and three stations 

in Zone 4. The, respectively. DOY of MIT had an average value of February 21st, and MIT mainly occurred 

59 and 40 times in February and March, respectively. Four of the five highest MITs greater thanover 125 cm 340 

happened in March, which is consistent with the inter-annual changes in ice development shown in Figure 6. 

The results suggested that the river ice is always thickest and most steady in February or March, which is the 

best suitable time for human activities such as ice fishing and entertainment. The ice thickness didn’t show 

the same latitudinal distribution as ice phenology, which suggested that more climate factor should be taken 

in to consideration, such as snow depth and wind. 345 

[Figure 5 is added here] 

[Table 2 is added here] 

 

3.2.2 Seasonal changes of ice thickness 

Figure 6 displays the seasonalinterannual changes of ice development using maximum ice thickness, average 350 

snow depth on ice, and BAT every five days from 2010 to 2015.air temperature on bank. Among the three 

basins, NJ had the highest snow depth of -29.15 ± 9.99℃, followed by -25.61 ± 9.02 ℃ in the SD, andthen -

22.17 ± 7.33 cm in the SU. SD had the highest snow depth of 9.18 cm ± 3.39 cm on average level, followed 

by 8.35 cm ± 4.60 cm in SU, andthen 8.23cm ± 3.92 cm in NJ. The changes in ITMIT and ASD had similar 

overall trend, while BATair temperature on bank followed the opposite trend. Both ITMIT and ASD increased 355 

fromwent up since November and reached the peak in MarchMarth, then dropped at the beginningbegging of 

April. The ASD showed an obvious trend and reached the bottom in the middle of January, which is earlier 

than the peaks of MIT and ASD. The NJ and the SD basins underwent greater fluctuations than the SU basin, 

because river ice may freeze and thaw alternatively atunder relatively low temperaturestemperature. The 

changes of ice characteristics differed greatly due to time and location; an (Hawley et al., 2018); analysis of 360 

theon annual changes washad not been conducted because the time series were not long enough.  

[Figure 6 is added here] 

3.32 The relationship between ice regimedevelopment and climatethe impact factors 

3.3.1 Correlation analysis  

3.2.1 The influence of ice thickness on ice phenology 365 

Figure 7 displaysdisplay the correlation matrix between lake ice phenology events and three parameters, 

covering yearly average values of ASD, BAT, and MIT with a dataset size of 120 stations. Colour intensity 
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and sizesthe size of the ellipsesellipse are proportional to the correlation coefficients. MIT had a higher 

correlation with four of the five indices than that of ASD and BAT, except with FUS, withamong which both 

MIT and BUE had the highest correlation of 0.63 (p<0.01, n=120). During the freeze-up process, two freeze-370 

up dates had a negative correlation with MIT and ASD; during the break-up dates, two break-up dates had a 

positive correlation with MIT and ASD. CFD had a positive correlation with MIT and ASD. The situation of 

BAT wasis contrary to that of MIT and ASD. Regarding to the annual changes, no significant correlation was 

found between snow depth and five ice phenology events in Figure 7. 

[Figure 7 is added here] 375 

Figure 8 shows the bivariate scatter plots between yearly maximum ice thickness (MIT) and five ice 

phenology indicators with regression equations. The. From Figure 7, the break-up process had a negative 

correlation with MIT, while the freeze-up had a positive correlation. Besides, the break-up process had a 

higher correlation with MIT, and BUS had the highest correlation coefficients with MIT of 0.65 (p<0.01). 

CFD also had a positive correlation with MIT of with r =0.55 (P<0.01), which). It means that a thicker ice 380 

cover in winter leadslead to a delay in melting time tend to delay in spring. The break-up not only depends 

on the spring climate conditions, but is also influenced by ice thickness during last winter. A thickerThick ice 

cover stores morestored high heat in winter, takingwhich takes a longer time to melt in spring. The limited 

performance of the regression model could be attributed to the difficulties in determining river ice phenology. 

Although a uniform observation protocol was required, the repaid transition between frozen river and open 385 

water for two or three days with floating ice and the inhomogeneities among different stations could not be 

ignored. 

 

 [Figure 7 is added here] 

 390 

 [Figure 8 is added here] 

To further explore the role  

3.2.2 The influence of snow and air temperature on ice thickness 

Snow cover, and air temperature are considered the two most domain climate factors influencing the monthly 

ice process of freshwaters (Ménard et al., 2002b). Regarding to the annual changes, no significant correlation 395 

coefficientshad been found between IT snow depth and five ice phenology in Figure 7. The interannual 

changes of correlation coefficients between MIT and ASD, and IT and BAT were calculated and listedshown 

in Table 3. The  with a dataset size of 37. We calculated the means of MIT, ASD, and BAT from 120 stations 

on a specific day, 37 days during one cold season. The correlation coefficients between ITMIT and ASD 

increased from November to March and reached a peak of 0.75 in March when the ice wasis thickest. around 400 

the year. This indicated an increasingly importantincreasing import role of snow depth on ice thickness as the 

ice accumulated. The higher correlation coefficients between ITMIT and BAT in November and December 

revealed that the BAT played a more important role in the freeze-up process. Moreover, Besides, we found 

the relationship between these three parameters relied on whether the status of river ice is steady or not. We 

excluded the data of April in Table 2 because the river melts and refreeze alternatively during April, and the 405 

status of river ice was not steady and accurate enough. 
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 Moreover, the regression equation between MIT, ASD, and BAT had been built up to quantificationally 

analyze their relationship. Figure 9(a) shows the scatter plot between MIT and ASD, and a linear regression 

function was steady or not also could not be neglected when studying the role of snow cover.  

found between MIT and ASD with a mean root square of 0.94. This showed that snow played a crucial role 410 

in the river ice decay and formation, which is consistent with previous works (Duguay et al., 2003; Ménard 

et al., 2002a). The positive correlation coefficient between snow depth and ice thickness (both in Table 3)2 

and revealed two opposite effects of snow depth during ice development: during the ice-growth process, the 

snow depth protects the ice from cold air and slowsslow down the growth rate of ice thickness; during the 

ice-decay process, the lake (Adams and Roulet, 1980); during ice-decay process, the bottom of lake ice 415 

stopsstopped to grow, and the snow mixesmixed with surface ice into slushslushing and promotespromoted 

the melting process.  

[Table 3 

 [Figure 9 is added here] 

 420 

Figure 93.3.2 Regression modelling 

Figure 9 illustrates the scatter plot between measured and predicted ice thickness using Bayesian linear 

regression in three sub-basins in Northeast China. R2 ranged from 0.81 to 0.95, and RMSE ranged from 0.08 

to 0.17. The model worked best in the SU basin, followed by the NJ and the SD basins. Figure 9 indicates 

that snow depth outweighed air temperature in terms of effect on ice thickness, which is consistent with 425 

previous studies.  Moreover, replacing BAT with ATC enhanced the model performance in all three basins, 

revealing a more important role of ATC than BAT.  

[Figure 9 is added here]  

The correlation between air temperature and ice regime was not as significant as in previous studies for 

several reasons. Average air temperatures were most commonly calculated over fixed time periods at regional 430 

scales, for example as moving averages for certain time periods. The seasonal changes of air temperature 

were ignored, as well as their effects within one cold season. The negative ATC behaved better than BAT 

when building the Bayesian regression equation, which suggested that heat exchanges between river surface 

and atmosphere dominated the ice process. Heat loss is mainly made up of sensible and latent heat exchange, 

which is proportional to negative ATC during the cooling process. During the complete frozen duration, snow 435 

depth along with wind speed began to influence the heat exchange and ice thickening. Air temperature exerted 

a lesser effect on spring break-up, which is more dependent on the ice thickness and snow depth. In summary, 

snow depth dominated the ice process when the river was completely frozen, while cumulative air temperature 

dominated during the transition process. 

(b) shows the scatter plot between MIT and BAT, and an exponential function was built between MIT and 440 

BAT with a mean root square of 0.31. A monotonic function with a decreasing trend could not explain the 

relationship between MIT and BAT due to low R2. Regarding interannual changes in Figure7, there existed 

a time lag between the peaks of MIT and BAT. The correlation coefficients of BAT exhibited a decreasing 

trend from November to March, which indicated a stronger role of BAT in the freeze-up process. Higher 
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correlation coefficients of average SD, the existence of ice was more dependent on snow depth especially 445 

when the ice is thick and steady enough. The surface snow and ice melted and refroze alternatively throughout 

the whole ice development, particularly for the snow seen in Figure 6. Comparing the results in Table 3 and 

Figure 6, the air temperature had a higher correlation with ice phenology than ice thickness. The SD has a 

higher correlation with FUE, BUS, and CFD in Figure 6, which described the completely frozen status of a 

lake with thickest ice cover. Therefore, lake ice phenology closely correlated with air temperature while ice 450 

thickness correlated with snow depth. 

4 ConclusionsConclusion 

Five river ice phenology indicators, including FUE, FUS, BUE, BUS, and CFD, had been investigated in the 

Songhua River Basin of Northeast China have been investigated using in -situ measurements formeasurement 

by the period 2010 to 2015 using krigingmethod of Kriging and REOF methods. The FUS and FUE decreased 455 

as while the BUS, BUE, and CFD increased withas the latitude. The five increased. Five river ice phenology 

indicators followedshowed the latitudinal gradientdistribution and a changing direction from southeast to 

northwest. The highest MIT over 125 cm125cm were distributed along the ridge of Da Hagan Lin and 

Changbai MountainMount, and MIT occurred most often in February and March, which indicated that this is 

the safest period for human activities such as navigation and winter recreation are safest. Five typical 460 

geographic zones were identified from the first four PC modes of CFD, covering Changbai MountainMount, 

Three River Plain, Da Higgan Mountain, and Xiao Higgan Mountain, providingwhich provide a deeper 

understanding of riverrive ice distribution and itsthe relationship with geographic locations and topography 

in Northeast China.  

 465 

The interannual changes of MIT, ASD, and BAT are analyzed based on their time series. Within one cold 

season, ice thicknessMIT and snow depthASD showed similar seasonalinterannual changes, i.e. first that 

firstly increased and then decreased, while air temperature BAT showed an opposite trend. The, the peaks of 

snow depthASD and ice thickness fellMIT fall behind air temperatureBAT for almost one month. High 

correlation coefficients between yearly maximum ice thicknessMIT and five ice phenology indicators 470 

revealed that ice phenology is closelyclosed related to ice thickness, especially in the break-up process. The 

yearly analysis failed to explain the relationship between ice regime and snow depth . MIT and air temperature. 

Based on monthlyASD had as high correlation analysis, snow cover played an increasingly important role as 

the ice cover become steady. Additionally, air temperature coefficients as 0.95 (p＜0.05) when the air 

temperature under freezing point, which means snow cover influence the ice thickness significantly. The 475 

correlation analysis was carried out under two cases, including geographic distribution and interannual 

changes, and BAT has been found more associated with ice phenology more closely than ice thickness.  

 

Six Bayesian regression models were built between ice thickness and air temperature and snow depth in three 

sub-basins of Songhua River, considering two types of air temperature: air temperature on bank and negative 480 

cumulative air temperature. Results showed and snow depth. We conclude that snow cover correlated with 

ice thickness significantly and positively during depth is the periods when the freshwater was completely 
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frozen, and negative cumulative air temperature influenced the thickness rather than air temperature through 

the heat loss of ice formation and decay. The negative ATC behaved better than BAT primary factor 

influencing the ice process when building the Bayesian regression equation, which suggested that heat 485 

exchanges between the river surface and the atmosphere dominated the ice process.compared with air 

temperature.  

 

This study aimedThe work presented aims at exploring the regional patternspattern of riverrive ice 

development based on the in -situ measurementsmeasurement and wasare limited by the data accessibility. 490 

Remote sensing data could provide long-term and wide-range information for ice thickness and ice phenology 

since 1980, expandingwhich will expand our study scopescopes. The work herein will provide a valuable 

reference for the retrieval of ice development by remote sensing. Knowing the long-term change of river ice 

and the future projection  could provide information for evaluating the influence of climate on social-

economics, ecological environment and human activists across the riparian zones.The relationship between 495 

ice thickness and air temperature can’t be simulated by a linear regression model, degree-day model, or 

radiation transmission model considering the thermal process of ice thawing and melting will be used in 

future work.  

Abbreviations 

The following abbreviations are used in this manuscript: 500 

AMSR-E Advanced Microwave Scanning Radiometer- Earth Observing System 

ASD    Average Snow depth  

ATC    Cumulative air temperature 

BAT    Air temperature on bank 

BLR    Bayesian linear regression 505 

BUS    Break-up start 

BUE    Break-up end 

CFD    Completely frozen duration 

DOY    Day of year 

EOF    Empirical orthogonal function 510 

FUS    Freeze-up start 

FUE    Freeze-up end 

IP    Ice phenology 

IT    Ice thickness 

NJ    Nenjiang River Basin 515 

MIT    Maximum ice thickness 

PC    Principal component 

REOF    Rotated empirical orthogonal function 

RMSE    Root mean square error 

SD    Downstream Songhua River Basin 520 

SRTM    Shuttle Radar Topography Mission 
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SU    Upstream Songhua River Basin 
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Tables 

Table 1 Summary statisticsStatistics summary of ice phenology interpolated by Kriging from 2010 to 2015. 
The ice phenology indicators includedincluding freeze-up start (FUS), freeze-up end (FUE), break-up start 
(BUS), break-up end (BUE), the complete frozen duration (CFD). NJ, SD and SU represent the Nenjiang 695 
Basinbasin, the downstream Songhua River Basinbasin (SD) and the upstream Songhua River Basinbasin 
(SU). DOY denotes day of year. Std Dev. denotes standard deviation.  

Basins Statistics 
FUS 

(DOY) 
FUE 

(DOY) 
BUS 

(DOY) 
BUE 

(DOY) 
CFD 
(day) 

NJ 

Maximum 319.14 334.98 110.54 117.61 163.00
Mean 307.02 324.58 98.65 106.64 139.39

Minimum 301.41 311.30 84.53 90.40 119.11
Std Dev. 3.91 5.69 8.16 6.80 13.22

SD 

Maximum 321.08 334.36 110.01 102.84 154.06
Mean 313.74 326.70 102.55 97.15 140.86

Minimum 305.64 316.80 93.22 92.37 125.32
Std Dev. 2.83 3.13 3.92 2.12 5.69

SU 

Maximum 325.92 342.09 98.25 114.37 133.62
Mean 320.39 334.35 91.93 106.43 122.61

Minimum 313.79 327.68 83.46 95.69 110.74
Std Dev. 2.34 3.09 3.21 4.24 4.85

Total 

Maximum 325.92 342.09 110.54 117.61 163.00
Mean 311.16 326.58 99.25 105.38 137.86

Minimum 301.41 311.30 83.46 90.40 110.74
Std Dev. 5.74 5.54 7.17 6.34 11.68

 

Table 2 The Frequency of yearly maximum ice thickness from November to April. The row represents 
different year in cold season and the column represents yearly maximum ice thickness with the unit of cm.  700 

MIT 
Month 

<50 50-75 76-100 101-125 125-150 

December 4 1 0 1 0
January 4 4 1 0 0
February 4 25 26 3 1

March 1 3 24 8 4
April 0 2 1 0 0

After April 0 3 0 0 0
Total 13 38 52 12 5

 

Table 3 Correlation coefficient between maximum ice thickness (MIT) and), average snow depth (ASD),) 
and air temperature on bank (BAT) with a dataset size of 120 stations. The asterisk indicates the 
significant level of correlation coefficients, ** means significant at 99% level (p<0.01), and * means 
significant at 95% level (p<0.05). 705 

Correlation 
CoefficientsCC 

November December January February March

MIT vs. ASD 0.17 0.66* 0.53* 0.59* 0.75**

MIT vs. BAT -0.90** -0.80** -0.55* -0.30 -0.45
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Figures 

 

Figure 1 The geographic location of the Songhua River Basin showing (a) the elevation and (b) the 710 
location of 158 hydrological stations. The Songhua River Basinbasin includes three sub-basins: 
Nenjiang River Basin (NJ), downstream Songhua River Basin (SD) and upstream Songhua River Basin 
(SU). Elevation data are from theThe elevation is provided by Shuttle Radar Topography Mission 
(SRTM) with spatial resolution of 90 meters.  
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Figure 2 The average spatial distribution of freeze-up start (FUS) (a) and freeze-up end (FUE) (b)  in 
the Songhua River Basinbasin of Northeast China from 2010 to 2015. The number labels 
indicatelabelled indicates the day of year (DOY) of the isophenesisophene.  720 

 

 

Figure 3 The average spatial distribution of break-up start (BUS) (a) and break-up end (BUE) (b)  in the 
Songhua River Basinbasin of Northeast China from 2010 to 2015. The number labels indicatelabelled 
indicates the day of year (DOY) of the isophenesisophene.  725 
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Figure 4 The spatial distribution of complete frozen duration (CFD) (a), five typical geographical zones 
(b), and firstfist four principal components (c-f) of decomposed by rotated empirical orthogonal function 
(REOF) in the Songhua River Basinbasin of Northeast China. 

 730 

带格式的: 行距: 单倍行距

带格式的: 无, 行距: 单倍行距

设置了格式: op_dict_text2, 字体: Times New Roman

设置了格式: op_dict_text2, 字体: +西文正文 (Times New Roman)

设置了格式: 字体: +西文正文 (Times New Roman)



 

24 
 

 

 

 

Figure 5 The spatial distribution of yearly maximum ice thickness (MIT) (a) of the river centre and the 
corresponding date (b).  735 
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Figure 6 Average seasonal changes inThe time series of yearly maximum ice thickness (ITMIT), average 
snow depth (ASD) and air temperature on bank (BAT) from November to April for the periodduring 740 
2010 - -2015.  

 

  

带格式的: 无, 行距: 单倍行距



 

27 
 

 

 745 

 

Figure 7 Correlation matrix between maximum ice thickness (MIT), average snow depth (ASD) and air 
temperature on bank (BAT) and lake ice phenology events with data from dataset size of 120 stations. 
The asterisk indicates the significancesignificant level of the correlation coefficients, ** means 
significant at 99% level (p<0.01), and * means significant at 95% level (p<0.05). 750 

 

 

 

带格式的: 段落间距段后: 0.5 行, 行距: 单倍行距

带格式的: 行距: 单倍行距

带格式的: 无, 行距: 单倍行距

设置了格式: 上标

设置了格式: 上标



 

28 
 

 

 755 



 

29 
 

 
 
Figure 8 The bivariate scatter plots with linear regression lines between yearly maximum ice thickness (MIT) 
and ice phenology with dataset size of 120;, r and p denote the corresponding correlation coefficient and p 
value of the regression line. The ice phenology events includeincludes freeze-up start (FUS), freeze-up end 760 
(FUE), break-up start (BUS), break-up end (BUE) and complete frozen duration (CFD). 
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 765 
Figure 9 The scatter plot between maximum ice thickness (MIT), average snow depth (ASD) and air 

temperature on bank (BAT) and the corresponding trend line. The data was selected under the criteria with 

air temperature below 2℃ and snow depth less than 20 cm.  

Figure 9 Scatter plots between measured and predicted ice thickness using Bayesian linear regression in 
three sub-basins (NJ: Nenjiang Basin, SU: upstream Songhua River Basin, and SD: downstream 770 
Songhua River Basin) in Northeast China. The model treated ice thickness as the independent variable, 
and snow depth and air temperature as dependent variables. Two types of air temperature were used: 
BAT represents air temperature on bank; ATC represents negative cumulative air temperature. 
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