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Abstract. An increase of Antarctic Ice Sheet (AIS) surface mass balance (SMB) has the potential to mitigate future sea level

rise that is driven by enhanced solid ice discharge from the ice sheet. For climate models, AIS SMB provides a difficult

challenge, as it is highly susceptible to spatial, seasonal and interannual variability.

Here we use a reconstructed data set of AIS snow accumulation as "true" observational data, to evaluate the ability of the

CMIP5 and CMIP6 suites of models in capturing the mean, trends, temporal variability and spatial variability in SMB over the5

historical period (1850-2000). This gives insight into which models are most reliable for predicting SMB into the future. We

found that the best scoring models included the National Aeronautics and Space Administration ’s GISS models
:::::::
(NASA)

:::::
GISS

:::::
model

:
and the Max Planck Institute f

:::::
(MPI)

:
f
:
ür Meteorologie’s MPI models

:::::
model for CMIP5

:
, and one of the National Center

for Atmospheric Research’s
:::::::::
Community

:::::
Earth

:::::::
System

:::::
Model

:::
v2

:
(CESM2

:
)
:
models and one MPI model for CMIP6.

Using a scoring system based on SMB mean value, trend, and temporal variability across the AIS, as well as spatial SMB10

variability, we selected a subset of the top 10th percentile of models to refine 21st century (2000-2100) AIS-integrated SMB

projections to 2372
::::
2274

:
± 282 Gt yr−1, 2452

::::
2358

:
± 286 Gt yr−1, and 2588

::::
2495 ± 291 Gt yr−1 for Representative

Concentration Pathways (RCPs) 2.6, 4.5, and 8.5, respectively. We also reduced the spread in AIS-integrated mean SMB by

79%, 79%, and 74% in RCPs 2.6, 4.5, and 8.5, respectively.

Notably, we find that there is no improvement from CMIP5 to CMIP6 in overall score. In fact, CMIP6 performed slightly15

worse on average compared to CMIP5 at capturing the aforementioned SMB criteria. Our results also indicate that model

performance scoring is affected by internal
:::::
climate

:
variability, which is illustrated by the fact that the range in overall score

between ensemble members within the CESM1 Large Ensemble is comparable to the range in overall score between CESM1

model simulations within the CMIP5 model suite. However, we
:::
We

:
also find that a higher horizontal resolution does not yield

to a conclusive improvement in score.20

1 Introduction

Surface mass balance (SMB) is the rate of accumulation of mass on the surface of the ice sheet and is characterized predomi-

nantly by precipitation and sublimation, and also includes runoff and blowing snow terms (Lenaerts et al., 2019). We neglect

blowing snow and runoff and estimate SMB as precipitation minus sublimation (Lenaerts et al., 2012). Ignoring these terms,

AIS SMB can be estimated as SMB = precipitation - sublimation. As SMB variability is dominated by that of AIS precipitation,25
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which is subject to high spatial and temporal variability (Bromwich et al., 2011), SMB is also highly variable from year to year

(Monaghan and Bromwich, 2008).

Over longer (∼100-1000 year) time scales, AIS SMB was assumed – until recently – to be relatively constant. Frezzotti et al.

(2013) found that current SMB values are not anomalously high compared to the past
::
∼1000 years. Monaghan et al. (2006)

found no discernible trend in AIS snowfall in the period 1957-2003. More recent studies, adding more annually-resolved SMB30

records covering the period 1800 to present and improving the spatial extrapolation, contested those earlier findings (Thomas

et al. (2017); Medley and Thomas (2019)). These studies found that, integrated over the AIS, SMB has been increasing at a

rate of 0.4 ± 0.1 Gt yr−2 over the last 200 years, although the trends show substantial regional variability. Several studies have

provided additional evidence of regional variations in SMB trends, with strong SMB increase in some areas (Philippe et al.

(2016); Thomas et al. (2015); Thomas et al. (2017)), and no SMB increase, or even SMB decrease, in other areas (Burgener35

et al., 2013). Synoptic-scale variability induces a strong regional variability of the SMB (Fyke et al. (2017); Marshall et al.

(2017)). Additionally, as the atmosphere is projected to warm both globally and especially in the polar regions, the atmosphere

is expected to be able to hold more moisture per the Clausius-Clapeyron relation. As such, SMB is expected to show an overall

increase. In recent decades, this forced SMB response is undetectable due to the significant natural SMB variability (Previdi

and Polvani, 2016). Teasing apart the forced response from natural SMB variability requires longer SMB time series – on40

the order of centuries. In 2017, Thomas et al.
::::::::::::::::::
Thomas et al. (2017) found no significant SMB trend over the last 1000 years.

In 2019, however, Medley & Thomas
:::::::::::::::::::::::
Medley and Thomas (2019) found that, over the past 200 years, there is a statistically

significant SMB increase that can be derived from ice core measurements.

Despite its importance for AIS MB and GMSL
::::
mass

::::::
balance

::::
and

:::::
global

:::::
mean

:::
sea

::::
level, there are only few robust observations

of SMB across the continent. A lack of regular spatial and temporal distribution of observations has led to many efforts to model45

SMB using both regional and global climate models (RCMs and GCMs, respectively). Because the AIS is so large, predicting

SMB out onto timescales from decades to centuries requires the use of GCMs (Gallée et al., 2013). Some GCMs have been

shown to capture positive precipitation and SMB trends (Palerme et al. (2014); Lenaerts et al. (2016)), but many of those

models tend to overestimate annual precipitation values likely due to poor representation of coastal topography as previous

studies have shown this to be a significant factor in how precipitation is represented of the AIS (Genthon et al., 2009). This50

allows the atmospheric moisture to penetrate too far inland and leads to excessive precipitation on much of the grounded AIS,

while underestimating precipitation nearby the coasts (Palerme et al. (2017)). This inability to reproduce modern observations

brings into question the models’ ability to accurately project future changes.

While past research by Palerme et al. (2014) compared model output to observations using CloudSat and ERA-Interim,

their observational data sets only spanned a short period (2006-2011). The limited climatology of AIS precipitation combined55

with its highly temporally variable nature means that large limitations exist to enable a comparison. Barthel et al. (2019)

investigated the Ice Sheet Model Intercomparison Project for CMIP6 to determine a recommendation of which models to use

for ice sheet model forcings based on best captured current Antarctic climate relative to observations and their ability to project

certain metrics into the future. The object of this paper is similar in that Barthel et al. (2019) use scoring criteria to refine

model selection specifically for ice sheet model forcing. Their work differs in that their criteria look more at the large-scale60

2



circulation patterns around ice sheets and the data set to which they compare models consists of large-scale fields reanalysis

fields. Additionally, they don’t then use this subselection of models to constrain future projections. In this work, we use a data

set that specifically accounts for AIS SMB using recent advancements in synthesizing ice cores and reanalysis products. These

reconstructed data sets now allow for a new avenue to investigate the ability of GCMs to capture SMB into the more distant

past (Medley and Thomas, 2019) – an avenue that we leverage for climate model evaluation of AIS SMB to compare the suite65

of CMIP5 and CMIP6 climate models to this new SMB reconstruction.

In this work, we leverage the availability of that new avenue for climate model evaluation of AIS SMB, and compare the

suite of CMIP5 and CMIP6 climate models to that new SMB reconstruction.

2 Data

2.1 SMB Reconstructions70

To improve upon model estimates, several groups have combined ice core data with models to create spatio-temporally robust

SMB data sets (Monaghan et al. (2006), Thomas et al. (2017), Medley and Thomas (2019)). In this paper, we use the AIS

SMB reconstruction generated by Medley and Thomas (2019). The authors synthesize SMB time series from an extensive

ice-core database with reanalysis-derived spatial coherence patterns to generate a continent-wide AIS SMB data set. While

Medley and Thomas (2019) compared three reanalysis products, they also show that MERRA-2 performed better than the75

other two reconstructed products in matching observations. As such, we will use the MERRA-2 based data set
:::::::
provided

:::
by

:::::::::::::::::::::::
Medley and Thomas (2019) as a proxy for all three reconstructions and refer to it as “reconstruction.”

For this work, we investigate AIS SMB in GCMs. GCMs have, compared to RCMs, relatively low horizontal resolution,

which makes it difficult for them to reproduce the detailed AIS SMB. RCMs have been shown to be more accurate in capturing

AIS SMB (Agosta et al., 2019); however, due to their high resolution, RCMs are also relatively computationally expensive80

to run for long periods (∼100s of years). Because one of the goals of this paper is to investigate the future of SMB over

Antarctica, we analyze GCMs for their ability to simulate these long-term climate effects. As RCMs are by definition regional,

they need boundary forcings, which adds an additional layer of complexity and a source of uncertainty to running RCMs into

the long-term future. An additional reason we choose to analyze GCMs is simply to figure out which GCMs perform best

at capturing these SMB phenomena. There has been extensive work investigating SMB in RCMs (e.g., Agosta et al. (2019);85

van Wessem et al. (2017); Lenaerts et al. (2012)), but comparably little looking at GCMs. To investigate the global coupled

response to future SMB changes, one needs GCMs. As such, this work is aimed to inform the modeling community who is

interested in global ramifications of changing AIS mass balance, and the ice sheet modeling community who needs AIS SMB

input for running dynamical ice sheet models (Seroussi et al. , 2019 in TC).
::::::::::::::::::
(Seroussi et al., 2019).

:
Several recent studies, such

as Barthel et al. (2019), Krinner et al. (2014), and Beaumet et al. (2019) have investigated the impacts of thermodynamical90

phenomena such as sea level pressure, zonal wind speed, and near-surface temperatures as well as phenomena like sea ice

extent on AIS SMB, but have not scored climate models on their performance on SMB specifically. Here, we develop scoring

criteria that assess AIS SMB exclusively, and focus less on the mechanisms behind SMB variability and change. To get a
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comprehensive look at how well global climate models capture SMB, we compared the suites of CMIP5 and CMIP6 models

to the reconstruction.95

2.2 Climate Models

We used all applicable CMIP5 and CMIP6 model outputs, of which there were 81 models and 42 independent models (i.e.

different model physics and/or resolutions) respectively, for the historical simulations (1850-2005). As for
:::
For the future simu-

lations(2006-2100), we focused on CMIP5 only , since there are few CMIP6 models available as of yet, and CMIP5 and CMIP6

scenarios are similar. We only
:
,
:::
we

::::
only had available output for 30 CMIP5 models, 19 of which are independent, for the future100

simulations
:::
and

:::
24

::::::
CMIP6

:::::::
models,

::
of

:::::
which

:::
16

:::
are

::::::::::
independent. See Tables 1-3 in Supplementary Material for a list of models

and their resolutions. The future simulations include three different forcing scenarios
::
for

::::::
CMIP5: Representative Concentration

Pathway (RCP) 2.6, RCP4.5, and RCP8.5. RCP2.6 represents a low emission scenario, RCP4.5 a mid-range emission scenario,

and RCP8.5 a high emission scenario through the 21st century (van Vuuren et al., 2011)
::
as

::::
well

::
as

::::
three

::::::::::
comparable

:::::::
forcing

:::::::
scenarios

:::
for

:::::::
CMIP6:

::::::
Shared

:::::::::::::
Socioeconomic

:::::::
Pathway

::::::
(SSP)

:::::
1-2.6,

::::::::
SSP2-4.5,

::::
and

::::::::
SSP5-8.5

:::::::::::::::
(Riahi et al., 2017).105

We downloaded CMIP5 and CMIP6 precipitation and evaporation/sublimation output at monthly time resolution and, after

calculating SMB as precipitation - evaporation/sublimation, converted an annual time scale and integrated across the grounded

AIS using the Ice Sheet Mass Balance Inter-comparison Exercise Team’s (IMBIE Team) ice sheet mask
:::::::::::::::::::
(Shepherd et al., 2018)

.

3 Methods110

We formulated five criteria on which to score the historical runs of the models. Three of the criteria are based on the AIS-

integrated SMB: mean, trends, variability – and two are based on AIS SMB spatial patterns: modes of SMB variability, and

variance explained by these modes. As the models’ abilities to capture SMB are presented in the format of a "score card,"

judging the models against each criterion will be hereinafter referred to as "scoring". These criteria were determined having

in mind the following questions: (1) do the models adequately simulate several SMB observed characteristics in the recent115

past, and (2) are the models that perform well adequately simulating SMB for the right reasons? All five criteria are weighted

equally in the final scoring
:
to
:::::::
prevent

:::
the

::::
final

:::::
score

::::
from

:::::
being

::::::
skewed

:::
by

:::
any

:::::
given

:::::::
criterion.

3.1 AIS-integrated SMB criteria

To score the models based on AIS-integrated SMB, we took the mean SMB across the AIS for every year that the reconstruction

overlapped the models (1850-2000) to generate a single 151-year, AIS-integrated time series. We then split the time series into120

three aspects: the mean value of the SMB time series values (mean value referring to the value obtained by integrating SMB

over the entire AIS), the time series linear trend, and the time series interannual variability.

To score the time series mean value, we assigned a score, x, for how many x-times the reconstruction uncertainty was

required for the entire time series to be within the reconstruction uncertainty. The minimum possible score, then, is one, for a
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Figure 1. Time series of the reconstructed AIS-integrated SMB time series (purple
::::
dark

:::::
indigo) with 1×, 2×, and 3× the uncertainty in

dark purple
:::::
indigo, medium purple

::::
indigo, and light purple

::::
indigo, respectively. Three model AIS-integrated SMB time series, MPI ESM LR

(green), IPSL CM5A LR (yellow), and BNU ESM (cyan) have been plotted as well to demonstrate different model scoring. MPI ESM LR is

entirely captured within 1× the reconstruction uncertainty and, thus, receives a score of 1. IPSL CM5A LR is entire captured within 2× the

uncertainty so its score for this criterion is 2. BNU ESM is fully captured within 7× the uncertainty.

model that represents SMB within 1× the reconstruction uncertainty. Fig. 1 illustrates that a model that fits entirely within 1×125

the reconstruction uncertainty (dark purple
:::::
indigo) – MPI ESM LR – would receive a score of 1. A model that fits within 2×

the reconstruction uncertainty (medium purple
:::::
indigo) – IPSL CM5A LR – would receive a score of 2. A poorer scoring model,

BNU ESM, would receive a score of 6.

Similarly, for the time series trend, we assigned a score of x based on how many x-times the reconstructed trend uncertainty

was required to capture the model trend. We looked at multiple time "slices" to investigate how well the models performed at130

capturing century-scale (100+ year) versus multi-decadal (50 year) SMB trends. To achieve this goal, we analyzed trends from

1850-2000, 1900-2000, and 1950-2000. The first two of these three time slices confirm the robustness of the trends with longer

periods for trend analysis. The last time slice, 1950-2000, allows us to view SMB in the context of significant anthropogenic

warming. However, the large interannual variability overwhelms the signal at shorter period lengths, which results in large

uncertainty bounds. By looking at several time slices, we ensure consistency between the model and reconstruction over135

different intervals. It is equally important to confirm that pre-1950, the trends are relatively small. We performed a Monte

Carlo simulation wherein we assumed a normal distribution where the standard deviation of the distribution is equal to the

reconstruction uncertainty of possible SMB values for each year. We then created 10,000 potential SMB time series by choosing

SMB values based on that normal distribution for each year and recalculated the trend for each of these time series. Our

uncertainty, then, was the standard deviation of this range of trends, similar to Medley and Thomas (2019).140
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For temporal variability, if a model should greatly underestimate the mean value, for example, the variability about that mean

value will also likely be underestimated. To ensure that we are not double-counting the impact of SMB mean value (because

this is already covered by the first scoring criterium), we calculate
::::::::
calculated

:
the variability about the normalized time series. To

detrend and normalize each time series, then, to separate the SMB variability from its mean value, we performed the following

analysis:145

normalized SMB =
SMB−mean SMB

mean SMB
. (1)

We then calculated the standard deviation of each time series and assigned a score, x, based on how many x-times the

reanalysis standard deviation were required to capture the model standard deviation. For this criterion, we used the original

MERRA-2 reanalysis precipitation minus evaporation data (1980-2019). Likely due to sampling only 53 ice core sites, the

reconstruction produced a relatively low variability record. The reconstructed variability at any location can only be as large150

as the maximum variability in the ice cores. Thus, undersampling regions of stronger interannual variability will dampen the

variability signal in the reconstruction. Analyses of the AIS-integrated SMB mean value and trend show that the reconstruction

is generally in line with the literature (Medley and Thomas, 2019).

3.2 Spatial SMB criteria

To ensure model performance was not solely based on AIS-integrated SMB values, we also analyzed the spatial SMB vari-155

ability. To do so, we performed an empirical orthogonal function (EOF) analysis on annual data from 1850-2005
:::
AIS

:::::
SMB

:::
data

:::::
from

:::::::::
1850-2000. EOF analysis maps the spatial pattern of a variable associated with the highest temporal varianceof

another variable.Here we apply EOF analysis to the spatial pattern of sea level pressure associated to the highest variability in

annual SMB integrated over the AIS for the period 1850-2000
:::::
where

:::
the

::::
first

:::::
mode

:::::::::
represents

:::
the

::::::
largest

::::::::
explained

::::::::
variance,

::
the

:::::::
second

:::::
mode

:
-
::::::
which

::
is

:::::::::
orthogonal

::
to
::::

the
:::
first

::
-
::::::::
represents

::::
the

::::
next

::::::
largest

::::::::
explained

::::::::
variance,

:::
the

:::::
third

:::::
mode

:
-
::::::
which160

:
is
::::::::::
orthogonal

::
to

::::
both

::::::
modes

:::
one

::::
and

:::
two

::
-
::::::::
represents

:::
the

:::::
third

::::::
largest

::::::::
explained

::::::::
variance,

:::
and

:::
so

::
on

:::::
until

::
all

:::
the

::::::::
variance

::
is

::::::::
explained. By breaking this criterion down into two main factors, (1) spatial variability and (2) variance explained, both of

which are considered as separate scoring criteria, we aim to determine the models’ abilities to accurately capture the modes of

variability as well as how much variance each EOF mode explained.

In the reconstruction, the top three modes of variability collectively explain roughly 76% of the total variance explained. The165

fourth mode explains only about 6% of the total variance and all other modes explain <5% of the total variance. As such, we

only include the top three modes in our analysis. To avoid manually sorting the top three modes of variability for all 53 models,

we generated difference maps between each of the top three reconstructed modes and each of the top three modes for each

model: 9 difference maps for each model. For each grid point, we took the absolute value of the difference between the model

and the reconstruction. We then summed those differences to generate a single number ("difference number") that represented170
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the difference between the model and the reconstruction in terms of spatial variability. Mathematically, this looks like:

difference number =
∑
lat

∑
lon

∣∣reconstructionlat,lon −modellat,lon
∣∣ (2)

We did this for all nine combinations of model and reconstruction maps for the top three modes variability (model1:reconstruction1,

model1:reconstruction2, model1:reconstruction3, model2:reconstruction1, model2:reconstruction2, etc.). For reconstruction mode

1 (reconstruction1), then, we matched which model mode best represented
::::::::
represents

:
this spatial variability by sorting the175

model modes based on the smallest difference number. We did this for each reconstruction mode (excluding previously matched

model modes) to sort the modes based on the smallest difference. Summing the absolute value of these differences yielded a

single number that explained how different a given model was from the reconstruction for each mode of variability. The score,

then, for the variability of SMB is the total difference of all the top 3 modes.

Because the variance explained is also important for gauging how well models are performing at recreating the observed180

spatial patterns, we also summed the difference in variance explained for the top three sorted modes of variability for each

model. Because the modes were sorted based on difference for the maps, each mode kept its variance explained to preserve the

accuracy of the models regarding the dominance of each spatial pattern.

3.3 Final Scoring

After compiling scores for all five of the aforementioned scoring criteria, we removed any outliers by calculating the 1.5185

quartile range of the data and neglecting models that fell outside of that range. We then normalized each set of scores to be

on a scale from one to ten to ensure that each criterion was equally weighted. After this normalization, the outliers for any

given criterion were retroactively assigned a score of ten for that criterion. The total score, then, is the average of all five sets

of normalized scores. Because the scores are based on the difference between the reconstruction and the models, higher scores

indicate poorer model performance.190

3.4 Future Projections

To refine the scope of what we predict
::
To

::::
look

:::
at

:::
the

::::::
impact

:::
of

:::::::::
resolution

:::
and

:::::::
internal

:::::::::
variability

:::
on

::::
the

::::
final

:::::::
scoring

::
we

:::::::::
correlated

:::
the

:::::::::
horizontal

:::::::::
resolution

::
to

::::
final

:::::
score

::::
and

::::::
applied

::::
the

::::
same

:::::::
scoring

:::::::
analysis

::
to
::::

the
::::::
CESM

:::::
Large

:::::::::
Ensemble

::::::::::::
(CESM-LENS)

::::::::::
experiment.

:

3.4
:::::
Future

::::::::::
Projections195

::
To

::::::
reduce

:::
the

::::::::::
uncertainty

::
of

:
for AIS SMB in the future, we created a subset of models that had a final score in the top 10th

percentile (90th percentile and above) of CMIP5 and CMIP6. For our future projections, we investigated the impacts of SMB

under three different forcing scenarios :
::::::
forcing

::::::::
scenarios

:
RCPs 2.6, 4.5, and 8.5 . Because CMIP6 uses a different future

forcing scenario mechanism (Shared Socioeconomic Pathways),
:::
for CMIP5 and CMIP6 future projections are not directly

comparable. As such, we focused on the CMIP5 suite of models and their future projections. To that end, we
::::
SSPs

::::::
1-2.6,

:::::
2-4.5,200
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:::
and

:::::
5-8.5

:::
for

::::::
CMIP6.

::::
We compared the top scoring CMIP5 models that could be projected out under the three RCP

:::::::
selected

forcings (of which there are four
::::
five:

::::
four

:::
for

::::::
CMIP5

::::
and

:::
one

:::
for

::::::
CMIP6) to the entire scope of CMIP5

::
and

:::::::
CMIP6. We ran

a Monte Carlo simulation in which four random CMIP5
:::
five

:::::::
random models were selected 100,000 times. Those 100,000 sets

of four
:::
five

:
random scores were compared to the four

:::
five

:
best scoring model scores using a two-sided t-test. From this, we

found that, to a 95% confidence level, we can reject the null hypothesis that the four
::
say

::::
that

:::
the

:::
five

:
best scoring models are205

not statistically significantly different from any random four
:::
five CMIP5 or CMIP6 models.

Using this subset of best scoring models, we calculated the projected AIS-integrated mean value and trend in three different

warming scenarios, RCPs 2.6, 4.5, and 8.5
:::
and

:::::
SSPs

:::::
1-2.6,

:::::
2-4.5,

:::
and

:::::
5-8.5, out to 2100. To see if and how the models respond

differently to different warming scenarios, we also calculated the AIS-integrated SMB sensitivity
::
to

::::::::::
temperature

::::::
change as

Sensitivity =
∆SMB

∆T
. (3)210

4 Results

The final overall scores are an
:::::::::
unweighted average of all the scores from all five criteria

:::
five

:::::::
different

::::::
scores. After performing

the analysis outlined in the Methods section
:
, the top 90th percentile overall scoring models were determined to be GISS E2 H

CC, GISS E2 R CC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI ESM P from CMIP5
:
, and CESM FV2 and MPI ESM2

LR from CMIP6. These
::
For

:::::::::::
comparison,

::::
these

:
eight models have been added in retroactively to figures 2-3 for comparison of215

::
to

::::::
Figures

::
3,

::
4,

:::
and

::
5,
:::
to
:::::

show
:
their performance in each scoring criterion relative to the rest of the CMIP model suites.

Figure 2. A spatial map of A the temporal average from 1801-2000 of the reconstructed AIS SMB, B the linear trend from 1801-2000 of the

reconstructed AIS SMB, and C the relative SMB trend in percent SMB change per year. Non-shaded regions in panel C denote areas that are

statistically significant.

Along with higher SMB values, the coastal regions of East Antarctica and the Antarctic Peninsula also show the highest

absolute SMB trends
::
in

:::
the

::::::::::::
reconstruction (Fig. 2B). This

:::
The reconstruction also highlights large portions of East Antarctica

as well as the Antarctic Peninsula as the regions with the most significant SMB trends from 1801-2000 (Fig. 2C). Taking the
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spatial average but keeping the temporal information yields the AIS-integrated, reconstructed SMB time series shown in Fig.220

3C (black).

Figure 3. A An example of a box plot for model data (yellow) and reconstructed data (black and grey). The yellow shaded box shows the

models’ interquartile range while the whiskers extend to capture the entire distribution of modeled data. The line going through the box plot

shows the median model value. The grey shaded box shows the reconstructed uncertainty around the reconstructed value shown as a black

line. B A box plot of spatially integrated, temporally averaged (1850-2000) AIS SMB for CMIP5 (aqua) and CMIP6 (red). The dark blue

x’s associated with the CMIP5 box and the red x’s associated with the CMIP6 box represent the eight best scoring models: GISS E2 H CC,

GISS E2 R CC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI ESM P from CMIP5 and CESM
::::::
CESM2

:
FV2 and MPI ESM2 LR

from CMIP6. The black dashed lines indicate the lower and upper bounds of the time series plot in the bottom of Figure 3. C A time series

of spatially integrated SMB for the reconstruction (black) and its uncertainty (shaded grey) with the best eight scoring models: GISS E2 H

CC, GISS E2 R CC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI ESM P from CMIP5 (dark blue) and CESM
:::::
CESM2

:
FV2 and MPI

ESM2 LR from CMIP6 (red)

Panel (A) in Fig. 3 shows an example box plot for a suite of models in yellow and the reconstructed observations in black

and grey. Panel (B) in Fig. 3 shows a box plot of the temporal average of the spatially integrated AIS SMB for CMIP5 and

CMIP6. The interquartile range of AIS-integrated SMB in the CMIP5 models is between 1727 and 2282 Gt yr−1compared to

9



the ,
:::::

while
:::
the

:::::::::::
interquartile

:::::
range

::
in

:::
the CMIP6 models whose interquartile range

::::::
models is between 1728 and 2196 Gt yr−1.225

The best eight models range from 1909 to 2461 Gt yr−1 for the temporal average AIS-integrated SMB mean value.

The reconstructed AIS SMB ranges from 1800 ± 338 Gt yr−1 from 1850-1900 to 2039 ± 333 Gt yr−1 from 1950-2000.

All but one of the eight of best scoring models are fully captured within the reconstructed uncertainty for the entire 150 year

time series. The reconstruction and best scoring models all show generally increasing SMB from 1850-2000, albeit with large

interannual variability. Both the trend and variability are analyzed in follow-up evaluations and scoring.230

While the reconstructed SMB time series and eight best scoring models show a generally increasing trend, the same is not

true for all CMIP5 or CMIP6 models (Fig. 4). Looking at multiple time "slices" allows us to investigate if models capture the

reconstructed SMB trends for the whole time series compared to more recent decades. Here, we looked at three time slices:

the entire overlapping time series from 1850-2000, the last century from 1900-2000, and the last 50 years from 1950-2000.

The reconstructed linear SMB trends for the three time slices are 0.52 ± 0.27 Gt yr−2 (1850-2000), 0.56 ± 0.38 Gt yr−2235

(1900-2000), and 1.0 ± 1.3 Gt yr−2 (1950-2000). That implies that for all but the last time slice, 1950-2000, the reconstruction

uncertainty trends are exclusively positive.

Looking at all of the CMIP5 and CMIP6 models, the median linear trend is positive for all three time slices and the trend

interquartile ranges are from -0.8 to +1.8 Gt yr−2 for 1850-2000, -0.6 to +1.7 Gt yr−2 for 1900-2000, and 0.8 to +2.7 Gt yr−2

for 1950-2000. For CMIP5, median trends for these time slices are 0.88 Gt yr−2, 0.66 Gt yr−2, and 1.8 Gt yr−2 for 1850-2000,240

1900-2000, and 1950-2000 respectively. For CMIP6, median trends for these time slices are 0.05 Gt yr−2, 0.46 Gt yr−2, and

1.8 Gt yr−2 for 1850-2000, 1900-2000, and 1950-2000 respectively. The eight best scoring models range from -1.4 to +3.1 Gt

yr−2, -1.4 to +1.7 Gt yr−2, and -0.9 to +2.4 Gt yr−2 for the same respective time spans. The spread in the eight best scoring

models reduces the total spread
:
in

:::::::::::::
AIS-integrated

::::
trend

:
by 57%, 62%, and 70%, respectively. For

::
In

::::
both

::::::
CMIP5

::::
and

:::::::
CMIP6,

::
for

:
the first two time slices, the reconstructed trend and uncertainty are captured within the interquartile range for all CMIP5245

models. For 1950-2000, the models tend to overestimate the reconstructed trend.

Apart from its trend magnitude and sign, SMB variability is also important for accurately representing SMB, and can be

indicative of the relevant SMB driving mechanisms. Figure 5A-
:
, B shows the average detrended and normalized variability

for CMIP5 and CMIP6 models as well as the reconstruction plotted as a normal distribution. The detrended and normalized

interannual variability in SMB in the reconstruction ranges between ∼-20% to 20%, while SMB in all the models varies250

between ∼-15 to 15%. Figure 5C shows a box plot the standard deviations of the normalized and detrended time series. The

normalization process made it such that the standard deviations are calculated in % of variability about the mean value of the

time series. The standard deviation for the normalized and detrended SMB in the reanalysis is about 6.6% compared to the best

eight models which range between 4.4% to 5.1%. (For comparison, the reconstructed normalized and detrended SMB standard

deviation is about 2.9%.) Most CMIP5 and CMIP6 models underestimate SMB variability. The CMIP5 and CMIP6 models’255

standard deviations range from 4.0% to 7.3% and from 3.0% to 6.1%, respectively (Fig. 5C).
:::
For

::
a

::::::::
summary

::
of

:::
the

::::::
ranges

::
of

::
the

::::::
values

:::
for

:::
the

::::
three

::::::::
temporal

:::::::
criteria,

:::
see

::::
Table

::
1.
:

Just as temporal SMB variability is important for accurately capturing AIS SMB, spatial variations in SMB are also important

in AIS SMB representation in models,
:
as precipitation is not distributed uniformly. To look at the spatial variability in SMB,
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Figure 4. Box plots of the linear trends in spatially integrated AIS SMB in CMIP5 (blue) and CMIP6 (red) for the periods A from 1850 to

2000; B from 1900 to 2000 ; and C from 1950 to 2000. In all three panels, the grey boxes denote the reconstructed uncertainty around the

reconstructed trend (black line). The eight best scoring models are represented by dark blue x’s if they are among the CMIP5 suite of models

or red x’s if they are among the CMIP6 suite.

we performed EOF analysis and plotted looked at the top three modes of variability which collectively account for 76.3% of260

the total spatial variability.

Separated out, the top three modes of variability in the reconstruction from EOF analysis explain 39%, 26%, and 12% of the

total variability, respectively (Fig. 6). High values on the EOF map indicate regions that explain large amounts of the variability

in AIS SMB. The top mode of variability in the reconstruction shows a dipole pattern from the Antarctic Peninsula to the Ross

Sea region. Mode 2 of the reconstruction EOF shows a strong signal over the entire Antarctic Peninsula and toward the Ross265

Ice Shelf region of West Antarctica. The third mode of variability shows a strong signal in Wilkes Land (East Antarctic region),

near the Davis Sea, and two opposite, weaker signals in Dronning Maud Land (Atlantic sector) and Adélie
:::::
Adélie

:
land (Pacific

sector). This signal is reflective of the linear trend in SMB as seen in Fig. 2B.
:::
For

::
a

::::
map

::
of

:::::
these

::::::::
Antarctic

:::::::
regions,

::::
see

::::::::::::
supplementary.

:
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Figure 5. Gaussian distributions of SMB where the standard deviation is that of the SMB time series for the reconstruction (black) and A all

CMIP5 models in light blue and the best scoring CMIP5 models in dark blue and B all CMIP6 models in light red and all CMIP6 models

in red (the two Gaussians, here, are largely indistinguishable by eye as they overlap almost entirely). C Box plots of the CMIP5 (blue)

and CMIP6 (red) SMB time series standard deviations. The black dots show the standard deviation of the reconstruction
:::::
original

:::::::::
MERRA-2

:::::::
reanalysis.

As a example of the comparison, one of the better scoring models for the EOF map criterion, CMCC CM, also shows a dipole270

between the Antarctic Peninsula and the Ross Sea region for the top mode as well as strong variance signal around the Antarctic

Peninsula for mode 2 and a quadrupolar pattern for mode 3. However, even the better scoring models tend to overestimate

the magnitude of the variance particularly around the coast even when they capture the general spatial patterns. CESM1

WACCM, one of the poorer performing models with regard to this metric, generally overestimates the variance everywhere

in all three of the top modes. The top mode for this model reflects an East/West Antarctic SMB dipole and mode 2 shows a275

strong, unidirectional signal across the entire AIS, though mode 3 seems to reflect the same quadrupolar pattern as seen in the

reconstruction, albeit with a much higher magnitude.

Models that score above the 90th percentile make up the subset of best scoring models. Eight models – GISS E2 H CC,

GISS E2 RCC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI ESM P from CMIP5 and CESM FV2 and MPI ESM LR

from CMIP6 – comprise this top 90th percentile. The two CMIP6 models as well as MPI ESM P GISS E2 R from CMIP5 do280
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Figure 6. EOF analysis plots of the top 3 modes of variability for A the reconstruction, B a relatively high scoring model (CMCC CM), and

C a low scoring model (CESM1 WACCM). Note that the scale for the model EOFs is 3× that of the reconstructed EOF.

not appear in the future projections analysisas CMIP6 does not follow the same RCP structure as CMIP5 and the MPI ESM

P model does not contain the necessary information to perform the analysis
:::
and

:::::::
CESM2

::::
FV2

:::
do

:::
not

::::
have

:::
the

:::::::
requisite

::::::
future

::::::::
projection

::::
data

:::
for

:::
this

:::::::
analysis. The poorest performing models include BNU ESM, CESM FASTCHEM, and FIO ESM. The

mean model score is 4.36 for CMIP5 and 5.77 for CMIP6. CMIP5 and CMIP6 scores were normalized together such that all

scores are on the same scale and are directly comparable. With that, there is not much change from CMIP5 to CMIP6.285

With this subset of the eight best performing models, we then refined future projections of AIS SMB in terms of mean

value, trend, and variability. Because there are currently an insufficient number of future model runs available for CMIP6, our

projection efforts were solely based on CMIP5. Comparing the difference in SMB projections between RCPs
:::::
/SSPs allows us
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:::::::
Criterion

::::
(Time

:::::
Span) :::::::::::

Reconstruction
::
or

::::::::
Reanalysis

: :::
Top

::::
90th

:::::::
Percentile

::::::
Models

: ::
All

::::::
CMIP5

::::::
Models

::
All

::::::
CMIP6

::::::
Models

::::
Mean

:::::
Value

:::::::::
(1850-2000) ::::

2010
::
+/-

:::
334

:::
Gt

::::
yr−1

:::
1909

:
-
::::
2461

:::
Gt

::::
yr−1

::::
1335

:
-
::::
3472

::
Gt

::::
yr−1

: ::::
1976

:
-
::::
2196

::
Gt

::::
yr−1

:

:::::
Trend

:::::::::
(1850-2000) :::

0.52
:::
+/-

:::
0.27

:::
Gt

::::
yr−2

::::
-1.40

:
-
:::
3.40

:::
Gt

:::
yr−2

: ::::
-3.84

:
-
::::
6.72

::
Gt

::::
yr−2

::::
-2.87

:
-
::::
4.14

::
Gt

::::
yr−2

:::::
Trend

:::::::::
(1900-2000) :::

0.56
:::
+/-

:::
0.38

:::
Gt

::::
yr−2

::::
-1.43

:
-
:::
1.73

:::
Gt

:::
yr−2

: ::::
-4.81

:
-
::::
3.40

::
Gt

::
yr

::::
-2.14

:
-
::::
3.74

::
Gt

::::
yr−2

:::::
Trend

:::::::::
(1950-2000) ::

1.0
:::
+/-

::
1.3

:::
Gt

::::
yr−2

::::
-0.89

:
-
:::
2.38

:::
Gt

:::
yr−2

: ::::
-1.44

:
-
::::
9.50

::
Gt

::::
yr−2

::::
-3.22

:
-
::::
4.40

::
Gt

::::
yr−2

:::::::
Temporal

::::::::
Variability

:::::::::
(1850-2000) ::

6.6
:::
+/-

::
???

:::
Gt

::::
yr−1

:::
4.37

:
-
::::
5.06

::
Gt

::::
yr−1

: :::
4.03

:
-
:::
7.32

:::
Gt

::::
yr−1

:::
3.02

:
-
:::
6.08

:::
Gt

::::
yr−1

Table 1.
:::
List

::
of

:::::
ranges

::
of

:::::
values

:::
for

::
the

::::
three

:::::::
temporal

::::::
criteria

::
for

:::
the

:::
top

:::
90th

::::::::
percentile

::::::
models,

::
all

::::::
CMIP5

::::::
models,

:::
and

::
all

::::::
CMIP6

::::::
models

:
as
::::

well
::
as

:::
the

:::::
values

:::
and

:::::::::
uncertainties

:::
for

:::
the

:::::::::::
reconstruction.

a look into the different potential sea level changes caused by different amounts of warming. In CMIP5, there are 25 model

outputs for RCP2.6 and 32 model outputs for RCPs 4.5 and 8.5.290

As stated earlier, both mean value and trend of AIS SMB have significant implications for future projections of sea level

change. The spatially integrated AIS SMB (i.e. SMB mean value) has been increasing from 1850-2000 (Fig. 3) and is projected

to continue to increase for the following hundred years to 2100 in all three warming scenarios (Fig. 8).

From 2070-2100, spatially integrated AIS SMB is projected to be 2751
::::
2294

:
± 570 Gt yr−1 for RCP2.6, 2948

::::
2371

:
±

581 Gt yr−1 for RCP4.5, and 3307
::::
2358 ± 663 Gt yr−1 for RCP8.5 for all CMIP5 models where the associated uncertainties295

are 1-σ of all models between 2070-2100 (for a list of projected SMB and related variable values for all models and the best

scoring models across the RCPs, see supplementary).
::
For

:::
the

:::::
same

::::
time

::::::
period

::
in

:::::::
CMIP6,

::::
AIS

:::::
SMB

::
is

::::::::
projected

::
to

::
be

:::::
2249

::
±

:::
392

:::
Gt

::::
yr−1

:::
for

:::::::::
SSP1-2.6,

::::
2305

::
±

::::
387

::
Gt

:::::
yr−1

:::
for

::::::::
SSP2-4.5,

::::
and

::::
2418

:::
±

:::
374

:::
Gt

::::
yr−1

:::
for

:::::::::
SSP5-8.5. The subset of eight

best scoring models have lower projections and smaller spread at 2372
::::
2274

:
± 282 Gt yr−1 for RCP2.6, 2452

::::
2358 ± 286 Gt

yr−1 for RCP4.5, and 2588
::::
2495

:
± 291 Gt yr−1 for RCP8.5 on average

:::
for

::::::
CMIP5

:
between 2070-2100.

::
For

:::::::
CMIP6

::::
over

:::
the300

::::
same

::::::
period,

:::
the

::::
best

::::::
scoring

::::::
model,

:::::
MRI

::::::
ESM2,

:::::::
projects

:::
AIS

:::::
SMB

::
to

:::
be

::::
even

:::::
lower

::
at

::::
2073

:::
Gt

::::
yr−1

:::
for

:::::::::
SSP1-2.6,

::::
2096

:::
Gt

::::
yr−1

:::
for

::::::::
SSP2-4.5,

::::
and

::::
2154

:::
Gt

::::
yr−1

:::
for

:::::::::
SSP5-8.5. The ranges of the best eight scoring models reduced the spread by 79%,

79%, and 74% for RCPs 2.6, 4.5, and 8.5, respectively. The mean value of modeled SMB increases with increasing warming

scenarios for
:
in

:
all CMIP5 models and

:::
and

:::::::
CMIP6

::::::
models,

:::
as

::::
well

::
as

::
in the subset of the eight best scoring models. Similarly

to the mean value increasing with increasing warming, the projected SMB trend also increases with increased warming (Fig.305

9). As such, the stronger the emission scenario, the larger the projected response in AIS SMB with regard to both mean value

and trend.
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Figure 7. The scores for all CMIP5 and CMIP6 models. The large dots show the average score for all model groupings. Models are grouped

by similar model physics and have in parenthesis the number of models in the grouping after the name. Each model grouping has all model

scores plotted as small blue/red dots for CMIP5/6 with the model average plotted in the larger dots. Models that have no like models are

followed by a one in parenthesis and only have a larger dot. The eight best scoring models (above the 90th percentile) are denoted with red

outlines if they are among the CMIP5 suite of models – GISS E2 H CC, GISS E2 R CC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI

ESM P – or with blue outlines if they are among the CMIP6 suite of models – CESM FV2 and MPI ESM2 LR. Note that the overall scores

for two of the GISS models and three of the MPI models in CMIP5 are almost exactly equal so outlines overlap almost completely.

For the entirety of the 21st century, 2000-2100, most CMIP5
:::
and

::::::
CMIP6

:
climate models project positive SMB trends in all

forcing scenarios (Fig. 9). For RCP2.6, all CMIP5 models project a median trend of 0.53
::::
mean

:::::
trend

::
of

:::
0.9

::
±

:::
1.2

:
Gt yr−2and

a range of -2.15 to +2.63 Gt yr−2. For RCPs 4.5 and 8.5, the median trends are 2.28
:::::
means

:::::
trends

:::
are

:::
2.5

::
±

:::
1.6

:
Gt yr−2 and310

5.64
:::
6.0

::
±

:::
3.2 Gt yr−2with ranges of -0.81 to +6.11

:
,
::::::::::
respectively.

:::
In

:::::::
CMIP6,

:::
the

::::
mean

::::::
trends

:::
are

:::
1.3

::
±

:::
1.3 Gt yr−2and 0.47

to 14.9
:
,
:::
2.5

::
±

:::
1.9

::
Gt

:::::
yr−2,

:::
and

:::
5.0

::
±
:::
2.9

:
Gt yr−2

::
for

:::::::::
SSP1-2.6,

:::::
2-4.5,

:::
and

:::::
5-8.5, respectively.

The best scoring models range from 0.47 to 2.45
::::::
CMIP5

::::::
models

:::::
have

:::::
trends

::
of

:::
1.2

::
±

:::
1.0 Gt yr−2, 1.44 to 2.88

::
1.9

::
±

:::
0.7

:
Gt

yr−2, and 3.06 to 4.63 Gt
:::
3.8

::
±

:::
0.8 yr−2 for RCPs 2.6, 4.5, and 8.5, respectively.

:::
The

::::
best

::::::
scoring

::::::
CMIP6

::::::
model

:::
has

::::::
trends

::
of

:::
0.5

::
Gt

:::::
yr−2,

:::
2.0

:::
Gt

:::::
yr−2,

:::
and

:::
3.8

:::
Gt

:::::
yr−2,

:::
for

:::::
SSPs

:::::
1-2.6,

:::::
2-4.5,

::::
and

:::::
5-8.5,

::::::::::
respectively.

:
For RCPs 2.6 and 4.5

:::
and

:::::
SSPs315

::::
1-2.6

:::
and

:::::
2-4.5, the best scoring model trend projections lie close to or within the interquartile range for all CMIP5

::
and

:::::::
CMIP6

models. As the warming scenarios strengthen, the four
:::
five

:
of the eight best scoring models projected into the future move

closer to the lower end of the overall CMIP5 interquartile range
:::::::::
interquartile

::::::
ranges

:
in trend. Some of the differences in these

concentration pathways can be described by the modeled SMB sensitivity to different atmospheric CO2 emission scenarios.
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Figure 8. Time series for the reconstruction with uncertainty bounds (grey), all CMIP5
:::::
(lighter

::::::
colors)

:::
and

::::::
CMIP6 models (light

:::::
darker

::::
colors) and best scoring CMIP5 models (dark

::::
skinny

::::
lines)

:::
and

:::
the

:::
best

::::::
scoring

::::::
models’

::::::
average

::::
(thick

:::::
lines) for A RCP2.6

::::::::
/SSP1-2.6 (blue),

B RCP4.5
::::::::
/SSP2-4.5 (yellow), and C RCP8.5

::::::::
/SSP5-8.5 (red).

Box plots of modeled SMB sensitivity to changes in temperature (i.e. how much SMB will change per degree
:
of
:::::::::::
near-surface320

::::::::::
atmospheric warming) are shown in Fig. 10. The projected sensitivity medians

:::::
means for RCPs 2.6, 4.5, and 8.5 are 101.7

::
95

::
±

::
70

:
Gt ◦K−1, 111.2

:::
102

:::
±

::
52

:
Gt ◦K−1, and 128.2

:::
120

::
±

:::
46 Gt ◦K−1, respectively. These

:::
The

::::
four

::::
best

::::::
scoring

:::::::
CMIP5

::::::
models

:::
are

:::::
below

:::
the

:::::::
median

:::
for

::::
each

::::::
forcing

::::::::
scenario

::::
with

:::::
many

::
of

:::::
them

:::::
below

:::
the

:::::
lower

:::::
limit

::
of

:::
the

::::::::::
interquartile

:::::::
ranges.

:::
The

:::::::::
sensitivity

::
in

:::::::
CMIP6

::::::
models

:::::
SSPs

:::::
1-2.6,

::::::
2-4.5,

:::
and

:::::
5-8.5

:::
are

::::::
lower

::::
than

:::::
those

::
of

:::::::
CMIP5

::
at

::
39

:::
±

::
49

:::
Gt

::::::

◦K−1,
::
59

:::
±

::
53

:::
Gt

:::::

◦K−1,
::::
and

::
82

:::
±

::
60

:::
Gt

:::::

◦K−1,
:::::::::::

respectively.
::::
The

::::
best

::::::
scoring

:::::::
CMIP6

:::::
model

::
is
:::::
close

::
to

::
or

::::::
above

:::
the

:::::
upper

::::
limit

:::
of

:::
the325

::::::::::
interquartile

:::::
range

::
in

:::::::::
sensitivity

:::
for

::::
each

:::::::
forcing

::::::::
scenario.

::::::
CMIP5

::::::
shows

:
a
:::::::

greater
:::::
range

::
in

:::::::::
sensitivity

:::
for

:::
all

::::
three

:::::::
forcing

:::::::
scenarios

:::
as

::::
well

::
as

:::::
being

::::::::
generally

::::
more

::::::::
sensitive

:::::
across

:::
all

::::::
CMIP5

:::
and

:::::::
CMIP6

:::::::
models.

:::::
These

:::::::::
sensitivity results are not statistically significantly different from one another,

:::::
across

::::::
forcing

:::::::::
scenarios,

::::::::
however,

indicating no significant more-than-linear SMB increase in enhanced warming scenarios.
::::
Table

::
2

:::::::
displays

::::::
ranges

:::
for

:::::
SMB

::::
mean

::::::
value,

::::
SMB

:::::
trend,

:::::
SMB

:::::::::
sensitivity,

::::
and

::::::::::
temperature

::::::
changes

:::
for

:::
all

::::::
models

:::
and

:::
the

::::
best

::::::
scoring

:::::::
models

::
for

:::
the

::::::::
different330

::::::
forcing

::::::::
scenarios.

:
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Figure 9. Box plots of the linear trend in spatially integrated AIS SMB from 2050-2100 for A RCP2.6
::::::::
/SSP1-2.6 (blue), B RCP4.5

::::::::
/SSP2-4.5

(yellow), and C RCP8.5
:::::::
/SSP5-8.5 (red). The four

::
five

:
darker x’s denote the four

:::
five models – GISS E2 H CC, GISS E2 R CC, MPI ESM

LR, and MPI ESM MR
::::
from

:::::
CMIP5

:::
and

::::
MRI

:::::
ESM2

::::
from

::::::
CMIP6 – among the eight best scoring models with the appropriate and necessary

information for direct comparison of future projections.

Figure 10. Box plots of all CMIP5 models’ projected SMB sensitivity to temperature changes (∆SMB/∆T) for A RCP2.6
:::::::
/SSP1-2.6, B

RCP4.5
:::::::
/SSP2-4.5, and C RCP8.5

:::::::
/SSP5-8.5. The five darker x’s denote the four

::
five

:
models – GISS E2 H CC, GISS E2 R CC, MPI ESM

LR, and MPI ESM MR
::::
from

:::::
CMIP5

:::
and

::::
MRI

:::::
ESM2

::::
from

::::::
CMIP6 – among the eight best scoring models with the appropriate and necessary

information for direct comparison of future projections.
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5 Discussion

5.1 EOF Analysis

:::
The

::::::::::
differences

::
in

:::::
modes

:::
of

::::::::
variability

:::
in

:::
the

::::
EOF

:::::
maps

:::::
likely

:::::
point

::
to

:::::::::
differences

::
in

:::::::::::
atmospheric

:::::::::
conditions

:::
that

:::::
force

::::
AIS

:::::
SMB. Mode 1 of the reconstruction EOF shows a dipolar pattern across the Antarctic Peninsula and Ross Ice Shelf region335

of West Antarctica. This dipole corresponds to variability in precipitation generated by variations in the track and strength of

the Amundsen Sea Low. The Amundsen Sea Low, a dominant synoptic phenomenon that drives a significant amount of the

circulation variability in West Antarctica and on the Antarctic Peninsula (Turner et al., 2013), is marked by high precipitation

around the coast of the Antarctic Peninsula (Grieger et al., 2016). Changes in the Amundsen Sea Low synoptic pattern, then,

represent the dominant cause of variability in the reconstruction SMB. The depth of the ASL is strongly influenced by the phase340

of the Southern annular mode (SAM) with positive (negative) mean sea level pressure anomalies when the SAM is negative

(positive) (Turner et al., 2013).

Looking at mode 2, previous work by Hosking et al. (2013) and Turner et al. (2013) (among others) have shown that variabil-

ity in the Amundsen Sea Low is responsible for high precipitation variability in West Antarctica and on the Antarctic Peninsula.

Because this region dominates the overall AIS precipitation signal (as East Antarctica sees little snowfall by comparison), a345

variable Amundsen Sea Low signal, here, would explain the EOF pattern reflected in mode 2 of the reconstruction. Additional

work highlighted in the supplementary material indicates that variability in sea level pressure in the Amundsen Sea region may

be playing a large role in the AIS SMB spatial variability patterns.

5.2 Impact of Internal Variability in Model Scoring: CESM Large Ensemble

The CESM Large Ensemble (CESM-LENS) is an experiment wherein the350

5.2
::::::

Impact
::
of

:::::::
internal

:::::::::
variability

:::
on

::::::
model

::::::
scoring

:::
Our

:::::
study

::::
uses

:::
the

:::
full

:::::::::
ensemble

::
of

::::::::
available

::::::
CMIP5

::::
and

::::::
CMIP6

:::::::
models.

::::::::
However,

:::
we

::::
only

:::::
select

::
a
:::::
single

:::::::
member

::
of
:::::

each

:::::
model

:::::
(since

:::::
some

::::::
models

:::::
have

::::
only

:::
one

::::::::
ensemble

::::::::
member

::::::::
available),

::::::
which

:::::::::
potentially

:::::
leads

::
to

:::::::::::::
under-sampling

::
of

:::::::
internal

::::::::
variability

:::
in

:::
the

:::::::
scoring.

:::
To

:::::::
analyze

:::
the

:::::
effect

:::
of

::::::
natural

:::::::::
variability

:::
on

::::
final

:::::::
scoring,

:::
we

::::
use

:::
the

:::::
Large

:::::::::
Ensemble

::
of
::::

the355

Community Earth System Model Version 1 (CESM) is run 40 times with random temperature perturbations at the level of

round-off error applied in 1920 (Kay et al., 2015)
::::::::::::
(CESM-LENS,

::::::::::::::
(Kay et al., 2015)

:
). Because of its large number of ensemble

members, the CESM-LENS experiment is useful for quantifying the role of internal variability. Only 35 of the original 40

ensemble members contain the necessary information for assessing AIS SMB. Figure 4 in Supplementary shows the final

scores of the five CESM simulations that are included in the CMIP5 suite of models as well as the final scores of the CESM-360

LENS experiment. The final scores for the CESM-LENS model runs are calculated the same way for all model criteria except
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CMIP5

RCP2.6 RCP4.5 RCP8.5

::::
Years

: :::
All

:::
Best

: :::
All

:::
Best

: :::
All

:::
Best

:

:::
SMB

:::
(Gt

:::::
yr−1)

::::::::
2070-2100

::::
2294

::
±

:::
570

::::
2274

::
±

:::
282

::::
2371

::
±

:::
581

::::
2358

::
±

:::
286

::::
2630

::
±

:::
663

::::
2495

::
±

:::
291

:::::

∆SMB
∆t :::

(Gt
::::
yr−2)

: ::::::::
2000-2100

::
0.9

::
±
:::
1.2

::
1.3

::
±
:::
1.0

::
2.5

::
±
:::
1.6

::
1.9

::
±
:::
0.7

::
6.0

::
±
:::
3.2

::
3.8

::
±
:::
0.8

::::

∆SMB
∆T :::

(Gt
::::
yr−1

:::::

◦C−1)
: ::::::::

2000-2100
:

95
::
±
::
70

: :
31

::
±
::
38

: :::
102

::
±

::
53

:
57

::
±
::
27

: :::
120

::
±

::
46

:
78

::
±
::
12

:

:
∆

::
T

:::
(◦C

:::::::
100yr−1)

::::::::
2000-2100

::
0.8

::
±
:::
0.8

::
0.6

::
±
:::
0.6

::
1.2

::
±
:::
1.0

::
1.0

::
±
:::
1.2

::
4.8

::
±
:::
1.0

::
3.6

::
±
:::
0.2

CMIP6

SSP1-2.6 SSP2-4.5 SSP5-8.5

::::
Years

: :::
All

:::::
Best*

:::
All

:::::
Best*

:::
All

:::::
Best*

:::
SMB

:::
(Gt

:::::
yr−1)

::::::::
2070-2100

::::
2249

::
±

:::
392

:::
2073

: ::::
2305

::
±

:::
387

:::
2096

: ::::
2418

::
±

:::
374

:::
2154

:

:::::

∆SMB
∆t :::

(Gt
::::
yr−2)

: ::::::::
2000-2100

::
1.3

::
±
:::
1.3

:::
0.5

::
2.5

::
±
:::
1.9

:::
2.0

::
5.0

::
±
:::
2.9

:::
3.8

::::

∆SMB
∆T :::

(Gt
::::
yr−1

:::::

◦C−1)
: ::::::::

2000-2100
:

39
::
±
::
49

: :::
110

:
59

::
±
::
53

: :::
102

:
82

::
±
::
60

: :::
122

:
∆

::
T

:::
(◦C

:::::::
100yr−1)

::::::::
2000-2100

::
0.9

::
±
:::
0.8

:::
1.2

::
2.2

::
±
:::
0.8

:::
3.0

::
5.2

::
±
:::
1.6

:::
5.7

Table 2.
::::::
*There

:
is
::::
only

:::
one

:::
best

::::::
scoring

:::::
model

::::
with

:::
data

:::
for

::
the

:::::
future

::::::
forcing

:::::::
scenarios

::
so

::
no

:::::::::
uncertainty

:
is
::::::::
provided.

:::::::
Projected

:::::
values

:::
for

:::::
SMB,

::::
SMB

:::::
trend,

::::
SMB

:::::::::
temperature

:::::::::
sensitivity,

:::
and

::::::
change

::
in

:::
21st

::::::
century

::::::::::
temperature

::
for

:::
all

::::::
CMIP5

:::
and

::::::
CMIP6

:::::
models

::::::::
compared

::
to

:::
the

::::
best

::::::
scoring

:::::
CMIP5

::::::
models

:::
for

:::::::
RCP2.6,

:::::::
RCP4.5,

:::
and

::::::
RCP8.5

::::
and

:::
best

::::::
scoring

::::::
CMIP6

::::::
models

:::
for

::::::::
SSP1-2.6,

:::::::
SSP2-4.5,

:::
and

::::::::
SSP5-8.5.

for AIS-integrated trend. Because these runs only differ after 1920, we only use the third time slice (1950-2000) to assess the

quality of trend reproduction.

The final scores of the five CMIP5 CESM model runs range from 3.99 to 9.74 while the final scores of the 35 CESM-LENS

runs range from 1.32 to 5.96. Given that the scores range by 5.74 and 4.65 for the CMIP5 CESM runs and the CESM-LENS365

runs, respectively, it is reasonable to conclude that internal variability plays as significant a role in determining final score as

do model parameterizations.

A major caveat of this finding, though
:::::::
however, is that the CESM-LENS runs and the reconstruction only overlap from

1920-2000. This will likely most significantly impact the assessment of the trend and EOF analyses.

With that,
::::
That

::::
said,

:::
this

:::::::
analysis

::::::::
higlights

:::
that

:
internal variability plays a significant role in our AIS SMB assessment. Some370

models within the CMIP5 and CMIP6 frameworks, such as CESM1-CAM5, have many ensemble members. However, not all

models – and even not all model versions – have multiple ensemble members. As such, performing a direct comparison of the

models using the ensemble mean would not necessarily yield an accurate result as models with more ensemble members would

have their final score shifted significantly while the same is not true for models with a single ensemble member. For considering

using GCMs for AIS SMB analysis, then, we strongly suggest taking into account the fact that internal variability could be375

playing a strong role in some models final score, and that the number of ensemble members available should be considered

along with the final score.
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5.3 Impact of Model Resolution in Model Scoring
:::::::::
horizontal

:::::::::
resolution

:::
on

:::::::
scoring

The

::
As

:::
the

:
CMIP5 and CMIP6 models vary in resolution

::::::
widely

::
in

:::::::::
horizontal

:::::::::
resolution, from about 0.75◦×0.75◦ to 3◦×3◦380

(Tables 1-3
::
1-4

:
in Supplementary),

:::
we

::::
can

:::::
assess

:::
the

::::::
impact

::
of

:::::::::
resolution

::
on

:::::::::
individual

::::
and

::::
final

:::::
model

:::::::
scoring. Figure 5 in

Supplementary shows a scatter plot of resolution versus total score. Resolution, here, is the latitudinal resolution multiplied

by the longitudinal resolution such that a model with latitude/longitude resolutions 0.9375◦/1.25◦ would have a resolution of

1.1719◦. A linear regression yields a correlation of R = -0.40 with 95% confidence intervals of -0.62 and -0.17. From this, there

is a
:::::
small,

::::::
though statistically significant negative correlation between resolution and total model score, signaling that, perhaps385

contrary to intuition, lower-resolution models score equally well, if not better, than higher resolution models. This result might

be skewed by the fact that lower-resolution models include better physics to represent AIS SMB than higher-resolution models.

However, when
:::::
When comparing total scores from the same model run at different resolutions, we find a consistent result: the

relative high-resolution CESM CAM5, IPSL CM5A MR, MPI ESM MR, CESM2, CESM2 WACCM, and MPI ESM2 HR all

perform worse than their coarser resolution counterparts – CESM CAM5 FV2, IPSL CM5A LR, MPI ESM LR, CESM2 FV2,390

CESM2 WACCM FV2, and MPI ESM2 LR. Because so many models close to 1◦/1◦ resolution and there is large spread in

these models’ final scores, we also divided the

5.4
::::::

Caveats

:::
The

:::::
major

::::::::::
limitations

::
of

:::
this

:::::
work

::::
stem

::::::
largely

:::::
from

:::
the

:::::::::
subjective

:::::::
selection

::
of

:::::::
scoring

:::::::
criteria.

:::::
While

::::
each

::::::
model

::
is

::::::
scored

:::::
based

::
on

:::
the

:::::
same

::::::
criteria,

::::
each

::::::::
criterion

:
is
:::::::
chosen

:::::::::
specifically

::
to

:::::
gauge

::::::
model

:::::::::::
performance

::
for

::::::::
capturing

::::
AIS

:::::
SMB.

:::
As

:::::
such,395

::::
these

::::::
criteria

::::
may

:::
be

::
ill

:::::
suited

:::
for

::::::
looking

::
at
:::::
other

::::::::
variables

:::
and,

:::::
thus,

::::
other

:::::::
metrics

:::::
could

::::
yield

::::
very

:::::::
different

:::::::
results.

:::::::
Another

:::::
caveat

::
of

::::
this

::::
work

::
is
::::
that

:::
we

:::
are

::::
only

:::::::
capable

::
of

::::::::
analyzing

:::
the

:::::::
CMIP6

::::::
models

::::
that

::::
have

::::
been

::::::::
released.

:::
As

:::
this

:::::::
analysis

::::
and

::
the

:::::::
release

::
of

:::::::
CMIP6

:::
are

::::::::::
concurrent,

:::
this

:::::
limits

:::
the

:::::::
number

:::
of

::::::
models

:::
we

::::
can

:::::::::
reasonably

:::::::
analyze

:::
due

:::
to

::::
time

::::::::::
constraints.

:::::::::
Additional

::::::
CMIP6

::::::
models

::::
may

::::
have

::::::::
different

:::::
results

::::
and

::::
may

::::
skew

:::
the

::::::::::
comparison

:::::::
between

::::::
CMIP5

::::
and

::::::
CMIP6

:::::::::::
significantly.

::::::::
Similarly,

:::
due

:::
to

:::
the

:::::
small

:::::::
number

::
of

::::::
CMIP6

:::::::
models

:::::::
released

::
at
::::
this

:::::
point,

:::::
using

::::::::
statistical

::::::::
analyses

:::::::
becomes

:::::
moot

:::
as

:::
the400

:::
top

::::
90%

::
of

:
models into two groups, finer and coarser than 1.25◦/1.25◦, and performed the same regression analysis. Figure

6 in Supplementary shows the coarser resolution models have a correlation of R = -0.14 with 95% confidence intervals of

-0.51
::::::::
constitutes

:::
the

::::::
single,

::::
best

:::::::
scoring

::::::
model.

::::
One

::::
final

:::::
major

::::::
caveat

::::
with

::::
this

::::
work

::
is
:::
the

::::::::
relatively

:::::::
narrow

:::::
scope

::
of

::::
just

::::::
looking

::
at

::::
AIS

:::::
SMB.

:::::::
Because

:::
we

::::::
refined

:::
our

:::::::
criteria

:
at
:::

the
::::::
outset

::
of

:::
our

::::::::::
experiment

::
to

:::::
solely

::::::
reflect

:::::
model

:::::::::::
performance

::::
with

:::::
regard

::
to

::::::::
capturing

:::::
SMB

::::
and

:::::
didn’t

:::::::
include

::::::
outside

::::::
factors

::::
like

:::::::
synoptic

:::::::
weather

::::::::
patterns,

:::
sea

:::
ice

::
or

:::
sea

:::::::
surface

:::::::::
conditions405

:::::::::::::::::
(Krinner et al. (2014)

:
;
:::::::::::::::
Kittel et al. (2018)

:
),
:::::
there

:::
are

:::::::::
potentially

::::
some

:::::
wider

::::::
model

:::::
biases

::::
that

:::
we

:::
are

::::::
missing

::::
that

:::::
could

:::::
affect

::::
SMB

::::::::::
projections.

::
In

:::
our

::::::::
analysis,

:::
we

:::::
make

::
the

:::::::::
significant

::::::::::
assumption

:::
that

:::
the

::::
past

::::::
ability

::
to

::::::
capture

:::::
SMB

::::::::
correlates

::
to

::::::
higher

:::
skill

:::
in

::::::::
projecting

::::
AIS

:::::
SMB

::::
into

:::
the

::::::
future.

::::::::
However,

::::::
model

:::::
biases

:::
in

::::
some

:::
of

:::
the

:::::
larger

:::::::
physical

:::::::
drivers

:
–
::::
and

::::
how

:::::
those

:::::
biases

::::::
change

::::
into

:::
the

:::::
future

:
–
::::
will

::::::::::
significantly

::::::
impact

::::::
future

:::
AIS

:::::
SMB

:::::::::
trajectory.
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:::::::
Another

:::::::::
significant

:::::
caveat

:::
of

:::
this

:::::
work

::
is

:::
the

:::
use

:::
of

:::::
single

::::::::
ensemble

:::::::::
members.

:::
For

::::
this

:::::
work,

:::
we

::::
use

:::
the

:::
first

:::::::::
ensemble410

:::::::
member

:::
for

::::
each

::::::
model.

:::::
This

::::::
choice

:::
was

:::::
made

:::
as

:::
the

:::::::
various

:::::
model

::::::::
members

:::
of

:::::::
CMIP5 and 0.24 while finer resolution

models have a correlation of R = -0.06 with 95% confidence intervals of -0.38 and 0.26. From this , we conclude that there

is no significant correlation between modelresolution and total score
::::::
CMIP6

::::
vary

::::::
widely

::
in

:::
the

:::::::
number

::
of

::::::::
ensemble

::::::::
members

:::::::
available

::
–

::::::
ranging

:::::
from

:
1
::
to

:::
50

:
–
::
so

:::::
using

::::
only

::
a
:::::
single

::::::::
ensemble

::::::::
members

:::::
helps

::::::
account

:::
for

::::
this

::::
large

::::::::
disparity

:::::::
between

:::
the

::::::
models.

::::::::
However,

::
in
:::::::
looking

::
at

:::
the

::::::::::::
CESM-LENS

:::::::::
experiment

::
–

:::::
which

:::
has

:::
35

::::::::
ensemble

::::::::
members

:
–
::
it

::
is

::::
clear

::::
that

::::
there

:::
can

:::
be415

:
a
::::
large

::::::
spread

::::::
caused

::::::
solely

::
by

:::::::
internal

:::::::::
variability.

::::
The

::::::
spread

::
in

::::
final

:::::
score

::::::
among

:::
the

::::::::::::
CESM-LENS

::::::::
ensemble

::::::::
members

::
is

::::
4.65

:::::
which

::
is

::::::
largely

::::::::
generated

:::
by

:::
the

::::::::
difference

::
in

:::::
EOF

::::
maps

::::::::
meaning

:::
that

:::
the

::::::
precise

:::::::::
realization

:::
of

::::::::::
atmospheric

:::::::::
conditions

::
in

:::
the

:::::::
models

::
is

::::::::
incredibly

:::::::::
significant

::
in

::::
how

:::
the

::::::
model,

::
in

::::
turn,

:::::::::
represents

::::
AIS

::::
SMB.

6 Conclusions

In this paper, we tested the ability of the suite of models in CMIP5 to capture SMB reconstructed from ice cores and reanalysis420

products by scoring them using a series of criteria: AIS-integrated mean value, trend, and variability, as well as the spatial

variability patterns. This scoring system is designed as a guide for choosing what GCMs to focus on studying for future SMB

projections. Using this scoring system, we found that the top 90th percentile models were GISS E2 H CC, GISS E2 R CC,

GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI ESM P of CMIP5 and CESM FV2 and MPI ESM2 LR of CMIP6. A

similar study in Agosta et al. (2015) found ACCESS1-3, ACCESS1-0, CESM BGC, CESM CAM5, NorESM1-M, and EC-425

Earth to most accurately capture AIS sea level pressure, 850 hPa air temperature, precipitable water, and ocean conditions – all

of which impact AIS SMB to varying degrees. They focused their investigation into more atmospheric and oceanic dynamics

(sea ice extent, sea surface temperature, sea surface pressure, precipitable water, 850 hPa temperature) and were comparing

models directly to a reanalysis product. Barthel et al. (2019), another study with a similar goal of analyzing SMB performance

among GCMs selected CCSM4, MIROC ESM CHEM, and NorESM1-M as their top three performing models for Antarctica.430

They ruled out both the GISS and MPI modeling groups due to their initial selection criteria and were also looking more at the

impacts thermodynamical processes on SMB.

Our SMB mean value estimates are comparable to Agosta et al. (2019), who found a mean SMB value of roughly 2100 ±
100 Gt yr−1 for the grounded AIS using ERA-Interim products. The SMB trends are also in line with Medley and Thomas

(2019) over the 20th century. Unlike previous studies, we use a reconstructed data set based on ice core reanalysis, not RCMs.435

Also of note is the fact that this data set and the GCMs we use for comparison allow us to investigate much longer time periods

(150 years), enhancing the robustness of long-term AIS SMB trends. Using this reconstruction, we are able to refine estimates

of SMB mean value and SMB trend by the end of the 21st century using CMIP5 by assigning scores to the models and creating

a subset of the most accurate models historically. Also unlike previous studies, we analyze both CMIP5 and the early models

of CMIP6 together allowing for direct comparison between the two suites of models. The scores for all CMIP5 models are, on440

average, better than the average score of the currently released CMIP6 models.
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All scores are equally weighted to avoid issues with coincidental good or bad performance. Having a spread of criteria

against which we score the models limits the possibility that models are recreating one aspect well for the wrong reasons. This

scoring method does well in determining simple and consistent criteria to score the accuracy of modeled SMB. In contrast,

it struggles to recognize any difference in the importance of individual criteria as they are all weighted equally and also only445

reflects a few, simple scoring metrics. The criteria were chosen such that they all carry equal weight which we justify by arguing

that not meeting any one of the criteria to within a reasonable degree would significantly impact future SMB estimates.

Using
::
Of

:
the top eight

::::::
scoring

::::::
models,

:::
six

:::::
were

::::
from

:::::::
CMIP5

:::
and

::::
two

::::
from

:::::::
CMIP6.

:::::
Using

:::
the

:::
top

:::
six

:
best scoring models

::::
from

::::::
CMIP5, four of which we were able to project out to 2100 under three different RCPs, we refined future SMB predictions

to 2372
::::
2274 ± 282 Gt yr−1 for RCP2.6, 2452

::::
2358 ± 286 Gt yr−1 for RCP4.5, and 2588

::::
2495 ± 291 Gt yr−1 for RCP8.5.450

Over the 21st century this translates to 8.6 cm, 9.6 cm, and 11 cm of GMSL rise buffering in RCPs 2.6, 4.5, and 8.5, respectively,

for all of
::
Of

:::
the

::::
two

::::
best

:::::::
scoring

::::::
CMIP6

:::::::
models,

:::::
only

:::
one

:::::
(MRI

:::::::
ESM2)

:::
had

::::
data

:::
for

::::
the

::::::::::
comparable

:::::
future

::::
SSP

:::::::
forcing

::::::::
scenarios.

:::
For

:::
the

:::::
1-2.6

::::
and

::::
2-4.5

:::::::::
scenarios,

::::
MRI

::::::
ESM2

::
is

:::::
within

::::
the

:::::::
standard

::::::::
deviation

::
of

:::
the

:
CMIP5

::::::
models

::::::
(albeit

::
at

:::
the

::::
very

:::
low

::::
end).

::::
For

:::
the

::::::::
SSP5-8.5

:::::::
scenario,

:::::
MRI

:::::
ESM2

::
is

:::::
about

::
50

:::
Gt

::::
yr−1

::::
less

:::
than

:::
the

:::::
lower

:::::
limit

::
of

:::
the

:::::
mean

::
±

::
the

::::::::
standard

:::::::
deviation

:::
of

:::
the

::::::
CMIP5

:::::::
models. Our result of these best scoring models projecting AIS SMB at the lower end of the overall455

CMIP5 interquartile range in trend is in contrast to Palerme et al. (2017) who found that, especially considering RCPs 2.6 and

4.5, the CMIP5 models that best captured snowfall change rates tended to predict higher snowfall rates into the 21st century.

:::
The

::::
best

::::::
scoring

:::::::
CMIP6

:::::
model

::::::::
similarly

:::::
tends

::
to

:::
fall

::
at
:::
the

:::::
lower

::::
end

::
of

:::
the

::::::
overall

:::::::::::
interquartile

:::::
range.

:
Additionally, model

trends were refined to 0.47 to 2.45 Gt yr−2 for RCP2.6, 1.44 to 2.88 Gt yr−2 for RCP4.5, and 3.06 to 4.63 Gt yr−2 for RCP8.5.

::::
MRI

::::::
ESM2,

:::
the

::::
best

::::::
scoring

::::::
CMIP6

::::::
model,

:::::::
showed

:::::
trends

::
of

:::
0.5

:::
Gt

:::::
yr−2,

:::
2.0

::
Gt

:::::
yr−2,

:::
and

:::
3.8

:::
Gt

::::
yr−2

:::
for

::::
SSPs

::::::
1-2.6,

:::::
2-4.5,460

:::
and

:::::
5-8.5,

:::::::::::
respectively. Comparing the projected change in SMB per degree warming between the emission scenarios gives

median sensitivities of 64
::::
mean

::::::::::
sensitivities

::
of
:::

31
:
± 80

::
38 Gt ◦K−1, 57 ± 33

::
27 Gt ◦K−1, and 78 ± 15

::
12 Gt ◦K−1 for

RCPs 2.6, 4.5, and 8.5, respectively, for the best scoring models. However
:::
The

::::
best

::::::
scoring

:::::::
CMIP6

:::::
model

:::
had

::::::::::
sensitivities

::::
that

::::
were

::::::::
generally

:::::
higher

::::
than

:::
the

::::
best

:::::::
scoring

::::::
CMIP5

::::::
models

:::
at:

:::
110

:::
Gt

:::::

◦K−1, these results
:::
102

:::
Gt

:::::

◦K−1,
::::
and

:::
122

:::
Gt

:::::

◦K−1
:::
for

::::::::
SSP1-2.6,

:::::::::
SSP2-4.5,

:::
and

::::::::
SSP5-8.5,

:::::::::
respective.

::::
(For

::
a
:::
list

::
of

::
all

::::::
values

:::
for

::::::
CMIP5

::::
and

::::::
CMIP6

:::::::
models,

:::
see

:::::
Table

:::
2.)

::::::::
However,465

::
the

:::::::::
sensitivity

::::::
results

:::::
from

::::::
CMIP5

:
are not statistically significantly different from one another across forcing scenarios and

indicate that there is no difference in the sensitivity response to changes in temperature between the three forcing scenarios.

Given that the best performing models show lower AIS-integrated SMB values and trends compared to the entire CMIP5 spread

indicates less sea level rise mitigation from increasing SMB than is implied by looking at all CMIP5 models.

The major limitations
:::::
Some

::
of

:::
the

::::::
major

::::::
caveats

:
of this work stem from

:::
are the subjective selection of scoring criteria .470

While each model is scored based on the same criteria, each criterion is chosen specifically to gauge model performance for

capturing AIS SMB. As such, these criteria may be ill suited for looking at other variables and, thus, other metrics could yield

very different results. Another caveat of this work is that we are only capable of analyzing the CMIP6 models that have been

released. As this analysis and the release of CMIP6 are concurrent, this limits the number of models we can reasonably analyze

due to time constraints. Additional CMIP6 models may have different results and may skew the comparison between CMIP5475

and CMIP6 significantly. Similarly, due to the small number of CMIP6 models released at this point, using statistical analyses
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becomes moot as the top 90% of models constitutes the single, best scoring model . One final major caveat with this work is the

relatively narrow scope of just looking at AIS SMB. Because we refined our criteria at the outset of our experiment to solely

reflect model performance with regard to capturing SMB and didn’t include outside factors like synoptic weather patterns, sea

ice or sea surface conditions (Krinner et al. (2014); Kittel et al. (2018)), there are potentially some wider model biases that we480

are missing that could affect SMB projections. In our analysis , we make the significant assumption that the past ability to

capture SMB correlates to higher skill in projecting AIS SMB into the future. However, model biases in some of the larger

physical drivers – and how those biases change into the future – will significantly impact future AIS SMB trajectory
:::::
which

:::::
dictate

:::
the

::::::::::
assessment

::
of

::::
best

::::::
scoring

:::::::
models

::
as

::::
well

::
as

:::
the

::::
use

::
of

::::::::::::::
single-ensemble

::::::::
members

:::
for

:::::
model

:::::::
analysis

::::::
which

::::
may

:::
lead

::
to
:::
an

::::::::::::
undersampling

::
of

:::::::
internal

:::::::::
variability.485
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1 Empirical Orthogonal Functions

The top three modes of AIS SMB variability in the reconstruction are the only three modes with the percent of variance

explained above 10% (Fig. 1). In total, these top three modes explain about 77% of the total variance in AIS SMB in the

reconstruction.

Figure 1. The top 30 Eigen values out of 200 total for SMB in the reconstruction. The top three Eigenvalues explain 76.3% of the total SMB

variance.

To gain insight into what atmospheric conditions may lead to the dominant modes of SMB spatial variability, we performed5

the same EOF analysis on the reconstructed sea level pressure (Fig. 2). The top mode of atmospheric variability shows high

variability around the Amundsen Sea region. Similarly, mode 2 also reflects strong variability in the Amundsen Sea region but

with more zonal symmetry. The third mode of atmospheric variability represents a quadripolar pattern in variability about the

0-180◦ and 90◦E/W longitude lines.

1



Figure 2. EOFs of the top 3 modes of the reconstruction for sea level pressure.

2 Sample Size Monte Carlo10

The average final score for CMIP5 is 3.7 and the average final score for CMIP5 is 5.6. To determine if this difference is

generated by the smaller CMIP6 sample size, we performed a Monte Carlo-type simulation. Randomly selecting 22 of the 41

total CMIP5 model scores 10,000 times, we then tested whether those 10,000 selections were statistically different from all

41 using a two-sided t-test. The t-test generates results of 0 if we cannot reject the null hypothesis that the two samples are

different at the 95% confidence level or 1 if we can. Averaging the t-test over all 10,000 selections yields a 0.042% chance that15

we can reject the null hypothesis. From this, we determine that we cannot reasonably reject the null hypothesis that these two

scores are statistically different at the 95% confidence level. This means that 22 models is representative of the total CMIP5

suite of models from which we hypothesize that the same can be said for the current 22 models being representative of the full

CMIP6 suite of models in terms of average final score.

3 Future temperature and SMB trends20

To assess how much of the model sensitivity to forcing scenario is attributable to spread in ∆T versus spread in ∆SMB
∆T , we

compared the relative spreads of each. For RCPs 2.6, 4.5, and 8.5, respectively, ∆SMB
∆T ranged between -116% to + 305%,

21% to 264%, and 52% to 223% about their respective means. By comparison, ∆T ranged between 56% to 156%, 30% to

141%, and 45% to 135% about their relative means for RCPs 2.6, 4.5, and 8.5, respectively. In short, ∆T ranged about 100%

about the mean in each scenario while ∆SMB
∆T ranged about 200% to 300% about the mean depending on scenario. With that,25

we conclude that much of the variation in ∆SMB
∆T between models stems from differences in how the models react to different

forcing scenarios rather than owing to large spread in modeled temperature change over the 21st century.

4 Impact of Internal Variability in Model Scoring: CESM Large Ensemble

Internal variability – the process by which model ensemble members deviate due to small changes in model initialization –

potentially plays a large role in overall model score. Figure 4 shows the scores of the 5 CESM members that appear in the30

CMIP5 suite as well as 35 ensemble members from the CESM-LENS experiment. The spread in CESM-LENS is comparable
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Figure 3. Box plots of the temperature trends in ◦C yr−1 for A RCP2.6 (blue), B RCP4.5 (yellow), and C RCP8.5 (red). The four best

scoring models are shown as colored circles: GISS E2 H (dark blue), GISS E2 R (green), MPI ESM LR (coral), and MPI ESM MR (dark

red).

to that of the CMIP5 CESM simulations. From that, we conclude that internal variability can potentially be as significant as

specific parameterization choices within a single model. The spread in CESM-LENS is significantly smaller, though, than the

spread across all CMIP5 models indicating that model physics are the dominant factor in the reproduction of AIS SMB.

Figure 4. Final scores of the five CESM models from CMIP5 compared to the CEMS-LENS simulations.
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5 Impact of Model Resolution in Model Scoring35

To investigate the importance of model resolution for overall model score, we perform a linear regression analysis. Figure 5

shows all model resolutions plotted against their overall scores. Here, regression analysis shows a statistically significant, albeit

relatively small, correlation coefficient of -0.4 with 95% confidence intervals of -0.62 and -0.17. Because so many modelshave

a resolution close to

Figure 5.
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::::
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:
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:::::
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::::
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::::
score.
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linear

::::::::
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(orange
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:
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::
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::
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:::
0.45

::::
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:::
95%

:::::::::
confidence

::::::
intervals

::::::
(orange

::::::
dashed

::::
lines)

::
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::::
0.30

:::
and

::::
0.61.

6
::::::::
Modeling

:::::::
Centers40

::
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:::
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:::::
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:::
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:::::::
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:::::::
models,

:::::
seven

:::::::
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:::::
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:::
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::::::::
modeling

:::::::
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:::
the

::::
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::::::
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:::::::
Institute

::
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:::::::::::
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:::
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Goddard

:::::::
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::::::
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:::::
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::::
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:::::::
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:::::::
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model

::::::
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:
a
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::::
AIS

:::::
SMB.

:::::::
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::::::::::::
interpretation
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that
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::::::
models

::::::
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:::::
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and,
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thus,

:::
all

:::
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::::::::::::
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::::::::
favorably
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reconstruction.
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a
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more

::::::
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::::::
spread
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::::::::
modeling
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:::
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:::::
ways:
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1◦×1◦, we separated the models as finer and coarser than 1.25◦/1.25◦, and performed the same45

regression analysis. Figure ?? shows that, separated out, neither the finer nor the coarser models have any statistically significant

correlation between resolution and overall score.
:
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::::::::
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::::
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::::::
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Figure 6. Scatter plot of resolution versus total score. A linear regression (orange line) yields a correlation of R = 0.45 with 95% confidence

intervals (orange dashed lines) of 0.30 and 0.61.

Figure 7. Scatter plot of resolution versus total score. A linear regression (orange line) yields a correlation of R = 0.45 with 95% confidence

intervals (orange dashed lines) of 0.30 and 0.61.
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7 Data Tables

This section includes tables with model resolutions and scores for all CMIP5 and CMIP6 models as well as a table with

projected SMB and related variables for the various RCPs.55

Model Resolution Total Score

(◦lat×◦lon)

1 ACCESS1-0
:::::::::::
1.2414×1.875

:
3.80

2 ACCESS1-3
:::::::::::
1.2414×1.875

:
3.38

3 BCC-CSM1.1
:::::::::::::
2.8125×2.8125 4.85

4 BCC-CSM1.1-m
:::::::::::::
2.8125×2.8125 4.99

5 BNU ESM
:::::::::::::
2.8125×2.8125 10

6 CanESM2
:::::::::::::
2.8125×2.8125 5.24

7 CCSM4
:::::::::::
0.9375×1.25 7.40

8 CESM1 BGC
:::::::::::
0.9375×1.25 5.81

9 CESM1 CAM5 FV2
:::::::::::
0.9375×1.25 3.99

10 CESM1 CAM5
:::::::::::
0.9375×1.25 5.30

11 CESM1 FASTCHEM
:::::::::::
0.9375×1.25 9.74

12 CESM1 WACCM
:::::::::::
0.9375×1.25 6.63

13 CMCC CESM
:::::::::
0.75×0.75 3.94

14 CMCC CM
:::::::::
0.75×0.75 3.50

15 CNRM CM5
:::::::::::::
1.4063×1.4063 4.73

16 CSIRO
:::::::::::
1.875×1.875 3.98

17 FGOALS 3×2.8125 2.07

18 FIO ESM
:::::::::::::
2.8125×2.8125 8.89

19 GFDL CM3
:::::
2×2.5

:
3.83

20 GFDL ESM2G
:::::
2×2.5

:
4.48

21 GFDL ESM2M
:::::
2×2.5

:
7.11

22 GISS E2 H CC
:::::
2×2.5

:
1.72

23 GISS E2 H
:::::
2×2.5

:
3.55

24 GISS E2 R CC
:::::
2×2.5

:
1.60

25 GISS E2 R
:::::
2×2.5

:
1.00

Table 1. Model names, resolutions and final score for the first half of the CMIP5 suite of models.
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Model Resolution Total Score

(◦lat×◦lon)

26 HadGEM2 CC
:::::::::::
1.2414×1.875

:
5.14

27 HadGEM2 ES
:::::::::::
1.2414×1.875

:
5.56

28 INMCM4 1.5×2 2.61

29 IPSL CM5A LR
:::::::::
1.875×3.75

:
3.13

30 IPSL CM5A MR
:::::::::
1.2587×2.5

:
2.88

31 IPSL CM5B LR
:::::::::
1.875×3.75

:
5.50

32 MIROC ESM CHEM
:::::::::::::
1.4063×1.4063 2.75

33 MIROC ESM
:::::::::::::
2.8125×2.8125 2.86

34 MIROC5
:::::::::::::
2.8125×2.8125 2.19

35 MPI ESM LR
:::::::::::
1.875×1.875 1.59

36 MPI ESM MR
:::::::::::
1.067×1.067 1.76

37 MPI ESM P
:::::::::::
1.875×1.875 1.76

38 MRI CGCM3
:::::::::::
1.125×1.125 3.92

39 MRI ESM1
:::::::::::
1.125×1.125 4.46

40 NorESM1 M
:::::::::
1.875×2.5 3.89

41 NorESM1 ME
:::::::::
1.875×2.5 4.30

Table 2. Model names, resolutions and final score for the second half of the CMIP5 suite of models.
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Model
:::::::::
Resolution Total Score

:::::::::
(◦lat×◦lon)

:

1 ACCESS CM2
:::::::::
1.25×1.875

:
3.66

2 ACCESS ESM1-5
:::::::::
1.25×1.875

:
3.25

3 BCC CSM2 MR
:::::::::::
1.125×1.125 7.17

4 BCC ESM1
:::::::::::::
2.8125×2.8125 6.20

5 CAMS CSM1
:::::::::::
1.125×1.125 8.78

6 CanESM5
:::::::::::::
2.8125×2.8125 8.25

7 CanESM5-CanOE
:::::::::::::
2.8125×2.8125 4.42

8 CESM2
:::::::::::
0.9375×1.25 8.04

9 CESM2 FV2
:::::::
1.9×2.5 2.08

10 CESM2 WACCM
:::::::::::
0.9375×1.25 6.93

11 CESM2 WACCM FV2
:::::::
1.9×2.5 3.76

12 CNRM CM6-1
:::::::::::::
1.4063×1.4063 6.63

13 CNRM CM6-1-HR
:::::::
0.5×0.5 8.10

14 CNRM ESM2
:::::::::::::
1.4063×1.4063 6.09

15 E3SM1
:::::::
1.0×1.0 8.79

16 E3SM1-1
:::::::
1.0×1.0 5.17

17 E3SM1-1 ECA
:::::::
1.0×1.0 5.09

18 FGOALS F3 L
:::::::
2.0×2.25

:
5.88

19 FGOALS G3
:::::::
2.0×2.25

:
5.72

20 GFDL ESM4
:::::::
1.0×1.25

:
7.71

21 GISS E2 G
:::::::
2.0×2.5 5.81

22 GISS E2 G CC
:::::::
2.0×2.5 3.55

23 GISS E2 H
:::::::
2.0×2.5 6.78

24 HadGEM3 GC3
:::::::::
1.25×1.875

:
7.97

25 IPSL CM6A
:::::::::
1.2587×2.5

:
6.30

26 INM CM4-8
:::::::
1.5×2.0 3.66

27 INM CM5-0
:::::::
1.5×2.0 4.04

28 KACE1-0-G
:::::::::
1.25×1.875

:
4.78

29 MCM UA1
:::::::::
2.25×3.75 8.42

30 MIROC6
:::::::::::::
2.8125×2.8125 7.14

31 MIROC E2SL
:::::::::::::
2.8125×2.8125 5.38

60

Table 3. Model names, resolutions and final score for the first half of CMIP6 suite of models.
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Model
::::::::
Resolution

:
Total Score

::::::::::
(◦lat×◦lon)

32 MPI ESM1-2-HAM
::::::::::
1.875×1.875

:
2.16

33 MPI ESM1-2-HR
::::::::::
0.935×0.935

:
8.04

34 MPI ESM1-2-LR
::::::::::
1.875×1.875

:
1.77

35 MRI ESM2
::::::::::
1.125×1.125

:
7.16

36 NESM3
::::::::::
1.875×1.875

:
3.45

37 NorCPM1
::::::::
1.875×2.5

:
8.00

38 NorESM2-MM
::::::::::
0.9375×1.25

:
3.80

39 SAM0 UNICON
::::::::::
0.9375×1.25

:
7.58

40 UKESM1
::::::::::::
0.9375×1.875 8.45

Table 4. Model names, resolutions and final score for the second half of CMIP6 suite of models.

Years SMB (Gt yr−1) 2070 - 2100 2295 ± 1222 2246 ± 268 2382 ± 1316 2358 ± 331 2648 ± 1530 2495 ± 335 GMSL rise

buffering (cm) 2000 - 2100 1.8 ± 0.7 1.3 ± 0.6 3.5 ± 0.8 3.2 ± 0.7 6.6 ± 1.1 5.0 ± 0.7 ∆SMB
∆t (Gt yr−2) 2000 - 2100 0.9 ±65

2.4 0.9 ± 0.1 2.5 ± 3.5 1.9 ± 1.0 6.0 ± 7.2 3.8 ± 1.8 ∆SMB
∆T (Gt yr−1 ◦C−1) 2000 - 2100 95 ± 152 64 ± 80 102 ± 124 57 ±

33 120 ± 103 78 ± 15 ∆ T (◦C 100yr−1) 2000 - 2100 1.1 ± 0.5 0.8 ± 0.3 1.4 ± 0.8 1.2 ± 0.4 2.0 ± 0.9 1.8 ± 0.6

8 AIS Map

Figure 8 shows the AIS with the names of locations specifically mentioned in the main text.
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Figure 8. Map of the AIS.
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Dear editor, 
 

During these times, we recognize that it can be extremely difficult to get much work done 
and that, often, reviewership does not take precedence. As such, we would like to thank you 
and the reviewers for taking the time to read the revised manuscript and provide further 
comments. 
 
Thank you for your consideration, 
Tessa Gorte and co-authors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Reviewer 1 
 
Lines 25-27 repetitive, delete one sentence (or the other) 
We have deleted the sentence: "Ignoring these terms, AIS SMB can be estimated as SMB = 
precipitation - sublimation." 
 
Line 47 MB = mass balance? GMSL = global mean sea level? Define 
We have changed the sentence to read: "Despite its importance for AIS mass balance (MB) and 
global mean sea level (GMSL), ..." 
 
Line 99 MERRA-2 reference? 
We have added “... we will use the MERRA-2 based data set provided by Medley & Thomas 
(2019) as a proxy...” 
 
Line 245 “added retroactively figures 2-3 for comparison? Not in Figure 2... 
This typo has been corrected to: "figure 3-5." 
 
Figure 1. These colors appear blue on my screen (not purple)? 
We have changed all instances of "purple" to "indigo" to alleviate some confusion. 
 
Figure 2 and text – why are mean, trends shown from 1801-2000 when the model scoring 
is for 1850-2000? Or am I missing something? 
This figure is meant to show the patterns of means and trends in the reconstruction so we didn’t 
feel that the time span was so important. We take your point, however, that it could lead to 
confusion, so we have replotted the figure with data only spanning 1850-2000. 
 
Lines 264-280 Although this is better than the first submission, I still find sections in here 
become overwhelming and read as a list of numbers. I would prefer having a table 
presenting the numbers for any readers who want the actual values (this makes it also 
easier for future work to find values in the paper and cite or compare!) with written text 
more of a summary (with details in the table). Figure 4 also summarizes quite nicely. This 
is more of a stylistic recommendation and the authors may choose to disagree and keep 
as is... 
We do appreciate the complexity in reading lots of lists of numbers. We feel it is important and 
relevant to have all the numbers listed in the text, but as we take your point, we have also 
added in Table 1 which provides a list of all the ranges for the temporal criteria as a succinct 
reference point. 
 
Line 299 should be “Figure 5A, B” or simply “Figure5” 
We have changed the text to “Figure 5A, B.” 
 



 

Lines 302-303 states that the STD for the reanalysis is 6.6% and reconstruction 2.9%, but 
the figure caption states that 6.6% is the reconstruction. Which is it? 
We have changed the typo in the figure caption to: "The black dots show the standard deviation 
of the original MERRA-2 reanalysis." 
 
Lines 413-415 It seems like the CESM-LE performs, on the whole, better than the CESM 
CMIP5 contributions. Why do you think this is the case? A detailed analysis is beyond 
the scope of this paper – just find this to be very interesting and wonder why this might 
be (at most 1-2 sentences)? I think there are two possibilities here (although maybe 
more?). One, there are only 5 individual CMIP5 CESM runs, compared with 35 LE and 
only one of the 5 is a clear outlier (FASTCHEM). Thus, the differences in scores and 
ranges may not be significant and only show that scoring itself is susceptible to internal 
variability (and what a large range!), and cautions against using single-ensembles to 
estimate model performance. Another possibility may lie in forcing differences. I believe 
the CESM-LE does not have the same ozone forcing as the CESM CMIP5 contributions, 
and I would expect SH to be the region this would matter most (I don’t recall exactly the 
difference but I think the CESM LE is much closer to obs for ozone forcing, particularly in 
the SH?). Also, I am not sure if the shorter overlap of time (LE 1920-2000 and CMIP5 
1850-2000) should impact the EOF analysis (the trend, yes maybe). If the modes of 
variability are robust under strong external forcing, then the LE – with 30 ensembles – 
should have plenty of samples to adequately estimate EOFS (I’m actually not as 
convinced of single-ensemble members). The exceptions will be if the EOFs are not 
robust under anthropogenic forcing, or if there are mulit-decadal modes missing in the 
CESM LE due to identical ocean initial conditions (although not convinced they would be 
resolved in single-runs of the different CESM CMIP5 simulations). 
We agree with the reviewer, here, that this is a curious result (and that finding the exact answer 
to it lies slightly beyond the scope of this work). We do think that this is a strong cautionary tale 
against using single-ensemble models as they can be very misleading. Generally, though, we 
think that the forcing (the reviewer’s second explanation) may be more of a factor. 
Unfortunately, none of the other CESM1 scenarios used in CMIP5 have the exact same forcings 
as CESM-LENS. For another reviewer, we looked into what criterion was causing the most 
spread among the CESM-LENS members and found that the EOF maps were far and away the 
most important for this. Generally, the members were very similar in mean value, trend, and 
variability, but EOF maps varied significantly. This leads us to believe that the atmospheric 
forcing is incredibly important in modeling AIS SMB. In all likelihood, both explanations offered 
by the reviewer play some part in the reality of why there is a notable difference between the 
LENS project and the other CESM1 members from CMIP5. 
 
(Suppl.)  Figure 6.  Put “coarser” and “finer” resolution in figure caption and maybe on 
figure itself (otherwise easily confusing). 
We have removed figure 6 from the supplementary material at the behest of another reviewer. 
However, to make sure that this point isn’t lost, we have added "coarser" and "finer" to the 
Figure 5 caption and figure label in the supplementary. 



 

 
(Suppl.)  Table 1.  I think resolution is confusing here.  Suggest you make 4 columns: 
model, resolution (given as lat x lon in traditional manner), total resolution (for 
correlation calculations eg. Lat/lon), and score. Also many scores are absent? 
We think that adding in a column with the numeral calculation of multiplying the latitude by the 
longitude will only add confusion. For the figure in which we describe the total resolution, we 
iterate the y-axis such that it shows perfect square resolutions (i.e. 1x1, 2x2, 3x3, etc). If we 
were to add the total resolution column, we would change the y-axis to represent simply the 
product of lat and lon resolutions. While we could do this, we feel that saying something like 1.5 
degrees x 1.5 degrees is more intuitive than saying 2.25 degrees sq (especially as most models 
are close to if not exactly square resolution (i.e. degrees latitude = degrees longitude)). To the 
reviewer’s second point, yes, there appears to have been a formatting error in the manuscript. 
We have made the requisite formatting changes. 
 
(Suppl.) Table 4. Perhaps elevated to a table in the main text? 
Presumably the reviewer means Table 5? If so, we have moved the table from supplementary to 
the main text. 
 
(Suppl.) What is “GMSL rise buffering”? 
We agree with the reviewer that this phrase is confusion and, as such, have removed the GMSL 
rise buffering from this table (which has been moved to the main text). 
 
(Suppl.) Gt yr-2 should be G yr-1 in column one for change in SMB in time 
As SMB is already in units of Gt yr-1, changes to SMB over time would be in units of Gt yr-2. 
 
(Suppl.) Figure 4. The yellow dot for CESM FASTCHEM is extremely difficult to see (at 
first I thought it was missing) – for some reason even more difficult in this figure than in 
Figure 3 in the main text (although hard there too). Suggest changing the color scale a bit 
or outlining this dot in another color or something to make it visible. 
We agree that the color scale makes it difficult to see that dot. As such, we have darkened the 
color of the FASTCHEM dot as well as increased the size of the dot. 
 
 
 
 
 
 
 
 
 
 
 



 

Reviewer 2 
 
Previous comment 1.1: Comparing GCMs with reconstructions. 
I am satisfied that analysis of HighResMIP not actually suitable due to the uncoupled nature and 
shorter duration. I am also satisfied that resolution seems to explain a small amount of 
inter-model variance in SMB values (just 16%). I would be happy to leave it at that, but the 
authors seem to contradict themselves on this point. Specifically, their analysis of the range of 
resolutions across the CMIP5 and CMIP6 models shows a statistically significant relationship 
between resolution and SMB (Fig. 5 of supplementary material). They state in their response to 
reviewers that ‘This result is further exemplified when looking at total scores from the same 
model run at different resolutions.’ This would seem to strengthen the importance of resolution 
as a factor that should be considered. The authors then seem to contradict themselves by 
stating that ‘we conclude that there is no significant correlation between model resolution and 
total Score’, which is based on splitting the population into high and low resolution subsets in 
Figure 6 of supplementary information. I don’t follow the rationale for doing this, in particular 6b 
seems to show a collection of models with almost identical grid spacing. My suggestion is to 
leave out Figure 6, and use Figure 5 to show that the resolution effect is, although statistically 
significant, relatively small. 
We will remove Figure 6 from the supplementary material and removed from the main text: 
“Because so many models… resolution and total score.” We appreciate the reviewer’s comment 
about the confusion that our analysis generates and that our response was self-contradictory. 
There is, indeed, a small yet statistically significant negative correlation between resolution and 
total score and we have removed text from the supplementary and main text that would muddle 
that result. We believe that by removing Figure 6 and the associated while making the requisite 
changes to the remaining text, we have reduced the confusion that it generated. 
 
Previous comment 1.2: A lack of mechanistic explanation for why each of the 5 criteria 
are relevant for improving reliability of projections 
Not really. No clear explanation of each criteria. Leave-one-out can help to see how much 
difference an evaluation makes to projections. In a response to a later point below the authors 
state that “In our analysis, we make the significant assumption that the past ability to capture 
SMB correlates to higher skill in projecting AIS SMB into the future.” If the authors follow the 
above suggestion this need not to be an assumption. It would not be too much work to test 
whether past ability to capture SMB correlates to higher skill in projecting AIS SMB by looking at 
projections and biases across the different models to quantify the extent to which they may be 
correlated. 
We appreciate the reviewer’s ideas here about the leave-one-out cross validation (LOOCV) 
technique. We have looked into this technique and we argue that this technique is not 
applicable for the purpose of determining “whether past ability to capture SMB correlates to 
higher skill in projecting AIS SMB.” Our understanding is that this LOOCV technique would allow 
us to determine the ability of using certain criterion scores to predict the total score which does 
not pertain to the future scenarios. We also argue that the equal weighting of the criteria and the 



 

removal from consideration of the outliers makes this cross-validation moot. The correlations 
between the criterion scores and the total score and there is no statistically significant difference 
between the criteria (see table below). We do sincerely apologize if we are misunderstanding 
the reviewer’s point here. We are eager to do additional analysis if we feel it would significantly 
bolster the rigor of this work which we feel has been evidenced by our analysis of the 
CESM-LENS experiment and the addition of the CMIP6 SSP scenarios. 
 

Correlation 
Variables 

score_1 : 
score_final 

score_2 : 
score_final 

score_3 : 
score_final 

score_4 : 
score_final 

score_5 : 
score_final 

R 0.51 0.64 0.53 0.42 0.48 

95% CI +/- 0.15 +/- 0.11 +/- 0.14 +/- 0.16 +/- 0.15 

 
Previous comment 1.3 The methodological framework for model weighting. 
i. A point that still isn’t clear is the consequences of situations with small observational 
uncertainty. The author’s response states that "In regards to the point wherein the 
reconstruction uncertainty approaches zero, if this is the case, then all the models would score 
highly on this criterion, that is correct." However, my interpretation is that most models would 
score badly and one or two models might score very well if they happened to be within one 
standard deviation of the reconstruction uncertainty. Writing out an equation would really help to 
clarify. 
ii. Related to this I’m still not clear on what is meant by "a model that fits entirely within the 
reconstruction uncertainty" (in 2nd para of Section 3.1). This (I think) needs to be written down 
mathematically to really clarify. In addition, I couldn’t see a clear explanation of the 
reconstruction uncertainty of AIS-integrated SMB? Is it 5th-95th percentile range for example? 
i. The equation to represent a model score for the SMB mean value criterion would follow as 

core s = t

{ x(t) | SMB(t) ≤  x·uncertainty(t)}∑
t

1  
where t is the year and x is increased incrementally from 1 until the expression 

is satisfied. For the remaining two temporal criteria, the expression isMB(t)  x ncertainty(t)  S ≤  · u  
simply 

core  x |   x ncertainty}.s = { dt
dSMB ≤  · u  

While this is not actually the case with any of the criteria that we use in our analysis, there could 
be a possible outcome wherein the uncertainty is large enough that some small subset of 
models would score well but small enough that the rest would all score very badly. As a part of 
the previous round of revisions, we added in the stipulation that scores that fall outside of the 
interquartile range for any criterion would be assigned a maximum value of 10. If the case 
described above were to actually happen, the interquartile range would be zero and all models 
would receive a score of 10. If this were the case, that particular criterion would then have no 
impact on the rest of the overall scoring. 



 

ii. The mathematical expressions for “fitting within the reconstruction uncertainty” are shown 
above. We do not feel that adding this equation to the main text will add much clarity beyond the 
figure and words that already appear. As for the reconstruction uncertainty explanation, we had 
in our previous manuscript a more detailed description of the uncertainty calculation process. 
However, at the behest of another reviewer, we removed large parts of that section as it was 
simply rehashing work that had previously been published by Medley & Thomas (2019). 
 
Previous comment 1.4 The role of internal climate variability in trend and spatial EOF 
analysis. 
Probably the most major concern is that the role of internal variability still isn’t 
comprehensively addressed. This is of fundamental importance to the success of the 
method and must be addressed. Two key aspects that illustrate this are: 
i. The results of the CESM LENS analysis show a very large range in scoring values for different 
ensemble members of the same model. This indicates a very strong element of chance 
(associated with internal variability) in the selection of the top subset (now 8) models, which can 
be inferred from inspection of Figure 7 (I can see this referenced in the main text). This leads on 
to the second aspect - 
ii.  It appears to me that the role of internal climate variability is likely significantly 
under-estimated in the reconstruction uncertainty of the criteria involving trends and EOFs. The 
real world can be thought of as one ensemble member and therefore the trends and patterns of 
variability could include a strong element of chance. One approach that is used in detection and 
attribution studies is to use models to estimate internal climate variability, since there often 
aren’t other alternatives. Essentially, even a perfect reconstruction of what happened in the real 
world would not necessarily represent the forced climate response and additional uncertainty 
associated with internal climate variability is still a major consideration. The authors should 
separate these out into observational uncertainty and internal variability uncertainty. 
i. Yes, we do note in the text that the spread due to internal variability is substantial. We also 
note that, because some models have numerous ensemble members while others only have 
one, model means are not really comparable. We have added more to the text to stress this 
point: 
At the end of the Methods section, we have added: “To look at the impact of resolution and 
internal variability on the final scoring we correlated the horizontal resolution to final score and 
applied the same scoring analysis to the CESM Large Ensemble (CESM-LENS) experiment.” 
At the end of the Discussion section, we have also added: “Another significant caveat of this 
work is the use of single ensemble members. For this work, we use the first ensemble member 
for each model. This choice was made as the various model members of CMIP5 and CMIP6 
vary widely in the number of ensemble members available -- ranging from 1 to 50 -- so using 
only a single ensemble members helps account for this large disparity between the models. 
However, in looking at the CESM-LENS experiment -- which has 35 ensemble members -- it is 
clear that there can be a large spread caused solely by internal variability. The spread in final 
score among the CESM-LENS ensemble members is 4.65 which is largely generated by the 
difference in EOF maps meaning that the precise realization of atmospheric conditions in the 
models is incredibly significant in how the model, in turn, represents AIS SMB.” 



 

ii. We are confused here about what is meant by the reconstruction under-estimating internal 
variability. The reconstruction is based on observations, for which there can be no internal 
variability (as the reviewer notes: observations are simply one realization of a chaotic climate 
system) and the reanalysis product MERRA-2, for which there is also only one realization. To 
that end, there can be no internal variability in the reconstruction. There is uncertainty that is 
caused by the uncertainty in the ice cores and likely some error that will be generated by the 
correlation method used to create the product itself (though the latter is difficult to test as there 
are large swaths of the ice sheet with no data to compare). This uncertainty, though, is 
incomparable to internal variability and so we are a bit confused about the point that the 
reviewer seems to be making. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Reviewer 3 
Warning: because of my very limited number for working hours these past weeks/months, I only 
focused on the answers to my comments and to the associated text. I apologize I haven’t taken 
time to re-read the full article, despite my great interest for this work. 
We can greatly appreciate the difficulty with work schedules and thank the reviewer for taking 
the time to still read and respond as they have. 
 
To the first point, EOFs map the spatial pattern of a variable associated with the highest 
temporal variance of another variable 
Are you sure that is true? From 
https://www.sciencedirect.com/topics/earth-and-planetarysciences/empirical-orthogonal- 
function-analysis: "EOFs of a space-time physical process can represent mutually orthogonal 
space patterns where the data variance is concentrated, with the first pattern being responsible 
for the largest part of the variance, the second for the largest part of the remaining variance, and 
so on." 
It seems that EOF maps spatial patterns associated with total (space-time) variance. 
We appreciate the reviewer’s input to make sure the EOF description is as accurate as possible. 
We have changed the language in the main text (L187-L191 in the marked document) to: “To do 
so, we performed an empirical orthogonal function (EOF) analysis on annual AIS SMB data 
from 1850-2000. EOF analysis maps the spatial pattern of a variable where the first mode 
represents the largest explained variance, the second mode - which is orthogonal to the first - 
represents the next largest explained variance, the third mode - which is orthogonal to both 
modes one and two - represents the third largest explained variance, and so on until all the 
variance is explained.” 
 
in this case, we map the spatial pattern of sea level pressure associated to the highest 
variability in SMB integrated over the AIS. To the second point, the typo will be corrected. 
Is there a typo? Is it spatial pattern of SMB instead of spatial pattern of sea level pressure? 
We believe this comment has been addressed in the previous revision. The above comment 
also further corrects the language of this section. 
 
Because CMIP6 uses a different future forcing scenario mechanism (Shared 
Socioeconomic Pathways), CMIP5 and CMIP6 future projections are not directly 
comparable. 
SSPs were designed to be comparable to CMIP5 RCPs, with indicated RCP in the SSPs: see 
Fig.2 of https://www.geosci-model-dev.net/9/3461/2016/gmd-9-3461-2016.pdf. Comparison 
between CMIP5 and CMIP6 is fully included in the next IPCC report. 
So you should include CMIP6 in your improved projections. 
We understand what the reviewer is saying here and we see the value in adding comparable 
analysis for CMIP6. To that end, we have performed the same future analysis on the SSP1-2.6, 
2-4.5, and 5-8.5 scenarios so that they can be directly compared to the RCP2.6, 4.5, and 8.5 



 

analyses done for CMIP5. We have changed figures 8-10 accordingly and made numerous 
additions to the text  to reflect this new analysis (too many to specifically list here). 
 
the top 90th percentile overall scoring models were determined to be GISS E2 H CC, GISS 
E2 R CC, GISS E2 R, MPI ESM LR, MPI ESM MR, and MPI ESM P 
It’s not unexpected that from the 6 "best" models, there are 2 clusters of same modeling center 
simulations: 3 GISS-E2 and 3 MPI-ESM. I think you must add a criteria in your model selection 
to select models from different modeling centers, because these models will share the same 
biaises (see e.g. https://www.pnas.org/content/115/38/9462). I think it is important to sample a 
diversity in model simulations. Can you remove 2 GISS and 2 MPI and add 2 to 4 other 
models instead? 
If you don’t, you should add a table with all models ranked by the final score and including the 
score for each criteria and modeled SMB projection for each scenario; ∼similarly to what you did 
in Supplementary but including all criteria scores and projections. 
NB: it seems that Tables in Supplementary materials are not correctly displayed 
We appreciate what the reviewer is saying here about modeling center diversity. We feel that 
the consistency in modeling center is a demonstrable effect of the preeminent role of model 
physics in determining AIS SMB. As such, we are leaving much of the main text as is. However, 
we do not want to disregard the comment as there is relevance to knowing information akin to 
the best scoring modeling centers. To that point, we have added Figures 6 and 7 to the 
supplementary in a new section titled “Modeling Centers” with the associated text: “Of the eight 
best scoring models, seven originate from two modeling centers: the Max Planck Institute fur 
Meteorologie (MPI) and Goddard Institute for Space Studies (GISS) from NASA. This strongly 
implies that model physics plays a significant role in the representation of AIS SMB. Another 
interpretation could be, though, that these models simply share the same biases and, thus, all 
are coincidentally favorably compared to the reconstruction. Here, we also look at a more 
diverse spread of modeling centers in two ways: 1) the top eight models that originate from 
unique modeling centers and 2) the top four modeling centers (top 90th percentile) averaged 
across their members. Figures 6 and 7 show the best scoring eight models from unique 
modeling centers and best four scoring modeling centers on average, respectively. The former 
category consists of GISS R, MPI ESM LR, CESM2 FV2, FGOALS G2, MIROC ESM, INM CM4, 
IPSL CM5A MR, and ACCESS ESM1-5 (Fig. 6). MPI ESM, GISS, FGOALS, and INM CM from 
CMIP5 constitute the latter category of best modeling centers on average (Fig. 7)..” 
 
These eight models have been added in retroactively to figures 2-3 
I don’t see added models in Fig. 2? Maybe it’s Fig. 3 and Fig. 4? 
This typo has been corrected to “figures 3-5.” 
 
The reconstructed AIS SMB averaged from 1801-2000 shows Along with higher SMB 
values around the coastal areas, particularly in the Antarctic Peninsula and West 
Antarctic regions (Fig. 2A). The highest absolute SMB trends are around the , the coastal 
regions of East Antarctica and the Antarctic Peninsula also show the highest absolute 
SMB trends (Fig. 2B). This reconstruction also highlights large portions of... 



 

You have to introduce the reconstruction in the modified sentence 
We are not entirely sure what the reviewer is saying here. We believe this text was removed 
during the previous round of revision and that the comment no longer applies. 
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