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Abstract.

An increase of Antarctic Ice Sheet (AIS) surface mass balance (SMB) has the potential to mitigate future sea level rise that

is driven by enhanced solid ice discharge from the ice sheet. For climate models, AIS SMB provides a difficult challenge, as it

is highly susceptible to spatial, seasonal and interannual variability.

Here we use a reconstructed data set of AIS snow accumulation as "true" observational data, to evaluate the ability of the5

CMIP5 and CMIP6 suites of models in capturing the mean, trends, temporal variability and spatial variability in SMB over the

historical period (1850-2000). This gives insight into which models are most reliable for predicting SMB into the future. We

found that the best scoring models included the National Aeronautics and Space Administration’s GISS models and the Max

Planck Institute fr Meteorologie’s MPI models
::
for

::::::
CMIP5

::::
and

:::
one

::
of

:::
the

:::::::
National

::::::
Center

:::
for

:::::::::::
Atmospheric

:::::::::
Research’s

:::::::
CESM2

::::::
models

:::
and

::::
one

::::
MPI

:::::
model

:::
for

::::::
CMIP6.10

Using a scoring system based on SMB magnitude
:::::
mean

:::::
value, trend, and temporal variability across the AIS, as well as

spatial SMB variability, we selected a subset of the top 10th percentile of models to refine 21st century (2000-2100) AIS-

integrated SMB projections to 2295
::::
2372

:
± 1222

:::
282

:
Gt yr−1, 2382

::::
2452

:
± 1316

:::
286

:
Gt yr−1, and 2648

::::
2588 ± 1530

:::
291

:
Gt yr−1 for Representative Concentration Pathways (RCPs) 2.6, 4.5, and 8.5, respectively. We also reduced the spread in

AIS-integrated mean SMB by 78%, 75
::::
79%,

:::
79%, and 78

::
74% in RCPs 2.6, 4.5, and 8.5, respectively.15

:::::::
Notably,

:::
we

:::
find

::::
that

:::::
there

::
is

::
no

:::::::::::
improvement

:::::
from

::::::
CMIP5

::
to
:::::::
CMIP6

::
in

::::::
overall

:::::
score.

:::
In

::::
fact,

::::::
CMIP6

:::::::::
performed

:::::::
slightly

:::::
worse

::
on

:::::::
average

:::::::::
compared

::
to

:::::::
CMIP5

::
at

::::::::
capturing

:::
the

::::::::::::::
aforementioned

:::::
SMB

:::::::
criteria.

:::
Our

::::::
results

::::
also

:::::::
indicate

::::
that

::::::
model

::::::::::
performance

:::::::
scoring

:
is
:::::::

affected
:::

by
:::::::
internal

:::::::::
variability,

:::::
which

::
is
:::::::::
illustrated

::
by

:::
the

::::
fact

:::
that

:::
the

:::::
range

:::
in

::::::
overall

::::
score

::::::::
between

::::::::
ensemble

::::::::
members

:::::
within

:::
the

:::::::
CESM1

::::::
Large

::::::::
Ensemble

::
is
::::::::::
comparable

::
to
:::
the

::::::
range

::
in

::::::
overall

:::::
score

:::::::
between

:::::::
CESM1

::::::
model

:::::::::
simulations

::::::
within

:::
the

:::::::
CMIP5

::::::
model

:::::
suite.

::::::::
However,

:::
we

::::
also

::::
find

::::
that

::
a

::::::
higher

::::::::
horizontal

:::::::::
resolution

:::::
does

:::
not

:::::
yield

::
to

::
a20

::::::::
conclusive

::::::::::::
improvement

::
in

:::::
score.

1 Introduction

Surface mass balance (SMB) is the rate of accumulation of mass on the surface of the ice sheet and is characterized predom-

inantly by precipitation and sublimation, and also includes runoff and blowing snow terms (Lenaerts et al., 2019). Integrated

over the grounded Antarctic ice sheet (AIS), the
:::
We

::::::
neglect

:
blowing snow and runoff terms are negligibly small

:::
and

:::::::
estimate25
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::::
SMB

::
as

:::::::::::
precipitation

:::::
minus

::::::::::
sublimation

:
(Lenaerts et al., 2012a). Ignoring these terms, AIS SMB can be estimated as SMB =

precipitation - sublimation. As SMB variability is dominated by that of AIS precipitation, which is subject to high spatial and

temporal variability (Bromwich et al., 2011), SMB is also highly variable from year to year (Monaghan and Bromwich, 2008).

Over longer
::::::::::
(∼100-1000

::::
year)

:
time scales, AIS SMB was assumed – until recently – to be relatively constant. Frezzotti et al.

(2013) found that current SMB values are not anomalously high compared to the past 1000 years. Monaghan et al. (2006)30

found no discernible trend in AIS snowfall in the period 1957-2003. More recent studies, adding more annually-resolved SMB

records covering the period 1800 to present and improving the spatial extrapolation, contested those earlier findings (Thomas

et al. (2017); Medley and Thomas (2019)). These studies found that, integrated over the AIS, SMB has been increasing at a

rate of 0.4 ± 0.1 Gt yr−2 over the last 200 years, although the trends show substantial regional variability. Several studies have

provided additional evidence of regional variations in SMB trends, with strong SMB increase in some areas (Philippe et al.35

(2016); Thomas et al. (2015); Thomas et al. (2017)), and no SMB increase, or even SMB decrease, in other areas (Burgener

et al., 2013). The
::::::::::::
Synoptic-scale

:::::::::
variability

::::::
induces

::
a strong regional variability suggests an important impact of variations in

synoptic-scale patterns around the AIS
::
of

:::
the

:::::
SMB (Fyke et al. (2017); Marshall et al. (2017)). Additionally, as the atmosphere

has been warming over large parts of the AIS and can
:
is

::::::::
projected

::
to

:::::
warm

::::
both

:::::::
globally

:::
and

:::::::::
especially

::
in

::
the

:::::
polar

:::::::
regions,

:::
the

:::::::::
atmosphere

::
is

:::::::
expected

::
to
:::
be

:::
able

::
to

:
hold more moisture per the Clausius-Clapeyron relation.

:::
As

::::
such, SMB is expected to show40

an overall increase. Driven by the same mechanism, models indicate that AIS SMB will increase even further over the next

century and beyond (Palerme et al., 2014).
:
In

::::::
recent

:::::::
decades,

::::
this

:::::
forced

:::::
SMB

::::::::
response

::
is

::::::::::
undetectable

::::
due

::
to

:::
the

:::::::::
significant

::::::
natural

::::
SMB

:::::::::
variability

:::::::::::::::::::::::
(Previdi and Polvani, 2016).

:::::::
Teasing

::::
apart

:::
the

::::::
forced

::::::::
response

::::
from

::::::
natural

:::::
SMB

:::::::::
variability

:::::::
requires

:::::
longer

:::::
SMB

::::
time

:::::
series

::
–

::
on

:::
the

:::::
order

::
of

::::::::
centuries.

::
In

:::::
2017,

:::::::
Thomas

::
et
:::
al.

:::::
found

:::
no

::::::::
significant

:::::
SMB

:::::
trend

::::
over

:::
the

:::
last

:::::
1000

:::::
years.

::
In

:::::
2019,

:::::::
however,

:::::::
Medley

::
&

:::::::
Thomas

:::::
found

::::
that,

::::
over

:::
the

:::
past

::::
200

:::::
years,

:::::
there

:
is
::
a

:::::::::
statistically

:::::::::
significant

:::::
SMB

:::::::
increase45

:::
that

:::
can

:::
be

::::::
derived

::::
from

:::
ice

::::
core

:::::::::::::
measurements.

Despite its importance for AIS MB and GMSL, there are only few robust observations of SMB across the continent. A

lack of regular spatial and temporal distribution of observations has led to many efforts to model SMB using both regional

and global climate models (RCMs and GCMs, respectively). Because the AIS is so large, predicting SMB out onto timescales

from decades to centuries requires the use of GCMs (Gallée et al., 2013). Some GCMs have been shown to capture positive50

precipitation and SMB trends (Palerme et al. (2014); Lenaerts et al. (2016)), but many of those models tend to overestimate

annual precipitation values
:::::
likely due to poor representation of coastal topography

::
as

:::::::
previous

:::::::
studies

::::
have

:::::
shown

::::
this

::
to

::
be

::
a

::::::::
significant

:::::
factor

::
in
::::
how

:::::::::::
precipitation

::
is

:::::::::
represented

::
of

:::
the

::::
AIS

::::::::::::::::::
(Genthon et al., 2009). This allows the atmospheric moisture to

penetrate too far inland and leads to excessive precipitation on much of the grounded AIS, while underestimating precipitation

nearby the coasts (Lenaerts et al. (2012b)
::::::::::::::::
Palerme et al. (2017)). This inability to reproduce modern observations brings into55

question the models’ ability to accurately project future changes.

While past research by Palerme et al. (2014) compared model output to observations using CloudSat and ERA-Interim, their

observational data sets only spanned a short period (2006-2011). The limited climatology of AIS precipitation combined with

its highly temporally variable nature means that large limitations exist to enable a comparison. Barthel et al. (2019) investigated

the Ice Sheet Model Intercomparison Project version 6
:::
for

::::::
CMIP6 to determine a recommendation of which models to use for60
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ice sheet model forcings based on best captured current Antarctic climate relative to observations and their ability to project

certain metrics into the future. The concept
::::
object

:
of this paper is very similar , but we use a different observational data

set for comparison as well as different scoring criteria .
::::::
similar

::
in

::::
that

:::::::
Barthel

::
et

::
al.

:::::::
(2019)

:::
use

:::::::
scoring

::::::
criteria

::
to
::::::

refine

:::::
model

::::::::
selection

:::::::::
specifically

:::
for

:::
ice

:::::
sheet

::::::
model

:::::::
forcing.

:::::
Their

::::
work

::::::
differs

::
in

::::
that

::::
their

::::::
criteria

:::::
look

::::
more

::
at
:::

the
::::::::::

large-scale

:::::::::
circulation

::::::
patterns

:::::::
around

:::
ice

:::::
sheets

::::
and

:::
the

:::
data

:::
set

::
to
::::::

which
::::
they

:::::::
compare

:::::::
models

:::::::
consists

::
of

:::::::::
large-scale

:::::
fields

:::::::::
reanalysis65

:::::
fields.

:::::::::::
Additionally,

::::
they

::::
don’t

::::
then

::::
use

:::
this

::::::::::
subselection

::
of
:::::::
models

::
to

::::::::
constrain

:::::
future

::::::::::
projections. In this work, we use a data

set that specifically accounts for AIS SMB using recent advancements in synthesizing ice cores and reanalysis products. These

reconstructed data sets now allow for a new avenue to investigate the ability of GCMs to capture SMB into the more distant

past (Medley and Thomas, 2019) . To improve upon model estimates, several groups have combined ice core data with models

to create spatio-temporally robust SMB data sets (Monaghan et al. (2006), Thomas et al. (2017), Medley and Thomas (2019)70

)
:
–

::
an

::::::
avenue

::::
that

:::
we

:::::::
leverage

:::
for

::::::
climate

::::::
model

:::::::::
evaluation

::
of

::::
AIS

:::::
SMB

::
to

:::::::
compare

:::
the

:::::
suite

::
of

::::::
CMIP5

::::
and

::::::
CMIP6

:::::::
climate

::::::
models

::
to

:::
this

::::
new

:::::
SMB

::::::::::::
reconstruction.

In this work, we leverage the availability of that new avenue for climate model evaluation of AIS SMB, and compare the

suite of CMIP5 and CMIP6 climate models to that new SMB reconstruction.

2 Data75

2.1 SMB Reconstructions

::
To

:::::::
improve

:::::
upon

:::::
model

:::::::::
estimates,

::::::
several

::::::
groups

::::
have

::::::::
combined

:::
ice

::::
core

::::
data

::::
with

::::::
models

::
to

::::::
create

::::::::::::::
spatio-temporally

::::::
robust

::::
SMB

::::
data

::::
sets

::::::::::::::::::::
(Monaghan et al. (2006)

:
,
:::::::::::::::::
Thomas et al. (2017)

:
,
:::::::::::::::::::::::
Medley and Thomas (2019)

:
).
:
In this paper, we use the AIS

SMB reconstruction generated by Medley & Thomas (2019). In their study of AIS SMB , they synthesized ice core records

using three different atmospheric reanalysis products: the Climate Forecast System Reanalysis (CFSR), the European Centre80

for Medium-Range Weather Forecasts ‘Interim’ (ERA-Interim), and the Modern-Era Retrospective Analysis for Research

Applications Version 2 (MERRA-2). To generate the reconstructions , Medley & Thomas, 2019 used 53 ice core records that

spanned the entire 19th and 20th centuries.While more ice core records are available across the AIS
:::::::::::::::::::::::
Medley and Thomas (2019)

:
.
:::
The

::::::
authors

:::::::::
synthesize

:::::
SMB

::::
time

::::
series

:::::
from

::
an

::::::::
extensive

:::::::
ice-core

:::::::
database

::::
with

:::::::::::::::
reanalysis-derived

::::::
spatial

::::::::
coherence

:::::::
patterns

::
to

:::::::
generate

:
a
:::::::::::::
continent-wide

::::
AIS

:::::
SMB

::::
data

:::
set.

:::::
While

::::::::::::::::::::::::
Medley and Thomas (2019)

::::::::
compared

::::
three

:::::::::
reanalysis

:::::::
products, they85

stipulated that the records be annually resolved and must cover the years 1980-1988 to provide sufficient overlap with the

reanalysis products that cover 1979/80-2016. To integrate the reanalyses with the ice core records, they created a field of shared

variance using coefficient of determination, r2, for the AIS. Using this spatial field, they weighted each ice core spatially to

generate the 200-year data set. They performed bias correction to the overall SMB magnitude of each of the three reanalyses

that form the basis of the reconstructions by using observations within the reanalysis time frame and calculating:90

bias correction =
model-observations

model
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for each grid cell. The reconstruction uncertainty accounted for both measurement error and uncertainty in spatial sampling.

The measurement uncertainty is the root mean square error (RMSE)between the ice core records and the reanalyses time

series at the grid cell of the ice core. Similarly, they calculated spatial sampling uncertainty is based on the RMSE between

the reanalyses and an internal reconstruction that uses the reanalysis time series rather than the ice core records. The total95

uncertainty, then, is the square root sum of squares of the two sources of uncertainty and varies in both time and space.

While the original three reanalysis products differ substantially in their representations of SMB both spatially and temporally,

the three ice core forced reconstructions show very good spatial agreement (Medley and Thomas, 2019).Because of their

agreement, we can use any of the three reconstructions interchangeably. As
:::
they

::::
also

:::::
show

:::
that

:
MERRA-2 performed better

than the other two reconstructed products in matching observations (Medley & Thomas 2019), we will use it as a proxy for all100

three reconstructions and
::::::::
performed

:::::
better

:::::
than

:::
the

::::
other

::::
two

:::::::::::
reconstructed

::::::::
products

::
in

::::::::
matching

:::::::::::
observations.

:::
As

:::::
such,

:::
we

:::
will

:::
use

:::
the

:::::::::
MERRA-2

::::::
based

:::
data

:::
set

::
as

::
a

:::::
proxy

:::
for

::
all

:::::
three

::::::::::::
reconstructions

::::
and refer to it as “reconstruction.”

Global climate models tend to show higher skill at representing interannual variability compared to regional climate models

(Medley and Thomas, 2019). As such, we can make the most direct comparisons to the reconstruction with global climate

models
:::
For

:::
this

:::::
work,

:::
we

:::::::::
investigate

:::
AIS

:::::
SMB

::
in

::::::
GCMs.

::::::
GCMs

:::::
have,

::::::::
compared

::
to

::::::
RCMs,

::::::::
relatively

:::
low

:::::::::
horizontal

:::::::::
resolution,105

:::::
which

:::::
makes

::
it
:::::::
difficult

:::
for

::::
them

::
to

::::::::
reproduce

:::
the

:::::::
detailed

::::
AIS

:::::
SMB.

::::::
RCMs

::::
have

::::
been

::::::
shown

::
to

::
be

:::::
more

:::::::
accurate

::
in

::::::::
capturing

:::
AIS

:::::
SMB

:::::::::::::::::
(Agosta et al., 2019)

:
;
::::::::
however,

:::
due

::
to
:::::

their
::::
high

:::::::::
resolution,

::::::
RCMs

:::
are

::::
also

::::::::
relatively

::::::::::::::
computationally

:::::::::
expensive

::
to

:::
run

:::
for

::::
long

:::::::
periods

:::::::
(∼100s

::
of

::::::
years).

::::::::
Because

:::
one

:::
of

:::
the

:::::
goals

::
of

::::
this

:::::
paper

::
is

::
to

:::::::::
investigate

::::
the

:::::
future

:::
of

:::::
SMB

::::
over

:::::::::
Antarctica,

:::
we

::::::
analyze

::::::
GCMs

:::
for

::::
their

::::::
ability

::
to

:::::::
simulate

::::
these

:::::::::
long-term

::::::
climate

::::::
effects.

:::
As

::::::
RCMs

:::
are

::
by

::::::::
definition

::::::::
regional,

:::
they

:::::
need

::::::::
boundary

:::::::
forcings,

::::::
which

::::
adds

::
an

:::::::::
additional

::::
layer

:::
of

:::::::::
complexity

::::
and

:
a
::::::
source

::
of

:::::::::
uncertainty

:::
to

::::::
running

::::::
RCMs

::::
into110

::
the

:::::::::
long-term

::::::
future.

:::
An

:::::::::
additional

::::::
reason

:::
we

::::::
choose

::
to

:::::::
analyze

::::::
GCMs

::
is

::::::
simply

::
to
::::::

figure
:::
out

::::::
which

::::::
GCMs

:::::::
perform

::::
best

:
at
:::::::::

capturing
::::
these

:::::
SMB

:::::::::::
phenomena.

:::::
There

:::
has

:::::
been

::::::::
extensive

::::
work

:::::::::::
investigating

:::::
SMB

::
in

::::::
RCMs

:::::
(e.g.,

::::::::::::::::
Agosta et al. (2019)

:
;

::::::::::::::::::::
van Wessem et al. (2017)

:
;
::::::::::::::::::
Lenaerts et al. (2012a)

::
),

:::
but

::::::::::
comparably

::::
little

:::::::
looking

::
at

::::::
GCMs.

:::
To

:::::::::
investigate

:::
the

::::::
global

:::::::
coupled

:::::::
response

::
to

::::::
future

::::
SMB

::::::::
changes,

::::
one

:::::
needs

::::::
GCMs.

:::
As

:::::
such,

:::
this

:::::
work

::
is

:::::
aimed

:::
to

::::::
inform

:::
the

::::::::
modeling

::::::::::
community

::::
who

::
is

::::::::
interested

::
in

:::::
global

:::::::::::
ramifications

::
of
::::::::

changing
::::
AIS

:::::
mass

:::::::
balance,

:::
and

:::
the

:::
ice

:::::
sheet

::::::::
modeling

:::::::::
community

::::
who

:::::
needs

::::
AIS

:::::
SMB115

::::
input

:::
for

:::::::
running

::::::::
dynamical

:::
ice

:::::
sheet

::::::
models

::::::::
(Seroussi

::
et

:::
al.,

::::
2019

::
in
:::::
TC).

::::::
Several

:::::
recent

:::::::
studies,

::::
such

::
as

:::::::::::::::::
Barthel et al. (2019)

:
,
:::::::::::::::::
Krinner et al. (2014),

::::
and

::::::::::::::::::
Beaumet et al. (2019)

::::
have

::::::::::
investigated

:::
the

:::::::
impacts

::
of

:::::::::::::::
thermodynamical

::::::::::
phenomena

::::
such

:::
as

:::
sea

::::
level

::::::::
pressure,

:::::
zonal

::::
wind

::::::
speed,

:::
and

:::::::::::
near-surface

:::::::::::
temperatures

::
as

::::
well

:::
as

:::::::::
phenomena

::::
like

:::
sea

:::
ice

::::::
extent

::
on

::::
AIS

::::::
SMB,

:::
but

::::
have

:::
not

::::::
scored

::::::
climate

::::::
models

:::
on

::::
their

:::::::::::
performance

:::
on

::::
SMB

::::::::::
specifically.

:::::
Here,

:::
we

:::::::
develop

:::::::
scoring

::::::
criteria

:::
that

::::::
assess

::::
AIS

::::
SMB

::::::::::
exclusively,

::::
and

::::
focus

::::
less

::
on

:::
the

:::::::::::
mechanisms

::::::
behind

::::
SMB

:::::::::
variability

::::
and

::::::
change. To get a comprehensive look at how120

well global climate models capture SMB, we compared the suite
:::::
suites of CMIP5

:::
and

::::::
CMIP6

:
models to the reconstruction.

2.2 Climate Models

We used all applicable CMIP5 and CMIP6 model outputs, of which there were 53 models and 28
::
81

::::::
models

:::
and

:::
42 independent

models (i.e. different model physics and
::
/or

:
resolutions) respectively, for the historical simulations (1850-2005).

:::
As

:::
for

:::
the

:::::
future

:::::::::
simulations

:::::::::::
(2006-2100),

:::
we

:::::::
focused

::
on

:::::::
CMIP5

::::
only,

:::::
since

::::
there

:::
are

:::
few

:::::::
CMIP6

::::::
models

:::::::
available

:::
as

::
of

:::
yet,

:::
and

:::::::
CMIP5125
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:::
and

::::::
CMIP6

::::::::
scenarios

::::
are

::::::
similar.

:
We only had available output for 30 CMIP5 models, 19 of which are independent, for the

future simulations(2006-2100). See Tables 1-3 in Supplementary Material for a list of models and their resolutions. The future

simulations include three different forcing scenarios: Representative Concentration Pathway (RCP) 2.6, RCP4.5, and RCP8.5.

RCP2.6 represents a low emission scenario, RCP4.5 a mid-range emission scenario, and RCP8.5 a high emission scenario

through the 21st century (van Vuuren et al., 2011).130

We downloaded CMIP5 and CMIP6 precipitation and evaporation/sublimation data with monthly resolution in units of kg

m−2 s−1. After
:::::
output

::
at
::::::::

monthly
::::
time

::::::::
resolution

::::
and,

:::::
after calculating SMB as precipitation - evaporation/sublimation, we

converted these to annual time scales and integrated them across the
::::::::
converted

:::
an

::::::
annual

::::
time

::::
scale

::::
and

::::::::
integrated

::::::
across

:::
the

::::::::
grounded AIS using the Ice Sheet Mass Balance Inter-comparison Exercise Team’s (IMBIE Team) AIS grounded ice sheet

masks and units of Gt yr−1 by multiplying each grid cell by its area, converting s−1 to yr−1, and converting kg to Gt (1 Gt =135

1012 kg)Shepherd et al. (2012). We interpolated the IMBIE Team’s AIS maskusing the nearest sample grid point and applied

it to all data sets
::
ice

:::::
sheet

:::::
mask.

3 Methods

We formulated five criteria on which to score the historical runs of the models. Three of the criteria are based on the AIS-

integrated SMB: mean, trends, variability – and two are based on AIS SMB spatial patterns: modes of SMB variability, and140

variance explained by these modes. (As the models’ abilities to capture SMB are presented in the format of a "score card,"

judging the models against each criterion will be hereinafter referred to as "scoring". ) These criteria were determined having

in mind the following questions: (1) do the models adequately simulate several SMB observed characteristics in the recent

past, and (2) are the models that perform well adequately simulating SMB for the right reasons? All five criteria are weighted

equally in the final scoring.145

3.1 AIS-integrated SMB criteria

To score the models based on AIS-integrated SMB, we took the mean SMB across the AIS for every year that the reconstruction

overlapped the models (1850-2000) to generate a single 151-year, AIS-integrated time series. We then split the time series

into three aspects: the magnitude
::::
mean

:::::
value of the SMB time series values

:::::
(mean

:::::
value

:::::::
referring

:::
to

:::
the

:::::
value

:::::::
obtained

:::
by

:::::::::
integrating

::::
SMB

::::
over

:::
the

:::::
entire

:::::
AIS), the time series

::::
linear

:
trend, and the time series

:::::::::
interannual

:
variability.150

To score the time series magnitude
::::
mean

:::::
value, we assigned a score, x, for how many x-times the reconstruction uncertainty

was required for the entire time series to be within the reconstruction uncertainty. For example, if a model time series was fully

captured within 2
:::
The

:::::::::
minimum

:::::::
possible

:::::
score,

:::::
then,

::
is

::::
one,

:::
for

::
a

:::::
model

::::
that

:::::::::
represents

:::::
SMB

:::::
within

::
1× the reconstruction

uncertainty, the model .
::::
Fig.

:
1
:::::::::
illustrates

:::
that

::
a

:::::
model

::::
that

:::
fits

::::::
entirely

::::::
within

:::
1×

:::
the

::::::::::::
reconstruction

::::::::::
uncertainty

::::
(dark

:::::::
purple)

:
–
::::
MPI

:::::
ESM

:::
LR

::
–

:::::
would

::::::
receive

::
a
:::::
score

::
of

::
1.

::
A

::::::
model

:::
that

:::
fits

::::::
within

:::
2×

:::
the

::::::::::::
reconstruction

::::::::::
uncertainty

::::::::
(medium

::::::
purple)

::
–155

::::
IPSL

::::::
CM5A

:::
LR

::
– would receive a score of 2.

::
A

:::::
poorer

:::::::
scoring

::::::
model,

::::
BNU

::::::
ESM,

:::::
would

::::::
receive

::
a

::::
score

:::
of

::
6.
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Figure 1.
:::

Time
:::::
series

::
of

:::
the

::::::::::
reconstructed

:::::::::::
AIS-integrated

:::::
SMB

:::
time

:::::
series

::::::
(purple)

::::
with

::::
1×,

:::
2×,

:::
and

:::
3×

:::
the

::::::::
uncertainty

::
in
::::

dark
::::::
purple,

::::::
medium

:::::
purple,

:::
and

::::
light

:::::
purple,

::::::::::
respectively.

::::
Three

:::::
model

:::::::::::
AIS-integrated

::::
SMB

::::
time

:::::
series,

:::
MPI

::::
ESM

:::
LR

::::::
(green),

::::
IPSL

:::::
CM5A

:::
LR

:::::::
(yellow),

:::
and

::::
BNU

::::
ESM

:::::
(cyan)

::::
have

::::
been

::::::
plotted

::
as

:::
well

::
to
::::::::::
demonstrate

::::::
different

:::::
model

:::::::
scoring.

:::
MPI

:::::
ESM

::
LR

::
is
::::::
entirely

:::::::
captured

:::::
within

:::
1×

:::
the

::::::::::
reconstruction

:::::::::
uncertainty

:::
and,

::::
thus,

:::::::
receives

:
a
::::
score

::
of

::
1.

::::
IPSL

::::::
CM5A

::
LR

::
is
:::::
entire

::::::
captured

:::::
within

:::
2×

:::
the

:::::::::
uncertainty

::
so

::
its

::::
score

:::
for

:::
this

::::::
criterion

::
is

::
2.

::::
BNU

::::
ESM

::
is

:::
fully

:::::::
captured

:::::
within

:::
7×

:::
the

::::::::
uncertainty.

Similarly, for the time series trend, we assigned a score of x based on how many x-times the reconstructed trend uncer-

tainty was required to capture the model trend. We looked at multiple time "slices" to investigate how well the models per-

formed at capturing century-scale (100+ year) versus multi-decadal (50 year) SMB trends. To achieve this goal, we analyzed

trends from 1850-2000, 1900-2000, and 1850-2000. The reconstructed trend uncertainties were calculated by performing160

:::::::::
1950-2000.

::::
The

:::
first

::::
two

::
of

:::::
these

::::
three

::::
time

:::::
slices

:::::::
confirm

:::
the

:::::::::
robustness

::
of

:::
the

::::::
trends

::::
with

:::::
longer

:::::::
periods

:::
for

::::
trend

::::::::
analysis.

:::
The

::::
last

::::
time

:::::
slice,

::::::::::
1950-2000,

:::::
allows

:::
us

::
to

:::::
view

:::::
SMB

::
in

:::
the

::::::
context

:::
of

:::::::::
significant

::::::::::::
anthropogenic

::::::::
warming.

:::::::::
However,

:::
the

::::
large

::::::::::
interannual

:::::::::
variability

::::::::::
overwhelms

:::
the

::::::
signal

::
at

::::::
shorter

::::::
period

:::::::
lengths,

:::::
which

::::::
results

::
in
:::::

large
::::::::::
uncertainty

:::::::
bounds.

:::
By

::::::
looking

::
at

::::::
several

::::
time

:::::
slices,

:::
we

::::::
ensure

:::::::::
consistency

::::::::
between

::
the

::::::
model

:::
and

::::::::::::
reconstruction

::::
over

:::::::
different

::::::::
intervals.

::
It

:
is
:::::::
equally

::::::::
important

::
to

:::::::
confirm

:::
that

::::::::
pre-1950,

:::
the

::::::
trends

:::
are

:::::::
relatively

::::::
small.

:::
We

:::::::::
performed a Monte Carlo simulation assuming

:::::::
wherein165

::
we

::::::::
assumed

:
a normal distribution of SMB values centered around the reconstructed SMB value with a

:::::
where

:::
the

:
standard

deviation of the reconstruction uncertainty
:::::::::
distribution

::
is

:::::
equal

::
to

:::
the

::::::::::::
reconstruction

::::::::::
uncertainty

::
of

:::::::
possible

:::::
SMB

::::::
values for

each year. From those distributions, we generated
::
We

::::
then

:::::::
created 10,000 simulated

:::::::
potential SMB time series based on the

reconstruction and calculated the trends for each . The standard deviation in trend
::
by

::::::::
choosing

::::
SMB

::::::
values

:::::
based

::
on

::::
that

::::::
normal

:::::::::
distribution

:::
for

::::
each

::::
year

::::
and

::::::::::
recalculated

:::
the

:::::
trend

:::
for

::::
each

::
of

:::::
these

::::
time

::::::
series.

::::
Our

:::::::::
uncertainty, then, is the reconstructed170

trend uncertainty
:::
was

:::
the

:::::::
standard

::::::::
deviation

::
of

:::
this

:::::
range

::
of
::::::
trends,

::::::
similar

::
to
:::::::::::::::::::::::
Medley and Thomas (2019).
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To score the time series variability , we detrended and normalized
::
For

::::::::
temporal

::::::::::
variability,

::
if

:
a
::::::

model
::::::

should
:::::::

greatly

:::::::::::
underestimate

:::
the

:::::
mean

:::::
value,

:::
for

::::::::
example,

:::
the

::::::::
variability

:::::
about

::::
that

:::::
mean

::::
value

::::
will

::::
also

:::::
likely

::
be

:::::::::::::
underestimated.

:::
To

::::::
ensure

:::
that

:::
we

:::
are

:::
not

:::::::::::::
double-counting

:::
the

::::::
impact

::
of

:::::
SMB

:::::
mean

:::::
value

:::::::
(because

:::
this

::
is
:::::::
already

::::::
covered

:::
by

:::
the

:::
first

:::::::
scoring

:::::::::
criterium),

::
we

::::::::
calculate

:::
the

:::::::::
variability

:::::
about

:::
the

:::::::::
normalized

::::
time

::::::
series.

:::
To

::::::
detrend

::::
and

::::::::
normalize

:
each time series,

:::::
then, to separate the175

SMB trend from its absolute magnitude using
::::::::
variability

::::
from

:::
its

::::
mean

::::::
value,

::
we

:::::::::
performed

:::
the

::::::::
following

:::::::
analysis:

normalized SMB =
SMB−mean SMB

mean SMB
. (1)

We then calculated the standard deviation of each time series and assigned a score, x, based on how many x-times the

reconstruction
::::::::
reanalysis standard deviation were required to capture the model standard deviation.

:::
For

:::
this

::::::::
criterion,

:::
we

::::
used

::
the

:::::::
original

::::::::::
MERRA-2

::::::::
reanalysis

:::::::::::
precipitation

:::::
minus

::::::::::
evaporation

::::
data

:::::::::::
(1980-2019).

::::::
Likely

:::
due

::
to

::::::::
sampling

::::
only

:::
53

:::
ice

::::
core180

::::
sites,

:::
the

::::::::::::
reconstruction

::::::::
produced

::
a
::::::::
relatively

::::
low

:::::::::
variability

::::::
record.

::::
The

:::::::::::
reconstructed

:::::::::
variability

::
at
::::

any
:::::::
location

:::
can

:::::
only

::
be

::
as

:::::
large

::
as

:::
the

:::::::::
maximum

:::::::::
variability

::
in

:::
the

:::
ice

:::::
cores.

:::::
Thus,

:::::::::::::
undersampling

::::::
regions

::
of

::::::::
stronger

:::::::::
interannual

:::::::::
variability

::::
will

::::::
dampen

:::
the

:::::::::
variability

:::::
signal

:::
in

:::
the

::::::::::::
reconstruction.

::::::::
Analyses

::
of

:::
the

:::::::::::::
AIS-integrated

::::
SMB

:::::
mean

:::::
value

::::
and

::::
trend

:::::
show

::::
that

:::
the

:::::::::::
reconstruction

::
is
::::::::
generally

::
in

::::
line

::::
with

:::
the

:::::::
literature

::::::::::::::::::::::::
(Medley and Thomas, 2019).

:

3.2 Spatial SMB criteria185

To ensure model performance was not solely based on AIS-integrated SMB values, we also analyzed the spatial SMB variabil-

ity. To do so, we performed an empirical orthogonal function (EOF) analysis
::
on

::::::
annual

::::
data

:::::
from

:::::::::
1850-2005. EOF analysis ,

as applied to these annual data, involves finding what spatial SMB patterns explain the highest variance in the AIS-integrated

SMB time
::::
maps

:::
the

::::::
spatial

::::::
pattern

::
of

:
a
:::::::
variable

:::::::::
associated

::::
with

:::
the

::::::
highest

:::::::
temporal

:::::::
variance

:::
of

::::::
another

:::::::::::
variable.Here

:::
we

:::::
apply

::::
EOF

:::::::
analysis

::
to

:::
the

:::::
spatial

::::::
pattern

:::
of

:::
sea

::::
level

:::::::
pressure

:::::::::
associated

::
to

:::
the

::::::
highest

:::::::::
variability

::
in

::::::
annual

::::
SMB

:::::::::
integrated

::::
over

:::
the190

:::
AIS

:::
for

:::
the

::::::
period

:::::::::
1850-2000. By breaking this criterion down into two main factors, we were able

:::
(1)

::::::
spatial

::::::::
variability

::::
and

::
(2)

::::::::
variance

::::::::
explained,

::::
both

:::
of

:::::
which

:::
are

:::::::::
considered

:::
as

:::::::
separate

::::::
scoring

:::::::
criteria,

:::
we

:::
aim

:
to determine the models’ abilities to

accurately capture the modes of variability as well as how much variance each
::::
EOF mode explained.

::
In

:::
the

::::::::::::
reconstruction,

:::
the

::::
top

::::
three

::::::
modes

::
of

:::::::::
variability

::::::::::
collectively

:::::::
explain

:::::::
roughly

::::
76%

::
of

:::
the

::::
total

::::::::
variance

:::::::::
explained.

:::
The

::::::
fourth

::::
mode

::::::::
explains

::::
only

:::::
about

:::
6%

::
of

:::
the

::::
total

:::::::
variance

::::
and

::
all

:::::
other

::::::
modes

::::::
explain

::::
<5%

:::
of

::
the

:::::
total

:::::::
variance.

:::
As

:::::
such,195

::
we

:::::
only

::::::
include

:::
the

:::
top

:::::
three

::::::
modes

::
in

:::
our

::::::::
analysis. To avoid manually sorting the top three modes of variability for all 53

models, we generated difference maps between each of the top three reconstructed modes and each of the top three modes for

each model: 9 difference maps for each model. We then sorted the top modes of variability for each model based on smallest

difference thus giving the models the
:::
For

::::
each

::::
grid

:::::
point,

:::
we

::::
took

:::
the

:::::::
absolute

:::::
value

::
of

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::
model

::::
and

::
the

:::::::::::::
reconstruction.

:::
We

::::
then

:::::::
summed

:::::
those

:::::::::
differences

::
to
::::::::
generate

:
a
:::::
single

:::::::
number

:
("benefit of the doubt.

::::::::
difference

::::::
number"

:
)200

:::
that

::::::::::
represented

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::
model

:::
and

:::
the

::::::::::::
reconstruction

::
in

:::::
terms

:::
of

::::::
spatial

:::::::::
variability.

:::::::::::::
Mathematically,

::::
this

7



::::
looks

::::
like:

:

difference number =
∑
lat

∑
lon

∣∣reconstructionlat,lon −modellat,lon
∣∣

:::::::::::::::::::::::::::::::::::::::::::::::::::::

(2)

:::
We

:::
did

:::
this

:::
for

::
all

::::
nine

:::::::::::
combinations

::
of

:::::
model

::::
and

:::::::::::
reconstruction

:::::
maps

:::
for

:::
the

::
top

:::::
three

:::::
modes

:::::::::
variability

::::::::::::::::::::
(model1:reconstruction1,

:::::::::::::::::::
model1:reconstruction2,

::::::::::::::::::::
model1:reconstruction3,

::::::::::::::::::::
model2:reconstruction1,

:::::::::::::::::::
model2:reconstruction2,

:::::
etc.).

:::
For

::::::::::::
reconstruction

::::
mode205

:
1
:::::::::::::::
(reconstruction1),

::::
then,

:::
we

:::::::
matched

::::::
which

:::::
model

:::::
mode

::::
best

::::::::::
represented

:::
this

::::::
spatial

:::::::::
variability

::
by

::::::
sorting

:::
the

::::::
model

::::::
modes

:::::
based

::
on

:::
the

::::::::
smallest

:::::::::
difference

:::::::
number.

:::
We

::::
did

:::
this

:::
for

:::::
each

::::::::::::
reconstruction

:::::
mode

:::::::::
(excluding

:::::::::
previously

::::::::
matched

::::::
model

::::::
modes)

::
to

::::
sort

:::
the

:::::
modes

::::::
based

::
on

:::
the

:::::::
smallest

::::::::::
difference. Summing the absolute value of these differences yielded a single

number that explained how different a given model was from the reconstruction for each mode of variability. The score, then,

for the variability of SMB is the total difference of all the top 3 modes.210

Because the variance explained is also important for gauging how well models are performing at recreating the observed

spatial patterns, we also summed the difference in variance explained for the top three sorted modes of variability for each

model. Because the modes were sorted based on difference for the maps, each mode kept its variance explained to preserve the

accuracy of the models regarding the dominance of each spatial pattern.

3.3 Final Scoring215

After compiling scores for all five of the aforementioned scoring criteria, we
:::::::
removed

:::
any

:::::::
outliers

:::
by

:::::::::
calculating

:::
the

::::
1.5

::::::
quartile

:::::
range

::
of

::::
the

:::
data

::::
and

:::::::::
neglecting

::::::
models

::::
that

:::
fell

:::::::
outside

::
of

::::
that

:::::
range.

:::
We

::::
then

:
normalized each set of scores to be

on a scale from one to ten to ensure that each criterion was equally weighted.
:::::
After

:::
this

::::::::::::
normalization,

::::
the

::::::
outliers

:::
for

::::
any

::::
given

::::::::
criterion

::::
were

:::::::::::
retroactively

:::::::
assigned

::
a

::::
score

:::
of

:::
ten

::
for

::::
that

::::::::
criterion. The total score, then, is the average of all five sets

of normalized scores. Because the scores are based on the difference between the reconstruction and the models, higher scores220

indicate poorer model performance.

3.4 Future Projections

We weighted all scores from the five scoring criteria equally on a scale from 1 to 10 with lower scores indicating better

performance. The final score, then, is the sum of all the individual scores, which is renormalized on a scale of 1 to 10 with

lower scores still indicating better performance. To refine the scope of what we predict for
::::
AIS SMB in the future, we used225

::::::
created a subset of models that had a final score in the top 10th percentile

::::
(90th

::::::::
percentile

::::
and

::::::
above) of CMIP5 and compared

them
:::::::
CMIP6.

:::
For

:::
our

:::::
future

::::::::::
projections,

:::
we

::::::::::
investigated

:::
the

::::::
impacts

::
of

:::::
SMB

:::::
under

::::
three

::::::::
different

::::::
forcing

::::::::
scenarios:

:::::
RCPs

::::
2.6,

:::
4.5,

:::
and

::::
8.5.

:::::::
Because

:::::::
CMIP6

::::
uses

:
a
::::::::
different

:::::
future

::::::
forcing

::::::::
scenario

:::::::::
mechanism

:::::::
(Shared

:::::::::::::
Socioeconomic

:::::::::
Pathways),

:::::::
CMIP5

:::
and

::::::
CMIP6

::::::
future

:::::::::
projections

:::
are

:::
not

::::::
directly

:::::::::::
comparable.

::
As

:::::
such,

:::
we

:::::::
focused

::
on

:::
the

::::::
CMIP5

:::::
suite

::
of

::::::
models

:::
and

::::
their

::::::
future

:::::::::
projections.

:::
To

:::
that

::::
end,

:::
we

::::::::
compared

:::
the

:::
top

:::::::
scoring

::::::
CMIP5

::::::
models

::::
that

:::::
could

::
be

::::::::
projected

:::
out

:::::
under

:::
the

::::
three

:::::
RCP

:::::::
forcings230

::
(of

::::::
which

:::::
there

:::
are

::::
four)

:
to the entire scope of CMIP5. There are currently insufficient CMIP6 models to create a similar

subset and future projection analysis so all future analysis is restricted to
:::
We

:::
ran

::
a

::::::
Monte

:::::
Carlo

:::::::::
simulation

::
in

::::::
which

::::
four
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::::::
random

:::::::
CMIP5

::::::
models

:::::
were

:::::::
selected

:::::::
100,000

:::::
times.

::::::
Those

:::::::
100,000

::::
sets

::
of

::::
four

:::::::
random

:::::
scores

:::::
were

::::::::
compared

:::
to

:::
the

::::
four

:::
best

:::::::
scoring

:::::
model

::::::
scores

:::::
using

:
a
::::::::
two-sided

:::::
t-test.

:::::
From

::::
this,

:::
we

:::::
found

::::
that,

::
to

::
a
::::
95%

:::::::::
confidence

:::::
level,

:::
we

:::
can

:::::
reject

:::
the

::::
null

:::::::::
hypothesis

:::
that

:::
the

::::
four

:::
best

:::::::
scoring

::::::
models

:::
are

:::
not

:::::::::
statistically

:::::::::::
significantly

:::::::
different

::::
from

::::
any

::::::
random

::::
four CMIP5

:
or

:::::::
CMIP6235

::::::
models.

Using this subset of best scoring models, we calculated the projected AIS-integrated magnitude
::::
mean

:::::
value

:
and trend in

three different warming scenarios, RCPs 2.6, 4.5, and 8.5, out to 2100. To see if and how the models respond differently to

different warming scenarios, we also calculated the AIS-integrated SMB sensitivity as

Sensitivity =
∆SMB

∆T
. (3)240

4 Results

:::
The

::::
final

:::::::
overall

:::::
scores

:::
are

:::
an

:::::::
average

::
of

:::
all

:::
the

::::::
scores

::::
from

:::
all

:::
five

:::::::
criteria.

:::::
After

::::::::::
performing

:::
the

:::::::
analysis

:::::::
outlined

:::
in

:::
the

:::::::
Methods

::::::
section

:::
the

:::
top

::::
90th

:::::::::
percentile

::::::
overall

::::::
scoring

:::::::
models

::::
were

::::::::::
determined

::
to

::
be

:::::
GISS

:::
E2

::
H

::::
CC,

::::
GISS

:::
E2

::
R

::::
CC,

:::::
GISS

::
E2

:::
R,

::::
MPI

::::
ESM

::::
LR,

::::
MPI

:::::
ESM

::::
MR,

:::
and

::::
MPI

:::::
ESM

::
P

::::
from

::::::
CMIP5

::::
and

::::::
CESM

::::
FV2

:::
and

::::
MPI

::::::
ESM2

:::
LR

::::
from

:::::::
CMIP6.

::::::
These

::::
eight

::::::
models

:::::
have

::::
been

::::::
added

::
in

:::::::::::
retroactively

::
to

::::::
figures

::::
2-3

:::
for

::::::::::
comparison

::
of

::::
their

:::::::::::
performance

::
in

:::::
each

::::::
scoring

::::::::
criterion245

::::::
relative

::
to

:::
the

:::
rest

::
of
:::
the

::::::
CMIP

:::::
model

::::::
suites.

Figure 2. A spatial map of A the temporal average from 1801-2000 of the reconstructed AIS SMB, B the linear trend from 1801-2000 of the

reconstructed AIS SMB, and C the relative SMB trend in percent SMB change per year. Non-shaded regions in panel C denote areas that are

statistically significant.

The reconstructed AIS SMB averaged from 1801-2000 shows
:::::
Along

:::::
with higher SMB valuesaround the coastal areas,

particularly in the Antarctic Peninsula and West Antarctic regions (Fig. 2A). The highest absolute SMB trends are around the

:
,
::
the

:
coastal regions of East Antarctica and the Antarctic Peninsula

:::
also

:::::
show

:::
the

::::::
highest

:::::::
absolute

:::::
SMB

:::::
trends

:
(Fig. 2B). This

reconstruction also highlights large portions of East Antarctica as well as the Antarctic Peninsula as the regions with the most250

significant SMB trends from 1801-2000 (Fig. 2C). Taking the spatial average but keeping the temporal information yields the

AIS integrated
::::::::::::
AIS-integrated, reconstructed SMB time series shown in Fig. 3C (black).
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Figure 3. A An example of a box plot for model data (yellow) and reconstructed data (black and grey). The yellow shaded box shows the

models’ interquartile range while the whiskers extend to capture the entire distribution of modeled data. The line going through the box plot

shows the median model value. The grey shaded box shows the reconstructed uncertainty around the reconstructed value shown as a black

line. B A box plot of spatially integrated, temporally averaged (1850-2000) AIS SMB for CMIP5 (aqua) and CMIP6 (red). The dark blue

, green, coral,
::
x’s

::::::::
associated

::::
with

::
the

::::::
CMIP5

::::
box and dark

::
the

:
red dots

::
x’s

::::::::
associated

:::
with

:::
the

::::::
CMIP6

:::
box

:
represent the four

:::
eight

:
best

scoring models: GISS E2 H
::
CC, GISS E2 R

:::
CC,

::::
GISS

::
E2

::
R,

:
MPI ESM LR, and MPI ESM MR, respectively

:::
and

:::
MPI

:::::
ESM

:
P
::::
from

::::::
CMIP5

:::
and

:::::
CESM

::::
FV2

:::
and

:::
MPI

:::::
ESM2

:::
LR

::::
from

::::::
CMIP6. The black dashed lines indicate the lower and upper bounds of the time series plot in the

bottom of Figure 3. C A time series of spatially integrated SMB for the reconstruction (black) and its uncertainty (shaded grey) with the best

four
::::
eight scoring models: GISS E2 H (dark blue)

::
CC, GISS E2 R (green)

:::
CC,

::::
GISS

::
E2

::
R, MPI ESM LR(coral), and MPI ESM MR,

:::
and

::::
MPI

::::
ESM

:
P
::::
from

::::::
CMIP5 (dark

:::
blue)

:::
and

::::::
CESM

:::
FV2

:::
and

::::
MPI

:::::
ESM2

:::
LR

::::
from

::::::
CMIP6

:
(red).

Panel (A) in Fig. 3 shows an example box plot for a suite of models in yellow and the reconstructed observations in black and

grey. Panel (B) in Fig. 3 shows a box plot of the temporal average of the spatially integrated AIS SMB for CMIP5 and CMIP6.

The average
::::::::::
interquartile

:::::
range

::
of

:
AIS-integrated SMB in the CMIP5 models range between 1335 and 3472

:
is

:::::::
between

:::::
1727255

:::
and

::::
2282

:
Gt yr−1 compared to the CMIP6 models which range between 1471 and 3339

:::::
whose

:::::::::::
interquartile

:::::
range

::
is

:::::::
between

::::
1728

:::
and

:::::
2196 Gt yr−1. The interquartile ranges for CMIP5 and CMIP6 are 1727 to 2282

:::
best

:::::
eight

::::::
models

:::::
range

::::
from

:::::
1909

10



::
to

::::
2461

:
Gt yr−1 and 1728 to 2229 Gt yr−1, respectively, with means of 1940 Gt yr−1 and 2115 Gt yr−1, respectively

:::
for

:::
the

:::::::
temporal

:::::::
average

::::::::::::
AIS-integrated

:::::
SMB

:::::
mean

::::
value.

The reconstructed AIS SMB ranges from 1800 ± 338 Gt yr−1 from 1850-1900 to 2039 ± 333 Gt yr−1 from 1950-2000. All260

four of
:::
but

:::
one

:::
of

:::
the

::::
eight

::
of
:

best scoring models are
::::
fully captured within the reconstructed uncertainty for the entire 150

year time series. The reconstruction and best scoring models all show generally increasing SMB from 1850-2000, albeit with

large interannual variability. Both the trend and variability are analyzed in follow-up evaluations and scoring.

While the reconstructed SMB time series and four
::::
eight best scoring models show a generally increasing trend, the same is

not true for all CMIP5
:
or

:::::::
CMIP6 models (Fig. 4). Looking at multiple time "slices" allows us to investigate if models capture265

the reconstructed SMB trends for the whole time series compared to more recent decades. Here, we looked at three time slices:

the entire overlapping time series from 1850-2000, the last century from 1900-2000, and the last 50 years from 1950-2000. The

reconstructed linear SMB trends for the three time slices are 0.52 ± 0.27 Gt yr−2 (1850-2000), 0.56 ± 0.38 Gt yr−2 (1900-

2000), and 1.0 ± 1.3 Gt yr−2 (1950-2000). For
:::
That

:::::::
implies

:::
that

:::
for

:
all but the last time slice, 1950-2000, the reconstruction

uncertainty trends are also exclusively positive.270

Looking at all of the CMIP5
:::
and

:::::::
CMIP6 models, the median linear trend is positive and trends range in absolute minimum

to absolute maximum from -3.8
::
for

:::
all

::::
three

::::
time

:::::
slices

:::
and

:::
the

:::::
trend

::::::::::
interquartile

::::::
ranges

:::
are

::::
from

::::
-0.8 to +6.7

::
1.8

:
Gt yr−2 for

1850-2000, -4.8
:::
-0.6

:
to +3.4

:::
1.7 Gt yr−2 for 1900-2000, and -1.4

:::
0.8 to +9.5

:::
2.7 Gt yr−2 for 1950-2000with median trends of

:
.

:::
For

:::::::
CMIP5,

::::::
median

:::::
trends

:::
for

:::::
these

::::
time

::::
slices

:::
are

:
0.88 Gt yr−2, 0.66 Gt yr−2, and 1.8 Gt yr−2

::
for

::::::::::
1850-2000,

:::::::::
1900-2000,

::::
and

:::::::::
1950-2000

::::::::::
respectively.

:::
For

:::::::
CMIP6,

:::::::
median

:::::
trends

:::
for

::::
these

::::
time

:::::
slices

:::
are

::::
0.05

:::
Gt

::::
yr−2, respectively. The four

:::
0.46

:::
Gt

:::::
yr−2,275

:::
and

:::
1.8

::
Gt

:::::
yr−2

::
for

::::::::::
1850-2000,

::::::::::
1900-2000,

:::
and

:::::::::
1950-2000

:::::::::::
respectively.

:::
The

:::::
eight best scoring models range from -2.5

:::
-1.4 to

+0.81
:::
3.1 Gt yr−2, -0.92

::::
-1.4 to +3.4

:::
1.7 Gt yr−2, and -0.33

:::
-0.9

:
to +4.4

::
2.4

:
Gt yr−2 for the same respective time spans. The

spread in the four
::::
eight best scoring models reduces the total spread by 31%, 52

::::
57%,

:::
62%, and 43

::
70%, respectively. For the

first two time slices, the reconstructed trend and uncertainty are captured within the interquartile range for all CMIP5 models.

For 1950-2000, the models tend to overestimate the reconstructed trend. The four best scoring models are at the lower end of280

the model estimates and the two MPI ESM models are captured within the reconstructed uncertainty.

Similar to CMIP5, the median linear trend is positive for the latter two time slices for CMIP6. The median linear trend in

the first time slice, however, is negative in CMIP6, implying that more than half the CMIP6 models produce a negative SMB

trend over the 151-year time series. Also similar to CMIP5, the first two time slices also capture the reconstructed trend and

uncertainty in the interquartile range while the models tend to overestimate the trend for 1950-2000. The spread in trend in the285

CMIP6 models is significantly lower than for CMIP5 models which follows as there are fewer models. The trends for CMIP6

range from -2.9 to +4.1 Gt yr−2 with a median trend of -0.44 Gt yr−2 for 1850-2000, -1.8 to +2.9 Gt yr−2 with a median trend

of 0.68 Gt yr−2 for 1900-2000, and 1.2 to 4.4 Gt yr−2 with a median trend of 1.9 Gt yr−2 for 1950-2000.

Apart from its trend magnitude and sign, SMB variability is also important for accurately representing SMBand determining

the impact on sea level it may have in any given year. SMB variability also is ,
::::

and
:::
can

:::
be

:
indicative of the relevant drivers290

behind SMB .
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Figure 4. Box plots of the linear trends in spatially integrated AIS SMB in CMIP5 (blue) and CMIP6 (red) for the periods A from 1850 to

2000; B from 1900 to 2000 ; and C from 1950 to 2000. In all three panels, the grey boxes denote the reconstructed uncertainty around the

reconstructed trend (black line). The four
::::
eight best scoring models are shows in

::::::::
represented

::
by

:
dark blue , green, coral, and red, with

::
x’s

::
if

:::
they

:::
are

:::::
among

:
the colors corresponding to the same

::::::
CMIP5

::::
suite

::
of models as in Figure 3

::
or

:::
red

::
x’s

::
if

:::
they

:::
are

:::::
among

:::
the

::::::
CMIP6

::::
suite.

Gaussian distributions of SMB where the standard deviation is that of the SMB time series for the reconstruction (black)

and A GISS E2 H (dark blue) B GISS E2 R (green) C MPI ESM LR (coral) and D MPI ESM MR (dark red). E Box plots of

the CMIP5 (blue) and CMIP6 (red) SMB time series standard deviations. The black dots show the standard deviation of the

reconstruction.295

::::
SMB

:::::::
driving

:::::::::::
mechanisms.

::::::
Figure

:
5
::
A-

::
B

:::::
shows

:::
the

:::::::
average

:::::::::
detrended

:::
and

::::::::::
normalized

:::::::::
variability

:::
for

:::::::
CMIP5

:::
and

:::::::
CMIP6

::::::
models

::
as

::::
well

:::
as

:::
the

::::::::::::
reconstruction

::::::
plotted

::
as

::
a
::::::
normal

:::::::::::
distribution. The detrended and normalized interannual variability

in SMB in the reconstruction ranges between -6.4-8.0%
::::::
∼-20%

::
to

::::
20%, while SMB in the best four

::
all

:::
the

:
models varies

between ∼-10-10%(Fig. 5
:::
-15

::
to

:::::
15%.

::::::
Figure

:
5A

:
C -D). All

:::::
shows

::
a

:::
box

::::
plot

:::
the

:::::::
standard

:::::::::
deviations

::
of
::::

the
:::::::::
normalized

::::
and

::::::::
detrended

::::
time

::::::
series.

:::
The

::::::::::::
normalization

:::::::
process

:::::
made

:
it
:::::

such
:::
that

:::
the

::::::::
standard

::::::::
deviations

::::
are

::::::::
calculated

::
in
:::

%
::
of

:::::::::
variability300

::::
about

:::
the

:::::
mean

:::::
value

::
of

:::
the

::::
time

:::::
series.

::::
The

:::::::
standard

::::::::
deviation

::
for

:::
the

::::::::::
normalized

:::
and

::::::::
detrended

:::::
SMB

::
in

:::
the

::::::::
reanalysis

::
is

:::::
about

::::
6.6%

:::::::::
compared

::
to

:::
the

::::
best

::::
eight

:::::::
models

:::::
which

:::::
range

:::::::
between

:::::
4.4%

::
to

:::::
5.1%.

::::
(For

:::::::::::
comparison,

:::
the

:::::::::::
reconstructed

::::::::::
normalized
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Figure 5.
:::::::
Gaussian

:::::::::
distributions

::
of

::::
SMB

:::::
where

:::
the

::::::
standard

::::::::
deviation

:
is
:::
that

::
of

:::
the

::::
SMB

::::
time

::::
series

:::
for

::
the

:::::::::::
reconstruction

::::::
(black)

:::
and

:
A

::
all

:::::
CMIP5

::::::
models

::
in

::::
light

:::
blue

::::
and

::
the

::::
best

::::::
scoring

:::::
CMIP5

::::::
models

::
in

::::
dark

:::
blue

::::
and

:
B

::
all

:::::
CMIP6

::::::
models

::
in

::::
light

:::
red

:::
and

::
all

::::::
CMIP6

::::::
models

:
in
:::

red
::::
(the

:::
two

::::::::
Gaussians,

::::
here,

:::
are

:::::
largely

:::::::::::::
indistinguishable

::
by

:::
eye

::
as

::::
they

::::::
overlap

:::::
almost

:::::::
entirely).

::
C

:::
Box

::::
plots

::
of
:::
the

::::::
CMIP5

:::::
(blue)

:::
and

:::::
CMIP6

::::
(red)

::::
SMB

::::
time

:::::
series

::::::
standard

:::::::::
deviations.

:::
The

::::
black

::::
dots

::::
show

::
the

:::::::
standard

:::::::
deviation

::
of

:::
the

:::::::::::
reconstruction.

:::
and

::::::::
detrended

:::::
SMB

::::::::
standard

::::::::
deviation

::
is

:::::
about

::::::
2.9%.)

:::::
Most

:
CMIP5 and CMIP6 models overestimate

:::::::::::
underestimate SMB

variability. The CMIP5 and CMIP6 modelsrange
:
’
:::::::
standard

:::::::::
deviations

:::::
range

:::::
from

:::::
4.0%

::
to

:::::
7.3%

:::
and

:
from overestimates of

144% to 261% and 151% to 217%of the reconstruction standard deviation
:::::
3.0%

::
to

::::
6.1%, respectively (Fig. 5E

:
C).305

Just as temporal SMB variability is important for accurately capturing AIS SMB, spatial variations in SMB are also important

in AIS SMB representation in models as melt and discharge are not distributed equally
::::::::::
precipitation

::
is

:::
not

:::::::::
distributed

::::::::
uniformly.

To look at the spatial variability in SMB, we performed EOF analysis and plotted looked at the top three modes of variability

which
::::::::::
collectively account for 76.3% of the total spatial variability.

Separated out, the top three modes of variability in the reconstruction from EOF analysis explain 39%, 26%, and 12%310

of the total variability, respectively (Fig. 6).
::::
High

::::::
values

:::
on

:::
the

:::::
EOF

::::
map

:::::::
indicate

:::::::
regions

:::
that

:::::::
explain

:::::
large

:::::::
amounts

:::
of

::
the

:::::::::
variability

:::
in

::::
AIS

:::::
SMB.

:
The top mode of variability in the reconstruction shows a dipole pattern from the Antarctic

Peninsula to the Ross Sea region. This dipole corresponds to variability in precipitation generated by variations in the track and

strength of the Amundsen Sea Low. The Amundsen Sea Low, which represents the pole of circulation variability in Antarctica

13



Figure 6. EOF analysis plots of the top 3 modes of variability for A the reconstruction, B a relatively high scoring model (CMCC CM), and

C a low scoring model (CESM1 WACCM).
:::
Note

::::
that

::
the

::::
scale

:::
for

::
the

:::::
model

:::::
EOFs

::
is

::
3×

::::
that

:
of
:::
the

::::::::::
reconstructed

::::
EOF.

(Turner et al., 2013), is marked by high precipitation around the coast of the Antarctic Peninsula (Grieger et al., 2016). Changes315

in the Amundsen Sea Low synoptic pattern, then, represent the dominant cause of variability in the reconstruction SMB. The

depth of the ASL is strongly influenced by the phase of the Southern annular mode (SAM) with positive (negative) mean sea

level pressure anomalies when the SAM is negative (positive) (Turner et al., 2013). The second mode of variability represents

high variability in West Antarcticaand the Antarctic Peninsula. This could be caused by the topography in these regions which

can induce large amounts of snowfall.
:::::
Mode

::
2

::
of

:::
the

:::::::::::::
reconstruction

::::
EOF

::::::
shows

:
a
::::::

strong
::::::
signal

::::
over

:::
the

::::::
entire

::::::::
Antarctic320

::::::::
Peninsula

:::
and

:::::::
toward

:::
the

::::
Ross

:::
Ice

:::::
Shelf

::::::
region

::
of

:::::
West

::::::::::
Antarctica. The third mode of variability shows a strong signal in

Wilkes Land (East Antarctic region), near the Davis Sea, and two opposite, weaker signals in Dronning Maud Land (Atlantic
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sector) and Adélie land (Pacific sector). This signal is reflective of the linear trend in SMB as seen in Fig. 2B. See supplemental

for further EOF analysis of sea level pressure variability.

By
::
As

::
a

:::::::
example

::
of

:::
the comparison, one of the better scoring models for the EOF map criterion, CMCC CM, also shows a325

dipole between the Antarctic Peninsula and the Ross Sea region for the top mode as well as strong variance signal around the

Antarctic Peninsula for mode 2 and a quadrupolar pattern for mode 3. However, even the better scoring models tended
::::
tend to

overestimate the magnitude of the variance particularly around the coast even when they capture the general spatial patterns.

CESM1 WACCM, one of the poorer performing models with regard to this metric, generally overestimates the variance ev-

erywhere in all three of the top modes. The top mode for this model reflects an East/West Antarctic SMB dipole and mode 2330

shows a strong, unidirectional signal across the entire AIS, though mode 3 seems to reflect the same quadrupolar pattern as

seen in the reconstructionalbeit with to ,
:::::
albeit

::::
with

:
a much higher magnitude.

Figure 7. The scores for all CMIP5 and CMIP6 models. The large dots show the average score for all model groupings. Models are grouped

by similar model physics and have in parenthesis the number of models in the grouping after the name. Each model grouping has all model

scores plotted as small blue/red dots for CMIP5/6 with the model average plotted in the larger dots. Models that have no like models are

followed by a one in parenthesis and only have a larger dot. The four
::::
eight best scoring models (above the 90th percentile) are denoted with

yellow x’s instead
::

red
::::::
outlines

::
if

:::
they

:::
are

:::::
among

:::
the

::::::
CMIP5

::::
suite of

:::::
models

::
–

::::
GISS

:::
E2

:
H
::::
CC,

::::
GISS

:::
E2

:
R
::::
CC,

::::
GISS

::
E2

:::
R,

:::
MPI

::::
ESM

::::
LR,

:::
MPI

::::
ESM

::::
MR,

:::
and

::::
MPI

::::
ESM

:
P
::
–

::
or

:::
with

:
blue dots

::::::
outlines

:
if
::::
they

::
are

::::::
among

::
the

::::::
CMIP6

::::
suite

::
of

::::::
models

:
–
:::::
CESM

::::
FV2

:::
and

::::
MPI

:::::
ESM2

::
LR.

:::
Note

::::
that

::
the

::::::
overall

:::::
scores

::
for

:::
two

::
of
:::
the

::::
GISS

::::::
models

:::
and

::::
three

::
of

:::
the

:::
MPI

::::::
models

::
in

::::::
CMIP5

::
are

::::::
almost

:::::
exactly

:::::
equal

::
so

::::::
outlines

::::::
overlap

:::::
almost

:::::::::
completely.
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Models that score above the 90th percentile make up the subset of best scoring models. Five
::::
Eight models – GISS E2 H

::
CC,

GISS E2
::::
RCC,

:::::
GISS

:::
E2 R, MPI ESM LR, MPI ESM MR, and MPI ESM P

::::
from

::::::
CMIP5

:::
and

::::::
CESM

::::
FV2

::::
and

::::
MPI

:::::
ESM

:::
LR

::::
from

::::::
CMIP6

:
– qualify for this status as there is a three-way tie for third, but

:::::::
comprise

:::
this

:::
top

::::
90th

:::::::::
percentile.

::::
The

:::
two

:::::::
CMIP6335

::::::
models

::
as

::::
well as MPI ESM P does not have the necessary information for future projections , it is neglected. Similar to

:::::
GISS

::
E2

::
R
:::::
from CMIP5 , the GISS models in

::
do

:::
not

::::::
appear

::
in

:::
the

:::::
future

::::::::::
projections

:::::::
analysis

::
as

:
CMIP6 are also among the best

performing model in the small sample size
::::
does

:::
not

::::::
follow

::
the

:::::
same

::::
RCP

::::::::
structure

::
as

::::::
CMIP5

::::
and

:::
the

::::
MPI

::::
ESM

::
P
::::::
model

::::
does

:::
not

::::::
contain

:::
the

::::::::
necessary

:::::::::::
information

::
to

:::::::
perform

:::
the

:::::::
analysis. The poorest performing models include CESM FASTCHEM,

BNU ESM,
::::::
CESM

:::::::::::
FASTCHEM,

:
and FIO ESMin CMIP5, and CanESM2 in CMIP6. The mean model score is 3.7

::::
4.36 for340

CMIP5 and 4.5
:::
5.77

:
for CMIP6. CMIP5 and CMIP6 scores were normalized together such that all scores are on the same scale

and are directly comparable. With that, there is not much change from CMIP5 to CMIP6. In fact, the scores increase from

CMIP5 to CMIP6 albeit with a small sample size of models for CMIP6.

With this subset of the four
::::
eight

:
best performing models, we then refined future projections of AIS SMB in terms of

magnitude
:::::
mean

:::::
value, trend, and variability. Because there are currently an insufficient number of future model runs avail-345

able for CMIP6, our projection efforts were solely based on CMIP5. Future CMIP5 projections are created in the context of

warming scenarios called Representative Concentration Pathways (RCPs). The RCPs we used to investigate SMB projections

are RCP2.6, RCP4.5, and RCP8.5 which have progressively higher CO2 concentration projections and, thus, higher projected

global warming. Comparing the difference in SMB projections between these RCPs allows us a look into the different potential

sea level changes caused by different amounts of warming. In CMIP5, there are 25 model outputs for RCP2.6 and 32 model350

outputs for RCPs 4.5 and 8.5.

As stated earlier, both magnitude
:::::
mean

::::
value

:
and trend of AIS SMB have significant implications for future projections of

sea level change. The spatially integrated AIS SMB (i.e. SMB magnitude
:::::
mean

:::::
value) has been increasing from 1850-2000

(Fig. 3) and is projected to continue to increase for the following hundred years to 2100 in all three warming scenarios (Fig. 8).

From 2070-2100, spatially integrated AIS SMB is projected to be 2295
::::
2751

:
± 1222

:::
570

:
Gt yr−1 for RCP2.6, 2382

::::
2948355

± 1316
:::
581 Gt yr−1 for RCP4.5, and 2648

::::
3307

:
± 1530

:::
663

:
Gt yr−1 for RCP8.5 for all CMIP5 models

:::::
where

:::
the

:::::::::
associated

::::::::::
uncertainties

:::
are

::::
1-σ

::
of

::
all

:::::::
models

:::::::
between

:::::::::
2070-2100

:
(for a list of projected SMB and related variable values for all models

and the best scoring models across the RCPs, see supplementary). The subset of four
::::
eight

:
best scoring models have lower

projections and smaller spread at 2246
::::
2372 ± 268

:::
282 Gt yr−1 for RCP2.6, 2358

::::
2452

:
± 331

:::
286

:
Gt yr−1 for RCP4.5, and

2495
::::
2588 ± 335

:::
291 Gt yr−1 for RCP8.5 on average between 2070-2100. The magnitude of

:::::
ranges

::
of

:::
the

::::
best

::::
eight

:::::::
scoring360

::::::
models

:::::::
reduced

:::
the

::::::
spread

:::
by

:::::
79%,

:::::
79%,

:::
and

:::::
74%

:::
for

:::::
RCPs

::::
2.6,

::::
4.5,

:::
and

::::
8.5,

:::::::::::
respectively.

::::
The

:::::
mean

:::::
value

::
of

:
modeled

SMB increases with increasing warming scenarios for all CMIP5 models and the subset of the four
::::
eight best scoring models.

Similarly to the magnitude
::::
mean

:::::
value

:
increasing with increasing warming, the projected SMB trend also increases with

increased warming (Fig. 9). As such, the stronger the emission scenario, the larger the projected response in AIS SMB with

regard to both magnitude
::::
mean

:::::
value and trend.365

For the entirety of the 21st century, 2000-2100, most CMIP5 climate models project positive SMB trends in all forcing

scenarios (Fig. 9). For RCP2.6, all CMIP5 models project a median trend of 0.53 Gt yr−2 and a range of -2.15 to +2.63 Gt
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Figure 8. Time series for the reconstruction with uncertainty bounds (grey), all CMIP5 models (light) and best scoring CMIP5 models (dark)

for A RCP2.6 (blue), B RCP4.5 (yellow), and C RCP8.5 (red).

yr−2. For RCPs 4.5 and 8.5, the median trends are 2.28 Gt yr−2 and 5.64 Gt yr−2 with ranges of -0.81 to +6.11 Gt yr−2 and

0.47 to 14.9 Gt yr−2, respectively.

The best scoring models range from 0.34 to 2.09
::::
0.47

::
to

::::
2.45 Gt yr−2, 1.44 to 2.88 Gt yr−2, and 3.06 to 4.63 Gt yr−2 for370

RCPs 2.6, 4.5, and 8.5, respectively. For RCPs 2.6 and 4.5, the best scoring model trend projections lie close to or within the

interquartile range for all CMIP5 models. The best four model projections are near or below the lower bound of the interquartile

range for RCP8.5
::
As

:::
the

::::::::
warming

::::::::
scenarios

:::::::::
strengthen,

:::
the

::::
four

::
of

:::
the

::::
eight

::::
best

::::::
scoring

::::::
models

::::::::
projected

::::
into

:::
the

:::::
future

:::::
move

:::::
closer

::
to

:::
the

::::::
lower

:::
end

:::
of

:::
the

::::::
overall

:::::::
CMIP5

::::::::::
interquartile

::::::
range

::
in

:::::
trend. Some of the differences in these concentration

pathways can be described by the modeled SMB sensitivity to different atmospheric CO2 emission scenarios.375
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Figure 9. Box plots of the linear trend in spatially integrated AIS SMB from 2050-2100 for A RCP2.6 (blue), B RCP4.5 (yellow), and C

RCP8.5 (red). The four larger, colored dots represent
::::
darker

:::
x’s

:::::
denote the four best scoring models :

:
–
:
GISS E2 H (dark blue)

::
CC, GISS E2

R (green)
::
CC, MPI ESM LR(coral), and MPI ESM MR (dark red)

:
–
::::::
among

::
the

::::
eight

::::
best

::::::
scoring

:::::
models

::::
with

:::
the

::::::::
appropriate

:::
and

::::::::
necessary

::::::::
information

:::
for

:::::
direct

::::::::
comparison

::
of
:::::
future

:::::::::
projections.

Box plots of modeled SMB sensitivity to changes in temperature (i.e. how much SMB will change per degree warming)

show that SMB responds differently in different warming scenarios (
:::
are

:::::
shown

:::
in Fig. 10). The CMIP5 models project that

each warming scenario with higher CO2 concentrations will see greater SMB sensitivity to increases in temperature than those

with lower CO2 concentrations. While the ranges differ from scenario to scenario, the .
::::

The
:
projected sensitivity medians

for RCPs 2.6, 4.5, and 8.5 are 101.7 Gt ◦C
::
K−1, 111.2 Gt ◦C

::
K−1, and 128.2 Gt ◦C

::
K−1, respectively.

:::::
These

:::::
results

::::
are

:::
not380

:::::::::
statistically

:::::::::::
significantly

:::::::
different

:::::
from

::::
one

:::::::
another,

:::::::::
indicating

::
no

::::::::::
significant

::::::::::::::
more-than-linear

:::::
SMB

:::::::
increase

::
in
:::::::::

enhanced

:::::::
warming

:::::::::
scenarios.

The different responses to the warming scenariosindicates that the concentration of carbon dioxide in the atmosphere has a

coupled role in AIS SMB

5
:::::::::
Discussion385

5.1
::::

EOF
:::::::
Analysis

:::::
Mode

:
1
:::

of
:::
the

:::::::::::::
reconstruction

::::
EOF

::::::
shows

::
a

::::::
dipolar

:::::::
pattern

:::::
across

::::
the

::::::::
Antarctic

:::::::::
Peninsula

:::
and

:::::
Ross

:::
Ice

:::::
Shelf

::::::
region

:::
of

::::
West

:::::::::
Antarctica.

:::::
This

:::::
dipole

:::::::::::
corresponds

::
to

:::::::::
variability

::
in

:::::::::::
precipitation

::::::::
generated

:::
by

:::::::::
variations

::
in

:::
the

:::::
track

:::
and

:::::::
strength

:::
of

18



Figure 10. Box plots of all CMIP5 models’ projected SMB sensitivity to temperature changes (∆SMB/∆T) for A RCP2.6, B RCP4.5, and

C RCP8.5. The four larger, colored dots represent
:::
five

:::::
darker

::
x’s

:::::
denote

:
the four best scoring models :

:
–
:
GISS E2 H (dark blue)

:::
CC, GISS E2

R (green)
::
CC, MPI ESM LR(coral), and MPI ESM MR (dark red)

:
–
::::::
among

::
the

::::
eight

::::
best

::::::
scoring

:::::
models

::::
with

:::
the

::::::::
appropriate

:::
and

::::::::
necessary

::::::::
information

:::
for

:::::
direct

::::::::
comparison

::
of
:::::
future

:::::::::
projections.

::
the

::::::::::
Amundsen

:::
Sea

:::::
Low.

::::
The

:::::::::
Amundsen

:::
Sea

:::::
Low,

::
a

::::::::
dominant

:::::::
synoptic

:::::::::::
phenomenon

::::
that

:::::
drives

::
a
:::::::::
significant

::::::
amount

:::
of

:::
the

:::::::::
circulation

::::::::
variability

::
in
:::::
West

:::::::::
Antarctica

:::
and

:::
on

:::
the

::::::::
Antarctic

::::::::
Peninsula

:::::::::::::::::
(Turner et al., 2013),

::
is

::::::
marked

:::
by

::::
high

:::::::::::
precipitation390

::::::
around

:::
the

::::
coast

::
of
::::

the
::::::::
Antarctic

::::::::
Peninsula

:::::::::::::::::
(Grieger et al., 2016)

:
.
:::::::
Changes

::
in

:::
the

::::::::::
Amundsen

:::
Sea

::::
Low

::::::::
synoptic

::::::
pattern,

:::::
then,

:::::::
represent

:::
the

::::::::
dominant

:::::
cause

::
of

:::::::::
variability

::
in

:::
the

:::::::::::
reconstruction

::::::
SMB.

:::
The

:::::
depth

::
of

:::
the

::::
ASL

::
is

:::::::
strongly

::::::::
influenced

:::
by

:::
the

:::::
phase

::
of

:::
the

::::::::
Southern

::::::
annular

:::::
mode

::::::
(SAM)

:::::
with

::::::
positive

:::::::::
(negative)

:::::
mean

:::
sea

:::::
level

:::::::
pressure

:::::::::
anomalies

:::::
when

:::
the

:::::
SAM

:
is
::::::::

negative

::::::::
(positive)

::::::::::::::::
(Turner et al., 2013)

:
.

:::::::
Looking

::
at

::::
mode

::
2,
::::::::
previous

::::
work

::
by

::::::::::::::::::
Hosking et al. (2013)

:::
and

:::::::::::::::::
Turner et al. (2013)

::::::
(among

::::::
others)

::::
have

:::::
shown

::::
that

::::::::
variability395

::
in

:::
the

:::::::::
Amundsen

:::
Sea

::::
Low

::
is
::::::::::
responsible

:::
for

::::
high

:::::::::::
precipitation

::::::::
variability

::
in
:::::

West
:::::::::
Antarctica

:::
and

:::
on

:::
the

::::::::
Antarctic

:::::::::
Peninsula.

:::::::
Because

:::
this

::::::
region

:::::::::
dominates

:::
the

::::::
overall

::::
AIS

::::::::::
precipitation

::::::
signal

:::
(as

::::
East

:::::::::
Antarctica

::::
sees

::::
little

:::::::
snowfall

:::
by

:::::::::::
comparison),

::
a

::::::
variable

::::::::::
Amundsen

:::
Sea

::::
Low

::::::
signal,

::::
here,

::::::
would

::::::
explain

:::
the

::::
EOF

::::::
pattern

::::::::
reflected

::
in

:::::
mode

:
2
::
of

:::
the

:::::::::::::
reconstruction.

:::::::::
Additional

::::
work

::::::::::
highlighted

::
in

:::
the

::::::::::::
supplementary

:::::::
material

:::::::
indicates

::::
that

::::::::
variability

::
in
::::
sea

::::
level

:::::::
pressure

::
in

:::
the

:::::::::
Amundsen

:::
Sea

::::::
region

::::
may

::
be

::::::
playing

::
a
::::
large

::::
role

::
in

:::
the

::::
AIS

::::
SMB

::::::
spatial

:::::::::
variability

:::::::
patterns.

:
400

5.2
::::::

Impact
::
of

:::::::
Internal

::::::::::
Variability

::
in

::::::
Model

::::::::
Scoring:

::::::
CESM

::::::
Large

::::::::
Ensemble
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:::
The

::::::
CESM

:::::
Large

::::::::
Ensemble

:::::::::::::
(CESM-LENS)

::
is

::
an

::::::::::
experiment

:::::::
wherein

:::
the

::::::::::
Community

::::
Earth

:::::::
System

:::::
Model

:::::::
Version

:
1
::::::::
(CESM)

:
is
:::
run

:::
40

:::::
times

:::
with

:::::::
random

::::::::::
temperature

:::::::::::
perturbations

::
at

:::
the

::::
level

::
of

::::::::
round-off

::::
error

::::::
applied

::
in

:::::
1920

::::::::::::::
(Kay et al., 2015)

:
.
:::::::
Because

::
of

::
its

::::
large

:::::::
number

::
of

::::::::
ensemble

::::::::
members,

:::
the

::::::::::::
CESM-LENS

:::::::::
experiment

::
is

:::::
useful

:::
for

::::::::::
quantifying

:::
the

:::
role

::
of

:::::::
internal

:::::::::
variability.

::::
Only

:::
35

::
of

:::
the

:::::::
original

::
40

:::::::::
ensemble

:::::::
members

:::::::
contain

:::
the

::::::::
necessary

::::::::::
information

:::
for

::::::::
assessing

::::
AIS

:::::
SMB. As seen in figures405

8 and 9, the greater the CO2 concentration, the larger the AIS SMB response. From Fig. 10, we can also say that the greater

the CO2 concentration, the more sensitive to warming AIS SMB is meaning that continued warming past the end of the 21st

century will have increasingly greater effects on AIS SMB .
:::::
Figure

::
4

::
in

:::::::::::::
Supplementary

:::::
shows

::::
the

::::
final

::::::
scores

::
of

:::
the

::::
five

:::::
CESM

::::::::::
simulations

::::
that

:::
are

:::::::
included

::
in

:::
the

::::::
CMIP5

:::::
suite

::
of

::::::
models

::
as

::::
well

::
as
:::
the

::::
final

::::::
scores

::
of

:::
the

::::::::::::
CESM-LENS

::::::::::
experiment.

:::
The

::::
final

::::::
scores

:::
for

:::
the

:::::::::::
CESM-LENS

::::::
model

::::
runs

:::
are

::::::::
calculated

:::
the

:::::
same

::::
way

:::
for

::
all

::::::
model

::::::
criteria

:::::
except

:::
for

:::::::::::::
AIS-integrated410

:::::
trend.

:::::::
Because

:::::
these

::::
runs

::::
only

:::::
differ

::::
after

:::::
1920,

:::
we

:::::
only

:::
use

:::
the

::::
third

:::::
time

::::
slice

:::::::::::
(1950-2000)

::
to

:::::
assess

:::
the

:::::::
quality

::
of

:::::
trend

:::::::::::
reproduction.

:::
The

::::
final

::::::
scores

::
of

:::
the

:::
five

:::::::
CMIP5

:::::
CESM

::::::
model

::::
runs

:::::
range

::::
from

::::
3.99

::
to

::::
9.74

:::::
while

:::
the

::::
final

::::::
scores

::
of

:::
the

::
35

::::::::::::
CESM-LENS

:::
runs

:::::
range

:::::
from

::::
1.32

::
to

:::::
5.96.

:::::
Given

::::
that

:::
the

:::::
scores

:::::
range

:::
by

::::
5.74

:::
and

::::
4.65

:::
for

:::
the

:::::::
CMIP5

::::::
CESM

::::
runs

:::
and

:::
the

::::::::::::
CESM-LENS

::::
runs,

::::::::::
respectively,

::
it
::
is

:::::::::
reasonable

::
to

::::::::
conclude

::::
that

::::::
internal

:::::::::
variability

:::::
plays

::
as

:::::::::
significant

::
a

:::
role

::
in

:::::::::::
determining

::::
final

::::
score

:::
as415

::
do

::::::
model

::::::::::::::::
parameterizations.

:
A
::::::

major
:::::
caveat

:::
of

:::
this

:::::::
finding,

::::::
though,

::
is
::::
that

:::
the

:::::::::::
CESM-LENS

::::
runs

::::
and

:::
the

::::::::::::
reconstruction

::::
only

:::::::
overlap

::::
from

::::::::::
1920-2000.

::::
This

:::
will

:::::
likely

:::::
most

::::::::::
significantly

::::::
impact

:::
the

:::::::::
assessment

::
of

:::
the

:::::
trend

:::
and

:::::
EOF

:::::::
analyses.

:

::::
With

::::
that,

:::::::
internal

:::::::::
variability

:::::
plays

:
a
:::::::::

significant
::::

role
::
in
::::

our
::::
AIS

:::::
SMB

::::::::::
assessment.

:::::
Some

:::::::
models

:::::
within

::::
the

::::::
CMIP5

::::
and

::::::
CMIP6

:::::::::::
frameworks,

::::
such

::
as

::::::::::::::
CESM1-CAM5,

:::::
have

:::::
many

::::::::
ensemble

:::::::::
members.

::::::::
However,

::::
not

::
all

:::::::
models

::
–

:::
and

:::::
even

:::
not

:::
all420

:::::
model

:::::::
versions

::
–

::::
have

:::::::
multiple

::::::::
ensemble

::::::::
members.

:::
As

::::
such,

::::::::::
performing

:
a
:::::
direct

::::::::::
comparison

::
of

:::
the

::::::
models

:::::
using

:::
the

::::::::
ensemble

::::
mean

::::::
would

:::
not

::::::::::
necessarily

:::::
yield

::
an

::::::::
accurate

:::::
result

::
as

:::::::
models

::::
with

:::::
more

::::::::
ensemble

::::::::
members

::::::
would

::::
have

:::::
their

::::
final

:::::
score

:::::
shifted

:::::::::::
significantly

:::::
while

:::
the

:::::
same

::
is

:::
not

::::
true

::
for

:::::::
models

::::
with

::
a

:::::
single

::::::::
ensemble

::::::::
member.

:::
For

::::::::::
considering

:::::
using

::::::
GCMs

:::
for

:::
AIS

:::::
SMB

::::::::
analysis,

::::
then,

:::
we

:::::::
strongly

:::::::
suggest

::::::
taking

:::
into

:::::::
account

:::
the

::::
fact

::::
that

::::::
internal

:::::::::
variability

:::::
could

:::
be

:::::::
playing

:
a
::::::
strong

:::
role

::
in

:::::
some

::::::
models

::::
final

:::::
score,

::::
and

:::
that

:::
the

:::::::
number

::
of

::::::::
ensemble

::::::::
members

:::::::
available

::::::
should

:::
be

:::::::::
considered

:::::
along

::::
with

:::
the

::::
final425

:::::
score.

5.3
::::::
Impact

::
of

::::::
Model

:::::::::
Resolution

::
in
::::::

Model
:::::::
Scoring

:::
The

::::::
CMIP5

::::
and

::::::
CMIP6

:::::::
models

::::
vary

::
in

::::::::
resolution

::::
from

:::::
about

:::::::::::
0.75◦×0.75◦

::
to

::::::
3◦×3◦

:::::::
(Tables

:::
1-3

::
in

::::::::::::::
Supplementary).

:::::
Figure

::
5

::
in

::::::::::::
Supplementary

::::::
shows

:
a
::::::
scatter

:::
plot

:::
of

::::::::
resolution

::::::
versus

::::
total

:::::
score.

::::::::::
Resolution,

::::
here,

::
is

:::
the

::::::::
latitudinal

:::::::::
resolution

:::::::::
multiplied

::
by

:::
the

::::::::::
longitudinal

:::::::::
resolution

::::
such

::::
that

:
a
::::::
model

::::
with

::::::::::::::
latitude/longitude

::::::::::
resolutions

::::::::::::
0.9375◦/1.25◦

:::::
would

::::
have

::
a
::::::::
resolution

:::
of430

:::::::
1.1719◦.

::
A

:::::
linear

:::::::::
regression

::::::
yields

:
a
:::::::::
correlation

:::
of

::
R

:
=
:::::

-0.40
:::::
with

::::
95%

:::::::::
confidence

::::::::
intervals

::
of

:::::
-0.62

:::
and

::::::
-0.17.

:::::
From

::::
this,

::::
there

::
is

:
a
::::::::::
statistically

::::::::
significant

::::::::
negative

:::::::::
correlation

:::::::
between

::::::::
resolution

::::
and

::::
total

:::::
model

:::::
score,

::::::::
signaling

::::
that,

:::::::
perhaps

:::::::
contrary

::
to

::::::::
intuition,

:::::::::::::
lower-resolution

:::::::
models

:::::
score

:::::::
equally

::::
well,

::
if
::::

not
:::::
better,

:::::
than

:::::
higher

:::::::::
resolution

:::::::
models.

::::
This

::::::
result

:::::
might

:::
be

::::::
skewed

:::
by

:::
the

:::
fact

::::
that

:::::::::::::
lower-resolution

:::::::
models

::::::
include

:::::
better

:::::::
physics

::
to

::::::::
represent

::::
AIS

:::::
SMB

::::
than

::::::::::::::
higher-resolution

:::::::
models.

::::::::
However,

::::
when

:::::::::
comparing

::::
total

::::::
scores

::::
from

:::
the

:::::
same

:::::
model

:::
run

::
at

:::::::
different

::::::::::
resolutions,

:::
we

:::
find

::
a

::::::::
consistent

:::::
result:

:::
the

:::::::
relative435
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::::::::::::
high-resolution

::::::
CESM

:::::::
CAM5,

::::
IPSL

::::::
CM5A

::::
MR,

::::
MPI

:::::
ESM

::::
MR,

::::::::
CESM2,

:::::::
CESM2

::::::::
WACCM,

:::
and

::::
MPI

::::::
ESM2

:::
HR

:::
all

:::::::
perform

:::::
worse

::::
than

::::
their

::::::
coarser

:::::::::
resolution

::::::::::
counterparts

:
–
::::::
CESM

::::::
CAM5

:::::
FV2,

:::::
IPSL

::::::
CM5A

:::
LR,

::::
MPI

:::::
ESM

:::
LR,

:::::::
CESM2

:::::
FV2,

:::::::
CESM2

:::::::
WACCM

:::::
FV2,

:::
and

::::
MPI

::::::
ESM2

:::
LR.

:::::::
Because

::
so

:::::
many

::::::
models

:::::
close

::
to

:::::
1◦/1◦

::::::::
resolution

:::
and

:::::
there

:
is
:::::
large

:::::
spread

::
in
:::::
these

:::::::
models’

::::
final

:::::
scores,

:::
we

::::
also

::::::
divided

:::
the

::::::
models

::::
into

:::
two

:::::::
groups,

::::
finer

:::
and

::::::
coarser

::::
than

:::::::::::
1.25◦/1.25◦,

:::
and

:::::::::
performed

:::
the

::::
same

:::::::::
regression

:::::::
analysis.

::::::
Figure

:
6
::
in

:::::::::::::
Supplementary

:::::
shows

:::
the

:::::::
coarser

::::::::
resolution

::::::
models

::::
have

::
a
:::::::::
correlation

::
of

::
R

::
=

::::
-0.14

::::
with

:::::
95%

:::::::::
confidence440

:::::::
intervals

::
of

:::::
-0.51

:::
and

::::
0.24

:::::
while

::::
finer

::::::::
resolution

:::::::
models

::::
have

:
a
:::::::::
correlation

::
of

::
R
::
=

::::
-0.06

::::
with

:::::
95%

:::::::::
confidence

:::::::
intervals

::
of

:::::
-0.38

:::
and

::::
0.26.

:::::
From

::::
this,

:::
we

::::::::
conclude

:::
that

:::::
there

:
is
:::
no

:::::::::
significant

:::::::::
correlation

:::::::
between

::::::
model

::::::::
resolution

::::
and

::::
total

:::::
score.

6 Conclusions

In this paper, we tested the ability of the suite of models in CMIP5 to capture SMB reconstructed from ice cores and reanalysis

products by scoring them using a series of criteria: AIS-integrated mean value, trend, and variability, as well as the spatial445

variability patterns. This scoring system is designed as a guide for choosing what GCMs to focus on studying for SMB

prediction.
:::::
future

:::::
SMB

::::::::::
projections.

:::::
Using

::::
this

::::::
scoring

:::::::
system,

:::
we

:::::
found

::::
that

:::
the

:::
top

::::
90th

:::::::::
percentile

::::::
models

:::::
were

:::::
GISS

:::
E2

:
H
::::

CC,
:::::
GISS

:::
E2

::
R
::::
CC,

:::::
GISS

:::
E2

:::
R,

::::
MPI

:::::
ESM

:::
LR,

:::::
MPI

::::
ESM

:::::
MR,

:::
and

::::
MPI

:::::
ESM

::
P
::
of

:::::::
CMIP5

::::
and

::::::
CESM

::::
FV2

:::
and

:::::
MPI

:::::
ESM2

:::
LR

:::
of

::::::
CMIP6.

:::
A

::::::
similar

:::::
study

::
in

:::::::::::::::::
Agosta et al. (2015)

::::
found

::::::::::::
ACCESS1-3,

:::::::::::
ACCESS1-0,

::::::
CESM

:::::
BGC,

::::::
CESM

:::::::
CAM5,

:::::::::::
NorESM1-M,

:::
and

::::::::
EC-Earth

::
to
:::::
most

::::::::
accurately

:::::::
capture

:::
AIS

:::
sea

:::::
level

:::::::
pressure,

::::
850

:::
hPa

:::
air

::::::::::
temperature,

::::::::::
precipitable

:::::
water,

::::
and450

:::::
ocean

:::::::::
conditions

:
–
:::
all

::
of

:::::
which

::::::
impact

::::
AIS

:::::
SMB

::
to

:::::::
varying

:::::::
degrees.

::::
They

:::::::
focused

::::
their

:::::::::::
investigation

::::
into

::::
more

:::::::::::
atmospheric

:::
and

:::::::
oceanic

::::::::
dynamics

::::
(sea

::
ice

::::::
extent,

:::
sea

:::::::
surface

::::::::::
temperature,

:::
sea

:::::::
surface

:::::::
pressure,

::::::::::
precipitable

::::::
water,

:::
850

::::
hPa

:::::::::::
temperature)

:::
and

::::
were

:::::::::
comparing

::::::
models

:::::::
directly

::
to

:
a
::::::::
reanalysis

:::::::
product.

:::::::::::::::::
Barthel et al. (2019),

:::::::
another

::::
study

::::
with

::
a
::::::
similar

::::
goal

::
of

::::::::
analyzing

::::
SMB

:::::::::::
performance

::::::
among

::::::
GCMs

:::::::
selected

::::::::
CCSM4,

:::::::
MIROC

:::::
ESM

:::::::
CHEM,

::::
and

:::::::::::
NorESM1-M

:::
as

::::
their

:::
top

:::::
three

::::::::::
performing

::::::
models

:::
for

:::::::::
Antarctica.

:::::
They

::::
ruled

:::
out

:::::
both

:::
the

::::
GISS

::::
and

::::
MPI

::::::::
modeling

::::::
groups

:::
due

:::
to

::::
their

:::::
initial

::::::::
selection

::::::
criteria

:::
and

:::::
were455

:::
also

:::::::
looking

::::
more

::
at
:::
the

:::::::
impacts

:::::::::::::::
thermodynamical

::::::::
processes

::
on

:::::
SMB.

:

Our SMB mean value estimates are comparable to Agosta et al. (2019)
:
, who found a mean SMB value of roughly 2100 ±

100 Gt yr−1 for the grounded AIS using ERA-Interim products. The SMB trends are also in line with Medley and Thomas

(2019) over the 20th century. Unlike previous studies, we use a reconstructed data set based on ice core reanalysis,
:
not RCMs.

::::
Also

::
of

::::
note

::
is

:::
the

:::
fact

:::
that

::::
this

::::
data

::
set

::::
and

::
the

::::::
GCMs

:::
we

:::
use

:::
for

::::::::::
comparison

:::::
allow

::
us

::
to

:::::::::
investigate

:::::
much

:::::
longer

::::
time

:::::::
periods460

::::
(150

::::::
years),

::::::::
enhancing

:::
the

:::::::::
robustness

::
of

:::::::::
long-term

:::
AIS

:::::
SMB

::::::
trends. Using this reconstruction, we are able to refine estimates

of SMB mean value and SMB trend by the end of the 21st century using CMIP5 by assigning scores to the models and creating

a subset of the most accurate models historically. Also unlike previous studies, we analyze both CMIP5 and the early models

of CMIP6 together allowing for direct comparison between the two suites of models. The scores for all CMIP5 models are, on

average, lower
:::::
better than the average score of the currently released CMIP6 models.465

All scores are equally weighted to avoid issues with coincidental good or bad performance. Having a spread of criteria

against which we score the models limits the possibility that models are recreating one aspect well for the wrong reasons. This

scoring method does well in determining simple and consistent criteria to score the accuracy of modeled SMB. In contrast,
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it struggles to recognize any difference in the importance of individual criteria as they are all weighted equally and also only

reflects a few, simple scoring metrics. The criteria were chosen such that they all carry equal weight which we justify by arguing470

that not meeting any one of the criteria to within a reasonable degree would significantly impact future SMB estimates.

Using the top four
::::
eight best scoring models, we

::::
four

::
of

::::::
which

:::
we

::::
were

::::
able

::
to

::::::
project

::::
out

::
to

::::
2100

::::::
under

::::
three

::::::::
different

:::::
RCPs,

:::
we

:
refined future SMB predictions to 2246

::::
2372

:
± 268

:::
282

:
Gt yr−1 for RCP2.6, 2358

::::
2452 ± 331

:::
286

:
Gt yr−1

for RCP4.5, and 2495
::::
2588 ± 335

:::
291

:
Gt yr−1 for RCP8.5. Over the 21st century this translates to 1.82 cm, 3.49

::
8.6

::::
cm,

:::
9.6 cm, and 6.57

::
11

:
cm of GMSL rise buffering in RCPs 2.6, 4.5, and 8.5, respectively, for all of CMIP5. The best models,475

which show lower AIS-integrated SMB over the 21st century compared to all of
:::
Our

:::::
result

:::
of

:::::
these

::::
best

::::::
scoring

:::::::
models

::::::::
projecting

::::
AIS

:::::
SMB

::
at

:::
the

:::::
lower

:::
end

:::
of

:::
the

::::::
overall CMIP5 , project 1.30 cm, 3.22 cm, and 5.05 cm of GMSL rise buffering

in
::::::::::
interquartile

:::::
range

::
in

::::
trend

::
is
::
in

:::::::
contrast

::
to

::::::::::::::::::
Palerme et al. (2017)

:::
who

::::::
found

:::
that,

:::::::::
especially

::::::::::
considering RCPs 2.6 ,

:::
and

:
4.5,

and 8.5, respectively
::
the

:::::::
CMIP5

::::::
models

::::
that

::::
best

:::::::
captured

:::::::
snowfall

:::::::
change

::::
rates

::::::
tended

::
to

::::::
predict

::::::
higher

::::::::
snowfall

::::
rates

::::
into

::
the

::::
21st

:::::::
century. Additionally, model trends were refined to 0.9 ± 0.1

::::
0.47

::
to

::::
2.45 Gt yr−2 for RCP2.6, 1.9 ± 1.0

::::
1.44

::
to

::::
2.88480

Gt yr−2 for RCP4.5, and 3.8 ± 1.8
:::
3.06

::
to
:::::

4.63 Gt yr−2 for RCP8.5. Comparing the projected change in SMB per degree

warming between the emission scenarios gives median sensitivities of 64 ± 80 Gt ◦C
::
K−1, 57 ± 33 Gt ◦C

:
K−1, and 78 ± 15

Gt ◦C
:
K−1 for RCPs 2.6, 4.5, and 8.5, respectively, for the best scoring models. Combined, these data tell us that for stronger

emission scenarios , the AIS SMB response will be stronger in both magnitude and trend.

::::::::
However,

::::
these

::::::
results

:::
are

:::
not

:::::::::
statistically

:::::::::::
significantly

:::::::
different

:::::
from

:::
one

::::::
another

::::::
across

::::::
forcing

::::::::
scenarios

:::
and

:::::::
indicate

::::
that485

::::
there

::
is

::
no

:::::::::
difference

::
in

:::
the

:::::::::
sensitivity

:::::::
response

::
to

:::::::
changes

::
in
::::::::::
temperature

::::::::
between

:::
the

::::
three

::::::
forcing

:::::::::
scenarios. Given that the

best performing models show lower AIS-integrated SMB values and trends compared to the entire CMIP5 spread indicates less

sea level rise mitigation from increasing SMB than is implied by looking at all CMIP5 models.

The major limitations of this work stem from the subjective selection of scoring criteria. While each model is scored based

on the same criteria, each criterion is chosen specifically to gauge model performance for capturing AIS SMB. As such, these490

criteria may be ill suited for looking at other variables and, thus, other metrics could yield very different results. Another

caveat of this work is that we are only capable of analyzing the CMIP6 models that have been released. As this analysis and

the release of CMIP6 are concurrent, this limits the number of models we can reasonably analyze due to time constraints.

Additional CMIP6 models may have different results and may skew the comparison between CMIP5 and CMIP6 significantly.

Similarly, due to the small number of CMIP6 models released at this point, using statistical analyses becomes moot as the top495

90% of models constitutes the single, best scoring model.
::::
One

::::
final

:::::
major

::::::
caveat

::::
with

:::
this

:::::
work

::
is

:::
the

::::::::
relatively

::::::
narrow

:::::
scope

::
of

:::
just

:::::::
looking

:
at
::::
AIS

:::::
SMB.

:::::::
Because

:::
we

::::::
refined

:::
our

::::::
criteria

::
at
:::
the

:::::
outset

:::
of

:::
our

:::::::::
experiment

::
to

:::::
solely

::::::
reflect

:::::
model

:::::::::::
performance

::::
with

:::::
regard

::
to

::::::::
capturing

:::::
SMB

:::
and

:::::
didn’t

::::::
include

:::::::
outside

:::::
factors

::::
like

:::::::
synoptic

:::::::
weather

:::::::
patterns,

:::
sea

:::
ice

::
or

:::
sea

::::::
surface

:::::::::
conditions

:::::::::::::::::
(Krinner et al. (2014)

:
;
:::::::::::::::
Kittel et al. (2018)

:
),
:::::
there

:::
are

:::::::::
potentially

::::
some

:::::
wider

::::::
model

:::::
biases

::::
that

:::
we

:::
are

::::::
missing

::::
that

:::::
could

:::::
affect

::::
SMB

::::::::::
projections.

::
In

:::
our

::::::::
analysis,

:::
we

:::::
make

::
the

:::::::::
significant

::::::::::
assumption

:::
that

:::
the

::::
past

::::::
ability

::
to

::::::
capture

:::::
SMB

::::::::
correlates

::
to

::::::
higher500

:::
skill

:::
in

::::::::
projecting

::::
AIS

:::::
SMB

::::
into

:::
the

::::::
future.

::::::::
However,

::::::
model

:::::
biases

:::
in

::::
some

:::
of

:::
the

:::::
larger

:::::::
physical

:::::::
drivers

:
–
::::
and

::::
how

:::::
those

:::::
biases

::::::
change

::::
into

:::
the

:::::
future

:
–
::::
will

::::::::::
significantly

::::::
impact

::::::
future

:::
AIS

:::::
SMB

::::::::
trajectory.
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Dear editor,

Thank you for reading over our paper and providing your initial feedback before sending this manuscript out to
the editors. We appreciate the work required to find reviewers and manage the review process. We have worked on the
revisions and to address what we feel were the most significant suggestions, we plan to do the following:

1. include the CESM-LENS project into our analysis to investigate the spread among ensemble members of a single
model

2. include the HighResMIP experiment from CMIP to investigate the impact that varying resolutions have on the
final scoring result

3. perform the suggested leave-one-out cross validation process to help identify which criterion/criteria is/are most
important for future projections

4. analyze the impact of using different masking regimes on, particularly, the AIS-integrated SMB mean value.

Item 4. here is in direct response to the editor’s initial comments wherein they inquired about the effect of using
model-specific masks as opposed to a common mask interpolated to the various grids. We feel that this is a very good
question and we want to make sure that it is addressed in our future revisions. All other revisions are explained in
detail below, with the original text in bold, the reviewer/editor comment in italics, and our response in green. We hope
that you approve of our plan and that we can move forward with applying these revisions.

Thank you for your consideration,

Tessa Gorte and co-authors.
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Editor

We interpolated an AIS mask (Shepherd et al., 2012) using the nearest sample grid point and applied it to all
data sets."
Please elaborate. Is it possible you include in your ice mask model grid cells that were not land ice in the original
model? If so, how could this affect your results?

We selected three CMIP5 models: GFDL ESM2M, HadGEM2 CC, and GISS R to represent low, medium, and
high overall scoring models. We applied to each model both the interpolated mask from Zwally et al. 2012 and from
the model output itself. We then calculated the resulting AIS-integrated SMB time series (fig. 1). For each model, the
Zwally interpolated mask results in a lower AIS-integrated mean value – a result that benefits models that overestimate
SMB – due, in large part, to the exclusion of ice shelves in this mask. For our work, we aim to derive the sea level
contribution of future SMB in CMIP models. Because SMB on ice shelves does not impact sea level, we find that the
logical choice to fulfill our objective is to use the Zwally interpolated mask.

Figure 1: Masking comparison of themodel mask in red/pink and the Zwally interpolatedmask in blue with overlapping
regions appear purple in the left column. Time series comparison of AIS-integrated SMBwith the model mask applied
in red and the Zwally interpolated mask applied in blue in the right column. The black line represents the reconstruction
AIS-integrated SMB with the uncertainty in grey. The area differential between the two model masks is displayed
in the upper right hand corner in the right column. Top GFDL ESM2M is a poor overall scoring model. Middle
HadGEM2 CC is a medium overall scoring model. Bottom GISS R is a good overall scoring model.

Reviewer #1

We thank the reviewer for their insightful and thorough feedback. We found these comments incredibly thought-
ful and helpful to ensuring that this paper is of the quality expected for the Cryosphere and the field at large. To address
some of the reviewers most major comments, we are reforming our EOF introduction, discussion, and analysis, adding
in Fig. 2 and eq. (1), and changing the way we are assessing the temporal variability criterion by switching to the
original reanalysis data set here.

Major
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"To score the time series magnitude, we assigned a score, x, for howmany x-times the reconstruction uncertainty
was required for the entire time series to be within the reconstruction uncertainty."
* I think you should reformulate this sentence in a more mathematical framework. What did you code? What is the
minimum value of your score, 0 or 1?
* if I understand well, you did max(abs(Model - obs))/(reconstruction uncertainty)? So you scaled the maximum
difference of model to obs with the reconstruction uncertainty? Why not using the RMSE scaled by the reconstruction
uncertainty?

Figure 2: Time series of the reconstructed AIS-integrated SMB time series (purple) with 1×, 21×, and 31× the
uncertainty in dark purple, medium purple, and light purple, respectively. Three model AIS-integrated SMB time
series, MPI ESMLR (green), IPSL CM5A LR (yellow), and BNUESM (cyan) have been plotted as well to demonstrate
different model scoring. MPI ESM LR is entirely captured within 1× the reconstruction uncertainty and, thus, receives
a score of 1. IPSL CM5A LR is entire captured within 2× the uncertainty so its score for this criterion is 2. BNU ESM
is fully captured within 7× the uncertainty.

At line 109, we changed "For example, if a model time series was fully captured within 2× the reconstruction
uncertainty, the model would receive a score of 2" to "the minimum possible score, then, is one, for a model who
represents SMB that fits entirely within 1× the reconstruction uncertainty." We have also included Fig. 2 with the
associated caption at line 110.

"involves finding what spatial SMB patterns explain the highest variance in the AIS integrated SMB time."
* are you sure this what EOF do? Is is not the variance of space-time SMB variability?
* time series (typo?)

At line 127, we have changed "EOF analysis, as applied to these annual data, involves finding what spatial SMB
patterns explain the highest variance in the AIS-integrated SMB time" to "EOF analysis maps the spatial pattern of
a variable associated with the highest temporal variance of another variable. As applied to these annual data, EOF
analysis maps the spatial pattern of sea level pressure associated to the highest variability in SMB integrated over the
AIS."

"To avoid manually sorting the top three modes of variability for all 53 models, we generated difference
maps between each of the top three reconstructed modes and each of the top three modes for each model:"
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* why do you do this only for the top 3 modes of each model and not e.g. the top 10?

At line 130, we added the text "The top three modes of variability explain roughly 76% of the total variance ex-
plained. The fourth mode explains only about 6% of the total variance and all other modes explain <5% of the total
variance. As such, we only include the top three modes in our analysis."

"We then sorted the top modes of variability for each model based on smallest difference"
* what do you call "the smallest difference"? Do you average absolute differences over the map? Do you compute a
RMSE?

From line 131 to line 133, we replaced "We then sorted the top modes of variability for each model based on
smallest difference thus giving the models the ’benefit of the doubt.’" with "For each grid point, we took the absolute
value of the difference between the model and the reconstruction. We then summed those differences to generate a
single number ("difference number") that represented the difference between the model and the reconstruction in terms
of spatial variability. Mathematically, this looks like:

difference number =
∑
lat

∑
lon

��reconstructionlat,lon −modellat,lon
�� (1)

Wedid this for all nine combinations ofmodel and reconstructionmaps for the top threemodes variability (model1:reconstruction1,
model1:reconstruction2, model1:reconstruction3, model2:reconstruction1, model2:reconstruction2, etc.). For recon-
struction mode 1 (reconstruction1), then, we matched which model mode best represented this spatial variability by
sorting the model modes based on the smallest difference number. We did this for each reconstruction mode (excluding
previously matched model modes) to sort the modes based on the smallest difference."

"After compiling scores for all five of the aforementioned scoring criteria, we normalized each set of scores
to be on a scale from one to ten to ensure that each criterion was equally weighted."
* So, if I understand well, you divide each criteria by the max of the criteria? This scaling is extremely sensitive to
outliars. You should consider scaling by the interquantile range or by the standard deviation of each of you criteria.

To address this point, we performed an analysis wherein we isolated the outliers for each criterion score and re-
moved them from consideration in the rescaling and retroactively assigned them a score of 10. This generated a score
range of 1 to 10 for all non-outlier models and a score of 10 for all outlier models for each of the five criteria. We
then took the average across the five criteria to generate the overall score for each model. Fig. 3 shows the overall
scores for CMIP5 using the original scoring metric on the left and the outlier-removal-based scoring on the right. The
final score of a few models did change and the mean overall score increased slightly, but the top 90th percentile and
bottom 10th percentile of models remained in the same order. We have changed our scoring metric to reflect this newer
approach. At line 142, we changed "After compiling scores for all five of the aforementioned scoring criteria, we
normalized each set of scores to be on a scale from one to ten to ensure that each criterion was equally weighted." to
"After compiling scores for all five of the aforementioned scoring criteria, we removed from consideration any outliers
and normalized each set of scores to be on a scale from one to ten to ensure that each criterion was equally weighted.
After this normalization, the outliers for any given criterion were retroactively assigned a score of ten for that criterion."

"To refine the scope of what we predict for SMB in the future, we used a subset of models that had a final
score in the top 10th percentile of CMIP5 and compared them to the entire scope of CMIP5"
* I am not sure it is a correct method. How much is your method sensitive to the number of models you keep? Why do
you use this "10th percentile" criteria? I think that 4 models is too little to compute a robust statistic. Is it statistically
correct to compare 4 members to 30 members? You should consider e.g. ensemble regression based on models’ scores
(Bracegirdle and Stephenson, 2012, doi: 10.1007/s00382-012-1330-3)

We appreciate the reviewer’s comment here. We have performed some analysis aimed at addressing the robust-
ness of choosing a small subset of models. At line 149, we included the text "We ran aMonte Carlo simulation in which
four random CMIP5 models were selected 100,000 times. Those 100,000 sets of four random scores were compared
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Figure 3: Caption

to the four best scoring model scores using a two-sided t-test. From this, we found that, to a 95% confidence level,
we can reject the null hypothesis that the four best scoring models are not statistically significantly different from any
random four CMIP5 models."

Figure 1.
* when I see the spatial pattern of trends in 1B and 1C, I wonder why you use a criteria for SMB-integrated values
instead of comparing spatial maps of trends? I think using spatial maps of trends would be more relevant.

In our analysis, we made this separation by first analyzing the AIS-integrated trends and variability, and then fo-
cus on the spatial pattern of variability, and how the trend is spatially variable, on sub-ice sheet scales using EOF
techniques. As Figure 5 shows, one of the dominant modes of variability in the reconstruction is reflective of the trend
shown in Figure 1B, and criteria 4 and 5 score the ability of the models to simulate that pattern.

"Looking at multiple time "slices" allows us to investigate if models capture the reconstructed SMB trends
for the whole time series compared to more recent decades. Here, we looked at three time slices: the entire
over-lapping time series from 1850-2000, the last century from 1900-2000, and the last 50 years from 1950-2000."
* I understand that simulating correctly the trends for 1950-2000 may be useful because it quantifies if the global
climate models are able to simulate correctly the response to anthropogenic forcing. However I don’t think that scoring
the trends over the century is useful for your purpose. Your uncertainty on century-scale trends is very small and I
wonder if it is not underestimated. It seems difficult to estimate century-scale internal variability from a 200 year
reconstruction in fact.

We appreciate this comment here regarding the long-term variability of SMB. There is a difficult balance, we feel, in
selecting the correct time scale for doing this trend analysis. As the reviewer points out, the last 50 years is useful
for quantifying the anthropogenic forcing, but the interannual variability over this time period makes for a very large
trend uncertainty. The century-length timescale loses this forced response aspect, but the trend uncertainty is greatly
reduced as the reviewer points out. To shore up some of the language regarding our trend uncertainty calculation,
from line 114 to line 118, we changed "The reconstructed trend uncertainties were calculated by performing a Monte
Carlo simulation assuming a normal distribution of SMB values centered around the reconstructed SMB value with
a standard deviation of the reconstruction uncertainty for each year. From those distributions, we generated 10,000
simulated SMB time series based on the reconstruction and calculated the trends for each. The standard deviation in
trend, then, is the reconstructed trend uncertainty" to "We performed a Monte Carlo simulation wherein we assumed
a normal distribution where the standard deviation of the distribution is equal to the reconstruction uncertainty of
possible SMB values for each year. We then created 10,000 potential SMB time series by choosing SMB values based
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on that normal distribution for each year and recalculated the trend for each of these time series. Our uncertainty, then,
was the standard deviation of this range of trends done in the same method as published byMedley & Thomas in 2019."
Additionally, at line 114, we included the text "The first two of these three time slices confirm the robustness of the
trends with longer periods for trend analysis. The last time slice, 1950-2000, allows us to view SMB in the context of
significant anthropogenic warming. However, the large interannual variability overwhelms the signal at shorter period
lengths, which results in large uncertainty bounds. By looking at several time slices, we ensure consistency between
the model and reconstruction over different intervals. It is equally important to confirm that pre-1950, the trends are
relatively small."

"All CMIP5 and CMIP6 models overestimate SMB variability. The CMIP5 and CMIP6 models range from
overestimates of 144% to 261% and 151% to 217% of the reconstruction standard deviation, respectively" * A
strong warning here. I have doubts on the reliability of the reconstruction for interannual variability. How does the
reconstruction interannual variability compare with the reanalyses variability for the common period? I suspect that
the annual accumulation signal extracted from ice cores is dampened.

We thank the reviewer for this comment. We performed further analysis on the reconstruction interannual vari-
ability and compared it to the original reanalysis interannual variability at the 53 ice core sites. Through this analysis,
we found that the reconstruction does, certainly, underrepresent interannual variability compared to the reanalysis by a
factor of about 1.7. As a result, we have used the original reanalysis product for the temporal variability criterion and
added to the text "For this criterion, we used the original MERRA-2 reanalysis precipitation minus evaporation data
(1980-2019). Likely due to sampling only 53 ice core sites, the reconstruction produced a relatively low variability
record. The reconstructed variability at any location can only be as large as the maximum variability in the ice cores.
Thus, undersampling regions of stronger interannual variability will dampen the variability signal in the reconstruction.
Analyses of the AIS-integrated SMB mean value and trend show that the reconstruction is generally in line with the
literature (?)."

"This dipole corresponds to variability in precipitation generated by variations in the track and strength
of the Amundsen Sea Low. The Amundsen Sea Low, which represents the pole of circulation variability in
Antarctica (Turner et al., 2013), is marked by high precipitation around the coast of the Antarctic Peninsula
(Grieger et al., 2016)."
* All this sentence is strange. It is more a discussion than a result.

At line 270, we have added a separate "Discussion" section and many parts of the EOF analysis discussion that
were in the results section have been moved here.

"The Amundsen Sea Low, which represents the pole of circulation variability in Antarctica"?
* What is a pole of circulation variability?

At line 205, we have changed "The Amundsen Sea Low, which represents the pole of circulation variability in
Antarctica ..." to "The Amundsen Sea Low, a dominant synoptic phenomenon that drives a significant amount of the
circulation variability in West Antarctica and on the Antarctic Peninsula..."

"The second mode of variability represents high variability in West Antarctica and the Antarctic Peninsula.
This could be caused by the topography in these regions which can induce large amounts of snowfall."
* I am not sure that you interpret the EOFs correctly. The spatial pattern of an EOF associated to its time series
explains to a certain amount of the space-time variability, but it does not mean that where the EOF spatial pattern is
high there is a high variability.
* " This could be caused by the topography in these regions which can induce large amounts of snowfall." I don’t
understand why?

We thank the reviewer for catching this misrepresentation of EOF analysis. The above statement is incorrect in
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that, high values in the EOF map do not indicate higher variability but rather how much variability that region explains.
At line 206, we have added "High values on the EOF map indicate regions that explain large amounts of the variability
in AIS SMB." From line 211 to line 213, we have change "The second mode of variability represents high variability
in West Antarctica and the Antarctic Peninsula. This could be caused by the topography in these regions which can
induce large amounts of snowfall" to "Looking at mode 2, previous work by Scott Hosking et al. (2013) and Turner et
al. (2012) (among others) have shown that variability in the Amundsen Sea Low is responsible for large amounts of
precipitation variability in West Antarctica and on the Antarctic Peninsula. Because this region dominates the overall
AIS precipitation signal (as East Antarctica sees little snowfall by comparison), a variable Amundsen Sea Low signal,
here, would explain the EOF pattern reflected in mode 2 of the reconstruction."

"By comparison, one of the better scoring models for the EOF map criterion, CMCC CM, also shows a
dipole between the Antarctic Peninsula and the Ross Sea region for the top mode as well as strong variance
signal around the Antarctic Peninsula for mode 2 and a quadrupolar pattern for mode 3."
* When looking at Fig. 5, EOF modes from the two climate models do not ressemble the reconstruction EOF modes,
even for the best performing model (row B). Maybe showing the patterns with the same sign as for the reconstruction
modes will help (multiply by -1 the climate model patterns). But still, they will remain very different. E.g. in row B
there is no high spot near Davis for EOF 3, and there is a large dipole in WAIS. Are you sure of your computation? If
yes, are you sure your analysis is relevant?
* What are the biases of the best scoring models for the large scale circulation fields (e.g. sea level pressure over
Southern Ocean) over the last 40 years?

To the reviewer’s first point, we have multiplied the appropriate model EOFs by -1 to make the comparison eas-
ier (fig. 4).

Figure 4: EOF analysis plots of the top 3 modes of variability for A the reconstruction, B a relatively high scoring
model (CMCC CM), and C a low scoring model (CESM1 WACCM).

Generally, though, we think that the main point here is not that the models match perfectly with the reconstruction
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EOF, but rather that it’s more about the general regional patterns than local phenomena. No model will perfectly
recreate the the regional specifics of the EOFs, nonetheless those on a more local scale, due to the fact that no model
is fully capable of perfectly recreating real world physical parameters. To the reviewer’s second point, while we find
this question interesting, we feel it is beyond the scope of this work which focuses on determining SMB performance
based on a select set of scoring criteria related to the Antarctic Ice Sheet proper.

Fig 9 and associated text : * The climate sensitivity for SMB must be shown in % K-1, because SMB varies ex-
ponentially with temperature. You should revise the end of section 4 with regard to climate sensitivities computed in %
K-1.
* Given the issues on the scoring and the relevance of selecting four models, the new version of the manuscript might
give different results.

At line 265 and 295, we have changed all instances of ◦C to ◦K . We have also changed fig. 9 to reflect SMB
changes per ◦K. Changing the temporal variability criterion did, in fact, result in a change in the top four scoring mod-
els. At line 197, we included the text "(For comparison, the reconstructed normalized and detrended SMB standard
deviation is about 2.9 Gt yr−1.)".

Minor
"Integrated over the grounded Antarctic ice sheet (AIS), the blowing snow and runoff terms are negligibly small
(Lenaerts et al., 2012a)."
* Drifting snow sublimation is still not well modeled and evaluated. You should reformulate, e.g. something like "we
neglect blowing snow and runoff and estimate SMB as precipitation minus sublimation"

From line 17 to line 18, we have changed the text from "Integrated over the grounded Antarctic ice sheet (AIS),
the blowing snow and runoff terms are negligibly small (?)" to "We neglect blowing snow and runoff and estimate
SMB as precipitation minus sublimation (?)."

"Over longer time scales"
* Which ones?

At line 22, we have changed "Over longer time scales..." to "Over longer (∼100-1000 year) time scales..."

"The strong regional variability suggests an important impact of variations in synoptic scale patterns around
the AIS (Fyke et al. (2017); Marshall et al. (2017))."
* It is known that synoptic scale patters drive the accumulation variability, reformulate, e.g. "Synoptic-scale variability
induces a strong regional variability of the SMB"

From line 29 to line 30, we have changed "The strong regional variability suggests an important impact of varia-
tions in synoptic scale patterns around the AIS (Fyke et al. (2017); Marshall et al. (2017))" to "Synoptic-scale
variability induces a strong regional variability of the SMB (Fyke et al. (2017); Marshall et al. (2017))".

"Additionally, as the atmosphere has been warming over large parts of the AIS and can hold more mois-
ture per the Clausius-Clapeyron relation, SMB is expected to show an overall increase"
* Previdi and Polvani (2016, https://iopscience.iop.org/article/10.1088/1748- 9326/11/9/094001) state that "the forced
SMB increase due to global warming in recent decades is unlikely to be detectable as a result of large natural SMB
variability". Your sentence is unclear and potentially wrong for the last decades. Modify and add references.

We thank the reviewer for catching this clunky language here. The point we were trying to make relates to fu-
ture SMB rather than that of the past. From line 31 to line 33, we have rewritten this sentence to reflect this more
accurately: "Additionally, as the atmosphere is projected to warm both globally and especially in the polar regions,
the atmosphere is expected to be able to hold more moisture per the Clausius-Clapeyron relation. As such, SMB
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is expected to show an overall increase. In recent decades, this forced SMB response is undetectable due to the
significant natural SMB variability undetectable due to the significant natural SMB variability (?). Teasing apart the
forced response from natural SMB variability requires longer SMB time series – on the order of centuries. In 2017,
Thomas et al. found no significant SMB trend over the last 1000 years. In 2019, however, Medley & Thomas found that,
over the past 200 years, there is a statistically significant SMB increase that can be derived from ice coremeasurements."

"but many of those models tend to overestimate annual precipitation values due to poor representation of
coastal topography"
* Are you sure it is because of the poor representation of coastal topography?

From line 38 to 39, we have changed the text from "...but many of those models tend to overestimate annual pre-
cipitation values due to poor representation of coastal topography" to "...but many of those models tend to overestimate
annual precipitation values likely due to poor representation of coastal topography as previous studies have shown this
to be a significant factor in how precipitation is represented of the AIS (?)."

"This allows the atmospheric moisture to penetrate too far inland and leads to excessive precipitation on
much of the grounded AIS, while underestimating precipitation nearby the coasts (Lenaerts et al. (2012b))."
* I did not read again this article, but it is about "Modeling drifting snow in Antarctica with a regional climate model:
1. Methods and model evaluation", so I am not sure it is the right paper to cite here? Do you have other references to
show that resolution is the most important factor for modelling Antarctic precipitation?

At line 41, we have changed the reference here to Palerme et al. (2017) to better reflect recent studies of Antarctic
precipitation patterns in climate models – including, specifically, CMIP5.

"Barthel et al. (2019) investigated the Ice Sheet Model Intercomparison Project version 6 to determine a
recommendation of which models to use for ice sheet model forcings based on best captured current Antarctic
climate relative to observations and their ability to project certain metrics into the future"
* It’s "Ice Sheet Model Intercomparison Project *for CMIP6*" and not "version 6" (in fact it’s version 1).
* Barthel et al. (2019) evaluate the global climat models based on their ability to capture the large scale circulation
around ice sheets compared to reanalyses. It is not "very similar" to your study because the "observation" they use
is well evaluated (reanalyses large scale fields after 1979) and they don’t use this criteria to constrain future projections.

Addressing the first point: at line 46, we have fixed this typo as follows: "Barthel et al. (2019) investigated the
Ice Sheet Model Intercomparison Project for CMIP6 to determine..." Addressing the second point, from line 48 to line
49: we haved rephrased this sentence to "The object of this paper is similar in that Barthel et al. (2019) use scoring
criteria to refine model selection specifically for ice sheet model forcing. Their work differs in that their criteria look
more at the large-scale circulation patterns around ice sheets and the data set to which they compare models consists
of large-scale fields reanalysis fields. Additionally, they don’t then use this subselection of models to constrain future
projections."

"To improve upon model estimates, several groups have combined ice core data with models to create spatio-
temporally robust SMB data sets (Monaghan et al. (2006), Thomas et al. (2017), Medley and Thomas (2019))."

This sentence has been moved to line 58 at the beginning of the SMB Reconstructions section.

"In this work, we leverage the availability of that new avenue for climate model evaluation of AIS SMB,
and compare the suite of CMIP5 and CMIP6 climate models to that new SMB reconstruction." * repetition of
the sentence P2 L50-52, merge the two.

From line 50 to 52, we have changed "These reconstructed data sets now allow for a new avenue to investigate
the ability of GCMs to capture SMB into the more distant past (?)" to "These reconstructed data sets now allow for
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a new avenue to investigate the ability of GCMs to capture SMB into the more distant past (?) – an avenue that we
leverage for climate model evaluation of AIS SMB to compare the suite of CMIP5 and CMIP6 climate models to this
new SMB reconstruction" and removed lines 54-55.

"they weighted each ice core spatially to generate the 200-year data set"
* give the period

At line 66, we have added "... the 200-year (1800-2000) data set."

"they calculated spatial sampling uncertainty is based on the RMSE"
* "they calculated spatial sampling uncertainty based on the RMSE"

Large parts of this section were removed for succinctness.

"Global climate models tend to show higher skill at representing interannual variability compared to regional
climate models (Medley and Thomas, 2019)."
* it is not what is said in Medley and Thomas, 2019. They say "Because of their aforementioned ability to reproduce
the interannual variability[17], which strengthens the weighting scheme, we used *global atmospheric reanalyses*
over regional climate models.". So this statement is for *reanalyses* compared to RCM only, and is based on [17]
Medley, B. et al. Airborne-radar and ice-core observations of annual snow accumulation over Thwaites Glacier, West
Antarctica confirm the spatiotemporal variability of global and regional atmospheric models. Geophys. Res. Lett. 40,
3649–3654 (2013).

We thank the reviewer for catching this error here. This is absolutely correct and we have removed the sentence
"Global climate models tend to show higher skill at representing interannual variability compared to regional climate
models (?)" at line 79. We have also adjusted the following sentence to "In this work, we use global climate models
due to their ability to project decades to centuries into the future. As such, the objective of this work is to guide the
selection of GCMs for ice sheet modelers to investigate the global impacts of changing ice sheets" to stress our other
main reasons for using global climate models for comparison.

"To get a comprehensive look at how well global climate models capture SMB, we compared the suite of
CMIP5 models to the reconstruction."
* and CMIP6?

At line 81, we have changed this sentence to "... we compared the suites of CMIP5 and CMIP6 models to the
reconstruction."

P4 L90-95
* I am not sure the detail of conversion of kg m-2 s-1 in Gt yr-1 is useful. Just saying that it is computed on the original
GCM grid is enough.

We have changed "We downloaded CMIP5 and CMIP6 precipitation and evaporation/sublimation data with monthly
resolution in units of kg m−2 s−1. After calculating SMB as precipitation - evaporation/sublimation, we converted
these to annual time scales and integrated them across the AIS using the Ice Sheet Mass Balance Inter-comparison
Exercise Team’s (IMBIE Team) AIS grounded ice sheet masks and units of Gt yr−1 by multiplying each grid cell by
its area, converting s−1 to yr−1, and converting kg to Gt (1 Gt = 1012 kg)?" to "We downloaded CMIP5 and CMIP6
precipitation and evaporation/sublimation data with monthly resolution and, after calculating SMB as precipitation
- evaporation/sublimation, converted an annual time scale and integrated across the AIS using the Ice Sheet Mass
Balance Inter-comparison Exercise Team’s (IMBIE Team) AIS grounded ice sheet mask."

P4 L99-100
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remove parentheses

From lines 99 to 100, we have removed the parentheses.

P4 L107: "the magnitude of the SMB time series"
* do youmean "the SMBmean value"? If yes it seems clearer forme to replace "magnitude" by "mean value" everywhere.

At lines 10, 66, 107, 108, 233, 241, 242, 248, 249, 251, and 297, we have changed "magnitude" to "mean value." At
line 107, we also included the text "... (mean value referring to the value obtained by integrating SMB over the entire
AIS)..." to define what is meant by mean value.

"To achieve this goal, we analyzed trends from 1850-2000, 1900-2000, and 1850-2000."
* typo
* how do you combine the 3 periods?

At line 114, we have changed the last time period to "1950-2000" to correct this typo.

"To score the time series variability, we detrended and normalized each time series to separate the SMB
trend from its absolute magnitude using:"
* I don’t understand "to separate the SMB trend from its absolute magnitude"

From line 119 to 120, we have changed "To score the time series variability, we detrended and normalized each
time series to separate the SMB trend from its absolute magnitude using:" to "For temporal variability, if a model
should greatly underestimate the mean value, for example, the variability about that mean value will also likely be
underestimated. To ensure that we are not double-counting the impact of SMB mean value, we calculate the variability
about the normalized time series. To detrend and normalize each time series, then, to separate the SMB variability
from its mean value, we performed the following analysis:"

"To do so, we performed an empirical orthogonal function (EOF) analysis"
* on annual data over 1850-2005(?)

At line 126, we added "on annual data from 1850-2005" after "... we performed an empirical orthogonal func-
tion (EOF) analysis..."

"By breaking this criterion down into two main factors, we were able to determine the models’ abilities to
accurately capture the modes of variability as well as how much variance each mode explained."
* what are the two main factors you are talking about?

At line 128, we expanded this sentence to include "By breaking this criterion down into two main factors, spatial
variability and variance explained, ..."

P5 L169 "All four of best scoring models are captured within the reconstructed uncertainty for the entire
150 year time series."
* After reading further I understood that the best scoring models are for the combination of criteria. I think you should
begin your result section by presenting the best scoring models (currently presented P10 and in the Figures’ legends)

At line 157, we have added the paragraph "The final overall scores are an average of all the scores from all five
criteria. After performing the analysis outlined in the Methods section the top 90th percentile overall scoring models
were determined to be GISS E2 H, GISS E2 R, MPI ESM LR, and MPI ESMMR. These four models have been added
in retroactively to figures 2-3 for comparison of their performance in each scoring criterion relative to the rest of the
CMIP model suites."
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"We weighted all scores from the five scoring criteria equally on a scale from 1 to 10 with lower scores in-
dicating better performance. The final score, then, is the sum of all the individual scores, which is renormalized
on a scale of 1 to 10 with lower scores still indicating better performance."
* repetition of P5 L141-143

From line 146 to line 147, we have removed the sentence "We weighted all scores from the five scoring criteria
equally on a scale from 1 to 10 with lower scores indicating better performance. The final score, then, is the sum of all
the individual scores, which is renormalized on a scale of 1 to 10 with lower scores still indicating better performance."

" The reconstructed AIS SMB averaged from 1801-2000 shows higher SMB values around the coastal ar-
eas, particularly in the Antarctic Peninsula and West Antarctic regions (Fig. 1A)."
* This is really the most basic feature of Antarctic SMB, this sentence is not useful

From lines 157 to 159, we have changed "The reconstructed AIS SMB averaged from 1801-2000 shows higher
SMB values around the coastal areas, particularly in the Antarctic Peninsula and West Antarctic regions (Fig. 1A).
The highest absolute SMB trends are around the coastal regions of East Antarctica and the Antarctic Peninsula (Fig.
1B)" to "Along with higher SMB values, the coastal regions of East Antarctica and the Antarctic Peninsula also show
the highest absolute SMB trends (Fig. 1B)."

Reviewer #2

We greatly appreciate the reviewer’s suggestions to add to the robustness of our study through the comparison across
ensemble members and resolutions within a single model very insightful. These are both very good suggestions that
will elevate the scientific quality of this paper. Additionally, we also thank the reviewer for the leave-one-out analysis
suggestion. This is not an approach we had considered taking. We also appreciate the references the reviewer listed to
help us add context to our study.

Overall, important aspects that are required include (among other things) utilizing the CMIP6 HighResMIP
experiments to assess resolution-related aspects, incorporating multiple ensemble members to assess the role
of internal variability and a more in-depth explanation, motivation and development (i.e. relative to other
literature) of the scoring method. Indeed one possibility would be to re-formulate the manuscript with a focus
on comparing scores across different resolutions in the CMIP6 HighResMIP experiments and less of a focus on
projections.

At line 270, we have added a "Discussion" section in which we have added the following text "The CESM Large
Ensemble (CESM-LENS) is an experiment wherein the Community Earth System Model Version 1 (CESM) is run 40
times with random temperature perturbations at the level of round-off error applied in 1920 (?). Because of its large
number of ensemble members, the CESM-LENS experiment is useful for quantifying the role of internal variability.
Only 35 of the original 40 ensemble members contain the necessary information for assessing AIS SMB. Figure 5
shows the final scores of the five CESM simulations that are included in the CMIP5 suite of models as well as the final
scores of the CESM-LENS experiment. The final scores for the CESM-LENS model runs are calculated the same way
for all model criteria except for AIS-integrated trend. Because these runs only differ after 1920, we only use the third
time slice (1950-2000) to assess the quality of trend reproduction.

The final scores of the five CMIP5 CESM model runs range from 3.99 to 9.74 while the final scores of the 35
CESM-LENS runs range from 1.32 to 5.96. Given that the scores range by 5.74 and 4.65 for the CMIP5 CESM runs
and the CESM-LENS runs, respectively, it is reasonable to conclude that internal variability plays as significant a role
in determining final score as model parameterizations.

A major caveat of this finding, though, is that the CESM-LENS runs and the reconstruction only overlap from
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1920-2000. This will likely most significantly impact the assessment of the trend and EOF analyses. With longer
model runs, the CESM-LENS ensemble members would likely deviate further from one another and exacerbate the
spread in their final scoring.

With that, internal variability plays a significant role in our AIS SMB assessment. Some models within the CMIP5
and CMIP6 frameworks, like CESM, have many ensemble members for certain parameterizations. However, not all
models – and even not all model parameterizations – have multiple ensemble members. As such, performing a direct
comparison of the models using the ensemble mean would not necessarily yield an accurate result as models with
more ensemble members would have their final score shifted significantly while the same is not true for models with
a single ensemble member. For considering using GCMs for AIS SMB analysis, then, we strongly suggest taking into
account the fact that internal variabiltity could be playing a strong role in some models final score and that the number
of ensemble members available should be considered along with the final score.

We have also added Fig. 5 to the supplementary material for reference.

Figure 5: Final scores of the five CESM models from CMIP5 compared to the CEMS-LENS simulations.

While we do appreciate the reviewer’s concern regarding model resolution, we feel that assessing the full High-
ResMIP is beyond the scope of this work. This model intercomparison project is comprised of not-fully-coupled
climate models and the historical data only dates back to 1950. As such, we feel that direct comparison with the entire
CMIP5 and CMIP6 suites would not accurately reflect a robust analysis. We have added a "Discussion" section at
line 270 with the text "The CMIP5 and CMIP6 models vary in resolution from rougly 0.75◦×0.75◦ to 3◦×3◦. Figure
6 shows a scatter plot of resolution versus total score. Resolution, here, is the latitudinal resolution multiplied by the
longitudinal resolution such that a model with latitude/longitude resolutions 0.9375◦/1.25◦ would have a resolution
of 1.1719◦. A linear regression yields a correlation of R = -0.40 with 95% confidence intervals of -0.62 and -0.17.
From this, there is a statistically significant negative correlation between resolution and total model score. This result
is further exemplified when looking at total scores from the same model run at different resolutions. CESM CAM5,
IPSL CM5AMR, MPI ESMMR, CESM2, CESM2WACCM, and MPI ESM2 HR all perform worse than their coarser
resolution counterparts – CESM CAM5 FV2, IPSL CM5A LR, MPI ESM LR, CESM2 FV2, CESM2 WACCM FV2,
and MPI ESM2 LR. Because so many models close to 1◦/1◦ resolution and there is large spread in these models’
final scores, we also divided the models into two groups, finer and coarser than 1.25◦/1.25◦, and performed the same
regression analysis. Figure 7 shows the coarser resolution models have a correlation of R = -0.14 with 95% confidence
intervals of -0.51 and 0.24 while finer resolution models have a correlation of R = -0.06 with 95% confidence intervals
of -0.38 and 0.26. From this, we conclude that there is no significant correlation between model resolution and total
score."
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We have also added Figures 6 and 7 to the supplementary material for reference.

Figure 6: A scatter plot of total score versus model resolution in lat×lon. The correlation is 0.45 and the variance is
0.21.

Figure 7: A scatter plot of total score versus model resolution in lat×lon. The correlation is 0.45 and the variance is
0.21.

Comparing GCMs with reconstructions: A major issue with comparing standard resolution GCMs and observa-
tions/reconstructions, is that full GCMs are not able to reproduce the detail required in regions of high precipitation.
Therefore a standard-resolution GCM that reproduces observed/reconstructed Antarctic-wide time-mean SMB is quite
possibly doing so for the wrong reasons. This therefore may not be the most appropriate model for projections. The
authors should utilize the HighResMIP dataset to determine the resolution dependence of participating models and
the potential implications this might have on model selection. This is relevant to all 5 of the criteria used (mean SMB,
SMB variability, SMB trends, modes of variability (EOF analysis) and variance explained by the modes). With regard
to the EOF analysis, from Figure 5 seems to suggest highly regionalized nature of patterns from the reconstructions.
Indeed, an assessment of natural variability is again crucial here in identifying uncertainty in comparing observations
and models.

At line 54, we changed "In this work, we leverage the availability of that new avenue for climate model evalua-
tion of AIS SMB, and compare the suite of CMIP5 and CMIP6 climate models to that new SMB reconstruction" to
"For this work, we investigate AIS SMB in GCMs. GCMs are, compared to RCMs, incredibly low resolution which,
thus, making it difficult for them to reproduce the detailed SMB response. RCMs have been shown to be more accurate
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in capturing AIS SMB ?, however, due to their high resolution, RCMs are also relatively computationally expensive to
run for long periods (∼100s of years). Because one of the goals of this paper is to investigate the future of SMB over
Antarctica, we analyze GCMs for their ability to simulate these long-term climate effects. As RCMs are by definition
regional, they need boundary forcings, which adds an additional layer of complexity and a source of uncertainty to
running RCMs into the long-term future. An additional reason we choose to analyze GCMs is simply to figure out
which GCMs perform best at capturing these SMB phenomena. There has been extensive work investigating SMB
in RCMs (?; ?; ?), but relatively little looking at GCMs. To investigate the global coupled response to future SMB
changes, one needs GCMs. As such, this work is meant to informmodelers who are concerned with global ramifications
of changing AIS SMB."

A lack of mechanistic explanation for why each of the 5 criteria are relevant for improving reliability of projec-
tions: Firstly the authors should outline the rationale for inclusion of each of the criteria and how they may potentially
improve reliability of projections. It is important to discuss this in the context of existing literatures. For example,
Krinner et al. (2014) found that future change in SMB was more associated with thermodynamic, rather than dynamic,
factors. Secondly the authors should consider the possibility of leave-one-out cross validation, whereby the real world
is can be replaced by each member of the model ensemble in turn to see whether evaluation against that model can
help improve predictions from that model. This can help to identify which criteria are most relevant in terms of future
projections.

We understand the reviewers comments here regarding the criteria selection process. This process went through
several iterations of internal review and revision. As the reviewer rightly points out, there is preexisting literature
investigating underlying thermodynamic processes that drive AIS SMB. However, we feel that our paper is different
from these earlier papers in that we are not trying to investigate a models ability to capture these drivers as much as
reproduce the actual reconstructed SMB record. We do, with our EOF analysis, check whether models are recreating
spatial SMB patterns of variability which, we feel, addresses the point as to whether the models are, on whole, doing
a sufficient job of recreating the physical SMB drivers. We do, however, feel that the reviewer also makes a valid point
that we could further justify the choices we made in selecting the criteria and cite more preexisting literature. As such,
we have also added to the text at the end of the introduction "We use criteria that look exclusively at SMB and not
its underlying causes. Several studies such as ? and ? have investigated the impacts of causes like thermodynamical
phenomena and sea ice extent on SMB, but, here, we are looking solely at a model’s ability to reproduce SMB without
necessarily capturing the exact root causes." We also appreciate the suggestion of the leave-one-out though we feel
that, since the criteria are all equally weighted, that no single criterion would have more or less of an impact on the
overall scoring. To that point, we have added to the supplemental material Fig. 8 which denotes the overall scores
of each CMIP5 model using a weighted scoring system (as we have) versus using an absolute scoring system. For
many models, the score did not change significantly. For the models where the score did change, scores decreasing by
switching to the absolute scoring system were almost completely offset by score increasing by switching. As a result,
the average overall score is roughly the same between the two scoring systems.

The methodological framework for model weighting: In addition to the criteria selected, the rationale for the method-
ology on model weighting needs to be carefully introduced and motivated. Indeed it is common for a model weighting
method to be developed initially in a separate paper and then applied to model output in subsequent papers. Specific
suggestions are: Firstly the authors need to bring in more of the previous substantial literature on model weighting.
Agosta et al. (2015) use a Climate Prediction Index approach which, as I understand it, draws from probability theory
and the probability that observations and models may agree (this goes back to Murphy et al., 2014). There are also
detection and attribution approaches, which use past trends to scale future projections and should be mentioned. What
is the advantage of the approach used in this discussion paper? Secondly, the authors should consider the implications
of situations where the reconstruction uncertainty is small. In the extreme case where it approaches zero, in general
models would be many multiples of this uncertainty range away from the reconstruction. How is/would this be handled
in terms of relative weighting across different criteria? Thirdly, the method needs to be described more clearly and is
in fact difficult to fully evaluate. The whole section needs to be improved and I have just identified one example starting
on line 109. Specifically the text: “if a model time series was fully captured within 2× the reconstruction uncertainty,
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Figure 8: CMIP5 model scores using a weighted scoring system (light green) versus an absolute scoring system (dark
blue).

the model would receive a score of 2”. I could not find a clear definition of “reconstruction uncertainty”. This exact
term is only referred to once in the preceding text on line 69. Is it the same as the “total uncertainty” mentioned on
lines 72/73? If so, how does the spatial and temporal information map of total uncertainty map onto the AIS-integrated
SMB? In the same paragraph it is not clear what is meant by “model time series fully captured”? Does this mean that
even extreme years in the model time series are considered? My recommendation is to write out these score criteria as
equations to make it easier for the reader to understand and assess them.

In regards to the point wherein the reconstruction uncertainty approaches zero, if this is the case, then all the models
would score highly on this criterion, that is correct. However, after doing the initial scoring, each criterion score spread
is normalized to a scale ranging from 1 to 10. As such, all scoring criteria are weighted equally. We realize that this
needs to be expanded upon in the text, and so we shall be sure to include a more detailed description of this process
to alleviate further confusion. We agree with the reviewers recommendation for added clarity in the text regarding the
scoring process. We have added Fig. 2 as well as several equations for relevant criteria to help illustrate the process
which, ideally, will offer much more insight into the process.

The role of internal climate variability in trend and spatial EOF analysis: The potential role of internal climate
variability in evaluating trends is not mentioned, but could be very important. This could be very important for 50-year
trends and the spatial EOF patterns. The authors should test the possible role of internal variability by assessing
climate models with multiple ensemble members of their historical runs.
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To address a very valid comment by the reviewer earlier, at line 270, we have added a "Discussion" section with
the text "The CESM Large Ensemble (CESM-LENS) is an experiment wherein the Community Earth System Model
Version 1 (CESM) is run 40 times with random temperature perturbations at the level of round-off error applied in
1920 (?). Because of its large number of ensemble members, the CESM-LENS experiment is useful for quantifying
the role of internal variability. Only 35 of the original 40 ensemble members contain the necessary information for
assessing AIS SMB. Figure 4 in Supplementary shows the final scores of the five CESM simulations that are included
in the CMIP5 suite of models as well as the final scores of the CESM-LENS experiment. The final scores for the
CESM-LENS model runs are calculated the same way for all model criteria except for AIS-integrated trend. Because
these runs only differ after 1920, we only use the third time slice (1950-2000) to assess the quality of trend reproduction.

The final scores of the five CMIP5 CESM model runs range from 3.99 to 9.74 while the final scores of the 35
CESM-LENS runs range from 1.32 to 5.96. Given that the scores range by 5.74 and 4.65 for the CMIP5 CESM runs
and the CESM-LENS runs, respectively, it is reasonable to conclude that internal variability plays as significant a role
in determining final score as do model parameterizations.

A major caveat of this finding, though, is that the CESM-LENS runs and the reconstruction only overlap from
1920-2000. This will likely most significantly impact the assessment of the trend and EOF analyses.

With that, internal variability plays a significant role in our AIS SMB assessment. Some models within the CMIP5
and CMIP6 frameworks, such as CESM1-CAM5, have many ensemble members. However, not all models – and even
not all model versions – have multiple ensemble members. As such, performing a direct comparison of the models
using the ensemble mean would not necessarily yield an accurate result as models with more ensemble members would
have their final score shifted significantly while the same is not true for models with a single ensemble member. For
considering using GCMs for AIS SMB analysis, then, we strongly suggest taking into account the fact that internal
variability could be playing a strong role in some models final score, and that the number of ensemble members
available should be considered along with the final score.

Final model selection: The final selection of 4 CMIP5 models for projections should be compared and contrasted
with related studies, Agosta et al., (2015) and Barthel et al. (2020). The reasons for, and implications of, differences
should be discussed. What is the significance of the smaller spread across these four models. They come from only two
model centers (GISS and MPI). Such close links calls into question the statistical significance of spread across models
from just two groups. This could be small or large by chance.

Starting at line 275, we have added "Using this scoring system, we found that the top 90th percentile models were GISS
H CC, GISS R CC, GISS R, MPI ESM LR,MPI ESMMR, andMPI ESM P of CMIP5 and CESM FV2 andMPI ESM2
LR of CMIP6. A similar study in ? found ACCESS1-3, ACCESS1-0, CESM BGC, CESM CAM5, NorESM1-M, and
EC-Earth to most accurately capture SMB from the reanalysis product, ERA-Interim. They focused their investigation
into more atmospheric and oceanic dynamics (sea ice extent, sea surface temperature, sea surface pressure, precipitable
water, 850 hPa temperature) and were comparing models directly to a reanalysis product. ?, another study with a
similar goal of analyzing SMB performance among GCMs selected CCSM4, MIROC ESM CHEM, and NorESM1-M
as their top three performing models for Antarctica. They ruled out both the GISS and MPI modeling groups due to
their initial selection criteria and were also looking more at the impacts thermodynamical processes on SMB. "

Impacts of wider factors on projections (e.g. conditions over the Southern Ocean): Another major caveat with
the SMB-focused model evaluation is that wider model biases that are known to be important for projections, such
sea-surface conditions surrounding Antarctica and hemispheric-scale atmospheric circulate biases, could have an
effect on projections (e.g. Krinner et al., 2014; Kittel et al., 2018). The authors do acknowledge this, but don’t make
implications of differences clear. Could it be that the results of this study should be interpreted alongside other studies?

We appreciate the reviewer’s comment here that we should include more of this literature to provide context to
our experiment. Acknowledging these biases is important for providing a complete picture to the reader as well as
putting into context the limitations of this work. At line 307, we have added "One final major caveat with this work is
the relatively narrow scope of just looking at AIS SMB. Because we refined our criteria at the outset of our experiment
to solely reflect model performance with regard to capturing SMB and didn’t include outside factors like synoptic
weather patterns, sea ice or sea surface conditions (?; ?), there are potentially some wider model biases that we are
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missing that could affect SMB projections. In our analysis, we make the significant assumption that the past ability
to capture SMB correlates to higher skill in projecting AIS SMB into the future. However, model biases in some of
the larger physical drivers – and how those biases change into the future – will significantly impact future AIS SMB
trajectory."

Inter-annual variability in GCMs and regional models: On line 79 it is stated that “Global climate models tend
to show higher skill at representing interannual variability compared to regional climate models (Medley and Thomas,
2019)”. It is not clear to me why this should be since regional models derive their variability from global models. It is
also then notable that all CMIP5/6 models over-estimate SMB variability by so much (line 197). An explanation needs
to be provided for this, or at least a discussion of the point.

This is a misinterpretation on our part here. Medley & Thomas point out that global atmospheric reanalyses show
higher skill than regional models in capturing interannual variability. We have removed this statement and replaced it
with further justification for the use of GCMs at line 79: "For this work, we investigate AIS SMB in GCMs. GCMs are,
compared to RCMs, incredibly low resolution which, thus, making it difficult for them to reproduce the detailed SMB
response. RCMs have been shown to be more accurate in capturing AIS SMB ?, however, due to their high resolution,
RCMs are also relatively computationally expensive to run for long periods (∼100s of years). Because one of the goals
of this paper is to investigate the future of SMB over Antarctica, we analyze GCMs for their ability to simulate these
long-term climate effects. Additionally, as RCMs are by definition regional, they need boundary forcings adding an
additional layer of complexity to running the models into the future for century-length timescales. An additional we
analyze GCMs is simply to figure out which GCMs perform best at capturing these SMB phenomena. There has been
extensive work investigating SMB in RCMs (?; ?; ?), but relatively little looking at GCMs. To investigate the global
coupled response to future SMB changes, one needs GCMs. As such, this work is meant to inform modelers who are
concerned with global ramifications of changing AIS SMB. To get a comprehensive look at how well global climate
models capture SMB, we compared the suites of CMIP5 and CMIP6 models to the reconstruction. We use criteria that
look exclusively at SMB and not its underlying causes. Several studies such as ? and ? have investigated the impacts
of causes like thermodynamical phenomena and sea ice extent on SMB, but, here, we are looking solely at a model’s
ability to reproduce SMB without necessarily capturing the exact root causes." Additionally, we have done further
analysis on the reconstruction interannual variability and found that the reconstruction process dampens the actual
SMB interannual variability signal by a factor of about 1.7 compared to the original reanalysis P-E data. Our analysis
shows that this is predominantly owing to under-sampling of highly variable ice cores in selection process. As a result,
for this criterion, we are now using the original reanalysis data and make a strong note about the interannual variability
issues in the reconstruction. At line , we changed "To score the time series variability, we detrended and normalized
each time series to separate the SMB trend from its absolute magnitude using:" to "For temporal variability, if a model
should greatly underestimate the mean value, for example, the variability about that mean value will also likely be
underestimated. To ensure that we are not double-counting the impact of SMB mean value, we calculate the variability
about the normalized time series. To detrend and normalize each time series, then, to separate the SMB variability
from its mean value, we performed the following analysis: ...". With regards to global reanalysis models, though,
Medley et al. (2013) did find that global reanalyses exhibited higher skill at reproducing interannual variability than the
Regional Climate Model RACMO2. Further analysis revealed that the lack of upper atmosphere constraint allowed the
weather to deviate too far from the driving reanalysis. Van de Berg & Medley (2016) determined that applying upper
air relaxation within the RCM provided the necessary constraint and significantly improved the relationship between
RCM and observations. Thus, RCMs that use upper air relaxation typically exhibit higher skill in reproducing the
interannual variability, so often there is a range of skill depending on how much freedom the RCM is given to deviate
from reanalysis forcing.

Reviewer #3

We thanks the reviewer for providing a lot of thoughtful insight and asking a lot of very good questions. To ad-
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dress the predominant remarks, here, we will make the necessary adjustments to the wording to make the paper more
accurate and comprehensible. We have also added Fig. 2 and eq. (1) to help with this process. Additionally, we would
like to thank the reviewer for their helpful comments on figure adjustments. We appreciate how important for overall
comprehension good figures are and we will strive to make ours as palatable as possible.

Section 2.1 SMB reconstructions:
This section summarizes the methods used byMedley & Thomas in creating their ice-core derived SMB reconstructions.
I found that I was confused by how these were created, as if all the details might be correct but without the “big picture”
context. Once I read the abstract for Medley & Thomas, however, I understood. This section can be re-written (and
shortened) to better summarize the reconstructions. If the reader wants all the details of the SMB reconstruction,
he/she can refer to Medley & Thomas for that.

From line 58 to 78, we have changed "In this paper, we use the AIS SMB reconstruction generated by Medley &
Thomas (2019) ... and refer to it as “reconstruction” to "In this paper, we use the AIS SMB reconstruction generated
by ?. The authors synthesize SMB time series from an extensive ice-core database with reanalysis-derived spatial
coherence patterns to generate a continent-wide AIS SMB data set. While ? compared three reanalysis products, they
also show that MERRA-2 performed better than the other two reconstructed products in matching observations. As
such, we will use theMERRA-2 based data set as a proxy for all three reconstructions and refer to it as "reconstruction."

Section 4 Results Lines 167-168: “The interquartile ranges for CMIP5 and CMIP6 are 1727 to 2282 Gt
yr1 and 1728 to 2229 Gt yr1, respectively, with means of 1940 Gt yr1 and 2115 Gt yr1, respectively.”
What is the take away? For example, something like “CMIP5 models tend to have a slightly smaller mean AIS SMB
with a larger range than the CMIP6 models (Table XXX)”. The figure shows this, and a table could present the
quantitative results for any readers that want them. Similarly for the other results throughout this section.

Section 4 results: AIS SMB sensitivities to changes in temperature: Lines 294-297: “Comparing the pro-
jected change in SMB per degree warming between the emission scenarios gives median sensitivities of 64±80
Gt C1, 57±33 Gt C1, and 78±15 Gt C for RCPs 2.6, 4.5, and 8.5, respectively, for the best scoring models.
Combined, these data tell us that for stronger emission scenarios, the AIS SMB response will be stronger in both
magnitude and trend.”
The results do not back up this claim. The mean sensitivity for RCP4.5 is lower than that for the RCP2.6! Furthermore,
there is no indication here if the differences in the means are statistically significant or not. If model sensitivities of
AIS SMB-Temp change with different scenarios – this is a very interesting result (and needs to be backed up better if it
is your result – with some explanation to the apparent contradiction of the RCP4.5 having the lowest sensitivity – or
maybe there’s a typo?). If so, some discussion about what mechanism might explain this. For example, AIS SMB is
driven by precipitation and evaporation/sublimation. Are there processes in changing climate that might drive changes
in precipitation in addition to changes in temperature? Changes in synoptic weather patterns? Or? Do sensitivities
of AIS-SMB to changes in CO2 remain same in all scenarios or do these change? (or do changes in CO2 combine
temperature and precipitation sensitivities into “one” proxy for these?)

We would like to apologize here. The reviewer is correct in that the results are not statistically different between
the three forcing scenarios. This text is based off an early result that had since been updated in the figure and we
failed to update the text as a result. To reflect the updated figure, from line 294 to 297, we have changed "Comparing
the projected change in SMB per degree warming between the emission scenarios gives median sensitivities of 64
± 80 Gt ◦C−1, 57 ± 33 Gt ◦C−1, and 78 ± 15 Gt ◦C−1 for RCPs 2.6, 4.5, and 8.5, respectively, for the best scoring
models. Combined, these data tell us that for stronger emission scenarios, the AIS SMB response will be stronger in
both magnitude and trend" to "Comparing the projected change in SMB per degree warming between the emission
scenarios gives median sensitivities of 64 ± 80 Gt ◦K−1, 57 ± 33 Gt ◦K−1, and 78 ± 15 Gt ◦K−1 for RCPs 2.6, 4.5, and
8.5, respectively, for the best scoring models. These results are not statistically significantly different from one another
across forcing scenarios and indicate that there is no difference in the sensitivity response to changes in temperature
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between the three forcing scenarios." Additionally, from line 261 to line 265, we have changed "Box plots of modeled
SMB sensitivity to changes in temperature (i.e. how much SMB will change per degree warming) show that SMB
responds differently in different warming scenarios (Fig. ??). The CMIP5 models project that each warming scenario
with higher CO2 concentrations will see greater SMB sensitivity to increases in temperature than those with lower CO2
concentrations. While the ranges differ from scenario to scenario, the projected sensitivity medians for RCPs 2.6, 4.5,
and 8.5 are 101.7 Gt ◦C−1, 111.2 Gt ◦C−1, and 128.2 Gt ◦C−1, respectively" to "Box plots of modeled SMB sensitivity
to changes in temperature (i.e. how much SMB will change per degree warming) are shown in Fig. ??. The projected
sensitivity medians for RCPs 2.6, 4.5, and 8.5 are 101.7 Gt ◦C−1, 111.2 Gt ◦C−1, and 128.2 Gt ◦C−1, respectively.
These results are not statistically significantly different from one another indicating no significant response by SMB to
increased warming scenarios."

Line 71 “calculated spatial sampling uncertainty is based”
should be “calculated spatial sampling uncertainty based”

Large parts of this section were removed for succinctness.

lines 84-87
How many CMIP6 models? Later it is claimed that there were so few CMIP6 models available that statistics are not
robust for that set...yet the numbers here (53 models, 28 independent and of these 30/19 are CMIP5 which leaves at
least 20 CMIP6?).

We have updated the number of CMIP6 models to 40 which more accurately reflects the current scope of the project.
Numbers and references to this data set have been changed throughout the manuscript.

Line 114
4 Repeat 1850-2000...think you mean 1950-2000 in second instance

At line 114, we have corrected this typo to "1950-2000."

Language is a bit cumbersome and over the top in 3.1 (AIS-integrated SMB criteria)

We have rewritten large portions of section 3.1 to improve comprehensibility. We have added to the text "To score
the time series mean value, we assigned a score, x, for how many x-times the reconstruction uncertainty was required
for the entire time series to be within the reconstruction uncertainty. The minimum possible score, then, is one, for a
model that represents SMB within 1× the reconstruction uncertainty. Fig. 2 illustrates that a model that fits entirely
within 1× the reconstruction uncertainty (dark purple) – MPI ESM LR – would receive a score of 1. A model that fits
within 2× the reconstruction uncertainty (medium purple) – IPSL CM5A LR – would receive a score of 2. A poorer
scoring model, BNU ESM, would receive a score of 6."

Got lost again in 3.2 Maybe a couple equations and a map (example) would help. I have the sense it’s pretty
straightforward but description overcomplicates

To clarify the wording in this section, from line 131 to line 133, we replaced "We then sorted the top modes of
variability for each model based on smallest difference thus giving the models the ’benefit of the doubt.’" with "For
each grid point, we took the absolute value of the difference between the model and the reconstruction. We then
summed those differences to generate a single number ("difference number") that represented the difference between
the model and the reconstruction in terms of spatial variability. Mathematically, this looks like:

difference number =
∑
lat

∑
lon

��reconstructionlat,lon −modellat,lon
�� (2)

Wedid this for all nine combinations ofmodel and reconstructionmaps for the top threemodes variability (model1:reconstruction1,
model1:reconstruction2, model1:reconstruction3, model2:reconstruction1, model2:reconstruction2, etc.). For recon-
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Figure 9: Map of the AIS.

struction mode 1 (reconstruction1), then, we matched which model mode best represented this spatial variability by
sorting the model modes based on the smallest difference number. We did this for each reconstruction mode (excluding
previously matched model modes) to sort the modes based on the smallest difference."

Figure 2
Can’t see dots in Figure 2B (they overlap too much?)

All markers denoting the top scoring models have been changed to a single color throughout the figures. While
this means that one cannot differentiate these models from one another, we feel is allows for easier overall readability
of the figures. Additionally, in the appropriate figure captions, we have added wording that addresses the fact that some
markers may be close to, if not entirely, overlapping.

Line 190
Just because there are fewer models does not necessarily imply that the spread in trends will be less! For example,
one could pick CMIP5 models and only use a subsampling and still get same spread if the models selected have large
range in trends.

As we have added numerous additional CMIP6 models, this section has been rewritten to reflect the updated analysis.

Line 200
Not only melt and discharge distributed unequally, but also accumulation (precipitation)!

At line 200, we have changed this sentence to "... spatial variations in SMB are also important in AIS SMB rep-
resentation in models as precipitation, melt, and discharge are not distributed equally."

Lines 213-216
If using place names, have a map showing where these are

We have added to the supplementary Fig. 9.
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Lines 235-236
already defined RCP earlier, no need to do so again here...

At lines 235 to 236, we have removed "Future CMIP5 projections are created in the context of warming scenar-
ios called Representative Concentration Pathways (RCPs). The RCPs we used to investigate SMB projections are
RCP2.6, RCP4.5, and RCP8.5 which have progressively higher CO2 concentration projections and, thus, higher pro-
jected global warming."

Conclusions
The recent and similar work of Barthel et al (2019) is mentioned (lines 45-49). Bartel et al was addressing a related
albeit slightly different question (than this submission), namely “which climate models would best be used to force
a stand-alone ice sheet model?” and compared climate model output to atmospheric reanalysis products. Did their
suggestions (best models for stand alone Antarctic Ice Sheet forcing) differ than yours (best models for AIS SMB in the
coupled system) or were they similar? Why do you think that is? (perhaps in conclusions – and only need a couple of
sentences). Essentially tie in the results of this submission to other current related results.

We have added to our conclusion section "A similar study in ? found ACCESS1-3, ACCESS1-0, CESM BGC,
CESMCAM5, NorESM1-M, and EC-Earth to most accurately capture AIS sea level pressure, 850 hPa air temperature,
precipitable water, and ocean conditions – all of which impact AIS SMB to varying degrees. They focused their
investigation into more atmospheric and oceanic dynamics (sea ice extent, sea surface temperature, sea surface pres-
sure, precipitable water, 850 hPa temperature) and were comparing models directly to a reanalysis product. ?, another
study with a similar goal of analyzing SMB performance among GCMs selected CCSM4, MIROC ESM CHEM, and
NorESM1-M as their top three performing models for Antarctica. They ruled out both the GISS and MPI modeling
groups due to their initial selection criteria and were also looking more at the impacts thermodynamical processes
on SMB." We feel this adds context from two recent, prominent studies with similar characteristics in approach and
overarching objective.

Figure 4
condense A-D onto one figure

We have combined all of the top scoring models into one panel so there are currently 3 panels: one for the CMIP5
variability distributions, one for the CMIP6 variability distributions, and one for the distribution of standard deviations.

Figure 5
Reconstruction EOFs are low enough that on scale plotted hard to see patterns. Recommend a different scale for
reconstruction (and point out in figure caption). Also to help clarify, only need one legend for reconstruction (if you
re-scale) and one for 6 panels of model (do not need 9 identical legend bars - extraneous). This will simplify.

We have reduced the scale on the reconstruction EOF by a factor of three. We have also made note of the change in the
figure caption.

Figure 6
Yellow x’s very difficult to see. Make more visible.

We have changed the yellow x’s to red outlines to make the top scoring models more visible.

Figure 7
Hard to see differences from different scenarios (and until 2006 they are identical). Find a way to combine these three
panels into one – this will give same information and also new, comparative information
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We agree that it is a bit difficult to see accurately the differences between the scenarios in this figure. We have
tried multiple ways to convey this information succinctly in a single frame to alleviate this issue but have repeatedly
found that our attempts to do so only reduce the readability of the figure. For instance, combining the figure as is into
one frame makes it such that the larger model spread (for all models) are difficult – if not impossible – to differentiate
due simply to the fact that there is significant spread amongst all the models in every forcing scenario. We can, however,
try to add a frame that just looks at the four best models in each of the forcing scenarios to be able to make direct
comparison among a smaller subset of models.
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