Á. Ayala et al.: Glacier runoff variations since 1955

Table 1. Parameters in TOPKAPI-ETH's snow and ice modules for the 1955–2016 time period. The tested ranges of some parameters are given in parentheses.

Module	Parameter	Symbol	Calibrated value		Units	References for the selected values and ranges
			Simulation		_	
			Individual glaciers	Maipo River basin	-	
Snow accumu- lation and gravitational transport	Snow and rain threshold	P _T	0 (0–3)	2 (0–3)	°C	Typical ranges for this variable
	Snow holding capacity parameter 1	SRF _C	250	250	m	Ragettli and Pellicciotti (2012)
	Snow holding capacity parameter 2	SRF _µ	0.172	0.172	_	_
ETI model	Shortwave radiation factor	SRF	0.002–0.014	0.009 (0.002–0.014)	$\frac{\text{mm m}^2}{\text{h}^{-1} \text{W}^{-2}}$	Pellicciotti et al. (2008), Raget- tli and Pellicciotti ^{TIS7} , Ayala et al. (2016, 2017b)
	Air temperature factor	TF	0–0.4 (0.01–0.05)	0.01 (0.01–0.05)	mm h ^{−1} ° <mark>C</mark>	
	Air temperature threshold for the onset of melt	T _T	0 (0-3)	1 (0–3)	°C	
Sub-debris ice melt	Shortwave radiation factor	SRF _d	0.25× SRF <mark>TS8</mark>	_	$\frac{\text{mm m}^2}{\text{h}^{-1} \text{W}^{-2}}$	Ayala et al. (2016), Burger et al. (2019)
	Air temperature factor	TF _d	0.25×TFTS9	_	mm h ^{−1} ° <mark>C</mark>	-
	Albedo debris	$\alpha_{\rm debris}$	0.16	_		-
Surface albedo	Albedo of fresh snow	α1	0.83 (0.80–0.95)	0.90 (0.80–0.95)		Cuffey and Paterson (2010)
	Decay of snow albedo	α2	0.11	0.11		Brock et al. (2000), Ragettli and Pellicciotti (2012)
	Ice albedo	$\alpha_{\rm ice}$	0.3	_		Cuffey and Paterson (2010)

tainty of the geodetic mass balances are 3.2 and 1.2 m w.e. for the periods 1955–2000 and 2000–2003, respectively. In contrast to the model setup for the entire Maipo River basin, in this setup we do not perform any corrections to account for ⁵ sublimation or other mass removal apart from melt. However, as these models are calibrated on volume loss (thus including both losses by sublimation and melting), it can be assumed that glacier response is well captured, but the portioning of hydrological fluxes (sublimation versus runoff) is unconstrained. A summary of literature-derived and calibrated ¹⁰ parameters for the individual models is shown in Table 1. Within each model, melt factors for debris-covered areas are fixed to 25% of the values for debris-free areas. The 25% factor is estimated from the comparison between melt rates on debris-free and debris-covered sites on Piramide, Bello ¹⁵ and Yeso glaciers in the Estero del Yeso catchment (Ayala et al., 2016; Burger et al., 2019), a sub-catchment of the Maipo River basin.