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Abstract. Understanding the processes that govern ice shelf extent are of fundamental importance to improved estimates of

future sea-level rise. In present-day Antarctica, ice shelf extent is most commonly determined by the propagation of through-

cutting fractures called ice shelf rifts. Here, I present the first three-dimensional analysis of ice shelf rift propagation. I present a

linear elastic fracture mechanical (LEFM) description of rift propagation. The model predicts that rifts may be stabilized when

buoyant flexure results in contact at the tops of the near-tip rift walls. This stabilizing tendency may be overcome, however, by5

processes that act in the ice shelf margins. In particular, both marginal weakening and the advection of rifts into an ice tongue

are shown to be processes that may trigger rift propagation. Marginal shear stress is shown to be the determining factor that

governs these types of rift instability. I furthermore show that rift stability is closely related to the transition from uniaxial to

biaxial extension known as the compressive arch. Although the partial contact of rift walls is fundamentally a three-dimensional

process, I demonstrate that it may be parameterized within more numerically efficient two-dimensional calculations. This study10

provides a step towards a description of calving physics that is based in fracture mechanics.

Copyright statement.
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1 Introduction

The Antarctic ice sheet is projected to loose mass this century. Although the rates of mass loss over this timeframe are typically

projected to mirror recent rates, several types of more extreme ice sheet response to global climate forcing cannot presently be15

excluded (Pattyn et al., 2018). Perhaps the most prominent of these extreme changes is the retreat of the floating ice shelves

that fringe the Antarctic continent. Ice shelf retreat has been observed to occur gradually, i.e., over a period of years to decades

(MacGregor et al., 2012; Arndt et al., 2018), and also abruptly, i.e., over a period of weeks to months (Scambos et al., 2000;

Banwell et al., 2013). Although ice shelves themselves do not contribute to sea-level rise, they do act to buttress grounded ice

(Rignot et al., 2004; Scambos et al., 2004; Goldberg et al., 2009; Gudmundsson, 2013). For this reason, ice sheet mass and20

therefore global mean sea-level are closely connected to the extent and stability of ice shelves. Here, I examine the stability of

ice shelves with respect to the propagation of large through-cutting fractures called rifts.

The largest modern ice shelves exist in embayments. This basic observation has long prompted the notion that embayments

promote the existence of large stable ice shelves (Hughes, 1977; Thomas and Bentley, 1978; Sanderson, 1979; Rist et al.,

2002). Yet not all ice shelves fully fill the largest possible embayment. The Pine Island Glacier Ice Shelf, for example, does25

not presently fill the entire embayment between Bear Peninsula and Thurston Island; instead it fills the much smaller local

embayment of Pine Island Bay. Furthermore, analysis of sediment cores (Naish et al., 2009; Marcott et al., 2011) and iceberg

scour marks (Yokoyama et al., 2016) suggest that past ice shelves have waxed and waned in extent through ice age cycles.

Although embayments appear to stabilize ice shelves, it would therefore appear that some other process is responsible for

determining the size of a stable ice shelf within a given coastal geometry. The close relationship between the state of stress30

in an ice shelf and the ice shelf boundary conditions (Budd, 1966; Sanderson, 1979; MacAyeal, 1989) motivates investigation

into processes acting in ice shelf margins.

Ice shelf margins are the part of the ice shelf grounding zone that is roughly parallel to flow (see Fig. 1). The importance

of ice shelf margins is suggested by several observations, foremost among these being the observation of marginal weakening

prior to ice shelf collapse. Estimates of ice rheology based on the inversion of surface velocity fields show extensive marginal35

weakening prior to the collapse of the Larsen A (Doake et al., 1998) and Larsen B Ice Shelves (Vieli et al., 2006; Khazendar

et al., 2007). Although ice shelf collapse (i.e., total and rapid retreat) is a complex phenomenon that involves other processes

besides rift propagation (Banwell et al., 2013), rift propagation does appear to play a role in collapse. Glasser and Scambos

(2008) explicitly noted that marginal weakening immediately preceded rift propagation and eventual collapse on Larsen B.

Further observation of a relationship between ice shelf retreat, rifting, and marginal thinning has been noted in the Amundsen40

Sea Embayment (MacGregor et al., 2012) and Jakobshavn Isbrae, Greenland (Joughin et al., 2008). Motivated by these obser-

vations, a central question of this paper is, what is the precise mechanical relationship between ice shelf margins and ice shelf

rift propagation?

The main result of this paper is that marginal weakening can destabilize rift propagation. I begin by providing background on

the state of stress in an ice shelf in Sections 2. In Section 3 I describe three-dimensional elasticity calculations that are carried45

out using the finite element method and then post-processed to reveal fracture mechanical properties. A more precise statement

2



of the main result is then given in Section 4, where I also examine a simplified analytical treatment of the three-dimensional

calculations. I conclude by discussing the relationship between rift propagation, the compressive arch, rift-filling melange, and

ocean swell in Section 5.

2 Background50

I consider an ice shelf to be a buoyantly floating elastic plate of uniform thickness. Stress balance at the seaward-facing ice

front results in both a net bending moment and an in-plane horizontal membrane stress (Weertman, 1957; Reeh, 1968). The

vertically-averaged membrane stress is,

σm ≡
ρgh

2

(
1− ρ

ρw

)
. (1)

I use the ≡ symbol to denote a definition. The bending moment is given by,55

m0 ≡ ρgh3

12

[
3

(
ρ

ρw

)
− 2

(
ρ

ρw

)2

− 1

]
≡ φρgh

3

12
. (2)

In these expressions, ρ and ρw are the densities of ice and water and h is the ice thickness. Typical values of ρ/ρw = 0.90 give

φ= 0.08. The bending moment may also be expressed as a bending stress,

σb ≡
6m0

h2
= φ

ρgh

2
. (3)

The bending stress σb is the value of the rift-normal stress at the top of the ice shelf; it is also the maximum value of the60

rift-normal stress. The horizontal component of loading (Eq. 1) is commonly used as a boundary condition in numerical ice

flow models, whereas the bending moment is not typically applied in ice sheet models because its effects are confined to a

narrow boundary layer in the vicinity of the ice front (MacAyeal, 1989).

Rifts walls have the same ice-front boundary conditions as a seaward-facing ice front. The main difference between a

seaward-facing ice front and a rift wall is that it is possible for rift walls to come into contact. This contact is expected to occur65

at the top of the ice shelf and in the region near the rift tip, as illustrated in Fig. 1b. Indeed, De Rydt et al. (2018) recently

observed that a rift tip on the Brunt Ice Shelf was further advanced at depth than at the surface, suggesting the occurrence of

partial contact. I examine the partial contact of rift walls in Section 4. As an aspect of linear elastic fracture mechanics, fracture

wall contact is a well-studied topic (Tada et al., 2000, Chapter 1, Section C).

I use three-dimensional elasticity calculations combined with linear elastic fracture mechanics (LEFM) to examine the70

propagation of ice shelf rifts. Although a number of previous studies have examined ice shelf rifts using LEFM, no previous

study appears to have considered three-dimensional effects. Hulbe et al. (2010) calculated two-dimensional mixed mode (in-

plane opening and shearing) stress intensity factors and as a result was able to state a fracture condition as well as predict rift

propagation paths. Other ice shelf LEFM studies have mostly focused on propagation paths (Plate et al., 2012; Levermann

et al., 2012; Borstad et al., 2017) and near-tip deformation (Larour et al., 2004a, b).75

A final point of background concerns the relationship between the forces that drive fracture and the background ice flow. In

real ice shelves, the state of stress is constantly evolving due to the change in geometry brought about by ice flow. Previous
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Figure 1. A. Simplified geometry of an idealized rectangular ice shelf. B. Zoomed in view of an ice shelf rift tip showing how buoyancy-

driven rotation of the rift walls results in partial contact of the rift walls near the rift tip. Note that B. is drawn under the assumption that the

rift tip is at least several flexural gravity wavelengths away from the ice shelf margin so that no flexural interaction occurs between these two

regions.

studies have examined the relationship between ice flow and fracture in several ways. Hulbe et al. (2010) carried out viscous

flow calculations to constrain the state of stress in their elastic calculations. They then tuned elastic moduli and boundary

conditions in their elastic calculations to match the observed viscous stresses. Plate et al. (2012) parameterized a state of stress80

from a viscous flow model, but rather than tuning elastic moduli instead chose to introduce fictitious equivalent body forces.

Here, I consider the hypothesis that the forces that drive rift propagation are entirely described by the instantaneous ice shelf

geometry and boundary conditions. This hypothesis requires three-dimensional calculations in order to directly calculate –

rather than parameterize or approximate– the role of gravitational driving forces. I therefore continue to describe the details of

a three-dimensional elastic fracture model.85
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3 Mechanical Model

I begin this section by describing a three-dimensional elastic model of an ice shelf in which stresses and displacements are

calculated using the finite element method (Sections 3.1 and 3.2). I then describe a linear elastic fracture model which is closely

related to these elasticity calculations (Section 3.3).

3.1 Geometry90

I consider the idealized ice shelf geometry shown in Fig. 1. The ice shelf is square in map view (the x-y plane). The z axis

is defined so that the positive z axis points upwards and the bottom of the ice shelf is located at z = 0. The ice shelf has

horizontal dimensions Lx = Ly = 100 km and thickness h= 200 m. The ice shelf surface at y = 0 faces the ocean and the

surface at y = Ly faces the ice sheet. The surfaces at x= 0 and x= Lx are referred to as the ice shelf margins. A single rift is

located along the x axis at y =W . I treat two different general rift locations: marginal and central. These two rift locations are95

shown in Fig. 2. I hold the rift length fixed at L= 2.5 km long for the marginal rift and L= 5 km long for the central rift.

Geometrically, I model a rift as a tapered rectangular hole in the ice shelf. Fractures in three dimensions have a fracture tip

defined by a two-dimensional curve rather than a point. Although I refer to a rift tip for brevity, this term actually refers to a rift

tip curve. In the treatment presented here, the rift tip curve is taken to be a vertical straight line. The rift is uniformly 10 m wide

over most of its length. Simulations show negligible sensitivity to the choice of this width. Tapering is applied over a length100

equal to several widths (i.e., several tens of meters) near the rift tip.

3.2 Linear elasticity

I consider the equations of linear, homogeneous, isotropic, static, three-dimensional elasticity (Malvern, 1969),

∇ ·T′ =−ρg (4)

with total (Cauchy) stress tensor T′, ice density ρ, and gravitational acceleration g. Because I neglect any spatial variation in105

material parameters, my model does not include a firn layer.

I account for an initial hydrostatic stress in a manner following Cathles (2015) wherein the equations of elasticity are solved

for a perturbation stress tensor T defined as the total (Cauchy) stress tensor minus the initial hydrostatic pressure,

T≡T′− p0, (5)

with,110

p0 ≡ ρg(H − z) (6)

The perturbation stress tensor is necessary for the following physical reason. Without subtracting the initial overburden pres-

sure, the ice shelf experiences an initial volumetric contraction ∼ p0/K with bulk modulus K. This volumetric contraction

does not occur in real ice shelves because at time scales longer than the Maxwell time, ice is well approximated as being
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incompressible (MacAyeal, 1989). Note that the perturbation stress tensor is not equal to the deviatoric stress tensor defined as115

T′− p. This difference is important because the perturbation stress tensor accurately captures permissible, elastic volumetric

contraction, whereas the deviatoric stress tensor does not.

All three-dimensional elasticity calculations in this study are carried out with respect to this perturbation stress tensor. The

equations of motion are,

∇ ·T= 0 (7)120

Tij =Kδijεkk +2µ(εij + δijεkk/3), (8)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (9)

The first of these equations describes momentum balance which is derived by combining Eq. (5) and (6). Eq. (8) describes the

elastic constitutive relation (Hooke’s Law) with shear modulus µ= 3.6 GPa and Poisson’s ratio ν = 0.3. Although isotropic

elasticity only requires two elastic moduli, for convenience I use Young’s modulus E ≡ 2µ(1+ ν) and the bulk modulus125

K = E/[3(1− 2ν)]. Eq. (9) defines the strain tensor εij . These equation use index notation with repeated indices implying

summation, δij denoting the Kronecker delta function, and the indices i, j taking values x,y,z.

3.2.1 Boundary conditions

The ice front, rift walls, and top and bottom ice shelf surfaces are loaded by a depth-varying normal stress that is equal to the

water pressure below the waterline and equal to zero above the waterline. These boundaries have zero applied shear stress. The130

water pressure condition may be written as,

nT · (T′ ·n) =−pw(z), (10)

with unit outward pointing normal vector n, ice shelf draft Hw ≡ ρ/ρwh, and water pressure pw(z),

pw(z)≡

ρwg [Hw − (z+w)] z < Hw,

0 z ≥Hw.
(11)

Here, w is the vertical component of the displacement vector. This boundary condition is consistent with previous treatments135

of crevasse propagation in glaciers (e.g., Van der Veen, 1998).

In all simulations that are presented here, the surface of the ice shelf above the grounding line at y = Ly has a zero dis-

placement boundary condition. Similarly, the ice shelf surface at the ice front at y = 0 has a water pressure boundary condition

(Eq. 11). In the margins, I examine three types of marginal boundary condition. These conditions are shown in Fig. 2; they are:

1. Ice shelf with ice tongue: margins have zero displacement between y = Ly/2 and y = Ly and have water pressure140

between y = 0 and y = Ly/2;

2. Ice shelf in an embayment with strong margins: margins have zero displacement boundary condition; and,
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Figure 2. The geometries and boundary conditions considered in this study include: A. and B., Half zero displacement and half water

pressure conditions; C. and D., entirely zero displacement conditions; and, E. and F., half zero displacement and half free slip conditions. I

furthermore consider rifts that occur in the margins (A., C., and E.) and central rifts (B., D., and F.). The figures are not drawn to scale and

the rift width is greatly exaggerated.

3. Ice shelf in an embayment with weak margins: margins have zero displacement between y = Ly/2 and y = Ly and have

zero shear stress and zero normal displacement between y = 0 and y = Ly/2.

Note that Equations 1-3 occur naturally as a result of the more general three-dimensional boundary conditions. Equations 1-3145

are not applied as constraints in the three-dimensional calculations. They are used, however, in Section 4.1 to analytically

approximate the numerical results.

3.2.2 Numerical implementation

I solve Eqs. 7-9 using the finite element method. The ice shelf domain is discretized using a free tetrahedral mesh in three

spatial dimensions or a free triangular mesh in two spatial dimensions. In the three-dimensional simulations, the maximum150

element size along the rift is set to be m≡ h/16. The element size then increases away from the rift to a maximum value
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of 3.5 km. The rift is geometrically formed as a rectangular prism with width Wrift = 10 m and length L. I have verified that

the results presented here have virtually no dependence on the choice of Wrift and m. In the two-dimensional simulations

(described below), the maximum element size along the rift is Wrift/10.

3.3 Linear elastic fracture155

Fractures in elastic materials create displacement fields that vary proportional to the distance r from the crack tip as r1/2 (Irwin,

1957). The scalar constant of proportionality involves the stress intensity factor. Specifically, in terms of the displacement

components u, v, and w corresponding to displacements in the x, y, and z directions, the stress intensity factors are defined

through the relations (Tada et al., 2000),

u(r,z) = 4
KII(z)

µ/(1− ν)

√
r

2π
, (12)160

v(r,z) = 4
KI(z)

µ/(1− ν)

√
r

2π
, (13)

w(r,z) =
KIII(z)

µ

√
r

2π
. (14)

The quantitiesKI ,KII , andKIII are the Mode-I, Mode-II, and Mode-III stress intensity factors (SIFs). The sense of motion

associated with each mode of fracture is shown in Fig. 3. Equations 12-14 represent the asymptotic value, accurate to first order,

of the displacement field near the rift tip on the plane of the fracture. The stress intensity factors bear a direct relationship to165

fracture propagation.

A basic tenet of fracture mechanics is that unstable crack growth occurs when the elastic strain energy available to drive

fracture exceeds the energy required to create new fracture area (Griffith, 1921). The key insight of linear elastic fracture

mechanics is that this energy condition can be related to the stress intensity factors (Irwin, 1957). The stress intensity factors

may therefore be used as part of a fracture criterion. In this study, I examine mixed-mode fracture and I therefore use the theory170

of Erdogan and Sih (1963) that calculates the single optimally-oriented stress intensity factor from the three different stress

intensity modes. This optimally-oriented stress intensity factor is the Mode I stress intensity factor along a plane oriented to

minimizesKII andKIII (Erdogan and Sih, 1963; Hulbe et al., 2010). Under the assumption (verified later) thatKIII does not

substantially contribute to the direction of propagation of the rift tip line, the Mode I stress intensity factor along the optimal

angle of propagation θ can be written as,175

KOp
I ≡ cos

(
θ

2

)[
KI cos

2

(
θ

2

)
− 3

2
KII sinθ

]
. (15)

In this expression, the angle of propagation θ is given by,

θ ≡−2tan−1
[
−2KI +2

√
K2

I +8K2
II

8KII

]
. (16)

In the adopted sign convention, negative angles indicate the direction pointing away from the ice front and straight-ahead

propagation occurs when θ = 0. Note that care must be taken in selecting the correct quadrant for the tan−1 function.180
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The fracture propagation criteria may then be stated as,

KOp
I >KIc, (17)

where the valueKIc = 100 kPa
√

m, is the Mode I fracture toughness of ice (Rist et al., 2002). I refer to rifts that satisfy Eq. (17)

as being unstable because they are expected to undergo some amount of propagation. Note that this does not necessarily mean

that the rift will propagate in a way that will lead to a calving event. Propagation may stop, for example, before calving occurs.185

Rifts that do not satisfy Eq. (17) will be referred to as stable; such rifts are expected to close. This closure may result in partial

contact of the rift walls, as discussed next.

3.3.1 Partial contact of rift walls

The partial contact of rift walls is a nonlinear phenomenon because it involves solving for the shape of the contacting region

and therefore changing the region over which different boundary conditions are applied (Johnson and Johnson, 1987). Here,190

I treat a linear formulation of this problem wherein the Mode-I stress intensity factor KI can take on positive or negative

values. This situation is discussed in detail by Tada et al. (2000). For fractures with zero initial width, a negative KI implies

unphysical material overlap. I avoid this situation in my numerical simulations by giving the rift an initial nonzero opening as

described in Section 3.1. This is consistent with the idea that rifts in ice shelves are probably not held open entirely by elastic

stresses because they have deformed through creeping flow. Other studies have shown that accounting for contact nonlinearity195

results in minimal differences from the linear problem for long fractures with L� λ (Liu et al., 1999), where λ is the ice shelf

flexural wavelength. Given that many rifts do reach lengths L� λ (Walker et al., 2013, 2015), the linear approximation may

well prove adequate for many cases of glaciological interest.

3.3.2 Stress intensity factor calculations

Stress intensity factors are calculated using rift wall displacements and Equations 12-14. This evaluation method, essentially a200

post-processing step, is sometimes called the displacement correlation method (Zehnder, 2012) and has previously been used

in glacier studies by Jimenez and Duddu (2018). I evaluate Equations 12-14 at a distance r from the crack tip that is at least

several timesm in order to achieve grid-size independence. In three dimensions, stress intensity factors are calculated at various

heights through the ice shelf thickness, with the resulting calculations plotted in Fig. 3.

4 Results and Analysis205

Fig. 3 shows a typical result of the finite element calculations. This figure shows that the Mode-I and Mode-III stress intensity

factors are nearly linear with depth (i.e., Fig. 3A, B, and E), while the Mode-II stress intensity factor is nearly uniform with

depth (i.e., Fig. 3D). This structure in the solutions permits an approximate parameterization of three-dimensional effects. Such

a parameterization allows for a much less computationally costly, two-dimensional problem to be solved.
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Figure 3. Typical three-dimensional stress intensity factors as a function of depth z in the ice shelf. A. and B. show the Mode I stress intensity

factor KI , D. shows the Mode II stress intensity factor KII and E. shows the Mode III stress intensity factor KIII . The associated sense of

motion for each mode is shown in panels C, F, and G. B. has the mean removed and is compared to the analytical solution of Eq. (21). The

particular stress intensity factor solutions in these figures are plotted for a marginal rift in an ice tongue (i.e., the geometry shown in Fig. 2A.

I next develop the analytical parameterization (Section 4.1). After developing this 2D parameterization, I then apply it to210

examine the relationship between rift position and rift stability. Some readers may wish to skip directly to these results, which

are given in Section 4.2.

4.1 Parameterization of 3D effects within 2D calculations

The structure of the three-dimensional stress intensity factors suggests the approximation,

KI(z) =Km
I +Kb

I

(
z−h/2
h/2

)
, (18)215

KII(z) =Km
II , (19)

KIII(z) =Kb
III

(
z−h/2
h/2

)
, (20)
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Table 1. Comparison between 2D and 3D calculations

h 2D 3D m (2D-3D)/3D

χ 100 m -0.2937 -0.3127 12.5 m -6.1%

200 m -0.2937 -0.3012 5 m -2.5%

200 m -0.2937 -0.3069 12.5 m -4.3%

ψ 100 m -0.04408 -0.0385 12.5 m +14.5%

200 m -0.04408 -0.0382 5 m +15.4%

200 m -0.04408 -0.0379 12.5 m +16.3%

where the superscripts b and m stand for bending and membrane, respectively. In the following, I calculate the bending com-

ponents of the stress intensity factors Kb
I and Kb

III analytically and the membrane components Km
I and Km

II using two-

dimensional finite element solutions.220

4.1.1 The bending components of the SIFs

I find that the bending component of the Mode-I stress intensity factor is well fit by the previously-published stress intensity

factor solution (Ang et al., 1963; Sih and Setzer, 1964; Folias, 1970; Sih, 2012),

Kb
I =−σbf(ν)

√
λ. (21)

Here, λ4 ≡D/(ρg) is the flexural length with flexural rigidity D ≡ Eh3/[12(1− ν2)]. Hence, flexure results in a stabilizing225

contribution to the Mode I stress intensity factor that grows with ice thickness according to Kb
I ∼ h11/8. The bending stress

σb is given by Eq. (3). The function f(ν) is discussed below. Notably, the bending stress intensity factors asymptotically vary

with
√
λ instead of the typical

√
L.

There is some discrepancy in the literature concerning the precise values of the function f(ν). Sih (2012) cites Folias (1970)

who both note that f is of order unity but do not give its exact form. Ang et al. (1963) appears to have first given the dependence230

of f on ν although Sih and Setzer (1964) found a mistake in this work. Meanwhile, Bažant (1992) gives a different value of f . It

appears, however, that Bažant (1992) did not correctly account for the rift-wall boundary condition. Given this uncertainty and

the additional detail involved in the three-dimensional problem beyond the assumptions made by the above authors, I instead

simply choose to calculate the value of f(ν) from the three-dimensional calculations. From these calculations, I find a value

f(ν = 0.3) = 0.7646. Of the above references, this value is most similar to the value calculated from the equation given by Sih235

and Setzer (1964), f(ν = 0.3) = 0.6063.

Bending also creates a Mode-III stress intensity factor. Assuming that this bending can also be described within Euler beam

theory, the Mode-III and Mode-I stress intensity factors are related by a factor,

Kb
III

Kb
I

=
h

2
√
2(1+ ν)λ

. (22)
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ThusKb
III ∼ h2, which is a larger exponent than forKb

I . This solution was derived by assuming, consistent with Equations 12-240

14, that the ratio of stress intensity factors is proportional to the ratio of the stresses. This stress ratio is then calculated using

the solution to the floating beam equation (Hetényi, 1971), w =−2m0/(ρgλ
2)exp(−x/λ)(cosy/λ− siny/λ). The analytical

solution of Eq. (22) is compared to the finite element solution in Fig. 3E (red dashed lines).

The analytical solution is not expected to perfectly match the finite element solution because the latter accounts for the full

floatation condition (Eq. 10), whereas the bending model (Eq. 21) neglects higher order moments through Eq. (2). I further245

verify that the simplified model captures the behavior of the three-dimensional simulations by calculating stress intensity factors

over a range of ice shelf thickness between 25 m and 1600 m. I find that Kb
I ∼ h1.31 in the three-dimensional calculations

whereas Kb
I ∼ h1.375 analytically. Similarly, Kb

III/K
b
I ∼ h0.27 in the three-dimensional calculations whereas Kb

III/K
b
I ∼

h0.375 analytically. As can be seen in Fig. 3, the differences are more pronounced for Kb
III . I attribute the differences between

analysis and calculation to the neglect of higher order moments and stress terms (i.e., the use of Euler beam theory).250

4.1.2 The membrane components of the SIFs

I carry out simplified two-dimensional finite element calculations in order to describe the membrane components of the stress

intensity factors. In two horizontal spatial dimensions x and y, the governing equations for the two-dimensional calculations

are found by taking ∂/∂z = 0 in Eqs. 7-9. In two spatial dimensions, the boundary condition on floating ice fronts takes the

stress value given by Eq. (1).255

I find good agreement between two-dimensional calculations and the depth-averaged values from three-dimensional calcu-

lations. Table 1 presents these results using the geometrical factors χ=Km
I /(σm

√
πL) and ψ =Km

II/(σm
√
πL), where σm

is the depth-integrated boundary condition given in Eq. (1). Note that KI ∼KII ∼
√
L suggests that χ and ψ do not depend

on L (Tada et al., 2000). The agreement is better for χ than for ψ, with differences on the order of several percent. This table

also shows the effect of varying the maximum near-tip element length m. The values in this table are calculated for a central260

rift in an embayment with strong margins (i.e., as shown in Fig. 2D).

4.2 Central and Marginal Rifts

I now use the two-dimensional approach described in Section 4.1 to examine the effect of rift position on rift stability. I again

consider all of the combinations of boundary conditions and rift locations shown in Fig. 2 while additionally varying the

streamwise position of the rift W .265

Stress intensity factors for marginal rifts are plotted in Fig. 4. These stress intensity factors were calculated using the 2D

parameterization described in Section 4.1. Consistent with the shearing stresses experienced in the ice shelf margins, the Mode I

and Mode II stress intensity factors are of similar magnitude (Fig. 4A and B, respectively). Fig. 4C shows that marginal rifts

always tend to propagate in the direction away from the ice front, i.e., in the positive y direction (coordinates shown in Fig. 1).

Marginal rifts are unstable over the greatest range of locations in the ice tongue and weak margin geometries (Fig. 4D).270

Specifically, they become unstable at a position W/Ly ≈ 0.66. Stability in these geometries is not spatially monotonic, how-

ever, and rifts again become stable near the ice front at W/Ly ≈ 0.33. Marginal rifts in ice shelves with strong margins, in
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contrast, have monotonically varying optimally oriented Mode I SIFs: they are stable near the grounding line and they become

unstable at a distance W/Ly ≈ 0.33 from the ice front.

Stress intensity factors for central rifts are plotted in Fig. 5. In contrast to the marginal rifts, central rifts have |KII | � |KI |275

(Fig. 5A and B). Unlike marginal rifts, propagation angles are smaller, indicating nearly straight-ahead propagation (Fig. 5C).

Furthermore, central rifts in all positions are found to have negative optimally oriented stress intensity factors indicative of

stability (Fig. 5D).

5 Discussion

I have presented a three-dimensional LEFM analysis of ice shelf rift propagation. While this model has many potential applica-280

tions, I have focused on the relationship between rift position and rift stability. In that regard, the main result of this analysis is

that rifts originating in the margins of ice shelves become unstable if the ice shelf margin looses shear strength. This transition

between a strong margin and a weak margin can be seen, for example, by comparing the red and yellow curves in Fig. 4D.

Although this result is justified by the calculations presented in this paper, it is worth emphasizing several implicit and subtle

assumptions.285

I have assumed that margins have either zero displacement or zero shear stress. In reality, margins likely experienced reduced

but nonzero shear stress. I have also considered only two rift locations (marginal or central), only one ice shelf geometry

(square), and only one rift geometry (a single rift, perpendicular to flow, and without curvature). I treat the entire ice column

as having identical material properties and therefore do not describe the firn layer and its relation to partial contact of rift

walls. Additional observed rift-wall processes such as brine infiltration, surface accumulation, and variable uplift could also be290

investigated (Scambos et al., 2009, 2013; Walker and Gardner, 2019). Each of these assumptions deserves further examination.

Despite these limitations, ice shelves and ice shelf rifts oftentimes approximately conform to the assumptions described in this

study. I do therefore expect that the results presented here provide a useful basis for understanding rift propagation.

5.1 The compressive arch

All boundary conditions considered here give rise to a compressive arch, defined as the region where an ice shelf transitions295

from uniaxial to biaxial extension (Doake et al., 1998). The compressive arch can be visualized by plotting the second principle

horizontal strain field, the first principle strain alway being positive (Fig. 6). Doake et al. (1998) proposed that “once a retreating

ice front breaks through the critical ‘compressive arch’ then retreat is irreversible.” The results presented here broadly confirm

the hypothesis of Doake et al. (1998), although as shown in Section 4, the relation to the compressive arch only holds in an

approximate sense. Specifically, for the strong margin boundary condition the onset of instability occurs somewhat upstream300

from the maximum extent of the compressive arch (Fig. 6A.). For the weak margins and ice tongue boundary conditions the

agreement is closer, however, there is also a region of stability that occurs closer to the ice front (Fig. 6B. and C.).

Perhaps more importantly, the results presented here suggest a slightly different order of causality than that proposed by

Doake et al. (1998). Rather than being an independent boundary that rifts may or may not propagate through, rift propagation
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of information, the A. Mode I SIF, B. Mode II SIF, and C. Propagation angle, are combined using Eq. (15) to calculate D. the optimally-

oriented SIF.
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Margins, and C. Ice Tongue (see Fig. 2). The figure also shows the boundaries of regions of rift instability (thin yellow dashed lines). These

figures were calculated in two horizontal spatial dimensions as described in Section 4.1.2.

in the model presented here is expected to occur precisely because of the stress state that creates the compressive arch. Ice shelf305

retreat is expect to be irreversible only insofar as marginal weakening is itself irreversible.

5.2 Melange as a rift proppant

Olinger et al. (2019) observed a lack of rift-tip seismicity at central rift in the Ross Ice Shelf. This observation is consistent

with the negative KOp
I I have calculated for centrally-located rifts. In the absence of other forces such rifts will tend to close.

It seems likely that these rifts therefore owe their continued existence to rift-filling melange that acts as a type of proppant by310

holding the rift open. Melange therefore has a dual nature. MacAyeal et al. (1998) and Rignot and MacAyeal (1998) showed

that melange maintains shear stresses and therefore resists viscous flow. In this sense, melange is stabilizing. Yet in the sense

that melange may sometimes enable the existence of rifts that would otherwise close, melange is destabilizing.

5.3 Wave-induced fracture

Lipovsky (2018) used passive seismic data to calculate the elastic ice shelf stresses due to ocean swell acting on the Ross ice315

shelf. This study concluded that some un-modeled process must have been operating in order to explain the lack of any observed

ice shelf rift propagation during the observation period. Specifically, Lipovsky (2018) calculated a maximum wave-induced

Mode-I stress intensity factor KI ≈ 2 MPa m1/2 for a site near the Nascent Iceberg Rift. Using the results presented here for

a central rift, we calculate that for a near-front central rift with W/Ly = 0.05, the Mode-I stress intensity without wave stress

would be KOp
I ≈−5 MPa m1/2. The resulting total Mode-I stress intensity factor of KOp

I ≈−3 MPa m1/2 being negative320

is consistent with the observation that ocean swell did not trigger rift propagation during the observation period described by

Lipovsky (2018).
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6 Conclusion

I have modeled an ice shelf as a three-dimensional buoyantly floating elastic plate. I then show how these three-dimensional

results may be captured in simplified two-dimensional calculations. Using the two-dimensional theory, I show that ice shelf325

rifts become unstable in the presence of marginal weakening or upon exiting an embayment. These results are a step towards

prognostic ice shelf modeling with a physics-based relationship between ice dynamics and an ice front extent set by rift

propagation.
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