
Dear Handling Editor Oliver Gagliardini and Anonymous Reviewers, 
 
Thank you for the time you have invested in my manuscript.  I have attempted to improve the 
manuscript following the comments provided below (my responses are in green). 
 
Sincerely, 
 
Brad Lipovsky 
 
 
Response to Reviewer #3  
 
The paper suffers however, to my point of view, of a lack of accuracy in the presentation of the 
model used and on the assumptions that are made. A mixture of too complicated vocabulary 
(and to my point of view not necessary) and not enough explanation of simple notions make 
the paper very difficult to follow and read.  
 
As scientists and writers, we are often faced with the challenge of using precise and accurate 
vocabulary while at the same time trying to keep things as simple as possible.  I’ve taken the 
reviewer’s comments to heart and made an honest effort to simplify the language in the paper 
and to improve the structure (the latter discussed in detail further on).  I believe that the 
exposition has significantly benefitted from these changes.  I have attempted to addressed this 
concern throughout the manuscript by specifically responding to the following points.  
 
Furthermore, the paper would be very much improved by adding more detailed comparison 
with rift propagation and ice-shelf stability in the field where I expect measurements have been 
made.  
 
This is an excellent point.  I have recently undertaken a systematic effort aimed at ice shelf rift 
observation.  This is still work in progress.  Unfortunately, at the present time, the extremely 
simplistic model geometry that we use makes it difficult to directly compare our model to 
observations.  I therefore have the opinion that comparison with observations is best left at a 
relatively qualitative level.  A note to this extent has been provided in the manuscript.  That 
being said, the discussion does provide several points of comparison with ice shelf rifts.  I 
specifically discuss observations surrounding the role of mélange as well as the seismic 
observations made by Lipovsky (2018).  The present study has demonstrated that geometrical 
effects are quite important during rift propagation.  For this reason, I do think that more 
detailed comparisons are better left for a modeling study that deals with a more realistic ice 
shelf geometry. 
 
I detail below the points that have to be clarified: 
0 - Abstract: 
L4-5: The sentence is not clear: ‘… near-tip rift walls’. 
 



I have simplified this sentence. 
 
L6-7: It is not obvious by reading just the abstract to understand ‘….advection of rifts … may 
trigger rift propagation’. In particular what does mean ‘advection of rift’ ? How is it different 
from rift propagation? This has to be more clearly stated for readers that are not exactly in the 
field. 
 
I have simplified this language.   
 
 
More generally, when reading the last sentence, it seems that there is no other studies on the 
description of calving physics based on fracture mechanics. It seems however to me that other 
studies have been done in this direction. 
 
I have changed this sentence. 
 
1- Introduction 
 
In the introduction, discussion and conclusion, there is a lack of detailed description of what is 
observed on the field related to the study performed in this paper. Furthermore, there is a lot 
of work based on fracture mechanics that have been done in rock mechanics and also in 
rupture propagation for earthquakes. Because no references related to this work are present in 
this paper, it seems that the author is not aware of it, making it difficult to situate his work 
compared to the state of the art in the domain. 
 
I have significantly changed the ordering of ideas presented in the introduction.  Some material 
has been moved to Section 4.  As previously written, the paper introduces only fracture 
mechanical studies of ice shelf rifts in the introduction section.  I decided not to clutter the 
introduction with fracture mechanical detail.  The interested reader will note the extensive 
discussion of classical fracture mechanics later in the paper, at the point where fracture 
mechanics is introduced.   
 
2 – Background 
One of the main problem of this paper is that the equations and hypothesis used are not clearly 
presented.  At the beginning of the background section, simple equations described by 
complicated words are presented.  
 
I agree that this section of the paper was confusing.  For this reason, I have restructured this 
section, mostly by moving existing text to different parts of the paper.  In that way, the same 
information is conveyed but in a more logical order.  In the new manuscript, I now make it clear 
that the equations previously in Section 2 are only used in the two-dimensional model.  For this 
reason, these equations are now given in the newly-created Section 4, dedicated exclusively to 
describing the two-dimensional model.   
 



First, equation (1) is related to the hydrostatic approximation for the pressure taking into 
account buoyancy but is referred to as ‘in-plane horizontal membrane stress’. While I assume 
that the author refer to the shallow ice approximation, the use of such words do not provide 
clear description of the approximation made at least for researchers that are not specialists of 
the ice-shelf and rift problem.   
 
Just to be clear, the model is not related to the shallow ice approximation (SIA) model. The two 
dimensional model is more similar to a shallow shelf approximation (SSA) model, but it does not 
assume incompressibility as does SSA.  The term membrane stress is widely used in modern ice 
sheet modeling and its use here is consistent with that literature.  I believe that the confusion 
surrounding this topic should be alleviated by having moved this material to a later section, as 
described above. 
 
To make the considered forces clear, I suggest to draw the forces involved in Figure 1 or Figure 
2.  
 
The reviewer proposes an interesting idea to create additional diagrams illustrating the balance 
of forces.  Because of the way that the paper has been restructured, I’m not sure that this is 
necessary.   Furthermore, such figures are given in standard references (i.e., Macayeal).  As it is 
currently written the manuscript contains two diagrammatic figures (1A and 1B).  For these 
reasons, I do feel that an additional diagrammatic figure is not warranted. 
 
 
Because the cryosphere readers are not all aware of the way you calculate the balance of 
forces, this should be clearly recalled as it is the basis of this paper. 
 
I have added a sentence to this effect in Section 4, where the depth-integrated membrane 
stress is now first stated. 
 
 
I don’t understand why the author used the symbol � that he refers to ‘a definition’. Equation 
(1) is not a definition, it represents the normal stress under some approximations. Again, this 
kind of things complicate the problem for nothing (at least I don’t see what information it 
provides to the reader) and is very strange when put in regards to the very simple 
approximations, equations, and approach used here (with no demonstration, etc.). 
 
This confused another reviewer as well, so I’ve gotten rid of all occurrences of the three-line 
equality symbol. 
 
L 58: Demonstrate how to you express the bending moment leading to equation (3) (use a 
figure if necessary). 
 
First, please note that this equation is now placed in Section 4 as Eq. 21.  I am not completely 
sure what the reviewer means by “express.” The new context in Section 4 may provide a better 



expression of the meaning of this equation.  The calculation of moments is carried out in the 
classic paper by Reeh.  Given that the manuscript under consideration already on the long side, 
it is my opinion that explicitly presenting the derivation or figures regarding the ice front 
moment expressions would not significantly improve the manuscript.  
 
L66: show in the figure 1b what you state in the text. 
 
I have now made the language in the text match the language in the figure. 
 
 
L72: There should be studies on 3D effects on rupture propagation in Earthquake or rock 
mechanics that should be recalled here. 
 
For reference, the old line 72 stated, “Although a number of previous studies have examined 
ice shelf rifts using LEFM, no previous study appears to have considered three-dimensional 
effects.” Note that later on in the paper, extensive reference is given to background material in 
fracture mechanics. Concerning the point presented here, yes, there is a large literature on 3D 
effects in earthquake rupture dynamics.  The 3D effects in ice shelves, however, are quite 
different because ice shelves, as the manuscript demonstrates, have strong interactions with 
buoyancy.  These effects are absent during, for example, tectonic earthquake rupture. 
Furthermore, earthquake rupture tends to involve rupture front propagation at a substantial 
fraction of the elastic wave speeds. Fracture propagation at this rate is drastically different than 
the quasi-static propagation considered here. Given that this connection is sufficiently distant, 
it seems preferable to not draw this connection.  
 
Figure 1 : It is difficult to make the link between Figure 1A and Figure 1B. To avoid getting lost, 
the author could draw the flow direction in each sub-figures of Figure 1 and 2. The orange 
arrow associated to ‘Top-out rotation’ correspond to me to ‘Bottom-out’ rotation for calving. 
What is the point here ? Represent the rift tip on the figure.  Legend of Figure 1B: I don’t see on 
the figure what is stated in the legend ‘Zoomed in view of an ice shelf rift tip showing how 
buoyancy driven rotation of the rift walls results in partial contact of the rift walls near the rift 
tip’. Define in the text or in the legend how the flexural gravity wavelength is calculated. 
 
I have attempted to address these issues.  First of all, I have added a reference to the equation 
where the flexural gravity wavelength is defined in the figure caption.  Concerning the 
definition of top-out versus bottom out, I would argue that this is why it is important to define 
terms.  This usage of the term makes sense to me:  the top of the ice shelf moves outwards 
away from the ice.  Perhaps there is some confusion because the top moves towards the center 
of the rift.  In that way the definition is arbitrary and I would argue that as long as the usage is 
consistent then the choice is unimportant.  The term top out is used self consistently within the 
manuscript and is consistent with sense of rotation drawn in the figure.  Given this self-
consistency I do not believe that any change is warranted. 
 
3 – Mechanical model 



What is the link between the background section and the model used here ?  
 
This question highlights the lack of clarity surrounding the relationship between the full three-
dimensional and the simplified two-dimensional model.  Based on this comment, I have opted 
to move part of the background material into the later section about the two dimensional 
model, as discussed previously. 
 
Why two different L are chosen for the marginal and central rifts. It makes the message unclear 
as the role of L may be important in the different behavior of the marginal and central rifts. 
Could you explain your choice and could you do the analysis by comparing marginal and central 
rifts for the same L ? 
 
This is a standard convention in fracture mechanics, to define fractures in a whole space in 
terms of their half-length but to define edge fractures in terms of their entire lengths.  This 
convention stems in part from analytical solutions for simplified geometries.  The usage in the 
manuscript is consistent with standard stress intensity factor handbooks such as Tada (2000) 
and for this reason I would argue against making the suggested change. 
 
L 97-101 : This is not clear, illustrate on a figure. 
 
The actual crack tip region used in the simulations is shown in Figure 2 and a curved crack tip is 
shown in Figure 1b.  A note has been made about this. 
 
L 100: Show in the appendix the sensitivity to the choice of the width because it is not obvious 
how much its influence is negligible. 
 
This is a good point.  I have added a note (in the main text, Section 2.1) describing the influence 
of changing the rift width.  I point out that changing the rift width by 50% results in a ~1% 
change in the resulting SIFS. 
 
L 100-101: Give more details about what you do when you refer to ‘tapering’.  
 
This language was out of date; the rectangle is not tapered. 
 
Equation (5): You forget the Identity tensor. Same L 116. 
 
I have made this change. 
 
Equation (6): What is H ? Is it h in Figure 1 ? Then the same notation should be used. H is not 
constant when there is a rift so that the horizontal pressure gradient could not be neglected 
when replacing T’ by T ? As a result, equation (7) is not obtained. Maybe I missed something but 
all this should be made clearer. 
 



Thank you for pointing this out, this symbol was not defined previously!  H is the ice shelf 
surface height. H remains constant even though  H is not defined in the rift For this reason (old) 
equation 7 remains valid. 
 
Equation (10): As you makes a variable change and use T instead of T’, the boundary conditions 
should be expressed in terms of T too. 
 
Yes, that’s correct that the boundary conditions change.  All of the terms in the new boundary 
conditions have been written out already, and since the new boundary conditions are more 
complicated I do not think it is necessary to write out the new boundary conditions.  It is an 
important point, however, and so  I have made a note to this extent in order to draw the 
reader’s attention to this detail. 
 
L 135: relate the displacement vector to u_i, u_j, … 
 
I have made this change. 
 
Figure 2: The flow direction should be added here too. 
 
I have made this change. 
 
L 145-146: What are the boundary conditions used in the 3D calculations then ? 
 
This sentence was confusing so I removed it.  The 3d boundary conditions are now clearly 
stated. 
 
L 150 : recall what is ‘free’ (triangular mesh) 
 
I have clarified this point. 
 
Equations (12)-(14) Recall the hypothesis made to obtain these equations 
 
It’s a surprising fact about LEFM that all of the conditions were in fact already stated:  simply 
that a sharp fracture be located in a loaded elastic solid.  There is nothing else to be stated. 
 
L 200: It is not clear how do you calculate them. 
 
On this topic, I refer the interested reader to the citations given. 
 
L 260: It could be good to show it on a figure. 
 
This is a minor point in the paper and I do not think it warrants an additional figure. 
 



5 - Discussion: The main problem of the discussion is that the results are not enough compared 
with field observation. 
 
Please note the response I made to the second comment in the review.  I would furthermore 
argue that I do compare to the field observations described by Lipovsky (2018).  These are 
seismic observations from which inferences were made about stress intensity factors.  I also 
discuss the field observations made by Olinger et al. (2019).  While I agree that additional and 
more detailed comparisons would be interesting, these two comparisons do form a good basis 
for an evaluation of the model predictions.   
 
L 299-301: Put marks on Figure 6 to show what is stated in the text. 
 
This was already shown in the figure although the confusion indicates that the labelling was not 
sufficiently clear.  I have improved the text in this regard. 
 
L 304-305 and L 308-309 are not clear. 
 
I have rewritten these statements. 
 
6 - Conclusion: This should recall the assumptions made in the model and summarize the 
results, the limitation of the approach and the comparison with field observation. 
 
I disagree, as this was already done at the beginning of the Discussion section and the choice of 
one location over the other seems purely aesthetic. 
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Abstract. Understanding the processes that govern ice shelf extent are of fundamental importance to improved
::::::::
important

::
to

::::::::
improving

:
estimates of future sea-level rise. In present-day Antarctica, ice shelf extent is most commonly determined by the

propagation of through-cutting fractures called ice shelf rifts. Here, I present the first three-dimensional analysis of ice shelf rift

propagation. I present a
:::::
model

::::
rifts

::::
using

:::
the

::::::::::
assumptions

::
of

:
linear elastic fracture mechanical

:::::::::
mechanics (LEFM)description of

rift propagation. The model predicts that rifts may be stabilized
::::
(i.e.,

:::
stop

:::::::::::
propagating)

:
when buoyant flexure results in contact5

at the tops of the near-tip
:::::
partial

:::::::
contact

::
of

:
rift walls. This stabilizing tendency may be overcome, however, by processes

that act in the ice shelf margins. In particular, both marginal weakening and the advection of rifts into an ice tongue are

shown to be processes that may trigger rift propagation. Marginal shear stress
:::
loss

::
of

:::::::
marginal

::::::::
strength,

:::::::
modeled

::
as

::
a
::::::::
transition

::::
from

::::
zero

:::::::::
tangential

:::::::::::
displacement

::
to

::::
zero

:::::::::
tangential

:::::
shear

::::::
stress, is shown to be the determining factor that governs these

types of rift instability. I furthermore
::::
favor

:::
rift

:::::::::::
propagation.

::::
Rift

::::::::::
propagation

::::
may

::::
also

:::
be

::::::::
triggered

::
if

:
a
:::
rift

::
is
::::::
carried

:::::
with10

::
the

:::
ice

:::::
flow

::::
(i.e.,

::::::::
advected)

::::
out

::
of

:::
an

::::::::::
embayment

:::
and

::::
into

::
a

::::::
floating

:::
ice

:::::::
tongue.

:
I
:

show that rift stability is closely related

to the transition from uniaxial to biaxial extension known as the compressive arch. Although the partial contact of rift walls

is fundamentally a three-dimensional process, I demonstrate that it may be parameterized within more numerically efficient

two-dimensional calculations. This study provides
:::::::::
constitutes a step towards a description of calving physics that is based in

fracture mechanics
::::::::::::
first-principles

:::::::::
description

::
of

:::::::
iceberg

::::::
calving

::::
due

::
to

::
ice

:::::
shelf

:::
rift

::::::::::
propagation.15

Copyright statement.
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1 Introduction
::::
and

::::::::::
background

The Antarctic ice sheet is projected to loose mass this century.
::::::
Despite

:::::::
decades

:::
of

::::::::
progress,

::
it

:::::::
remains

::::::
unclear

::::::::
whether

::::::::
Antarctica

::::
will

::::
gain

:::
or

::::
lose

::::
mass

:::
by

:::
the

:::::
year

:::::
2100.

:
Although the rates of mass loss

:::::
change

:
over this timeframe are typi-

cally projected to mirror recent rates
:
be

::::::
nearly

:::::
linear

::::
(??), several types of more extreme ice sheet response to global climate20

forcing cannot presently be excluded(?). Perhaps the most prominent of these extreme changes is the retreat of the floating ice

shelves that fringe the Antarctic continent. Ice shelf retreat has been observed to occur gradually, i.e., over a period of years to

decades (??), and also abruptly, i.e., over a period of weeks to months (??). Although ice shelves themselves do not
::
are

:::::::
floating

:::
and

::::::::
therefore

::
do

:::
not

:::::::
directly contribute to sea-level rise, they do act to buttress grounded ice (????). For this reason, ice sheet

mass and therefore global mean sea-level are closely connected to the extent and stability of ice shelves. Here, I examine the25

stability of ice shelves with respect to the propagation of large through-cutting fractures called rifts.

The largest modern ice shelves exist in
::::::
coastal

:
embayments. This basic observation has long prompted the notion that

embayments promote the existence of large stable ice shelves (????). Yet not all ice shelves fully
:::::::
stabilize

:::
ice

::::::
shelves

::::::
(???).

:::
Yet

:::
the

::::
exact

::::::::::
relationship

:::::::
between

::::::
coastal

::::::::
geometry

::::
and

::
ice

:::::
shelf

:::::
extent

::
is

:::
not

:::::
trivial.

::::
For

:::::::
example,

:::
ice

::::::
shelves

:::
do

:::
not

::::::::
generally

fill the largest possible embayment . The
::
in

:::
the

::::
way

:::
that

:::
the

:::::
Ross

:::
and

::::::
Amery

:::
Ice

:::::::
Shelves

:::
do.

:::::::
Instead,

:::
ice

::::::
shelves

:::::
such

::
as

:::
the30

Pine Island Glacier Ice Shelf , for example, does not presently fill the entire embayment
:::
are

::::::
limited

::
to
::::::

much
::::::
smaller

:::::
local

::::::::::
embayments

:::
(in

:::
the

::::
case

::
of

::::
Pine

::::::
Island,

:::
the

::::::::::
present-day

::
ice

:::::
shelf

::::::
extends

::
to
::::::
Evans

:::::
Knoll

:::::
rather

::::
than

:::
the

:::::
entire

::::::
region between

Bear Peninsula and Thurston Island; instead it fills the much smaller local embayment of Pine Island Bay
:
). Furthermore,

analysis of sediment cores (??) and iceberg scour marks (?)
::::::
various

::::::::::
bathymetric

:::::::
features

:::::
(??) suggest that past ice shelves

have waxed and waned in extent through ice age cycles. Although embayments
::::::
coastal

::::::::::
embayments

:::
do appear to stabilize ice35

shelves, it would therefore
::::
also appear that some other process is responsible for determining the size

:::::
extent

:
of a stable ice shelf

within a given coastal geometry. The close relationship between the state of stress in an ice shelf and the ice shelf boundary

conditions (???) motivates investigation into processes acting in ice shelf margins.

Ice shelf margins are the part of the ice shelf grounding zone that is roughly parallel to flow (see Fig. 1). The importance

of ice shelf margins is suggested by several observations, foremost among these being the observation of marginal weakening40

prior to ice shelf collapse. Estimates of ice rheology based on the inversion of surface velocity fields show extensive marginal

weakening prior to the collapse of the Larsen A (?) and Larsen B Ice Shelves (??). Although ice shelf collapse (i.e., total and

rapid retreat) is a complex phenomenon that involves other processes besides rift propagation (?)
::::
(??), rift propagation does

appear to play a role in collapse. ? explicitly noted that marginal weakening immediately preceded rift propagation and eventual

collapse on Larsen B. Further observation of a relationship between ice shelf retreat, rifting, and marginal thinning has been45

noted in the Amundsen Sea Embayment (?) and Jakobshavn Isbrae, Greenland (?). Motivated by these observations, a central

question of this paper is, what is the precise mechanical relationship between ice shelf margins and ice shelf rift propagation?

The main result
:::
One

::
of

:::
the

::::
main

:::::::::::
glaciological

::::::
results of this paper is that marginal weakening can destabilize rift propagation.

I begin by providing background on the state of stress in an ice shelf in Sections ??. In Section 2 I describe three-dimensional

elasticity calculations that are carried out using the finite element method and then post-processed to reveal fracture mechanical50
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properties. A more precise statement of the main result is then given in Section 3, where I also examine a simplified analytical

treatment of the three-dimensional calculations. I conclude by discussing the relationship between rift propagation, the compressive

arch, rift-filling melange, and ocean swell in Section 6.

2 Background

I consider an ice shelf to be a buoyantly floating elastic plate of uniform thickness. Stress balance at the seaward-facing ice55

front results in both a net bending moment and an in-plane horizontal membrane stress (??). The vertically-averaged membrane

stress is,

σm ≡
ρgh

2

(
1− ρ

ρw

)
.

I use the ≡ symbol to denote a definition. The bending moment is given by,

m0 ≡ ρgh3

12

[
3

(
ρ

ρw

)
− 2

(
ρ

ρw

)2

− 1

]
≡ φρgh

3

12
.60

In these expressions, ρ
::
An

:::::::::::
investigation

::::
into

:::
the

:::::
forces

::::
that

:::::
drive

:::
rift

::::::::::
propagation

:::::::
requires

:
a
:::::::

careful
:::::::::
accounting

::
of

:::
the

::::::
forces

:::::
acting

::
on

:::
the

:::
rift

:::::
walls.

:::::
? was

:::
the

::::
first

::
to

::::::::
document

::::
how

::
a

:::::
freely

::::::
floating

:::
ice

:::::
front

:::::::::
experiences

::
a
:::
net

:::::
torque

::::
due

::
to

::
an

:::::::::
imbalance

:::::::
between

:::
the

:::::::::
overburden

:::::::
pressure

::
in
:::
the

:::
ice

:
and ρw are the densities of ice and water and h is the ice thickness. Typical values

of ρ/ρw = 0.90 give φ= 0.08. The bending moment may also be expressed as a bending stress,

σb ≡
6m0

h2
= φ

ρgh

2
.65

The bending stress σb is the value of the rift-normal stress at the top of the ice shelf; it is also the maximum value of the

rift-normal stress. The horizontal component of loading (Eq. 18) is commonly used as a boundary condition in numerical ice

flow models, whereas the bending moment is not typically applied in ice sheet models because its effects are confined to a

narrow boundary layer in the vicinity
:::
the

:::::::::
hydrostatic

:::::
water

:::::::
pressure.

:::::
This

:::::
torque

::
is

:::::::
expected

:::
to

::::
cause

::
a
::::::
rotation

:
of the ice front

(?).70

::::
with

:
a
::::::
top-out

:::::
sense

::
of

::::::
motion

:::
(?).

:
Rifts walls have the same ice-front boundary conditions as a seaward-facing ice front

:::
and

::
are

::::::::
therefore

::::::::
expected

::
to

:::::::::
experience

:
a
::::::
similar

:::::::
rotation. The main difference between a seaward-facing ice front and a rift wall

is that it is possible for rift walls to come into contact. This contact is expected to occur at the top of the ice shelf and in the

region near the rift tip, as illustrated in Fig. 1b. Indeed,
::::
This

:::::::
behavior

:::
has

:::::
been

:::::::
observed

::
in

:::
the

:::::
field. ? recently observed that a

rift tip on the Brunt Ice Shelf was further advanced at depth than at the surface, suggesting the occurrence of partial contact. I75

examine the partial contact of rift walls in Section 3. As an aspect of linear elastic fracture mechanics, fracture wall contact is

a well-studied topic (?, Chapter 1, Section C).

I use three-dimensional elasticity calculations combined with
:::::
model

::::
rifts

::::
using

:
linear elastic fracture mechanics (LEFM)to

examine the propagation of ice shelf rifts. Although a number of previous studies have examined ice shelf rifts using LEFM,

3
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Figure 1. A. Simplified geometry of an idealized rectangular ice
::
Ice

:
shelf .

:::::::
geometry

::::
used

:
in
::::

this
::::
study,

:
B. Zoomed in view

::::
View of an ice

shelf rift tip showing how buoyancy-driven rotation of the rift walls results in partial contact of the rift walls near the rift tip. Note that B. is

:
(drawn under the assumption that the rift tip is at least several flexural gravity wavelengths away from the ice shelf margin so that no flexural

interaction occurs between these two regions.
:::::::
assuming

:::::
distant

:::::::
margins)

no previous study appears to have considered three-dimensional effects. ? calculated two-dimensional mixed mode (in-plane80

opening and shearing) stress intensity factors and as a result was able to state a fracture condition as well as predict rift

propagation paths. Other ice shelf LEFM studies have mostly focused on propagation paths (???) and near-tip deformation

(??).

A final point of background concerns the relationship between the forces that drive fracture and the background ice flow. In

real ice shelves, the state of stress is constantly evolving due to the change in geometry brought about by ice flow. Previous85

studies have examined the relationship between ice flow and fracture in several ways. ? carried out viscous flow calculations to

constrain the state of stress in their elastic calculations. They then tuned elastic moduli and boundary conditions in their elastic

calculations to match the observed viscous stresses. ? parameterized a state of stress from a viscous flow model, but rather

than tuning elastic moduli instead chose to introduce fictitious equivalent body forces. Here, I consider the hypothesis that the

forces that drive rift propagation are entirely described by the instantaneous ice shelf geometry and boundary conditions. This90
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hypothesis requires three-dimensional calculations in order to directly calculate –rather than parameterize or approximate– the

role of gravitational driving forces. I therefore continue to describe the details of a three-dimensional elastic fracture model.

2 Mechanical Model

I begin this section by describing a
::::
This

:::::
paper

:
is
:::::::::
organized

::
as

:::::::
follows.

::
In

::::::
Section

::
2,
::
I
:::::::
describe three-dimensional elastic model

of an ice shelf in which stresses and displacements are calculated
::::::::
elasticity

::::::::::
calculations

:::
that

:::
are

:::::::
carried

:::
out

:
using the finite95

element method (Sections 2.1 and 2.2). I then describe a linear elastic fracture model which is closely related to these elasticity

calculations (Section 2.3).
:::
and

::::
then

::::::::::::
post-processed

::
to
::::::
reveal

::::::
fracture

::::::::::
mechanical

:::::::::
properties.

:
I
::::::
present

:::::::::::::::
three-dimensional

::::::
results

::
in

::::::
Section

::
3.
::::::

These
::::::
results

:::::::
motivate

::
a
:::::::::
simplified

::::::::::::::
two-dimensional

::::::::
treatment

::
in
:::::::

Section
::
4,

:::
the

::::::
results

:::
of

:::::
which

:::
are

:::::
given

:::
in

::::::
Section

::
5.

:
I
::::::::
conclude

:::
by

:::::::::
discussing

:::
the

::::::::::
relationship

:::::::
between

:::
rift

:::::::::::
propagation,

:::
the

::::::::::
compressive

:::::
arch,

::::::::
rift-filling

::::::::
melange,

::::
and

:::::
ocean

::::
swell

::
in
:::::::
Section

::
6.100

2
::::::::::::::::
Three-dimensional

::::::
model

2.1 Geometry

I consider the idealized ice shelf geometry shown in Fig. 1. The ice shelf is square in map view (the x-y plane). The z axis

is defined so that the positive z axis points upwards and the bottom of the ice shelf is located at z = 0. The ice shelf has

horizontal dimensions Lx = Ly = 100 km and thickness h= 200 m. The ice shelf surface at y = 0 faces the ocean and the105

surface at y = Ly faces the ice sheet. The surfaces at x= 0 and x= Lx are referred to as the ice shelf margins. A single rift is

located along the x axis at y =W . I treat two different general rift locations: marginal and central. These two rift locations are

shown in Fig. 2. I hold the rift length fixed at L= 2.5 km long for the marginal rift and L= 5 km long for the central rift.

Geometrically, I model a rift as a tapered rectangular hole in the ice shelf. Fractures in three dimensions have a fracture tip

defined by a two-dimensional curve rather than a point. Although I refer to a rift tip for brevity, this term actually refers to a110

rift tip curve. In the treatment presented here, the rift tip curve is taken to be a vertical straight line. The rift is uniformly 10 m

wide over most of its length. Simulations show negligible
:::
low

:
sensitivity to the choice of this width . Tapering is applied over a

length equal to several widths (i.e., several tens of meters) near the rift tip
:::
(for

:::::::
example,

:::::
stress

::::::::
intensity

::::::
factors,

::::::::
described

:::::
later,

::::
show

:::::::
changes

::::
less

::::
than

::
or

::
on

:::
the

:::::
order

::
of

:::
1%

::::::
change

::
in
::::::::
response

::
to

::::::::
changing

:::
the

:::
rift

:::::
width

::
to

::
15

:::
m).

2.2 Linear elasticity115

I consider the equations of linear, homogeneous, isotropic, static, three-dimensional elasticity (?),

∇ ·T′ =−ρg (1)

with total (Cauchy) stress tensor T′, ice density ρ, and gravitational acceleration g. Because I neglect any spatial variation in

material parameters, my model does not include a firn layer.
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I account for an initial hydrostatic stress in a manner following ? wherein the equations of elasticity are solved for a pertur-120

bation stress tensor T defined as the total (Cauchy) stress tensor minus the initial hydrostatic pressure,
:::::::::
overburden

::::::::
pressure,

T≡=
:
T′− p0I, (2)

with ,
::::::
identity

::::::
tensor

:
I,
::::::::::
overburden

:::::::
pressure

:

p0≡=:ρg(H − z), (3)125

:::
and

:::
ice

::::
sheet

:::::::
surface

:::::
height

:::
H .

The perturbation stress tensor is necessary for the following physical reason. Without subtracting the initial overburden

pressure, the ice shelf experiences an initial volumetric contraction∼ p0/K with bulk modulusK. This volumetric contraction

does not occur in real ice shelves because at time scales longer than the Maxwell time, ice is well approximated as being incom-

pressible (?). Note that the perturbation stress tensor is not equal to the deviatoric stress tensor defined as T′− p
::::::
T′− pI. This130

difference is important because the perturbation stress tensor accurately captures permissible, elastic volumetric contraction,

whereas the deviatoric stress tensor does not.

All
:::
The

:
three-dimensional elasticity calculations in this study are carried out with respect to this perturbation stress tensor.

The

::::
With

::::::
respect

::
to

:::
the

::::::::::
perturbation

:::::
stress

::::::
tensor,

:::
the

:
equations of motion are,135

∇ ·T= 0 (4)

Tij =Kδijεkk +2µ(εij + δijεkk/3), (5)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6)

The first of these equations describes momentum balance which is derived by combining Eq. (2) and (3). Eq. (5) describes the

elastic constitutive relation (Hooke’s Law) with shear modulus µ= 3.6 GPa and Poisson’s ratio ν = 0.3. Although isotropic140

elasticity only requires two elastic moduli, for convenience I use Young’s modulus E ≡ 2µ(1+ ν)
:::::::::::::
E = 2µ(1+ ν) and the bulk

modulus K = E/[3(1− 2ν)]. Eq. (6) defines the strain tensor εij . These equation use index notation with repeated indices

implying summation, δij denoting the Kronecker delta function, and the indices i, j taking values x,y,z.

2.2.1 Boundary conditions

The ice front, rift walls, and top and bottom ice shelf surfaces are loaded by a depth-varying normal stress that is equal to the145

water pressure below the waterline and equal to zero above the waterline. These boundaries have zero applied shear stress. The

water pressure condition may be written as,

nT · (T′ ·n) =−pw(z), (7)
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Zero 

Displacement

Water

Pressure

A. Marginal Rift, “Ice Tongue”

E. Marginal Rift, embayment with “Weak Margins”

Zero 

Displacement

C. Marginal Rift, embayment with “Strong Margins”

Zero 

Displacement

Free Slip

B. Central Rift, “Ice Tongue”

F. Central Rift, embayment with “Weak Margins”

D. Central Rift, embayment with “Strong Margins”

Zero 

Displacement
Water

Pressure

Zero 

Displacement

Zero 

Displacement

Free Slip

Direction of 

ice flow

Figure 2. The geometries and boundary conditions considered in this studyinclude: A. and B., Half zero displacement and half water pressure

conditions
::

Ice
:::::
tongue; C. and D., entirely zero displacement conditions

:::::
strong

::::::
margins; and, E. and F., half zero displacementand half free slip

conditions. I furthermore consider rifts that occur in the margins (A., C., and E. ) and central
::::
show

:::::::
marginal rifts (

:::
and B., D., and F. )

::::
show

:::::
central

:::
rifts. The figures are not drawn to scaleand the rift width is greatly exaggerated.

with unit outward pointing normal vector n, ice shelf draft Hw ≡ ρ/ρwh,
::::::::::::
Hw = ρ/ρwh,

:::
ice

:::
and

:::::
water

::::::::
densities

:
ρ
:
and water

pressure pw(z), :::
ρw,

:::
and

:::::
water

::::::::
pressure,150

pw(z)≡=:

ρwg [Hw − (z+uz)] z < Hw,

0 z ≥Hw.
(8)

Here, w is the vertical component of the displacement vector.This boundary condition

:::
The

::::::::
boundary

:::::::::
conditions

::::::
applied

::
in
:::

the
:::::
three

::::::::::
dimensional

::::::
model

:::
are

:::::
found

::
by

:::::::::
combining

:::::
Eqs.

::
2,

::
7,

:::
and

::
8.

::::
This

::::::::
approach is

consistent with previous treatments of crevasse propagation in glaciers (e.g., ?).
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In all simulationsthat are presented here, the surface of the ice shelf above the grounding line at y = Ly has a zero displace-155

ment boundary condition. Similarly, the ice shelf surface at the ice front at y = 0 has a water pressure boundary condition

(Eq. 8). In the margins, I examine three types of marginal boundary condition. These conditions are shown in Fig. 2; they are:

1. Ice shelf with ice tongue: margins have zero displacement between y = Ly/2 and y = Ly and have water pressure

between y = 0 and y = Ly/2;

2. Ice shelf in an embayment with strong margins: margins have zero displacement boundary condition; and,160

3. Ice shelf in an embayment with weak margins: margins have zero displacement between y = Ly/2 and y = Ly and have

zero shear stress and zero normal displacement between y = 0 and y = Ly/2.

Note that Equations 18-20 occur naturally as a result of the more general three-dimensional boundary conditions. Equations 18-20

are not applied as constraints in the three-dimensional calculations. They are used, however, in Section 4 to analytically

approximate the numerical results.165

2.2.2 Numerical implementation

I solve Eqs. 4-6 using the finite element method. The ice shelf domain is discretized using a free tetrahedral mesh in three

spatial dimensions or a free triangular mesh in two spatial dimensions. In the three-dimensional simulations, the
:::
(i.e.,

::::
not

:::::::
regularly

:::::::
spaced)

:::::::::
tetrahedral

::::::
mesh.

:::
The

:
maximum element size along the rift is set to be m≡ h/16

::::
h/16. The element size

then increases away from the rift to a maximum value of 3.5 km. The rift is geometrically formed as a rectangular prism with170

width Wrift = 10 m and length L. I have verified that the
:::
The results presented here have virtually no

::::::
minimal

:
dependence on

the choice of Wriftand m. In the two-dimensional simulations (described below), the maximum element size along the rift is

Wrift/10.

2.3 Linear elastic fracture

Fractures in elastic materials create displacement fields that vary proportional to the distance r from the crack tip as r1/2 (?).175

The scalar constant of proportionality involves the stress intensity factor. Specifically, in terms of the displacement components

u, v, and w corresponding to displacements in the x, y, and z directions, the stress intensity factors are defined through the

relations (?),

u(r,z) = 4
KII(z)

µ/(1− ν)

√
r

2π
, (9)

v(r,z) = 4
KI(z)

µ/(1− ν)

√
r

2π
, (10)180

w(r,z) =
KIII(z)

µ

√
r

2π
. (11)

The quantitiesKI ,KII , andKIII are the Mode-I, Mode-II, and Mode-III stress intensity factors (SIFs). The sense of motion

associated with each mode of fracture is shown in Fig. 3. Equations 9-11 represent the asymptotic value, accurate to first order,
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of the displacement field near the rift tip on the plane of the fracture. The stress intensity factors bear a direct relationship to

fracture propagation.185

A basic tenet of fracture mechanics is that unstable crack growth occurs when the elastic strain energy available to drive

fracture exceeds the energy required to create new fracture area (?). The key insight of linear elastic fracture mechanics is

that this energy condition can be related to the stress intensity factors (?). The stress intensity factors may therefore be used

as part of a fracture criterion. In this study, I examine mixed-mode fracture and I therefore use the theory of ? that calculates

the single optimally-oriented stress intensity factor from the three different stress intensity modes. This optimally-oriented190

stress intensity factor is the Mode I stress intensity factor along a plane oriented to minimizes KII and KIII (??). Under the

assumption (verified later) that KIII does not substantially contribute to the direction of propagation of the rift tip line, the

Mode I stress intensity factor along the optimal angle of propagation θ can be written as,

KOp
I ≡=: cos

(
θ

2

)[
KI cos

2

(
θ

2

)
− 3

2
KII sinθ

]
. (12)

In this expression, the angle of propagation θ is given by,195

θ≡=
:
− 2tan−1

[
−2KI +2

√
K2

I +8K2
II

8KII

]
. (13)

In the adopted sign convention, negative angles indicate the direction pointing away from the ice front and straight-ahead

propagation occurs when θ = 0. Note that care must be taken in selecting the correct quadrant for the tan−1 function.

The fracture propagation criteria may then be stated as,

KOp
I >KIc, (14)200

where the value KIc = 100 kPa
√

m, is the Mode I fracture toughness of ice (?). I refer to rifts that satisfy Eq. (14) as being

unstable because they are expected to undergo some amount of propagation. Note that this does not necessarily mean that the

rift will propagate in a way that will lead to a calving event. Propagation may stop, for example, before calving occurs. Rifts

that do not satisfy Eq. (14) will be referred to as stable; such rifts are expected to close. This closure may result in partial

contact of the rift walls, as discussed next.205

2.3.1 Partial contact of rift walls

The partial contact of rift walls is a nonlinear phenomenon because it involves solving for the shape of the contacting region

and therefore changing the region over which different boundary conditions are applied (?). Here, I treat a linear formulation of

this problem wherein the Mode-I stress intensity factor KI can take on positive or negative values. This situation is discussed

in detail by ?. For fractures with zero initial width, a negative KI implies unphysical material overlap. I avoid this situation210

in my numerical simulations by giving the rift an initial nonzero opening as described in Section 2.1. This is consistent with

the idea that rifts in ice shelves are probably not held open entirely by elastic stresses because they have deformed through

creeping flow. Other studies have shown that accounting for contact nonlinearity results in minimal differences from the linear

9



problem for long fractures with L� λ (?), where λ is the ice shelf flexural wavelength .
:::::::::
(discussed

::::
later,

:::
see

::::
Eq.

:::
22).

:
Given

that many rifts do reach lengths L� λ (??), the linear approximation may well prove adequate for many cases of glaciological215

interest.

2.3.2 Stress intensity factor calculations

Stress
:::
The

:::::
stress

:
intensity factors are calculated using rift wall displacements and Equations

::
by

::::::
solving

::::
Eqs. 9-11

::::::::::
numerically

:
at
:::

an
:::::::
arbitrary

::::::::
distance

:
r
:::::
from

:::
the

:::::
crack

::
tip. This evaluation method, essentially a post-processing step, is sometimes called

the displacement correlation method (?) and has previously been used in glacier studies by ?. I evaluate Equations 9-11 at a220

distance r from the crack tip that is at least several times m
::
the

::::
grid

:::::::
spacing in order to achieve grid-size independence. In

three dimensions, stress intensity factors are calculated at various heights through the ice shelf thickness, with the resulting

calculations plotted in Fig. 3.

3 Results and Analysis
::::
from

::::::::::::::::
three-dimensional

:::::
model

Fig. 3 shows a typical result of the finite element calculations. This figure shows that the Mode-I and Mode-III stress intensity225

factors are nearly linear with depth (i.e., Fig. 3A, B, and E), while the Mode-II stress intensity factor is nearly uniform with

depth (i.e., Fig. 3D). This structure in the solutions permits an approximate parameterization of three-dimensional effects. Such

a parameterization allows for a much less computationally costly, two-dimensional problem to be solved.

I next develop the analytical parameterization (Section 4). After developing this 2D parameterization, I then apply it to

examine the relationship between rift position and rift stability. Some readers may wish to skip directly to these results, which230

are given in Section 5.2.

3.1 Parameterization of 3D effects within 2D calculations

The
:::::::::
Empirically,

:::
the

:
structure of the three-dimensional stress intensity factors suggests the approximation

::
can

:::
be

::::::::
described

::
as,

KI(z) =Km
I +Kb

I

(
z−h/2
h/2

)
, (15)

KII(z) =Km
II , (16)235

KIII(z) =Kb
III

(
z−h/2
h/2

)
, (17)

where the superscripts b and m stand for bending and membrane, respectively. In the following , I calculate the bending

components of the stress intensity factors Kb
I and Kb

III analytically and the membrane components Km
I and Km

II using
::::
This

:::::::
observed

::::::::
structure

::::::::
motivates

:::
the

::::::::
following

::::::::::::
parameterized,

:
two-dimensional finite element solutions.

:::::::::
treatment.

Comparison between 2D and 3D calculationsh 2D 3Dm (2D-3D)/3D χ 100 m -0.2937 -0.3127 12.5 m -6.1% 200 m -0.2937240

-0.3012 5 m -2.5%200 m -0.2937 -0.3069 12.5 m -4.3%ψ 100 m-0.04408-0.0385 12.5 m +14.5%200 m -0.04408 -0.0382 5 m

+15.4%200 m -0.04408 -0.0379 12.5 m +16.3%
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Figure 3. Typical three-dimensional stress intensity factors
:::::
(SIFs) as a function of depth z in the ice shelf.

::
The

::::::::
particular

::::
SIFs

:::
are

::
for

::
a

::::::
marginal

:::
rift

::
in

::
an

:::
ice

:::::
tongue

::::
(Fig.

:
2A

:
). and B

:
A. show the Mode I stress intensity factor KI::::

(SIF),
:
B.

:::::
Mode

:
I
:::
SIF

::::
with

:::::::::
depth-mean

:::::::
removed,

::
C.

::::
Mode

:
I
:::::
sense

::
of

::::::
motion, D. shows the Mode II stress intensity factor KII and

:::
SIF,

:
E. shows the Mode III stress intensity factor KIII :::

SIF,

:
F. The associated

::::
Mode

::
II sense of motion for each mode is shown in panels C

::::::
Motion, F, and G. B

::::
Mode

::
III

::::
sense

::
of

::::::
motion. has

:::
Red

::::::
dashed

:::
lines

:::::
show the mean removed and is compared to the analytical solution

:::::::
simplified

:::::
model

:
of Eq.

:::::
Section (19)

:
4. The particular stress intensity

factor solutions in these figures are plotted for a marginal rift in an ice tongue (i.e., the geometry shown in Fig. 2A.
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4
:::::::::::::::
Two-dimensional

:::::
model

:
I
::::
now

:::::::
examine

::
a
::::::::::::
parameterized

::::::::::::::
two-dimensional

::::::
model

::::
with

:::
the

:::::
goal

::
of

::::::::::::
approximating

:::::
Eqs.

::::::
15-17.

:::
The

::::::::::
membrane

:::::
terms

::
in

::::
these

:::::::::
equations

:::
are

:::::::::
calculated

::::::::::
numerically

:::
by

:::::::
solving

:::
the

:::::::::
equations

::
of

:::::
plane

::::::
strain

::::::::
elasticity

::
in

::::
two

:::::::::
horizontal

::::::
spatial245

:::::::::
dimensions

::
x

:::
and

::
y.

::::
The

::::::::
governing

:::::::::
equations

::
for

:::
the

::::::::::::::
two-dimensional

::::::::::
calculations

:::
are

::::::
found

::
by

::::::
taking

::::::::
∂/∂z = 0

::
in

::::
Eqs.

::::
4-6.

:::
The

::::::::::::::
two-dimensional

:::::
finite

:::::::
element

::::::::::
calculations

::::
are

::::::
similar

::
to

:::
the

:::::::::::::::
three-dimensional

:::::
ones,

::::
with

::::::::::
tetrahedral

::::::::
elements

:::::
being

:::::::
replaced

::
by

:::::::::
triangular

::::
ones

:::
and

::
a
::::::::
minimum

:::::
mesh

::::
size

:::::::
Wrift/10.

:::::::::
Boundary

:::::::::
conditions

:::
are

::::::
chosen,

:::
as

::
in

:::
the

:::::::::::::::
three-dimensional

::::::::::
calculations,

::
to

:::
be

:::::
either

:::::
freely

:::::::
slipping,

::
to
:::::
have

::::
zero

:::::::::::
displacement,

::
or
:::

to
::::
have

::
an

:::::::
applied

::::::
traction

::::
that

::::::::
represents

:::
an

:::
ice

:::::
front.

:::
The

:::::
latter

::
is

::::
given

:::
by

:::
the

:::::::
classical

:::
ice

::::
front

:::::::::
membrane

:::::
stress

:::::::
solution

::
of

::
?,
:

250

σm =
ρgh

2

(
1− ρ

ρw

)
.

::::::::::::::::::

(18)

::::
Note

:::
that

::::
this

::::::::
boundary

::::::::
condition

::
is

::::::
simply

::
the

:::::
depth

:::::::::
integrated

:::::
water

:::::::
pressure

:::::
minus

::::::::::
overburden

:::::::
pressure

::
as

:::::
given

::
in

:::
Eq.

::::
7-8.

4.0.1 The bending components of the SIFs

:::::::
Bending

:::::
terms,

:::
in

:::::::
contrast,

::::
are

::::::::::::
parameterized

::
in

:::
the

::::::::::::::
two-dimensional

:::::::::
treatment.

:
I find that the bending component of the255

Mode-I stress intensity factor
::::::::::
contribution

::
to

:::
the

:::::::
opening

::::::
mode is well fit by the previously-published stress intensity factor

solution (????),
:::
(?),

:

Kb
I =−σbf(ν)

√
λ., (19)

Here, λ4 ≡D/(ρg) is the flexural length
::::
with

:::::::
bending

:::::
stress

:::
(?),

σb =
6m0

h2
= φ

ρgh

2
.

::::::::::::::::

(20)260

:::
The

:::::::
bending

:::::
stress

:::
σb::

is
:::
the

:::::
value

:::
of

:::
the

:::::::::
rift-normal

:::::
stress

::
at
::::

the
:::
top

::
of

:::
the

:::
ice

::::::
shelf;

:
it
::

is
::::

also
:::
the

:::::::::
maximum

:::::
value

:::
of

:::
the

:::::::::
rift-normal

:::::
stress.

::::
The

:::::::
bending

:::::
stress

:::
can

::
be

:::::::::
expressed

::
as

:
a
:::::::
bending

::::::::
moment,

m0
::

=
:

ρgh3

12

[
3

(
ρ

ρw

)
− 2

(
ρ

ρw

)2

− 1

]
= φ

ρgh3

12
.

::::::::::::::::::::::::::::::::::::

(21)

::::::
Typical

::::::
values

::
of

:::::::::::
ρ/ρw = 0.90

:::
give

:::::::::
φ= 0.08.

::
In

:::::::
addition,

::::
Eq.

::
19

::::::
makes

:::
use

::
of

:::
the

::::::
flexural

:::::::
gravity

:::::::::
parameter,

λ4 =D/(ρg),
:::::::::::

(22)265

with flexural rigidity D ≡ Eh3/[12(1− ν2)]
:::::::::::::::::::
D = Eh3/[12(1− ν2)]. Hence, flexure results in a stabilizing contribution to the

Mode I stress intensity factor that grows with ice thickness according toKb
I ∼ h11/8. The bending stress σb is given by Eq. (20).

The function f(ν) is discussed below. Notably, the bending stress intensity factors asymptotically vary with
√
λ instead of the

typical
√
L.
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There is some discrepancy in the literature concerning the precise values of the function f(ν). ? cites ? who both note that270

f is of order unity but do not give its exact form. ? appears to have first given the dependence of f on ν although ? found a

mistake in this work. Meanwhile, ? gives a different value of f . It appears, however, that ? did not correctly account for the

rift-wall boundary condition. Given this uncertainty and the additional detail involved in the three-dimensional problem beyond

the assumptions made by the above authors, I instead simply choose to calculate the value of f(ν) from the three-dimensional

calculations. From these calculations, I find a value f(ν = 0.3) = 0.7646. Of the above references, this value is most similar275

to the value calculated from the equation given by ?, f(ν = 0.3) = 0.6063.

Bending also creates a Mode-III stress intensity factor. Assuming that this bending can also be described within Euler beam

theory, the Mode-III and Mode-I stress intensity factors are related by a factor,

Kb
III

Kb
I

=
h

2
√
2(1+ ν)λ

. (23)

Thus Kb
III ∼ h2, which is a larger exponent than for Kb

I . This solution was derived by assuming, consistent with Equations 9-280

11, that the ratio of stress intensity factors is proportional to the ratio of the stresses. This stress ratio is then calculated using

the solution to the floating beam equation (?), w =−2m0/(ρgλ
2)exp(−x/λ)(cosy/λ− siny/λ). The analytical solution of

Eq. (23) is compared to the finite element solution in Fig. 3E (red dashed lines).

5
::::::
Results

:::::
from

::::::::::::::
two-dimensional

::::::
model

5.1
::::::::::

Comparison
::::::::
between

::
2D

::::
and

:::
3D285

:
I
:::
find

:::::
good

::::::::
agreement

:::::::
between

::::::::::::::
two-dimensional

::::::::::
calculations

:::
and

:::
the

:::::::::::::
depth-averaged

:::::
values

::::
from

:::::::::::::::
three-dimensional

:::::::::::
calculations.

::::
Table

::
1
:::::::
presents

:::::
these

::::::
results

:::::
using

:::
the

::::::::::
geometrical

::::::
factors

:::::::::::::::::
χ=Km

I /(σm
√
πL)

::::
and

::::::::::::::::::
ψ =Km

II/(σm
√
πL),

:::::
where

::::
σm ::

is
:::
the

:::::::::::::
depth-integrated

::::::::
boundary

::::::::
condition

:::::
given

::
in

::::
Eq.

::::
(18).

::::
Note

::::
that

::::::::::::::
KI ∼KII ∼

√
L
::::::::
suggests

:::
that

::
χ

:::
and

::
ψ
:::
do

:::
not

::::::
depend

:::
on

::
L

:::
(?).

:::
The

:::::::::
agreement

::
is
:::::
better

:::
for

::
χ

::::
than

:::
for

::
ψ,

::::
with

::::::::::
differences

::
on

:::
the

:::::
order

::
of

::::::
several

:::::::
percent.

::::
This

:::::
table

:::
also

::::::
shows

:::
the

:::::
effect

::
of

::::::
varying

:::
the

:::::::::
maximum

::::::
near-tip

:::::::
element

::::::
length.

::::
The

:::::
values

::
in

::::
this

::::
table

:::
are

::::::::
calculated

:::
for

::
a

::::::
central

::
rift

:::
in

::
an

::::::::::
embayment

::::
with290

:::::
strong

::::::::
margins

::::
(i.e.,

::
as

::::::
shown

::
in

::::
Fig.

::::
2D).

The analytical solution is not expected to perfectly match the finite element solution because the latter accounts for the full

floatation condition (Eq. 7), whereas the bending model (Eq. 19) neglects higher order moments through Eq. (21). I further

verify that the simplified model captures the behavior of the three-dimensional simulations by calculating stress intensity factors

over a range of ice shelf thickness between 25 m and 1600 m. I find that Kb
I ∼ h1.31 in the three-dimensional calculations295

whereas Kb
I ∼ h1.375 analytically. Similarly, Kb

III/K
b
I ∼ h0.27 in the three-dimensional calculations whereas Kb

III/K
b
I ∼

h0.375 analytically. As can be seen in Fig. 3, the differences are more pronounced for Kb
III . I attribute the differences between

analysis and calculation to the neglect of higher order moments and stress terms (i.e., the use of Euler beam theory).

5.1.1 The membrane components of the SIFs

13



Table 1.
:::::::::
Comparison

:::::::
between

::
2D

:::
and

:::
3D

:::::::::
calculations

:
h

:::
2D

::
3D

: ::::
Max.

::::::
near-tip

::::::
element

:::
size

: :::::::::
(2D-3D)/3D

:

:
χ
: :::

100
::
m

:::::
-0.2937

: ::::::
-0.3127

:::
12.5

::
m
: :::::

-6.1%

:::
200

::
m

:::::
-0.2937

: ::::::
-0.3012

:
5
::
m

: ::::
-2.5%

:::
200

::
m

:::::
-0.2937

: ::::::
-0.3069

:::
12.5

::
m
: ::::

-4.3%

:
ψ
: :::

100
::
m

:::::::
-0.04408

::::::
-0.0385

:::
12.5

::
m
: ::::::

+14.5%

:::
200

::
m

:::::::
-0.04408

::::::
-0.0382

:
5
::
m

: ::::::
+15.4%

:::
200

::
m

:::::::
-0.04408

::::::
-0.0379

:::
12.5

::
m
: :::::

+16.3%
:

I carry out simplified two-dimensional finite element calculations in order to describe the membrane components of the stress300

intensity factors. In two horizontal spatial dimensions x and y, the governing equations for the two-dimensional calculations

are found by taking ∂/∂z = 0 in Eqs. 4-6. In two spatial dimensions, the boundary condition on floating ice fronts takes the

stress value given by Eq. (18).

I find good agreement between two-dimensional calculations and the depth-averaged values from three-dimensional calculations.

Table 1 presents these results using the geometrical factors χ=Km
I /(σm

√
πL) and ψ =Km

II/(σm
√
πL), where σm is the305

depth-integrated boundary condition given in Eq. (18). Note that KI ∼KII ∼
√
L suggests that χ and ψ do not depend on L

(?). The agreement is better for χ than for ψ, with differences on the order of several percent. This table also shows the effect

of varying the maximum near-tip element length m. The values in this table are calculated for a central rift in an embayment

with strong margins (i.e., as shown in Fig. 2D).

5.2 Central and Marginal
:::
and

:::::::
Central

:
Rifts310

I now use the two-dimensional approach described in Section 4 to examine the effect of rift position on rift stability. I again

consider all of the
:::::::
consider

::
all

:
combinations of boundary conditions and rift locations shown in Fig. 2 while additionally

varying the streamwise position of the rift W .

Stress intensity factors for marginal rifts are plotted in Fig. 4. These stress intensity factors were calculated using the 2D

parameterization described in Section 4. Consistent with the shearing stresses experienced in the ice shelf margins, the Mode I315

and Mode II stress intensity factors are of similar magnitude (Fig. 4A and B, respectively). Fig. 4C shows that marginal rifts

always tend to propagate in the direction
:
In

:::
all

::::::::
marginal

:::
rift

::::::::::
simulations,

::::
rifts

::::::::
propagate

:
away from the ice front , i.e., in the

positive y direction (coordinates shown in
:
(Fig. 1).

::::
4C). Marginal rifts are unstable over the greatest range of locations in the ice tongue and weak margin geometries (Fig. 4D).

Specifically, they become unstable at a position W/Ly ≈ 0.66. Stability in these geometries is not spatially monotonic,320

however, and rifts again become stable near the ice front at W/Ly ≈ 0.33.
::
In

::::
both

::::::
cases,

::::
rifts

:::
are

:::::::
unstable

:::
at

::::::::
positions

::::::::::::::::::
0.35<W/Ly < 0.65. Marginal rifts in ice shelves with strong margins, in contrast, have monotonically varying optimally

14



oriented Mode I SIFs: they are stable near the grounding line and they become unstable at a distance W/Ly ≈ 0.33 from the

ice front.

Stress intensity factors for central rifts are plotted in Fig. 5. In contrast to the marginal rifts, central rifts have |KII | � |KI |325

(Fig. 5A and B). Unlike marginal rifts, propagation angles are smaller, indicating nearly straight-ahead propagation (Fig. 5C).

Furthermore, central
::::::
Central rifts in all positions are found to have negative optimally oriented stress intensity factors indicative

of stability (Fig. 5D).

6 Discussion

I have presented a three-dimensional LEFM analysis of ice shelf rift propagation. While this model has many potential appli-330

cations, I have focused on the relationship between rift position
:::::::
marginal

:::::::
strength and rift stability. In that regard, the main

result of this analysis is that rifts originating in the margins of ice shelves become unstable if the ice shelf margin looses shear

strength. This transition between a strong margin and a weak margin can be seen, for example, by comparing the red and

yellow curves in Fig. 4D. Although this result is justified by the calculations presented in this paper, it is worth emphasizing

several implicit and subtle assumptions.335

I have assumed that margins have either zero displacement or zero shear stress. In reality, margins likely experienced reduced

but nonzero shear stress. I have also considered only two rift locations (marginal or central), only one ice shelf geometry

(square), and only one rift geometry (a single rift, perpendicular to flow, and without curvature). I treat the entire ice column as

having identical
:::::::
uniform material properties and therefore do not describe the firn layer and

:::::::
describe

::::::
neither

:
a
::::
firn

::::
layer

:::
nor

:
its

relation to partial contact of rift walls. Additional observed rift-wall processes such as brine infiltration, surface accumulation,340

and variable uplift could also be investigated (???). Each of these assumptions deserves further examination. Despite these

limitations, ice shelves and ice shelf rifts oftentimes approximately conform to the assumptions described in this study. I do

therefore expect that the results presented here provide a useful basis for understanding rift propagation.

6.1 The compressive arch

All boundary conditions considered here give rise to a compressive arch, defined as the region where an ice shelf transitions345

from uniaxial to biaxial extension (?). The compressive arch can be visualized by plotting the second principle horizontal strain

field, the first principle strain alway being positive (Fig. 6). ? proposed
::
the

:::::::::
hypothesis

:
that “once a retreating ice front breaks

through the critical ‘compressive arch’ then retreat is irreversible.” The
::::::::
Although

:::
the

:
results presented here broadly confirm

:
a
:::::::::
connection

::::::::
between

:::
the

::::::::::
compressive

::::
arch

::::
and

:::
rift

:::::::::::
propagation,

::::
there

:::
are

:::::::::
important

:::::::
caveats.

:::
The

::::::::
foremost

::::::::
exception

:::
to

:::
the

::::::::::
compressive

::::
arch

:::::::::
hypothesis

::
is
::::
that

::::::
central

::::
rifts

:::
are

:::::
found

::
to
:::::::

always
::
be

::::::
stable,

:::::::::
regardless

::
of

::::
their

::::::::
position

:::::
inside

::
or

:::::::
outside350

::
of the hypothesis of ?, although as shown in Section 3, the relation to the compressive archonly holds in an approximate

sense. Specifically.
:::::::::::
Additionally, for the strong margin boundary condition the onset of instability occurs somewhat upstream

from the maximum extent of the compressive arch(
:
.
::::
This

::
is

::::::
shown

::
in Fig. 6A.),

::::::
where

:::
the

:::::::::::
compressive

::::
arch

::
is

::::::
plotted

::
as

::
a

::::
black

::::::
dashed

::::
line

:::
and

::::::::
marginal

:::::::
stability

:::::::::
boundaries

:::
are

::::::
plotted

::::
with

::::::
yellow

::::::
dashed

::::
lines. For the weak margins and ice tongue
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Figure 4. Stress intensity factors for marginal rifts may reflect either stability or instability depending on the position of the rift. Three pieces

of information, the A. Mode I SIF, B. Mode II SIF, and C. Propagation angle, are combined using Eq. (12) to calculate D. the optimally-

oriented SIF.
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Figure 5. Stress intensity factors
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::::
Fig.

:
4
:::
but for central riftsreflect stability for all rift positions.Three pieces of information, the A.

Mode I SIF, B. Mode II SIF, and C. Propagation angle, are combined using Eq. (12) to calculate D. the optimally-oriented SIF.
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Figure 6. The ice shelf compressive arch (thick black dashed line) is plotted for three boundary conditions: A. Strong Margins, B. Weak

Margins, and C. Ice Tongue (see Fig. 2). The figure also shows the boundaries of regions of rift instability
::
for

:::::::
marginal

:::
rifts

:
(thin yellow

dashed lines). These figures were calculated in two horizontal spatial dimensions as described in Section ??
:
4.

boundary conditions the agreement is closer, however, there is also a region of stability that occurs closer to the ice front355

(Fig. 6B. and C.).

Perhaps more
::::::
Perhaps

:::::
most importantly, the results presented here suggest a slightly different order of causality than that

proposed by ?. Rather than being an independent
::
In

:::
the

:::::::::
hypothesis

::
of

::
?,

:::
the

:::::::::::
compressive

::::
arch

::
is

:
a
:
boundary that rifts may or

may not propagate through, rift propagation in the model presented here is expected to occur precisely because of the stress

state that creates the compressive arch . Ice shelf retreat is expect to be irreversible only
:
.
:::
The

::::::
present

:::::::
analysis

::::::
instead

::::::::
suggests360

:::
that

:
a
:::
rift

:::::::::::
“propagating

::::::
across

:::
the

::::::::::
compressive

:::::
arch,”

:::::::
actually

:::::::
involves

:::::::::::
simultaneous

:::::::
changes

::
in

:::
ice

::::::::
geometry,

:::::::::
migration

::
of

:::
the

::::::::::
compressive

::::
arch,

::::
and

:::
rift

::::::::::
propagation.

::::::
Under

::
the

:::::::::::
assumptions

::
of

:::
my

:::::::
analysis,

:::::::
calving

::
of

:::::::
icebergs

::::::
within

::
the

:::::::::::
compressive

::::
arch

:
is
::::
only

:::::::::
reversible insofar as marginal weakening is itself irreversible.

6.2 Melange as a rift proppant

? observed a lack of rift-tip seismicity at central rift in the Ross Ice Shelf. This observation is
::::::::::
qualitatively

:
consistent with the365

negative KOp
I I have calculated for centrally-located rifts. In the absence of other forces such rifts

:
A

:::::::
negative

:::::
stress

::::::::
intensity

:::::
factor

:::::::
indicates

::
a

:::
rift

:::
that will tend to close. It seems likely that these rifts therefore owe their continued existence to rift-filling

melange that acts as a type of proppant by holding the rift open. Melange therefore has a dual nature. ? and ? showed that

melange maintains shear stresses and therefore resists viscous flow. In this sense, melange is stabilizing. Yet in the sense that

melange may sometimes enable the existence of rifts that would otherwise close, melange is destabilizing.370

6.3 Wave-induced fracture

? used passive seismic data to calculate the elastic ice shelf stresses due to ocean swell acting on the Ross ice shelf. This study

concluded that some un-modeled process must have been operating in order to explain the lack of any observed ice shelf rift
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propagation during the observation period. Specifically, ? calculated a maximum wave-induced Mode-I stress intensity factor

KI ≈ 2 MPa m1/2 for a site near the Nascent Iceberg Rift. Using the results presented here for a central rift, we calculate that375

for a near-front central rift withW/Ly = 0.05, the Mode-I stress intensity without wave stress would beKOp
I ≈−5 MPa m1/2.

The resulting total Mode-I stress intensity factor of KOp
I ≈−3 MPa m1/2 being negative is consistent with the observation

that ocean swell did not trigger rift propagation during the observation period described by ?.

7 Conclusion

I have modeled an ice shelf as a three-dimensional buoyantly floating elastic plate. I then show how these three-dimensional380

results may be captured in simplified two-dimensional calculations. Using the two-dimensional theory, I show that ice shelf

rifts become unstable in the presence of marginal weakening or upon exiting an embayment. These results are a step towards

prognostic ice shelf modeling
:::::::
modeling

:::::::
marine

:::
ice

::::
sheet

::::::::
evolution

:
with a physics-based relationship between ice dynamics

::::
flow and an ice front extent set by rift propagation.
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