
Response to Reviewer #1 
 
One place where I was confused was caused by not realizing the nature of how the solutions 
were derived, numerically using Equations 6, 7 and 8, apparently, as stated in the appendix. I 
didn’t at first notice a reference to the appendix in the text.... after searching for it, I see it is 
referenced on page 7. It may be that the main body of the text needs a more forthright 
statement about what is done to produce the results, and a "louder" statement of what 
Appendix A is about would be helpful to some readers. 
 
In a revised manuscript, I have made a significant effort to address this concern.  I have added 
text at the beginning of Section 3 that clarifies the modeling approach.  I’ve also incorporated 
the Appendix into the main text in a way that is more clear for the reader. I have also 
reorganized subsections (and sub-subsections) in Sections 3 and 4 so that the paper outline 
offers a better guide of the calculations that are presented. I have also added several 
“signposts” throughout the manuscript that attempt to orient the reader. 
 
I think it is important to state somewhere at the outset and also in regard to future research 
that the fern-structure of the ice shelf may have additional bearing on the problem. In this case, 
the "touching of the top" is by weak, crushable firn. Also parts of the ice shelf that are in snow 
accumulation areas will have rift tops that are being actively filled with new material. Dealing 
with this is far beyond the scope of the present paper, but it worth identifying as a factor in 
future investigation. 
 
Agreed. In a revised manuscript I have now explicitly mentioned the role of firn and its 
approximation in my model.  I found the most natural place for this clarification to be at the 
beginning of the discussion section. 
 
I am very impressed with the fact that observations, specifically (1) the absence of 
seismicity at rift tips, (2) the failure of a wave-forced propagation of a Nascent rift, 
and (3) the view of the compressive arch by Doake, are so nicely explained by the 
simple analysis of the theory presented. This, to me, is a great success and one which 
suggests that this approach may be what breaks any "log jam" over how rifting on ice 
shelves is to be pursued in the future. 
 
Thank you! 
 
 
Around line 30 of page 2. I wonder if a citation to a paper by Sanderson would be 
appropriate. He thought about ice-shelf margins. Journal of Glaciology, V22, 1979. 
 
Sanderson was previously cited in my manuscript but not on this point.  I have added this 
reference at this location as suggested. 



 
Is equation 2 the bending moment due to the stress balance at the ice front that leads 
to a bending moment? Just a comment would suffice. 
 
Yes, that’s right.  I’ve tried explaining this slightly differently in the text. 
 
In the discussion along with Figure 1, it may be useful to point the reader to observational 
studies of rift walls: e.g., Scambos, T., Ross, R., Haran, T., Bauer, R., Ainley, D., 
Seo, K., . . . MacAyeal, D. (2013). A camera and multisensor automated station design 
for polar physical and biological systems monitoring: AMIGOS. Journal of Glaciology, 
59(214), 303-314. doi:10.3189/2013JoG12J170 Note figure 8 in that paper. 
 
I’m grateful to the reviewer for pointing out this reference.  I’ve added a mention to it. 
 
In describing the model, I think it is important to state whether a firn layer is going to 
be treated or not.  
 
I do believe that treating the firn layer is beyond the scope of the present paper.  Since the firn 
layer may nevertheless be of importance, I have added text stating this point at the beginning 
of Section 3.1 as well as in the Discussion section. 
 
Also, although a minor point: I wonder if it is worth mentioning that brine-infiltration, 
horizontally along the bottom of the firn where it is permeable and where there is an ice front 
or rift wall might introduce secondary effects on rift wall bending moments etc.. 
 
I have made additional note of this process (start of Section 5). 
 
page 9 just below line 185. f is given to 4 significant digits. I wonder if this could be 
considered misleading.  I also note that the Young’s modulus that is used in the study is 
expressed as if it were very accurately known. My understanding is that relative sizes are more 
likely to be significant in terms of what readers take away from the comparison t this point in 
the paper. Perhaps that should be stated. 
 
I have changed this mistake.  Significant digits are now consistently reported. 
 
 
Figure 5, and some of the preceding figures. Do these results present the solution of 
Equations 6 7 and 8? I’m confused as to the specific process required to generate the 
curves and 2-d plot of displacement and other factors. A simple summary (before the 
results are presented) that describes how the model is implemented would be helpful 
to other researchers. Oh Dear! I see that this is all explained in the Appendix. (I should 
have noticed!) But, if my confusion (missing the reference to the appendix) can be of 
service in improving the exposition, let it so be. 
 



Yes, this is useful.  Again, as noted in the first comment above, I have made a significant effort 
to clarify the exposition. 
  



 

Response to Reviewer #2 
 
- What is the value the author uses for the critical stress intensity factor Kc? In the text, there is 
no explicit value given.  
 
Following the work of Rist et al (2002), I use 100kPa m^{1/2}. None of the results in the 
manuscript are sensitive to this precise value.  I have added text at the end of Section 3.2 that 
provides this information. 
 
- Could the author please include the text of both appendices in the main text? The points that 
are discussed there are critical for the comprehension of the paper.  
 
Yes, I have moved the text in the Appendix to the main text. 
 
There is no reference to the Appendix and it is not directly clear, for instance, why the author 
uses the displacement in one direction only dependent on one critical stress factor of a certain 
loading mode (displacement direction method).  
 
It is simply a matter of definition that each mode depends on an orthogonal component of 
displacement.  This definition, however, bears utility in its relationship to fracture propagation.  
I have modified the text in Section 3.2 following the definitions of the stress intensity factors to 
explain this point. 
 
The author can also shortly discuss that this method/approximation has first-order accuracy.  
 
I have made such a note. 
 
- At the moment it is also not clear which equations the author uses for the numerical finite 
element and which only for the analytical solution.  
 
Following on the comments from Reviewer #1, I have made changes to the manuscript in an 
effort to improve clarity on exactly this point.  I have added the exact equations that are solved 
in Section 3.1.  I have also added text at the beginning of Section 3 that clarifies the modeling 
approach. 
 
For instance, Eqs. (1)-(3) are only used for the analytical solution. Is this right? 
 
Yes, and I have added a note to this extent in Section 3.1. 
 
For the numerical solution, the displacement field can be derived with three-dimensional 
elasticity and the different boundary conditions and then in a post-processing step the stress 



intensity factors are computed out of the displacement field. Then the author should mention 
this procedure in the text that it is directly clear for the reader. Maybe it is then also better to 
solve Eqs. (6)-(8) for the stress intensity factors: KII(z)=: : :.  
 
Yes, that is exactly correct. I have added a note that clarifies this point in the introduction as 
well as at the beginning of Section 3. 
 
 
- Does the author also consider rifts that are not filled by water? The water cannot percolate in 
all rifts occurring in an ice shelf, for example, if the rift is too far away from the ice front also dry 
(not filled by ocean or melt water) rifts can exist. How is the stability of dry rifts? Maybe the 
author can also add a short comment on these studies in the text. 
 
This is an interesting point and I have made mention of it at the beginning of Section 5. 
 
- Figure 3: the arrows for mode II should also be plotted at the rift edges as the author did it for 
mode I and mode III. 
 
I’ve made this change. 
 
- What is the minimum element size along the rift? Did the author a mesh convergence study to 
also verify that the results are not mesh dependent (a crucial check if one would consider stress 
intensity factors at the crack tip).  
 
Yes, this is an important point.  I did verify that the results are not mesh-dependent prior to 
initial submission. The maximum element size near any boundary, including the rift tip, is 
constrained to be no greater than h/16 with ice thickness h.  Furthermore, stress intensity 
factors are measured over several elements, an essential aspect of mesh independence. 
Although some of these points were already described in the text, I have added more detail in 
the newly-created Section 3.2.2. 
 
 
Specific comments and questions:  
 
- Eq. 6-8: I do not have access to the Tada et al. 2000 paper, but are the factors in these 
equations right? I found in Gupta et al. 2017 (“Accuracy and Robustness of Stress Intensity 
Factor Extraction Methods for the Generalized/eXtended Finite Element Method”) 
sqrt(r/(2*pi)) and mu/(4-4*nu). Could the author please check the equations. 
 
I’m grateful for the reviewer’s attention to detail for catching this mistake.  I verified that these 
equations were correctly implemented in my finite element calculation.  It appears that this 
mistake was entirely limited to the manuscript and the appropriate correction has been made. 
 



- Equations: Why do the author sometimes use an equality sign and sometimes the sign for 
identical statements with three strokes above the other (see Eqs. (2) and (3))? For example, Eq. 
(1) and Eq. (4) are both statements how the stress component or the stress tensor for the 
boundary condition is computed. 
 
I use the symbol with three lines to denote a definition.  I’ve checked that this is consistently 
used in all equations and also made a note for the reader. 
 
 
l.58: the traction boundary condition should be zero (stress-free boundary due to zero 
pressure) at the top of the ice shelf. The author only gets non-zero values as the simplified 
assumptions of Weertman and Reeh are used. Here, a comment that these results are not 
necessary for the finite element formulation could be helpful for the understanding of this 
paper. 
 
Yes, agreed.  I added a sentence clarifying this point in Section 3.2.1. 
 
l.93 and Fig. 2: The geometry of the rift in the figure looks like a rhomb, but in the text the rift is 
described with a uniformly 10 m width and only near the rift tip it is tapered. Could the author 
update the figure that it fits to the description of the rift? The author already states in the 
caption that the width and shape are exaggerated but if the author could also include the width 
of only 10 m in the figures, it will be clearer that LEFM could be applied where an infinitesimal 
small crack tip is absolutely necessary. 
 
I have updated Figure 2 as the reviewer suggests. 
 
l. 98: Is the perturbation stress tensor the deviatoric stress tensor? Can the author also include 
the word deviatoric to make it directly clear for everyone and maybe add at the end of the 
sentence “times identity tensor”? Eq. (4): Why is the pressure boundary condition only applied 
for the deviatoric stress tensor and not as common to the total (Cauchy) stress tensor? 
 
Briefly, no, it is not the deviatoric stress tensor.  The perturbation tensor is T- p_0 whereas the 
deviatoric tensor is T-p.  As this is an important point, I explain the difference in detail in the 
beginning of Section 3.1.  The perturbation tensor still allows for elastic compressibility whereas 
the deviatoric stress tensor does not.   
 
Figure 3: Could the author please add a legend to the plots A, B, D, E? Could the author please 
also use capital letters for the reference to the figures, see for instance  l.154,155. 
 
I have made these changes. 
 
Why does the author choose slightly different density values of 0.9 (l.55) and 0.89 (l.263)? 
 



This was an oversight.  In the revisions I’ve opted to use the value with fewer significant figures 
to reflect the uncertainty in this quantity. 
 
l. 265: What are the boundary conditions for the case studied in Fig. 3? At each boundary water 
pressure? 
 
I have clarified the figure caption to state that this figure is drawn for a marginal rift in a floating 
ice tongue. 
 
 Why are all computed values of this geometrical factor negative in Table A1 (2D and 3D)? Is 
this due to the boundary conditions acting in an embayment?  
 
Yes, this is for an embayment geometry.  I have added this clarifying point to the text. 
 
Does this statement mean that a rift longer than 217m will never be stable in a free-floating ice 
shelf? 
 
This comment prompted a change to how stability is evaluated in my manuscript.  In the 
revised manuscript, I have introduced the optimally oriented stress intensity factor.  I have also 
removed this calculation as I do not believe it is consistent the three-dimensional results. 
 
Fig. 1: The author should add in the caption of this fuigure that the boundary conditions on the 
side of the ice shelf are too far away to have an influence on the rift. If this is not the case, then 
the bending moment of the water pressure at the side counteract the closure of the rift top by 
the opening of the rift. 
 
I have made such a note. 
 
Fig. 4: Why are the orange and blue curves for alpha»0.5 not reaching or converging to the red 
curve? The boundary conditions of free slip or water pressure are in this case far away from the 
rift and therefore the difference of all three cases should be minimal. 
 
This is a real effect.  An essential aspect of LEFM is that distant boundaries may still alter energy 
release rates.  This statement is epitomized by the J-Integral of Rice (1968), which expresses the 
energy release rate as an integral over all boundaries.  
 
Fig. 6B: Shows the red curve in this figure not an unstable rift if alpha is in between 0.1 and 0.3? 
For the stress intensity factor of the shearing mode (Mode-II) it is sufficient for rift propagation 
that the magnitude is greater than 1 (cf. l. 228). 
 
I have revised the previously-numbered Fig 6.  It and previously-numbered Fig 4 both now show 
the optimally-oriented SIF.  As described in the text Section 3.8, the optimally-oriented SIF 
provides a better measure of stability.  More directly to the reviewer point, I have also modified 



the discussion in (newly-numbered) Section 4.2 and 5.1 to give a more subtle description of the 
regimes of propagation. 
 
 
Technical corrections.  I have addressed each of the small technical corrections brought up by 
the reviewer. 
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Abstract. Understanding the processes that govern ice shelf extent are of fundamental importance to improved estimates of

future sea level
:::::::
sea-level rise. In present-day Antarctica, ice shelf extent is most commonly determined by the propagation of

through-cutting fractures called ice shelf rifts. Here, I present the first three-dimensional analysis of ice shelf rift propagation.

I present a linear elastic fracture mechanical (LEFM) description of rift propagation. The model predicts that rifts may be

stabilized when buoyant flexure results in contact at the tops of the near-tip rift walls. This stabilizing tendency may be5

overcome, however, by processes that act in the ice shelf margins. In particular, both marginal weakening and the advection

of rifts into an ice tongue are shown to be processes that may trigger rift propagation. Marginal shear stress is shown to be

the determining factor that governs these types of rift instability. I furthermore show that rift stability is closely related to

the transition from uniaxial to biaxial extension known as the compressive arch. Although the partial contact of rift walls

is fundamentally a three-dimensional process, I demonstrate that it may be parameterized within more numerically efficient10

two-dimensional calculations. This study provides a step towards a description of calving physics that is based in fracture

mechanics.

Copyright statement.
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1 Introduction

The Antarctic ice sheet is projected to loose mass this century. Although the rates of mass loss over this timeframe are typically15

projected to mirror recent rates, several types of more extreme ice sheet response to global climate forcing cannot presently

be excluded (?). Perhaps the most prominent of these extreme changes is the retreat of the floating ice shelves that fringe the

Antarctic continent. Ice shelf retreat has been observed to occur gradually, i.e., over a period of years to decades (??), and also

abruptly, i.e., over a period of weeks to months (??). Although ice shelves themselves do not contribute to sea level
:::::::
sea-level

rise, they do act to buttress grounded ice (????). For this reason, ice sheet mass and therefore global mean sea level
:::::::
sea-level20

are closely connected to the extent and stability of ice shelves. Here, I examine the stability of ice shelves with respect to the

propagation of large through-cutting fractures called rifts.

The largest modern ice shelves exist in embayments. This basic observation has long prompted the notion that embayments

promote the existence of large stable ice shelves (????). Yet not all ice shelves fully fill the largest possible embayment.

The Pine Island Glacier Ice Shelf, for example, does not presently fill the entire embayment between Bear Peninsula and25

Thurston Island; instead it fills the much smaller local embayment of Pine Island Bay. Furthermore, analysis of sediment cores

(?)
::::
(??) and iceberg scour marks (?) suggest that past ice shelves have waxed and waned in extent through ice age cycles.

Although embayments appear to stabilize ice shelves, it would therefore appear that some other process is responsible for

determining the size of a stable ice shelf within a given coastal geometry. The close relationship between the state of stress in

an ice shelf and the ice shelf boundary conditions (??)
:::::
(???) motivates investigation into processes acting in ice shelf margins.30

Ice shelf margins are the region
:::
part

:
of the ice shelf grounding zone that is roughly parallel to flow (see Fig. ??). The

importance of ice shelf margins is suggested by several observations, foremost among these being the observation of marginal

weakening prior to ice shelf collapse. Estimates of ice rheology based on the inversion of surface velocity fields show extensive

marginal weakening prior to the collapse of the Larsen A (?) and Larsen B Ice Shelves (??). Although ice shelf collapse (i.e.,

total and rapid retreat) is a complex phenomenon that involves other processes besides rift propagation (?), rift propagation35

does appear to play a role in collapse. ? explicitly noted that marginal weakening immediately preceded rift propagation and

eventual collapse on Larsen B. Further observation of a relationship between ice shelf retreat, rifting, and marginal thinning

has been noted in the Amundsen Sea Embayment (?) and Jakobshavn Isbrae, Greenland (?). Motivated by these observations,

a central question of this paper is, what is the precise mechanical relationship between ice shelf margins and ice shelf rift

propagation?40

The main result of this paper is that marginal weakening can destabilize rift propagation. I begin by providing background

on the state of stress in an ice shelf as well as some aspects of linear elastic fracture mechanics (LEFM) in Sections ??and ??
:
.

::
In

::::::
Section

:::
??

:
I
:::::::
describe

:::::::::::::::
three-dimensional

::::::::
elasticity

::::::::::
calculations

:::
that

:::
are

::::::
carried

::::
out

::::
using

:::
the

:::::
finite

:::::::
element

::::::
method

::::
and

::::
then

::::::::::::
post-processed

::
to

:::::
reveal

:::::::
fracture

:::::::::
mechanical

:::::::::
properties. A more precise statement of the main result is then given in Section ??,

where I also examine a simplified analytical treatment of the three-dimensional calculations. I conclude by discussing the45

relationship between rift propagation, the compressive arch, rift-filling melange, and ocean swell in Section ??.
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2 Background

I consider an ice shelf to be a buoyantly floating elastic plate of uniform thickness. As such, a
::::
Stress

:::::::
balance

::
at

:::
the

:
seaward-

facing ice front experiences
:::::
results

::
in

:
both a net bending moment and an in-plane horizontal membrane stress (??). The

vertically-averaged membrane stress is,50

σm ≡
ρgh

2

(
1− ρ

ρw

)
. (1)

while the
:
I
:::
use

:::
the

::
≡

::::::
symbol

::
to

::::::
denote

:
a
:::::::::
definition.

::::
The bending moment is given by,

m0 ≡ ρgh3

12

[
3

(
ρ

ρw

)
− 2

(
ρ

ρw

)2

− 1

]
≡ φρgh

3

12
. (2)

In these expressions, ρ and ρw are the densities of ice and water and h is the ice thickness. Typical values of ρ/ρw = 0.90 give

φ= 0.08. The bending moment may also be expressed as a bending stress,55

σb ≡
6m0

h2
= φ

ρgh

2
. (3)

The bending stress σb is the value of the rift-normal stress at the top of the ice shelf; it is also the maximum value of the

rift-normal stress. The horizontal component of loading (Eq. ??) is commonly used as a boundary condition in numerical ice

flow models, whereas the bending moment is not typically applied in ice sheet models because its effects are confined to a

narrow boundary layer in the vicinity of the ice front (?).60

Rifts walls have the same ice-front boundary conditions as a seaward-facing ice front. The main difference between a

seaward-facing ice front and a rift wall is that it is possible for rift walls to come into contact. This contact is expected to occur

at the top of the ice shelf and in the region near the rift tip, as illustrated in Fig. ??b. Indeed, ? recently observed that a rift

tip on the Brunt Ice Shelf was further advanced at depth than at the surface, suggesting the occurrence of partial contact. I

examine the partial contact of rift walls in Section ??. As an aspect of linear elastic fracture mechanics, fracture wall contact is65

a well-studied topic (?, Chapter 1, Part C)
::::::::::::::::::::
(?, Chapter 1, Section C).

I use full three-dimensional elasticity calculations combined with linear elastic fracture mechanics (LEFM) to examine the

propagation of ice shelf rifts. Although a number of previous studies have examined ice shelf rifts using LEFM, no previous

study appears to have considered three-dimensional effects. ? calculated two-dimensional mixed mode (in-plane opening and

shearing) stress intensity factors and as a result was able to state a fracture condition as well as predict rift propagation paths.70

Other ice shelf LEFM studies have mostly focused on propagation paths (???) and near-tip deformation (??).

A final point of background concerns the relationship between the forces that drive fracture and the background ice flow.

In real-world
:::
real

:
ice shelves, the state of stress is constantly evolving due to the change in geometry brought about by ice

flow. Previous studies have examined the flow–fracture relationship
::::::::::
relationship

:::::::
between

:::
ice

::::
flow

:::
and

:::::::
fracture in several ways.

? carried out viscous flow calculations to constrain the state of stress in their elastic calculations. They then tuned elastic75

moduli and boundary conditions in their elastic calculations to match the observed viscous stresses. ? parameterized a state of

stress from a viscous flow model, but rather than tuning elastic moduli instead chose to introduce fictitious equivalent body

3
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Figure 1. A. Simplified geometry of an idealized rectangular ice shelf. B. Zoomed in view of an ice shelf rift tip showing how buoyancy-

driven rotation of the rift walls results in partial contact of the rift walls near the rift tip.
:::
Note

:::
that

::
B.

::
is
:::::
drawn

:::::
under

::
the

:::::::::
assumption

:::
that

:::
the

::
rift

:::
tip

:
is
::
at

::::
least

:::::
several

::::::
flexural

:::::
gravity

::::::::::
wavelengths

::::
away

::::
from

:::
the

::
ice

::::
shelf

::::::
margin

::
so

:::
that

::
no

::::::
flexural

::::::::
interaction

:::::
occurs

::::::
between

:::::
these

:::
two

::::::
regions.

forces. Here, I consider the hypothesis that the forces that drive rift propagation are entirely described by the instantaneous ice

shelf geometry and boundary conditions. This hypothesis requires three-dimensional calculations in order to directly calculate

–rather than parameterize or approximate)
:::::::::::
approximate– the role of gravitational driving forces. I next

:::::::
therefore

::::::::
continue

::
to80

describe the details of my mechanical
:
a

::::::::::::::
three-dimensional

::::::
elastic

:::::::
fracture model.

3 Mechanical Model

:
I
:::::
begin

:::
this

:::::::
section

::
by

:::::::::
describing

::
a
:::::::::::::::
three-dimensional

::::::
elastic

:::::
model

:::
of

::
an

:::
ice

:::::
shelf

::
in

:::::
which

:::::::
stresses

::::
and

::::::::::::
displacements

:::
are

::::::::
calculated

:::::
using

:::
the

::::
finite

:::::::
element

:::::::
method

::::::::
(Sections

::
??

:::
and

::::
??).

:
I
::::
then

:::::::
describe

::
a

:::::
linear

:::::
elastic

:::::::
fracture

:::::
model

::::::
which

::
is

::::::
closely

:::::
related

::
to
:::::
these

::::::::
elasticity

::::::::::
calculations

:::::::
(Section

::::
??).85
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3.1 Geometry

I consider the idealized ice shelf geometry shown in Fig. ??. The ice shelf is square in map view (the x-y plane). The z axis

is defined so that the positive z axis points upwards
:::
and

:::
the

::::::
bottom

:::
of

:::
the

:::
ice

::::
shelf

::
is
:::::::

located
::
at

:::::
z = 0. The ice shelf has

horizontal dimensions Lx = Ly = 100 km and thickness h= 200 m. The ice shelf surface at y = 0 faces the ocean and the

surface at y = Ly faces the ice sheet. The surfaces at x= 0 and x= Lx are referred to as the ice shelf margins. A single rift is90

located along the x axis at y =W . I treat two different general rift locations: marginal and central. These two rift locations are

shown in Fig. ??. I hold the rift length fixed at L= 2.5 km long for the marginal rift and L= 5 km long for the central rift.

Geometrically, I model a rift as a tapered rectangular hole in the ice shelf. Fractures in three dimensions have a fracture tip

defined by a two dimensional
:::::::::::::
two-dimensional

:
curve rather than a point. Although I refer to a rift tip for brevity, this term

actually refers to a rift tip curve. In the treatment presented here, the rift tip curve is taken to be a vertical straight line. The rift95

is uniformly 10 m wide over most of its length. Simulations show negligible sensitivity to the choice of this width. Tapering is

applied over a length equal to several widths (i.e., several tens of meters) near the rift tip.

3.2 Linear elasticity

I solve
:::::::
consider

:
the equations of linear, homogeneous, isotropic, static, three dimensional elasticity (?).

:::::::::::::::
three-dimensional

:::::::
elasticity

::::
(?),100

∇ ·T′ =−ρg
:::::::::::

(4)

::::
with

::::
total

::::::::
(Cauchy)

:::::
stress

:::::
tensor

:::
T′,

:::
ice

:::::::
density

::
ρ,

:::
and

:::::::::::
gravitational

::::::::::
acceleration

::
g.

:::::::
Because

::
I
::::::
neglect

:::
any

::::::
spatial

::::::::
variation

::
in

:::::::
material

:::::::::
parameters,

:::
my

::::::
model

::::
does

:::
not

::::::
include

::
a
:::
firn

:::::
layer.

:

I account for an initial hydrostatic stress in a manner following ? wherein the equations of elasticity are solved for a pertur-

bation stress tensor T defined as the total (Cauchy) stress tensor minus hydrostatic pressure. The resulting boundary conditions105

(described below) are consistent with previous treatments of crevasse propagation in glaciers (e.g., ?). Terms reflecting the

advection of prestress (?, Ch. 2, Eq. II-22) are found to be unimportant and are notdiscussed further. My use of isotropic

elasticity implies the need for two elastic constants which I take to be Young’s modulus E = 9.7
:::
the

:::::
initial

:::::::::
hydrostatic

::::::::
pressure,

T≡T′− p0,
::::::::::

(5)110

::::
with,

:

p0 ≡ ρg(H − z)
:::::::::::::

(6)

:::
The

:::::::::::
perturbation

:::::
stress

::::::
tensor

::
is

:::::::::
necessary

:::
for

:::
the

:::::::::
following

:::::::
physical

:::::::
reason.

:::::::
Without

::::::::::
subtracting

:::
the

::::::
initial

::::::::::
overburden

:::::::
pressure,

:::
the

:::
ice

::::
shelf

::::::::::
experiences

::
an

:::::
initial

::::::::::
volumetric

:::::::::
contraction

:::::::
∼ p0/K::::

with
::::
bulk

:::::::
modulus

:::
K.

::::
This

:::::::::
volumetric

::::::::::
contraction

::::
does

:::
not

:::::
occur

::
in

::::
real

:::
ice

:::::::
shelves

:::::::
because

::
at

::::
time

::::::
scales

:::::
longer

:::::
than

:::
the

::::::::
Maxwell

::::
time,

:::
ice

::
is
::::

well
::::::::::::

approximated
:::
as

:::::
being115
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::::::::::::
incompressible

::::
(?).

::::
Note

::::
that

:::
the

::::::::::
perturbation

:::::
stress

:::::
tensor

::
is
:::
not

:::::
equal

::
to
:::

the
:::::::::

deviatoric
:::::
stress

:::::
tensor

:::::::
defined

::
as

:::::::
T′− p.

::::
This

::::::::
difference

::
is

::::::::
important

:::::::
because

:::
the

:::::::::::
perturbation

:::::
stress

:::::
tensor

:::::::::
accurately

:::::::
captures

:::::::::::
permissible,

:::::
elastic

::::::::::
volumetric

::::::::::
contraction,

:::::::
whereas

::
the

:::::::::
deviatoric

:::::
stress

:::::
tensor

::::
does

::::
not.

:::
All

:::::::::::::::
three-dimensional

:::::::
elasticity

::::::::::
calculations

:::
in

:::
this

:::::
study

:::
are

::::::
carried

:::
out

::::
with

::::::
respect

::
to
::::

this
::::::::::
perturbation

:::::
stress

::::::
tensor.

::::
The

::::::::
equations

::
of

::::::
motion

:::
are,

:
120

∇ ·T = 0
:::::::

(7)

Tij =Kδijεkk + 2µ(εij + δijεkk/3),
::::::::::::::::::::::::::::::

(8)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

:::::::::::::::::::

(9)

:::
The

::::
first

::
of

::::
these

:::::::::
equations

::::::::
describes

:::::::::
momentum

:::::::
balance

:::::
which

::
is

::::::
derived

:::
by

:::::::::
combining

:::
Eq.

::::
(??)

:::
and

:::::
(??).

:::
Eq.

::::
(??)

::::::::
describes

::
the

::::::
elastic

:::::::::::
constitutive

::::::
relation

:::::::::
(Hooke’s

:::::
Law)

::::
with

:::::
shear

::::::::
modulus

:::::::
µ= 3.6 GPa and Poisson’s ratio ν = 0.3, although I125

sometimes make use of the shear modulus µ≡ E/(2 + 2ν).
:
.
::::::::
Although

::::::::
isotropic

:::::::
elasticity

:::::
only

:::::::
requires

:::
two

::::::
elastic

:::::::
moduli,

::
for

:::::::::::
convenience

:
I
:::
use

:::::::
Young’s

::::::::
modulus

::::::::::::
E ≡ 2µ(1 + ν)

::::
and

:::
the

::::
bulk

:::::::
modulus

:::::::::::::::::
K = E/[3(1− 2ν)].

::::
Eq.

::::
(??)

::::::
defines

:::
the

:::::
strain

:::::
tensor

:::
εij .

::::::
These

:::::::
equation

::::
use

:::::
index

:::::::
notation

::::
with

::::::::
repeated

::::::
indices

::::::::
implying

::::::::::
summation,

:::
δij::::::::

denoting
:::
the

:::::::::
Kronecker

:::::
delta

:::::::
function,

::::
and

::
the

:::::::
indices

:::
i, j

:::::
taking

::::::
values

:::::
x,y,z.

:

3.3 Boundary conditions130

3.2.1
:::::::::
Boundary

:::::::::
conditions

The ice front, rift walls, and top and bottom ice shelf surfaces are loaded by a depth-varying normal stress that is equal to the

water pressure below the waterline and equal to zero above the waterline. These boundaries have zero applied shear stress. I

write this as a single condition on the stress tensor T,
:::
The

:::::
water

:::::::
pressure

:::::::::
condition

:::
may

:::
be

::::::
written

:::
as,

nT
:
· (T′ ·n) =−p−p

::
w(z), (10)135

with unit outward pointing normal vector n, ice shelf draft Hw ≡ ρ/ρwh, and water pressure pw(z),

pw(z)≡

ρwg [Hw − (z+w)] z < Hw,

0 z ≥Hw.
(11)

Here, w is the vertical component of the displacement vector.
::::
This

::::::::
boundary

::::::::
condition

::
is

::::::::
consistent

::::
with

::::::::
previous

:::::::::
treatments

::
of

:::::::
crevasse

::::::::::
propagation

::
in

:::::::
glaciers

:::::::
(e.g., ?).

In all simulations that are presented here, the surface of the ice shelf above the grounding line at y = Ly has a zero dis-140

placement boundary condition. Similarly, the ice shelf surface at the ice front at y = 0 has a water pressure boundary condition

(Eq. ??). In the margins, I examine three types of
:::::::
marginal boundary condition. These conditions are shown in Fig. ??; they

are:
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Zero 

Displacement

Water

Pressure

A. Marginal Rift, “Ice Tongue”

E. Marginal Rift, embayment with “Weak Margins”

Zero 

Displacement

C. Marginal Rift, embayment with “Strong Margins”

Zero 

Displacement

Free Slip

B. Central Rift, “Ice Tongue”

F. Central Rift, embayment with “Weak Margins”

D. Central Rift, embayment with “Strong Margins”

Zero 

Displacement
Water

Pressure

Zero 

Displacement

Zero 

Displacement

Free Slip

Figure 2. The geometries and boundary conditions considered in this study include: A. and B., Margins half
:::
Half zero displacement and half

water pressure conditions; C. and D., Entirely
::::::
entirely zero displacement conditions; and, E. and F., half zero displacement and half free slip

conditions. I furthermore consider rifts that occur in the margins (A., C., and E.) and central rifts (B., D., and F.). The figures are not drawn

to scale and the rift width and shape are
:
is
:
greatly exaggerated.

1. Ice shelf with ice tongue: margins have zero displacement between y = Ly/2 and y = Ly and have water pressure

between y = 0 and y = Ly/2;145

2. Ice shelf in an embayment with strong margins: margins have zero displacement boundary condition; and,

3. Ice shelf in an embayment with weak margins: margins have zero displacement between y = Ly/2 and y = Ly and have

zero shear stress and zero normal displacement between y = 0 and y = Ly/2.

::::
Note

:::
that

:::::::::
Equations

:::::
??-??

:::::
occur

:::::::
naturally

::
as

:
a
:::::
result

::
of

:::
the

:::::
more

::::::
general

:::::::::::::::
three-dimensional

::::::::
boundary

:::::::::
conditions.

::::::::
Equations

:::::
??-??

::
are

::::
not

::::::
applied

:::
as

:::::::::
constraints

:::
in

:::
the

:::::::::::::::
three-dimensional

:::::::::::
calculations.

:::::
They

:::
are

:::::
used,

::::::::
however,

::
in

:::::::
Section

::
??

:::
to

::::::::::
analytically150

::::::::::
approximate

:::
the

::::::::
numerical

:::::::
results.

7



3.2.2
:::::::::
Numerical

::::::::::::::
implementation

:
I
::::
solve

:::::
Eqs.

:::::
??-??

:::::
using

:::
the

::::
finite

:::::::
element

:::::::
method.

::::
The

:::
ice

::::
shelf

:::::::
domain

::
is

:::::::::
discretized

:::::
using

:
a
::::

free
:::::::::
tetrahedral

:::::
mesh

::
in

:::::
three

:::::
spatial

::::::::::
dimensions

::
or

::
a
::::
free

::::::::
triangular

:::::
mesh

::
in

::::
two

::::::
spatial

::::::::::
dimensions.

::
In

:::
the

:::::::::::::::
three-dimensional

:::::::::::
simulations,

:::
the

:::::::::
maximum

::::::
element

::::
size

:::::
along

:::
the

:::
rift

:::
is

::
set

:::
to

::
be

::::::::::
m≡ h/16.

::::
The

:::::::
element

:::
size

::::
then

::::::::
increases

:::::
away

:::::
from

:::
the

:::
rift

::
to
::

a
:::::::::
maximum

:::::
value155

::
of

:::
3.5

:::
km.

::::
The

:::
rift

::
is

::::::::::::
geometrically

::::::
formed

::
as

::
a

:::::::::
rectangular

:::::
prism

::::
with

::::::
width

::::::::
Wrift = 10

::
m
::::

and
::::::
length

::
L.

:
I
::::
have

:::::::
verified

::::
that

::
the

::::::
results

:::::::::
presented

::::
here

::::
have

::::::::
virtually

:::
no

::::::::::
dependence

:::
on

:::
the

::::::
choice

::
of

::::
Wrift::::

and
:::
m.

::
In

::::
the

::::::::::::::
two-dimensional

::::::::::
simulations

::::::::
(described

:::::::
below),

:::
the

::::::::
maximum

:::::::
element

::::
size

:::::
along

:::
the

:::
rift

:
is
::::::::
Wrift/10.

:

3.3 Linear elastic fracture

Cracks –including rifts–
:::::::
Fractures

:
in elastic materials create displacement fields that vary proportional to the distance r from160

the crack tip as r1/2 (?). The scalar constant of proportionality involves the stress intensity factor. Specifically, in terms of the

displacement components u, v, and w corresponding to displacements in the x, y, and z directions, the stress intensity factors

are defined through the relations (?),

u(r,z) =
KII(z)

µ/(2− 2ν)

√
2πr4

KII(z)

µ/(1− ν)

√
r

2π
::::::::::::::

, (12)

v(r,z) =
KI(z)

µ/(2− 2ν)

√
2πr4

KI(z)

µ/(1− ν)

√
r

2π
::::::::::::::

, (13)165

w(r,z) =
KIII(z)

µ

√
2πr

√
r

2π
::::

. (14)

In these expressions, r is the distance from the rift tip along the x-axis, µ is the elastic shear modulus and ν is the elastic

Poisson ratio.

The quantities KI , KII , and KIII are the Mode-I, Mode-II, and Mode-III stress intensity factors
:::::
(SIFs). The sense of

motion associated with each mode of fracture is shown in Fig. ??. Although there is also an angular dependence to the near-tip170

displacement fields, I have suppressed this angular dependance by writing the displacements that occur on the fracture itself.

::::::::
Equations

:::::
??-??

::::::::
represent

:::
the

:::::::::
asymptotic

::::::
value,

:::::::
accurate

::
to

::::
first

:::::
order,

::
of

:::
the

:::::::::::
displacement

:::::
field

::::
near

:::
the

:::
rift

::
tip

:::
on

:::
the

:::::
plane

::
of

:::
the

:::::::
fracture.

:::
The

:::::
stress

::::::::
intensity

::::::
factors

::::
bear

:
a
:::::
direct

::::::::::
relationship

::
to

:::::::
fracture

::::::::::
propagation.

:

A basic tenet of fracture mechanics is that unstable crack growth occurs when the elastic strain energy available to drive

fracture exceeds the energy required to create new fracture area (?). The key insight of linear elastic fracture mechanics is175

that this energy condition can be related to the stress intensity factors (?). In three spatial dimensions, the energy release rate

is (?),
::::
The

:::::
stress

:::::::
intensity

::::::
factors

::::
may

::::::::
therefore

::
be

:::::
used

::
as

::::
part

::
of

::
a

::::::
fracture

::::::::
criterion.

:::
In

:::
this

:::::
study,

::
I
:::::::
examine

:::::::::::
mixed-mode

::::::
fracture

::::
and

:
I
::::::::
therefore

:::
use

:::
the

::::::
theory

::
of

:::::
? that

:::::::::
calculates

:::
the

:::::
single

::::::::::::::::
optimally-oriented

:::::
stress

:::::::
intensity

::::::
factor

::::
from

:::
the

:::::
three

:::::::
different

:::::
stress

:::::::
intensity

::::::
modes.

::::
This

:::::::::::::::
optimally-oriented

:::::
stress

::::::::
intensity

:::::
factor

:
is
:::
the

:::::
Mode

::
I
::::
stress

::::::::
intensity

:::::
factor

:::::
along

:
a
:::::
plane

:::::::
oriented

::
to

::::::::
minimizes

::::
KII::::

and
:::::
KIII ::::

(??).
:::::
Under

:::
the

::::::::::
assumption

:::::::
(verified

:::::
later)

:::
that

:::::
KIII::::

does
:::
not

:::::::::::
substantially

:::::::::
contribute

::
to180

::
the

::::::::
direction

::
of

::::::::::
propagation

:::
of

:::
the

:::
rift

::
tip

::::
line,

:::
the

:::::
Mode

::
I
:::::
stress

:::::::
intensity

:::::
factor

:::::
along

:::
the

:::::::
optimal

:::::
angle

::
of

::::::::::
propagation

:
θ
::::
can
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::
be

::::::
written

:::
as,

KOp
I ≡ cos

(
θ

2

)[
KI cos2

(
θ

2

)
− 3

2
KII sinθ

]
.

::::::::::::::::::::::::::::::::::::::

(15)

::
In

:::
this

::::::::::
expression,

:::
the

::::
angle

:::
of

::::::::::
propagation

:
θ
::
is

:::::
given

:::
by,

G=
K2

I

E/(1− ν2)
+

K2
II

E/(1− ν2)
+

K2
III

E/(1 + ν)
θ ≡−2tan−1
:::::::::::

−2KI + 2
√
K2

I + 8K2
II

8KII
::::::::::::::::::::

 . (16)185

Assuming that the Mode-I fracture toughness limits fracture behavior, we define the critical energy release rate

Gc ≡
K2

Ic

E/(1− ν2)
,

with fracture criterion,

G>Gc.

::
In

:::
the

:::::::
adopted

::::
sign

::::::::::
convention,

:::::::
negative

::::::
angles

:::::::
indicate

:::
the

::::::::
direction

::::::::
pointing

:::::
away

::::
from

:::
the

:::
ice

:::::
front

::::
and

::::::::::::
straight-ahead190

::::::::::
propagation

:::::
occurs

:::::
when

::::::
θ = 0.

::::
Note

:::
that

::::
care

:::::
must

::
be

:::::
taken

::
in

::::::::
selecting

::
the

:::::::
correct

:::::::
quadrant

:::
for

:::
the

:::::
tan−1

::::::::
function.

3.4 Partial contact of rift walls

:::
The

:::::::
fracture

::::::::::
propagation

::::::
criteria

::::
may

::::
then

::
be

:::::
stated

:::
as,

:

KOp
I >KIc,

::::::::::
(17)

:::::
where

:::
the

:::::
value

:::::::::
KIc = 100

:::::::
kPa
√

m,
::

is
:::

the
::::::

Mode
:
I
:::::::
fracture

::::::::
toughness

:::
of

:::
ice

:::
(?).

:
I
:::::
refer

::
to

::::
rifts

:::
that

::::::
satisfy

:::
Eq.

::::
(??)

:::
as

:::::
being195

:::::::
unstable

:::::::
because

:::
they

:::
are

::::::::
expected

::
to

:::::::
undergo

:::::
some

::::::
amount

:::
of

::::::::::
propagation.

:::::
Note

:::
that

::::
this

::::
does

:::
not

:::::::::
necessarily

:::::
mean

::::
that

:::
the

::
rift

::::
will

:::::::::
propagate

::
in

:
a
::::
way

::::
that

:::
will

::::
lead

::
to

::
a
::::::
calving

::::::
event.

::::::::::
Propagation

::::
may

::::
stop,

:::
for

::::::::
example,

::::::
before

::::::
calving

::::::
occurs.

:::::
Rifts

:::
that

:::
do

:::
not

::::::
satisfy

:::
Eq.

::::
(??)

::::
will

:::
be

:::::::
referred

::
to

::
as

::::::
stable;

::::
such

::::
rifts

:::
are

::::::::
expected

::
to
::::::

close.
::::
This

::::::
closure

:::::
may

:::::
result

::
in

::::::
partial

::::::
contact

::
of

:::
the

:::
rift

:::::
walls,

::
as

::::::::
discussed

:::::
next.

3.3.1
::::::
Partial

:::::::
contact

::
of

:::
rift

:::::
walls200

The partial contact of rift walls is a nonlinear phenomenon because it involves solving for the shape of the contacting region

and therefore changing the region over which different boundary conditions are applied (?). Here, I treat a linear formulation of

this problem wherein the Mode-I stress intensity factorKI can take on positive or negative values. This situation is discussed in

detail by ?. For fractures with zero initial width, a negative KI implies unphysical material overlap. I avoid this situation in my

numerical simulations by giving the rift an initial , nonzero opening (Appendix A)
::::::
nonzero

:::::::
opening

::
as

::::::::
described

::
in

:::::::
Section

::
??.205

This is consistent with the idea that rifts in ice shelves are probably not held open entirely by elastic stresses because they
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have deformed through creeping flow. Other studies have shown that accounting for contact nonlinearity results in minimal

differences from the linear problem for long fractures with L� λ (?), where λ is the ice shelf flexural wavelength. Given that

many rifts do reach lengths L� λ (??), the linear approximation may well prove adequate for many cases of glaciological

interest.210

3.3.2
:::::
Stress

::::::::
intensity

::::::
factor

::::::::::
calculations

:::::
Stress

:::::::
intensity

::::::
factors

:::
are

:::::::::
calculated

:::::
using

:::
rift

::::
wall

::::::::::::
displacements

:::
and

:::::::::
Equations

::::::
??-??.

::::
This

:::::::::
evaluation

:::::::
method,

:::::::::
essentially

:
a
:::::::::::::
post-processing

::::
step,

::
is
::::::::::

sometimes
:::::
called

:::
the

:::::::::::
displacement

:::::::::
correlation

:::::::
method

::::::
(?) and

::::
has

:::::::::
previously

::::
been

::::
used

:::
in

::::::
glacier

::::::
studies

::
by

::
?.

:
I
::::::::

evaluate
::::::::
Equations

:::::
??-??

:::
at

:
a
:::::::
distance

::
r

::::
from

:::
the

:::::
crack

:::
tip

:::
that

::
is
::
at
:::::
least

::::::
several

:::::
times

::
m

::
in

:::::
order

::
to

:::::::
achieve

:::::::
grid-size

::::::::::::
independence.

:::
In

::::
three

:::::::::::
dimensions,

:::::
stress

:::::::
intensity

:::::::
factors

:::
are

:::::::::
calculated

::
at

::::::
various

:::::::
heights

:::::::
through

:::
the

:::
ice

:::::
shelf215

::::::::
thickness,

::::
with

:::
the

:::::::
resulting

::::::::::
calculations

:::::::
plotted

::
in

:::
Fig.

:::
??.

:

4 Results and Analysis

Figure
:::
Fig. ?? shows a typical result of the finite element calculations. This figure shows that the Mode-I and Mode-III stress in-

tensity factors are nearly linear with depth (i.e., Fig. ??a, b
::
A,

::
B, and e

:
E), while the Mode-II stress intensity factor is nearly uni-

form with depth (i.e., Fig. ??d
:
D). This structure in the solutions permits an approximate parameterization of three-dimensional220

effects. Such a parameterization allows for a much less computationally costly, two-dimensional problem to be solved. This

parameterization is developed next , in Sections ??.

:
I
::::
next

:::::::
develop

:::
the

::::::::
analytical

::::::::::::::
parameterization

::::::::
(Section

::::
??).

::::
After

::::::::::
developing

:::
this

::::
2D

::::::::::::::
parameterization,

:
I
:::::

then
:::::
apply

:
it
:::

to

:::::::
examine

:::
the

::::::::::
relationship

:::::::
between

:::
rift

:::::::
position

::::
and

:::
rift

:::::::
stability.

:
Some readers may wish to skip directly to the discussion of

marginal versus central rifts in Sections ??and ??
::::
these

::::::
results,

:::::
which

:::
are

:::::
given

::
in

:::::::
Section

::
??.225

4.1 Parameterization of 3D effects within 2D calculations

I now examine a simplified representation of the three dimensional finite element calculations that results in a parameterization

for
:::
The

::::::::
structure

::
of

:::
the

:
three-dimensional bending effects. The analysis hinges on the linearity of the stress intensity factors

and the associated principle of superposition. I first show that the Mode-I stress intensity factor is a superposition of bending

and membrane loads, whereas the Mode-II and Mode-III stress intensity factors are entirely due to membrane loading and230

bending loads, respectively. The stress intensity factors may therefore be approximated as,
::::::
suggests

:::
the

:::::::::::::
approximation,

:

KI(z) =Km
I +Kb

I

(
z−h/2
h/2

)
, (18)

KII(z) =Km
II , (19)

KIII(z) =Kb
III

(
z−h/2
h/2

)
, (20)

where the superscripts b and m stand for bending and membrane, respectively.235
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C. Mode-I  sense of motion

F. Mode-II  sense of motion

G. Mode-III  sense of motion
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Figure 3.
::::::
Typical

:::::::::::::
three-dimensional

::::
stress

:::::::
intensity

:::::
factors

::
as

:
a
:::::::
function

:
of
:::::
depth

:
z
::
in

:::
the

::
ice

::::
shelf.

::
A.

:::
and

::
B.
:::::
show

::
the

:::::
Mode

:
I
::::
stress

:::::::
intensity

::::
factor

::::
KI ,

::
D.

:::::
shows

:::
the

::::
Mode

::
II
:::::
stress

::::::
intensity

:::::
factor

::::
KII:::

and
::
E.

:::::
shows

:::
the

:::::
Mode

::
III

:::::
stress

::::::
intensity

:::::
factor

:::::
KIII .

:::
The

::::::::
associated

:::::
sense

:
of
::::::

motion
:::
for

::::
each

::::
mode

::
is

:::::
shown

::
in

:::::
panels

::
C,

::
F,
:::
and

:::
G.

::
B.

:::
has

::
the

:::::
mean

:::::::
removed

:::
and

::
is

:::::::
compared

::
to

:::
the

:::::::
analytical

:::::::
solution

::
of

:::
Eq.

::::
(??).

:::
The

:::::::
particular

:::::
stress

:::::::
intensity

::::
factor

:::::::
solutions

::
in
:::::

these
:::::
figures

:::
are

:::::
plotted

:::
for

:
a
:::::::

marginal
:::

rift
::
in

::
an

:::
ice

::::::
tongue

:::
(i.e.,

:::
the

::::::::
geometry

:::::
shown

::
in

:::
Fig.

::::
??A.

I take the followingapproach to approximating the total, depth-dependent
::
In

::
the

:::::::::
following,

:
I
::::::::
calculate

::
the

:::::::
bending

::::::::::
components

::
of

:::
the stress intensity factors . The bending terms Kb

I and Kb
III are calculated from analytical solutions, discussed below. The

membrane terms
:::::::::
analytically

:::
and

:::
the

:::::::::
membrane

::::::::::
components

:
Km

I andKm
II , in contrast, are represented in terms of geometrical

functions that directly reflect the finite element solution. These two approaches are discussed in greater detail in the following

two subsections. The final result of Equations ??- ?? are compared to full three-dimensional finite element solutions in Fig. ??.240

::::
using

::::::::::::::
two-dimensional

:::::
finite

:::::::
element

::::::::
solutions.
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Table 1.
:::::::::
Comparison

:::::::
between

::
2D

:::
and

:::
3D

:::::::::
calculations

:
h

:::
2D

::
3D

: ::
m

:::::::::
(2D-3D)/3D

:

:
χ
: :::

100
::
m

:::::
-0.2937

: ::::::
-0.3127

:::
12.5

::
m
: :::::

-6.1%

:::
200

::
m

:::::
-0.2937

: ::::::
-0.3012

:
5
::
m

: ::::
-2.5%

:::
200

::
m

:::::
-0.2937

: ::::::
-0.3069

:::
12.5

::
m
: ::::

-4.3%

:
ψ
: :::

100
::
m

:::::::
-0.04408

::::::
-0.0385

:::
12.5

::
m
: ::::::

+14.5%

:::
200

::
m

:::::::
-0.04408

::::::
-0.0382

:
5
::
m

: ::::::
+15.4%

:::
200

::
m

:::::::
-0.04408

::::::
-0.0379

:::
12.5

::
m
: :::::

+16.3%
:

4.1.1 The bending components of fracture
:::
the

::::
SIFs

I find that the bending component of the Mode-I stress intensity factor is well fit by the simplified model
:::::::::::::::::
previously-published

::::
stress

::::::::
intensity

:::::
factor

:::::::
solution (????),

Kb
I =−σbf(ν)

√
λ. (21)245

Here, λ4 ≡D/(ρg) is the flexural length with flexural rigidityD ≡ Eh3/[12(1−ν2)], Youngs modulusE, and Poisson ratio ν.

Hence,
::::::
flexure

:::::
results

::
in
::
a
:::::::::
stabilizing

::::::::::
contribution

::
to

:::
the

:::::
Mode

:
I
:::::
stress

::::::::
intensity

:::::
factor

:::
that

::::::
grows

::::
with

::
ice

::::::::
thickness

:::::::::
according

::
to Kb

I ∼ h11/8. The bending stress σb is given by Eq. (??). The function f(ν) is discussed below. Notably, the bending stress

intensity factors asymptotically vary with
√
λ instead of the typical

√
L.

There is some discrepancy in the literature concerning the precise values of the function f(ν). ? cites ? who both note that250

f is of order unity but do not give its exact form. ? appears to have first given the dependence of f on ν although ? found a

mistake in this work. Meanwhile, ? gives a different value of f . It appears, however, that ? did not correctly account for the rift-

wall boundary condition. Given this uncertainty and the additional detail involved in the three dimensional
:::::::::::::::
three-dimensional

problem beyond the assumptions made by the above authors, I instead simply choose to calculate the value of f(ν) from the

three dimensional
::::::::::::::
three-dimensional

:
calculations. From these calculations, I find a value f(ν = 0.3) = 0.7646. Of the above255

references, this value is most similar to the value calculated from the equation given by ?, f(ν = 0.3) = 0.6063.

Bending also creates a Mode-III stress intensity factor. Assuming that this bending can also be described within Euler beam

theory, the Mode-III and Mode-I stress intensity factors are related by a factor,

Kb
III

Kb
I

=
h

2
√

2(1 + ν)λ
. (22)

ThusKb
III ∼ h2, which is a larger exponent than forKb

I . This solution was derived by assuming, consistent with Equations ??-260

??, that the ratio of stress intensity factors is proportional to the ratio of the stresses. This stress ratio is then calculated using

the solution to the floating beam equation (?), w =−2m0/(ρgλ
2)exp(−x/λ)(cosy/λ− siny/λ). The analytical solution of

Eq. (??) is compared to the finite element solution in Fig. ??e
:
E (red dashed lines).
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The analytical solution is not expected to perfectly match the finite element solution because the latter accounts for the

full floatation condition (Eq. ??), whereas the bending model (Eq. ??) neglects higher order moments through Eq. (??). I265

further verify that the simplified model captures the behavior of the three dimensional
:::::::::::::::
three-dimensional simulations by cal-

culating stress intensity factors over a range of ice shelf thickness between 25 m and 1600 m. I find that Kb
I ∼ h1.31 in the

three dimensional
::::::::::::::
three-dimensional

:
calculations whereas Kb

I ∼ h1.375 analytically. Similarly, Kb
III/K

b
I ∼ h0.27 in the three

dimensional
:::::::::::::::
three-dimensional calculations whereas Kb

III/K
b
I ∼ h0.375 analytically. As can be seen in Fig. ??, the differences

are more pronounced for Kb
III . I attribute the differences between analysis and calculation to the neglect of higher order270

moments and stress terms (i.e., the use of Euler beam theory).

4.1.2 The membrane components of fracture
:::
the

::::
SIFs

In order to capture geometrical effects in a generic way, I introduce the following non-dimensionalization to
:
I
::::
carry

::::
out

::::::::
simplified

::::::::::::::
two-dimensional

:::::
finite

:::::::
element

:::::::::::
calculations

::
in

:::::
order

::
to
:

describe the membrane modes of fracture. I define the

geometrical factorsχ and ψ, through the relationship275

χ =

σm
√
πL,

where σm is the depth-integrated boundary condition given in
::::::::::
components

::
of

:::
the

:::::
stress

::::::::
intensity

::::::
factors.

:::
In

:::
two

:::::::::
horizontal

:::::
spatial

::::::::::
dimensions

::
x

:::
and

:::
y,

:::
the

::::::::
governing

:::::::::
equations

:::
for

:::
the

::::::::::::::
two-dimensional

::::::::::
calculations

:::
are

::::::
found

::
by

::::::
taking

::::::::
∂/∂z = 0

:::
in

::::
Eqs.

::::::
??-??.

::
In

::::
two

:::::
spatial

:::::::::::
dimensions,

::
the

:::::::::
boundary

::::::::
condition

::
on

:::::::
floating

::
ice

::::::
fronts

::::
takes

:::
the

:::::
stress

:::::
value

:::::
given

::
by

:
Eq. (??). In280

this expression Km
I and Km

II are calculated as the depth-average of the finite element solution. Two comments are necessary

about χ and ψ. First, the approximate depth-independence of the membrane components of fracture suggests that these

quantities may be calculated in simplified,

:
I
:::
find

:::::
good

:::::::::
agreement

:::::::
between

:
two-dimensional elasticity simulations.Verification of the two-dimensional approximation

is presented in Appendix A. Second, although the expressions in Equations ?? and ?? depend on the rift length L, the values285

::::::::::
calculations

:::
and

:::
the

::::::::::::::
depth-averaged

:::::
values

:::::
from

:::::::::::::::
three-dimensional

:::::::::::
calculations.

:::::
Table

:::
??

:::::::
presents

:::::
these

::::::
results

:::::
using

::::
the

:::::::::
geometrical

::::::
factors

:::::::::::::::::
χ=Km

I /(σm
√
πL)

::::
and

:::::::::::::::::
ψ =Km

II/(σm
√
πL),

::::::
where

:::
σm :

is
:::
the

::::::::::::::
depth-integrated

::::::::
boundary

::::::::
condition

:::::
given

::
in

:::
Eq.

::::
(??).

::::
Note

::::
that

::::::::::::::
KI ∼KII ∼

√
L
::::::::
suggests

:::
that

:
χ and ψ do not depend on L . This is because Km

I and Km
II are expected

to have a
√
L dependence (?), therefore giving no net dependence on L.

Typical three-dimensional stress intensity factors as a function of depth z in the ice shelf. A. and B. show the Mode I stress290

intensity factor KI , D. shows the Mode II stress intensity factor KII and E. shows the Mode III stress intensity factor KIII .

The associated sense of motion for each mode is shown in panels C, F, and G. B. has the mean removed and is compared to the

analytical solution of Eq. (??). The geometrical parameters for this simulation are given in the text.

4.2 Marginal rifts

13



Rifts originating in the ice shelf margins are examined in
:::
(?).

:::
The

:::::::::
agreement

::
is

:::::
better

:::
for

::
χ

::::
than

:::
for

::
ψ,

::::
with

:::::::::
differences

:::
on

:::
the295

::::
order

:::
of

::::::
several

:::::::
percent.

::::
This

::::
table

::::
also

::::::
shows

:::
the

:::::
effect

::
of

:::::::
varying

:::
the

:::::::::
maximum

:::::::
near-tip

:::::::
element

:::::
length

:::
m.

::::
The

::::::
values

::
in

:::
this

::::
table

:::
are

:::::::::
calculated

:::
for

:
a
::::::
central

:::
rift

::
in

::
an

::::::::::
embayment

::::
with

::::::
strong

:::::::
margins

::::
(i.e.,

::
as

:::::
shown

::
in
:
Fig. ??, which plots the stress

intensity factors KI(z = h) and KII(z = h) as a function
::::
??D).

:

4.2
::::::

Central
::::
and

::::::::
Marginal

:::::
Rifts

:
I
::::
now

:::
use

:::
the

::::::::::::::
two-dimensional

::::::::
approach

::::::::
described

:::
in

::::::
Section

:::
??

::
to

::::::::
examine

:::
the

:::::
effect

:
of rift position for each of the three300

types
::
on

:::
rift

:::::::
stability.

:
I
:::::
again

:::::::
consider

::
all

::
of
:::
the

::::::::::::
combinations of boundary conditions . Marginal ice shelf rifts become unstable

in
:::
and

:::
rift

::::::::
locations

:::::
shown

::
in

::::
Fig.

::
??

:::::
while

::::::::::
additionally

:::::::
varying

:::
the

:::::::::
streamwise

:::::::
position

::
of

:
the opening mode as they pass into

the region with weak margins or onto an ice tongue (at a position α= 0.5). The similarity of the ice tongue and weak margin

scenarios suggests that margin shear stress and not margin normal stress is the critical factor in determining the energy release

rate and hence rift stability
:::
rift

:::
W .305

Both the weak margin and ice tongue scenarios give rise to a compressive arch. The compressive arch is defined as the region

where an ice shelf transitions from uniaxial to biaxial extension (?). The compressive arch can be visualized by plotting the

second principle horizontal strain field, the first principle strain alway being positive
:::::
Stress

::::::::
intensity

:::::
factors

:::
for

::::::::
marginal

::::
rifts

::
are

:::::::
plotted

::
in

::::
Fig.

:::
??.

:::::
These

:::::
stress

::::::::
intensity

::::::
factors

::::
were

:::::::::
calculated

:::::
using

:::
the

:::
2D

::::::::::::::
parameterization

:::::::::
described

::
in

:::::::
Section

:::
??.

::::::::
Consistent

:::::
with

:::
the

:::::::
shearing

::::::
stresses

:::::::::::
experienced

::
in

:::
the

:::
ice

::::
shelf

:::::::
margins,

:::
the

::::::
Mode

:
I
:::
and

::::::
Mode

:
II
:::::
stress

::::::::
intensity

::::::
factors

:::
are310

::
of

::::::
similar

:::::::::
magnitude

:
(Fig. ??). The specific simulation plotted in

:::
??A

::::
and

::
B,

:::::::::::
respectively).

:
Fig. ?? is for the weak margins

geometry (yellow curve
::::
??C

:::::
shows

::::
that

:::::::
marginal

::::
rifts

::::::
always

::::
tend

::
to

::::::::
propagate

::
in

:::
the

::::::::
direction

::::
away

:::::
from

:::
the

::
ice

:::::
front,

::::
i.e.,

::
in

::
the

:::::::
positive

::
y

:::::::
direction

:::::::::::
(coordinates

:::::
shown

:
in Fig. ??)with a rift located atW/Ly = 0.57. This is smallest distance from the ice

front where rifts are stable. The compressive arch varies in position betweenW/Ly = 0.50 near the margins andW/Ly = 0.62

near the center.The stability condition is therefore found to approximately relate to the position of the compressive arch, with315

the exact stability threshold occurring before the rift actually crosses the arch.
:::
??).

Although the Mode-I stress intensity factor changes from stable KI <Kc to unstable KI >Kc as a function of rift position

α, the Mode-II stress intensity factor has a different interpretation. This shearing mode is unstable when |KII |>Kc and

:::::::
Marginal

::::
rifts

:::
are

:::::::
unstable

:::::
over

:::
the

::::::
greatest

:::::
range

:::
of

::::::::
locations

::
in the sign of KII simply indicates the direction of shearing.

With this interpretation in mind, the results in Fig. ?? suggest that marginal rifts –anywhere in the ice shelf– are unstable in320

the shearing mode (i.e., KII >Kc for all α) The most likely explanation for this apparent instability is simply that, although

the rift is unstable in the prescribed orthogonal geometry, upon a small amount of propagation it will followed a curved

path so as to minimize KII . This point is discussed in more detail in the Discussion section
:::
ice

::::::
tongue

:::
and

:::::
weak

:::::::
margin

:::::::::
geometries

::::
(Fig.

::::::
??D).

::::::::::
Specifically,

::::
they

:::::::
become

::::::::
unstable

::
at

::
a

:::::::
position

::::::::::::
W/Ly ≈ 0.66.

::::::::
Stability

::
in

:::::
these

:::::::::
geometries

::
is
::::

not

:::::::
spatially

:::::::::
monotonic,

::::::::
however,

::::
and

::::
rifts

::::
again

:::::::
become

::::::
stable

::::
near

:::
the

:::
ice

::::
front

::
at

::::::::::::
W/Ly ≈ 0.33.

::::::::
Marginal

::::
rifts

::
in

:::
ice

:::::::
shelves325

::::
with

:::::
strong

:::::::
margins,

::
in

:::::::
contrast,

:::::
have

:::::::::::
monotonically

:::::::
varying

::::::::
optimally

:::::::
oriented

:::::
Mode

:
I
:::::
SIFs:

::::
they

::
are

:::::
stable

::::
near

:::
the

:::::::::
grounding

:::
line

:::
and

::::
they

:::::::
become

:::::::
unstable

::
at

::
a

:::::::
distance

:::::::::::
W/Ly ≈ 0.33

:::::
from

:::
the

:::
ice

::::
front.
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Marginal rifts in ice shelves may be either stable or unstable depending on their position and on the marginal boundary

conditions. This figure plots KI/Kc in panel A and KII/Kc in panel B. KIII is expected to not vary spatially and is therefore

not plotted. All values are evaluated at the surface of the ice shelf z = h.330

4.3 Central Rifts

Rifts originating in the center of an ice shelf are examined
:::::
Stress

:::::::
intensity

::::::
factors

:::
for

::::::
central

::::
rifts

:::
are

::::::
plotted in Fig. ??, which

also plots the stress intensity factors KI(z = h) and KII(z = h) as a function of rift position for each of the three types

of boundary conditions. In contrast to the marginal rifts, central rifts
::::
have

::::::::::::
|KII | � |KI |::::

(Fig.
::::
??A

::::
and

:::
B).

::::::
Unlike

::::::::
marginal

::::
rifts,

::::::::::
propagation

::::::
angles

:::
are

::::::
smaller,

:::::::::
indicating

::::::
nearly

::::::::::::
straight-ahead

::::::::::
propagation

::::
(Fig.

:::::
??C).

:::::::::::
Furthermore,

::::::
central

::::
rifts

:
in all335

positions and with all boundary conditions are found to have negativeKI and far smallerKII , therefore suggesting the stability

of this configuration. Although values ofKII approachKc, given the uncertainty in values of the fracture toughnessKc (?) and

given the order of magnitude greater
::::::::
optimally

:::::::
oriented

:
stress intensity factors for marginal rifts, I therefore do not interpret

this as a common or significant source of instability.This point is also discussed at greater length in the next Section
::::::::
indicative

::
of

:::::::
stability

::::
(Fig.

:::::
??D).340

5 Discussion

I have presented a three-dimensional LEFM analysis of ice shelf rift propagation. The
:::::
While

:::
this

::::::
model

:::
has

:::::
many

::::::::
potential

::::::::::
applications,

:
I
:::::

have
:::::::
focused

::
on

:::
the

::::::::::
relationship

::::::::
between

:::
rift

:::::::
position

:::
and

::::
rift

:::::::
stability.

::
In

::::
that

::::::
regard,

:::
the

:
main result of this

analysis is that rifts originating in the margins of ice shelves become unstable if the ice shelf margin looses shear strength. This

transition between a strong margin and a weak margin can be seen, for example, by comparing the red and yellow curves in345

Fig. ??
:
D. Although this result is justified by the calculations presented in this paper, it is worth emphasizing several implicit

and subtle assumptions.

I have assumed that margins have either zero displacement or zero shear stress. In reality, margins likely experienced reduced

but nonzero shear stress. I have also considered only two rift locations (marginal or central), only one ice shelf geometry

(square), and only one rift geometry (a single rift, perpendicular to flow, and without curvature).
:
I
::::
treat

:::
the

:::::
entire

:::
ice

:::::::
column350

::
as

::::::
having

:::::::
identical

::::::::
material

::::::::
properties

::::
and

::::::::
therefore

:::
do

:::
not

:::::::
describe

:::
the

::::
firn

:::::
layer

:::
and

:::
its

:::::::
relation

::
to

::::::
partial

::::::
contact

:::
of

:::
rift

:::::
walls.

:::::::::
Additional

::::::::
observed

:::::::
rift-wall

::::::::
processes

::::
such

:::
as

::::
brine

::::::::::
infiltration,

::::::
surface

::::::::::::
accumulation,

::::
and

:::::::
variable

:::::
uplift

:::::
could

::::
also

::
be

::::::::::
investigated

:::::
(???).

:
Each of these assumptions deserves further examination. In particular, I anticipate that future work will

examine the path along which fractures will tend to propagate (???). Nevertheless,
:::::::
Despite

::::
these

::::::::::
limitations, ice shelves and

ice shelf rifts oftentimes approximately conform to these assumptions , and so I
::
the

:::::::::::
assumptions

::::::::
described

::
in

::::
this

:::::
study.

:
I
:::
do355

:::::::
therefore

:
expect that the results presented here are a useful starting point in understanding additional aspects of

::::::
provide

:
a
::::::
useful

::::
basis

:::
for

::::::::::::
understanding rift propagation.

5.1 A simplified rift propagation criterion based on flexural stabilization
:::
The

:::::::::::
compressive

::::
arch
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Figure 4. The ice shelf compressive arch (dashed line) distinguishes regions
:::::
Stress

::::::
intensity

::::::
factors

:::
for

:::::::
marginal

:::
rifts

::::
may

:::::
reflect

:::::
either

::::::
stability

::
or

::::::::
instability

::::::::
depending

::
on

:::
the

::::::
position of uniaxial and biaxial extension. This occurs as the boundary where the second principal

strain experiences a zero crossing. The riftlocation shown in this figure is in
:
.
:::::
Three

:::::
pieces

::
of

:::::::::
information, the closest stable distance to the

ice front
::
A.

::::
Mode

::
I
:::
SIF, which for a square ice shelf is calculated to be W/Ly = 0.57

:
B. If this rift were shifted slightly closer

:::::
Mode

:
II
::::
SIF,

:::
and

::
C.

:::::::::
Propagation

:::::
angle,

::
are

::::::::
combined

::::
using

:::
Eq.

::::
(??) to

:::::::
calculate

::
D. the ice front it would grow in an unstable manner

::::::::::::::
optimally-oriented

:::
SIF.

16



0.2 0.4 0.6 0.8

-80

-70

-60

-50

-40

-30

-20

A. Mode I Stress Intensity Factor, K
I
 / K

Ic

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

B. Mode II Stress Intensity Factor, K
II
 / K

Ic

0.2 0.4 0.6 0.8

-15

-10

-5

0

5

10

D
e

g
re

e
s

C. Propagation Angle

0.2 0.4 0.6 0.8

-80

-70

-60

-50

-40

-30

-20

D. Optimally Oriented Mode I SIF, K
I

Op
 / K

Ic

Ice shelf with ice tongue
Ice shelf in embayment with strong margins
Ice shelf in embayment with weakened margins

Stress Intensity Factors for Central Rifts

Rift position (distance from ice front), W/Ly Rift position (distance from ice front), W/Ly

Rift position (distance from ice front), W/LyRift position (distance from ice front), W/Ly

Figure 5. Central
:::::
Stress

::::::
intensity

::::::
factors

::
for

::::::
central rifts in ice shelves are always found to be stable, regardless

:::::
reflect

::::::
stability

:::
for

::
all

:::
rift

:::::::
positions.

:::::
Three

:::::
pieces of their position or

:::::::::
information, the marginal boundary conditions. This figure plots KI/Kc in panel Aand KII/Kc

in panel
:
.
::::
Mode

:
I
::::
SIF, B. KIII is expected to not vary spatially

::::
Mode

::
II

:::
SIF, and is therefore not plotted

:
C. All values

::::::::
Propagation

:::::
angle,

:
are

evaluated at
:::::::
combined

::::
using

:::
Eq.

::::
(??)

::
to

:::::::
calculate

::
D. the surface of the ice shelf z = h

:::::::::::::
optimally-oriented

:::
SIF.
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The results in Section ?? suggested the approximationsGc/G≈ 0 andKIII ,KII �KI . I combine these approximations with

the general fracture criterion (Eq. ??) and the components of KI (Eq. ??), and evaluate the result at z = h, which is expected360

to be the most difficult part of

:::
All

::::::::
boundary

::::::::
conditions

::::::::::
considered

:::
here

::::
give

::::
rise

::
to

:
a
:::::::::::
compressive

::::
arch,

::::::
defined

::
as
:::
the

::::::
region

:::::
where

:::
an

:::
ice

::::
shelf

:::::::::
transitions

::::
from

:::::::
uniaxial

::
to

::::::
biaxial

::::::::
extension

:::
(?).

::::
The

::::::::::
compressive

::::
arch

:::
can

::
be

:::::::::
visualized

::
by

:::::::
plotting

:::
the

::::::
second

:::::::
principle

:::::::::
horizontal

:::::
strain

::::
field,

:::
the

::::
first

::::::::
principle

:::::
strain

:::::
alway

:::::
being

:::::::
positive

::::
(Fig.

::::
??).

::::::::::
? proposed

:::
that

::::::
“once

:
a
::::::::
retreating

:::
ice

:::::
front

::::::
breaks

:::::::
through

:::
the

::::::
critical

:::::::::::
‘compressive

::::
arch’

::::
then

::::::
retreat

:
is
:::::::::::
irreversible.”

::::
The

:::::
results

::::::::
presented

::::
here

:::::::
broadly

::::::
confirm

:::
the

:::::::::
hypothesis

::
of

::
?,

::::::::
although365

::
as

:::::
shown

:::
in

::::::
Section

:::
??,

:::
the

:::::::
relation

::
to

:::
the

:::::::::::
compressive

::::
arch

::::
only

:::::
holds

::
in

:::
an

::::::::::
approximate

::::::
sense.

::::::::::
Specifically,

:::
for

:::
the

::::::
strong

::::::
margin

::::::::
boundary

::::::::
condition the rift to break. The resulting fracture criterion is,

χσm
√
πL≥ σbf(ν)

√
λ.

This condition has the interpretation that flexurally-induced partial contact of rift walls acts in a manner similar to the fracture

toughness Kc insofar as it is a resistance to rift growth that does not depend on rift length L.I refer to this phenomenon as370

flexural stabilization. This condition may be further simplified by using Equations ?? and ??,

L≥

χ
−2F (ν,ρ/ρw)λ≡ Lc χ > 0,

∞ χ < 0,

where F is a function that depends only on Poisson’s ratio ν and ρ/ρw.For ν = 0.3 and ρ/ρw = 0.89, F = 0.0716. The

expression of Eq. (??) defines the critical rift length for stability Lc. It has the interpretation that rifts are expected to grow

unstably when they exceed a length Lc proportional to the flexural length λ. For the case shown in
::::
onset

::
of

:::::::::
instability

::::::
occurs375

::::::::
somewhat

::::::::
upstream

:::::
from

:::
the

:::::::::
maximum

:::::
extent

:::
of

:::
the

:::::::::::
compressive

::::
arch

::::
(Fig.

::::::
??A.).

::::
For

:::
the

:::::
weak

:::::::
margins

:::
and

::::
ice

::::::
tongue

::::::::
boundary

:::::::::
conditions

:::
the

:::::::::
agreement

::
is

::::::
closer,

::::::::
however,

::::
there

:::
is

:::
also

::
a
::::::
region

::
of

:::::::
stability

::::
that

::::::
occurs

::::::
closer

::
to

:::
the

:::
ice

:::::
front

:
(Fig. ??, χ= 0.55, giving Lc = 217 m.However, given such a small Lc, in many cases of practical glaciological importance

χ > 0 may well approximate the criterion for rift propagation .
:::
??B.

::::
and

:::
C.).

:

::::::
Perhaps

:::::
more

::::::::::
importantly,

:::
the

::::::
results

::::::::
presented

::::
here

:::::::
suggest

:
a
:::::::
slightly

:::::::
different

:::::
order

::
of

::::::::
causality

::::
than

:::
that

::::::::
proposed

:::
by

::
?.380

:::::
Rather

::::
than

:::::
being

::
an

:::::::::::
independent

:::::::
boundary

::::
that

:::
rifts

::::
may

::
or

::::
may

:::
not

:::::::::
propagate

:::::::
through,

::
rift

::::::::::
propagation

::
in
:::
the

::::::
model

::::::::
presented

:::
here

::
is
::::::::
expected

::
to

:::::
occur

::::::::
precisely

::::::
because

:::
of

::
the

:::::
stress

:::::
state

:::
that

::::::
creates

:::
the

::::::::::
compressive

:::::
arch.

:::
Ice

::::
shelf

::::::
retreat

::
is

:::::
expect

::
to

:::
be

:::::::::
irreversible

::::
only

::::::
insofar

::
as

::::::::
marginal

:::::::::
weakening

::
is

::::
itself

::::::::::
irreversible.

:

5.2 Melange as a rift proppant

? observed a lack of rift-tip seismicity at central rift in the Ross Ice Shelf. This observation is consistent with the negative KI385

::::
KOp

I :
I have calculated for centrally-located rifts. In the absence of other forces such rifts will tend to close. It seems likely

that these rifts therefore owe their continued existence to rift-filling melange that acts as a type of proppant by holding the rift

open. Melange therefore has a dual nature. ? and ? showed that melange maintains shear stresses and therefore resists viscous
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Figure 6.
::
The

:::
ice

::::
shelf

::::::::::
compressive

:::
arch

:::::
(thick

:::::
black

:::::
dashed

::::
line)

::
is

:::::
plotted

:::
for

::::
three

::::::::
boundary

::::::::
conditions:

::
A.

::::::
Strong

:::::::
Margins,

::
B.

:::::
Weak

::::::
Margins,

:::
and

:::
C.

::
Ice

::::::
Tongue

:::
(see

::::
Fig.

:::
??).

:::
The

:::::
figure

:::
also

:::::
shows

::
the

:::::::::
boundaries

::
of

:::::
regions

::
of
:::
rift

::::::::
instability

:::
(thin

::::::
yellow

:::::
dashed

:::::
lines).

:::::
These

:::::
figures

::::
were

::::::::
calculated

:
in
::::
two

:::::::
horizontal

:::::
spatial

:::::::::
dimensions

::
as

:::::::
described

::
in
::::::
Section

:::
??.

flow. In this sense, melange is stabilizing. Yet in the sense that melange may sometimes enable the existence of rifts that would

otherwise close, melange is destabilizing.390

5.3 Wave-induced fracture

? used passive seismic data to calculate the elastic ice shelf stresses due to ocean swell acting on the Ross ice shelf. This

study concluded that some un-modeled process must have been operating in order to explain the lack of any observed ice

shelf rift propagation during the observation period. Specifically, ? calculated a maximum wave-induced Mode-I stress in-

tensity factor KI ≈ 2 MPa m1/2 for a site near the Nascent Iceberg Rift. Using the results presented here for a central rift,395

we calculate that for a near-front central rift with W/Ly = 0.05, the Mode-I stress intensity without wave stress would be

KI ≈−5
:::::::::
KOp

I ≈−5 MPa m1/2. The resulting total Mode-I stress intensity factor of KI ≈−3
:::::::::
KOp

I ≈−3 MPa m1/2 being

negative is consistent with the observation that ocean swell did not trigger rift propagation during the observation period

described by ?.

5.4 The compressive arch400

? proposed that “once a retreating ice front breaks through the critical ‘compressive arch’ then retreat is irreversible.” The

results presented here broadly confirm this hypothesis, although as shown in Section ??, the relation to the compressive

arch only holds in an approximate sense. Perhaps more importantly, the results presented here suggest a slightly different

order of causality than that proposed by ?. Specifically, my results imply that rift propagation occurs precisely when the

rift breaks through the compressive arch. Rifts on the landward side of the compressive arch, in contrast, are not expected to405

experience propagation. Ice front retreat following is therefore expected to be irreversible as hypothesized by ?. Future marginal
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strengthening, however, would cause a seaward migration of the compressive arch, therefore permitting a certain notion of

reversibility. Future work will investigate the propagation paths taken by ice shelf rifts with respect to the compressive arch.

6 Conclusion

I have modeled an ice shelf as a three-dimensional buoyantly floating elastic plate. The resulting calculationsshow that410

through-cutting
:
I
::::
then

::::
show

::::
how

:::::
these

:::::::::::::::
three-dimensional

::::::
results

::::
may

::
be

::::::::
captured

::
in

::::::::
simplified

::::::::::::::
two-dimensional

:::::::::::
calculations.

:::::
Using

:::
the

::::::::::::::
two-dimensional

::::::
theory,

:
I
:::::
show

:::
that

:
ice shelf rifts become unstable in the presence of marginal weakening or upon

exiting an embayment. These results are a step towards prognostic ice shelf modeling with a physics-based relationship between

ice dynamics and an ice front extent set by rift propagation.
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Code and data availability. The analysis code used in the text is available on the author’s GitHub repository.415

7 Numerical implementation

6.1 Discretization

The ice shelf domain is discretized using a free tetrahedral mesh in three spatial dimensions or a free triangular mesh in two

spatial dimensions. In the three dimensional simulations, the maximum element size along the rift is set to be h/16. The

element size then increases away from the rift to a maximum value of 3.5 km. The rift is geometrically formed as a rectangular420

prism with width Wrift = 10 m and length L. I have verified that the results presented here have virtually no dependence on

the choice of Wrift, provided that the value is chosen to be sufficiently small. In the two dimensional simulations (described

below), the maximum element size along the rift is Wrift/10.

6.1 Stress intensity factor calculations

Stress intensity factors are directly evaluated using the asymptotic solution of Equations ??- ??. This evaluation method is425

sometimes called the displacement correlation method (?) and has previously been used in glacier studies by ?. In three

dimensions, displacement differences across the rift are calculated at various heights through the ice shelf thickness, with

the resulting calculations plotted in Fig. ??.

The uniformity of Km
I and Km

II with depth permits simplified two-dimensional elasticity calculations of these quantities. In

two dimensions, displacement differences across the rift are calculated at a single set of points. A comparison of the geometrical430

parameters χ and ψ calculated in two and three spatial dimensions is presented in Table ??. The agreement is better for χ than

for ψ, with differences on the order of several percent.

Comparison between 2D and 3D calculationsh 2D 3D ∆ (2D-3D)/3D χ 100 m -0.2937 -0.3127 12.5 m -6.1% 200 m -0.2937

-0.3012 5 km -2.5%200 m -0.2937 -0.3069 12.5 m -4.3%ψ 100 m-0.04408-0.0385 12.5 m +14.5%200 m -0.04408 -0.0382

5 km +15.4%200 m -0.04408 -0.0379 12.5 m +16.3%435
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