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Abstract. Glaciers in High Mountain Asia provide an important water resource for communities downstream and they are 

markedly impacted by global warming, yet there is a lack in understanding of the observed glacier mass balances and their 

spatial variability. In particular, the glaciers in the western Kunlun Shan and Karakoram ranges (WKSK) show neutral to 10 

positive mass balances despite global warming. Using models of the regional climate and glacier mass balance, we reproduce 

the observed patterns of glacier mass balance in High Mountain Asia of the last decades. We show that low temperature 

sensitivities of glaciers and an increase in snowfall, for a large part caused by increases in evapotranspiration from irrigated 

agriculture, result in positive mass balances in WKSK. The pattern of mass balances in High Mountain Asia can thus be 

understood from the combination of changes in climatic forcing and glacier properties, with an important role for irrigated 15 

agriculture. 

1. Introduction 

Glaciers in High Mountain Asia (HMA, see Fig. 1) show a very diverse response to the changing climate. Most glaciers are 

losing mass, as expected, but surprisingly, glaciers are stable or growing in a region northwest of the Tibetan plateau, a 

phenomenon dubbed the Karakoram anomaly (Hewitt, 2005). Recent studies have mapped glacier mass losses and velocity 20 

changes in detail and have shown that the regions of largest glacier growth and acceleration are the Kunlun Shan and parts of 

the Pamir, with the glaciers in Karakoram being close to a steady state (Brun, Berthier, Wagnon, Kääb, & Treichler, 2017; 

Dehecq et al., 2019; J. Gardelle, Berthier, Arnaud, & Kääb, 2013; Julie Gardelle, Berthier, & Arnaud, 2012; Kääb, Treichler, 

Nuth, & Berthier, 2015; Lin, Li, Cuo, Hooper, & Ye, 2017). Part of the mass balance variability seems correlated to differences 

in the temperature sensitivity, i.e. the change of mass balance for a certain change in temperature, of the glaciers (Sakai & 25 

Fujita, 2017), but this alone cannot explain why some glaciers are actually growing.  
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Figure 1: Map of study area. Irrigated areas (from GMIA (Siebert et al., 2010)) and glacierised areas (from RGI 6.0 (Pfeffer et al., 
2014)) are indicated. 30 

 

Suggested causes of the Karakoram anomaly include an increase in winter snowfall (Cannon, Carvalho, Jones, & Bookhagen, 

2014; Kapnick, Delworth, Ashfaq, Malyshev, & Milly, 2014; J. Norris, Carvalho, Jones, & Cannon, 2015; Jesse Norris, 

Carvalho, Jones, & Cannon, 2018), summertime cooling (Bocchiola & Diolaiuti, 2013; Forsythe, Fowler, Li, Blenkinsop, & 

Pritchard, 2017; Fowler & Archer, 2006; Khattak, Babel, & Sharif, 2011; Ul Hasson, Böhner, & Lucarini, 2017), and an 35 

increase in summertime precipitation and clouds due to irrigation in the agricultural regions adjacent to the Kunlun Shan and 

Pamir (de Kok, Tuinenburg, Bonekamp, & Immerzeel, 2018). So far, these hypotheses have only tried to explain the 

Karakoram anomaly in qualitative terms, identifying possible climatic conditions that could lead to glacier growth. None of 

these have yet been able to directly reproduce the observed pattern of glacier mass balances in HMA directly by showing the 

response of the glaciers to the historic climatic forcing. Here, we simulate glacier mass balances using modelled time series of 40 

temperature and snowfall from a regional climate model to reproduce the pattern of observed mass balances in HMA, and to 

more deeply understand the underlying causes.   
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2. Methods 

2.1 Regional climate model 45 

Irrigation can influence the regional and global climate (Cook, Shukla, Puma, & Nazarenko, 2015; Lee, Sacks, Chase, & Foley, 

2011; Lobell, Bonfils, & Faurès, 2008; Puma & Cook, 2010; Sacks, Cook, Buenning, Levis, & Helkowski, 2009). Since the 

regions surrounding HMA host the largest irrigated areas in the world, e.g. the Indo-Gangetic Plain (see Fig. 1), irrigation 

potentially influences the regional climate in HMA (Cai, Luo, He, Zhang, & Termonia, 2019; de Kok et al., 2018). However, 

available re-analysis datasets do not fully include irrigation, and generally have a relatively coarse spatial resolution. Hence, 50 

we downscaled ERA-Interim (Dee et al., 2011) re-analysis data using the Weather Research and Forecasting model (WRF, 

Skamarock & Klemp, 2008) to obtain a high-resolution climate dataset between 1980-2010 for High Mountain Asia. We 

artificially applied irrigation to the surface by adding a precipitation term each time step, with a rate that is determined per 

month. The amount of irrigation applied per grid cell was based on the monthly water demand, which indicates the amount of 

irrigation needed to compensate evapotranspiration, that was calculated by PCR-GLOBWB (van Beek & Bierkens, 2008; van 55 

Beek, Wada, & Bierkens, 2011; Van der Esch et al., 2017; Y. Wada, Wisser, & Bierkens, 2014; Yoshihide Wada et al., 2011). 

In this way, the irrigation amount is not easily overestimated, as could be the case when e.g. soil moisture would be kept 

constant. In reality, insufficient water might be available to meet the predicted demand, whereas inefficient irrigation will 

result in a larger water gift than predicted. 

 60 

We used WRF, version 3.8.1, to downscale ERA-Interim data to a resolution of 20x20 km, with 50 vertical levels. Settings are 

nearly identical to our previous work (de Kok et al., 2018), and are shown in Table 1. Additionally, we now use grid nudging 

of the upper 35 vertical levels for horizontal wind, temperature, and humidity, as opposed to only forcing the model at the 

boundary in our previous study. The values of the nudging parameters have been found to perform well in similar studies 

(Collier & Immerzeel, 2015; Otte, Nolte, Otte, & Bowden, 2012), and are: 0.001, 0.001, and 0.00005 s-1 for horizontal winds, 65 

temperature and water vapour, respectively. 

 

Table 1: Physics modules and assumptions used in WRF. 

Module Setting 

Radiation RRTMG scheme (Iacono et al., 2008) 

Microphysics Morrison scheme (Morrison et al., 2009) 

Cumulus Kain-Fritsch (new Eta) scheme (Kain, 2004) 

Planetary boundary layer YSU scheme (Hong, Noh, & Dudhia, 2006) 
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Atmospheric surface layer MM5 Monin-Obukhov scheme (Beljaars, 1995; Dyer 

& Hicks, 1970; Paulson, 1970; Webb, 1970; Zhang & 

Anthes, 1982) 

Land surface Noah-MP (Niu et al., 2011) 

Top boundary condition Rayleigh damping 

Diffusion Calculated in physical space 

Nudging Grid-point u, v, T, q above level 15 

 

 70 

Annual concentrations of CO2, CH4, and N2O are derived from NOAA (Dlugokencky, Lang, Mund, Crotwell, & Thoning, 

2018) and AGAGE (Prinn et al., 2000) data, as aggregated by the European Environment Agency (www.eea.europa.eu, 

accessed March 2018), and are kept constant throughout each year. We used a 10-day spin-up for each month and run each 

month separately to be able to include a different irrigation amount each month. Monthly initialisation of the snow cover, 

surface and soil temperature, and surface moisture was taken from GLDAS 2.0 (Rodell et al., 2004) monthly mean values. We 75 

checked convergence between months for temperature and precipitation and they agreed within a few percent for all selected 

points. 

2.2 Glacier model 

To assess the response of the glaciers to the atmospheric forcing, we employ a glacier mass balance gradient model 

(Kraaijenbrink, Bierkens, Lutz, & Immerzeel, 2017). The model assumes a calibrated mass balance gradient along the glacier, 80 

and includes parameterisations for the effects of supraglacial debris on the surface mass balance and the downslope mass flux. 

We modelled all individual glaciers in HMA larger than 0.4 km2 (n=33,587) transiently for the period 1980-2010 

(Kraaijenbrink et al., 2017). For ease of comparison with published observations, we select only those larger than 2 km2 for 

the final analysis, which represent 95% of the glacier volume in HMA. Initial mass balance conditions in 1980 were set to be 

stable, using ERA-Interim data to locally calibrate the mass balance gradient of each glacier, while all other initial and reference 85 

conditions as described in the original study (Kraaijenbrink et al., 2017) were maintained. To modulate the mass balance 

gradient of the glacier over time, we applied annual precipitation changes derived from annual changes in WRF snowfall and 

temperature changes determined from annual changes in WRF melt season temperatures, i.e. when average daily temperature 

is above -5 °C. A threshold value of 0 °C did not significantly change the glacier mass balance results for most of HMA, but 

meant that temperature changes for the coldest points could not be determined, since they are always below 0 °C. We did not 90 

take into account whether the WRF grid point was glacierised or not. To reduce potential biases imposed by spurious reference 

conditions, the reference for both deltas was taken to be the average of the first six modelling years, i.e. 1980-1985. We 

performed three separate glacier model runs to evaluate the attribution of snow and temperature to the glacier mass changes in 

our model, forced by: (1) precipitation and temperature, (2) only temperature, and (3) only snow. To illustrate the temperature 

https://doi.org/10.5194/tc-2019-228
Preprint. Discussion started: 4 November 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

and precipitation sensitivity of the glaciers, we also performed calculations using a fixed temperature or snowfall trend for all 95 

of HMA, with the other variable kept constant. 

 

2.3 Moisture tracking 

Our moisture tracking model (Tuinenburg, Hutjes, & Kabat, 2012) follows the moisture associated with precipitation 

backwards in time to determine where the moisture first enters the atmosphere. It therefore establishes a direct causal link 100 

between evapotranspiration and precipitation downwind. For the moisture tracking, we clustered locations that have similar 

climates in terms of seasonality, since these will likely also have similar moisture sources. For the clustering, we used the 

monthly mean values of precipitation, horizontal wind fields at 400 hPa, and 2m-temperatures, with means subtracted and 

divided by the standard deviations, to perform a k-means clustering using 13 clusters. We performed the clustering with 

different numbers of clusters and found 13 to give reasonably-sized, yet distinct areas, while also being close to the knee in 105 

the total distance away from the cluster means. We perform the tracking on two of these clusters, indicated in Fig. 11, which 

are close geographically, but have contrasting snowfall trends. 

 

We perform the moisture tracking by releasing moisture parcels from the target area at random positions within the area and 

advecting them backwards in time using interpolated wind fields on fixed pressure levels. The amount of evaporation A (mm) 110 

that contributes to the precipitation in the target area, at a given location x,y and time step t, depends on the evapotranspiration 

ET (mm), the amount of water in the parcel Wparcel (mm), the fraction of water in the parcel that evaporated from the source 

Starget, and the total precipitable water in the column TPW (mm): 

 

𝐴",$,% = ET",$,%
)*+,-./,010+,2.0,0

3456,7,0
 ,     (1) 115 

 

The amount of water in the parcel is then updated every time step, including the precipitation P that adds to the parcel when 

moving back in time. 

 

𝑊9:;<=>,%?@ = 𝑊9:;<=>,% + 𝑃",$,%?@ − ET",$,%?@
)*+,-./,0

DE)6,7,0FG
  (2) 120 

 

The fraction if precipitation in the target area that originates from a certain source area is then updated as follows: 

 

𝑆%:;I=%,%?@ =
10+,2.0,0)*+,-./,0?J6,7,0FG

)*+,-./,0FG
     (3) 

 125 
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We track the parcel until either less than 1% of the target precipitation is tracked to a source area, or the tracking time is more 

than 30 days. 

 

Within the WRF domain, the parcels are advected and the moisture budget is calculated using the WRF wind fields and water 

fluxes. When a parcel gets within one degree of the edge of the WRF domain, there is a gradual linear change to a use of ERA-130 

Interim reanalysis data to ensure continuous movement of the air parcels over the domain edge. Within one degree distance 

from the domain edge, the values used to do the moisture tracking are a combination of the WRF and ERA-Interim values: yint 

= d*yWRF + (1-d)*yERA , where d is the distance to the edge. Outside of the WRF domain, the ERA-Interim values are used.  

 

We noted that the surface moisture flux in ERA-Interim is on average 50% higher than in WRF, resulting in a higher mean 135 

and standard deviation of the moisture sources outside the WRF domain. Unfortunately, this systematic offset between the two 

datasets cannot be easily remediated. Although this will not change the spatial patterns of the moisture source trends in a major 

way, the absolute values of the trends will be lower in the WRF domain than outside. The trends in the Tarim basin will hence 

be underestimated with respect to regions such as the Caspian Sea and the Junggar basin.  

 140 

2.4 Statistics 

Pearson correlation coefficients are calculated using the vectors of annual or seasonal mean values. The trends shown in Figs. 

2 and 4 are the slopes from linear fits to the annual mean vectors. 

3. Results 

3.1 Validation and comparison 145 

Any attempt to understand the Karakoram anomaly is greatly hampered by the almost complete lack of in situ meteorological 

data in WKSK. The rare weather stations in the region are often situated at relatively low elevation, or in urban environments, 

and poorly represent the high mountain climate. Furthermore, different types of precipitation datasets seem to greatly 

underestimate the precipitation in mountainous terrain (Immerzeel, Wanders, Lutz, Shea, & Bierkens, 2015; Ménégoz, Gallée, 

& Jacobi, 2013; Palazzi, Von Hardenberg, & Provenzale, 2013). These complications imply that any meteorological dataset, 150 

including reanalysis datasets, are associated with relatively large fundamental errors in WKSK, which prevents reliable 

validation of any model of WKSK, such as the one presented in here. Nevertheless, we compared our WRF output with data 

of the region around WKSK, to ensure that the WRF output is a reasonable representation of the regional climate between 

1980-2010. 

 155 
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We collected meteorological station data from GHCN (Lawrimore et al., 2011) (accessed June 2019), and selected those that 

have at least 20 years of full data between 1980-2010. Correlations between the annual variations in annual mean temperatures 

and mean temperatures between May-September are given in Fig. 2. They show generally very high correlations, with a lowest 

value of 0.5 (corresponding to p = 0.005). This implies that, despite many of these stations being situated in urban 

environments, the interannual variability is very well reproduced in WRF. 160 

 

 
Figure 2: Pearson correlations between 1980-2010 time series of station data and nearest WRF grid for annual mean temperatures 
(a), May-September temperatures (b). The 2000 m-contour is indicated by a solid line 

 165 

The stations in Fig. 2 closest to WKSK are almost exclusively in very arid regions, with a significant fraction of snowfall, 

making comparisons of precipitation very uncertain. Fig. 3 shows the correlation between time series of July precipitation, to 

limit the effect of snowfall, for the stations with monthly precipitation larger than 20 mm. The interannual variations are not 

represented by WRF as well as they are for temperature, but still show reasonable correlations for most stations, with values 

around 0.6.  170 

 

 
Figure 3: As Fig. 2, but for July precipitation. 
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Another parameter that is important in our model is evapotranspiration. It cannot be directly measured remotely, but there are 175 

several datasets that calculate it from other remotely sensed products, either directly or through data assimilation. These 

datasets vary greatly, as we illustrate in Fig. 4 for July 2010. We show evapotranspiration from GLEAM v 3.3a (Martens et 

al., 2017; Miralles, Gash, Holmes, De Jeu, & Dolman, 2010), which assimilates various soil moisture, temperature, radiation, 

and precipitation products. Furthermore, we show SSEBop (Senay, 2018) data, which uses MODIS temperatures directly, 

ERA-Interim reanalysis data, and our WRF output. On the inner Tibetan Plateau, the WRF output agrees very well with the 180 

GLEAM data. Interannual variations also match very well between WRF and GLEAM in snow-free areas on the Tibetan 

Plateau, with correlation coefficients above 0.5 for time series between 1980-2010. However, it is clear that GLEAM does not 

represent the irrigated areas well, with unrealistically low evapotranspiration in heavily irrigated arid regions in July. In 

contrast, SSEBop shows very high evapotranspiration in the irrigated regions. The WRF output better resembles SSEBOP in 

those areas, although generally has lower extremes, which are only in part explained by the difference in spatial resolution. 185 

ERA-Interim does not show the irrigation as prominently as WRF or SSEBop, but has a generally higher evapotranspiration 

values over unirrigated areas, such as the Tibetan Plateau. In general, the WRF simulated evapotranspiration is intermediate 

compared to the other datasets with plausible spatial patterns and magnitudes. 
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Figure 4: Evapotranspiration for July 2010 from GLEAM (a), SSEBop (b), ERA-Interim (c), and WRF (d). Mean values for the 190 
plotted domains are: 44 mm (a), 46 mm (b), 57 mm (c), and 59 mm (d). 

3.2 Climatic trends 

To get an impression how glaciers might have been affected by changes in the climate, we illustrate the trends for two relevant 

variables: the 2m-temperature in the melt season and the annual snowfall (Fig. 5, see also Fig. 6 for representative time series). 

For each grid point, the melt season was defined as the months where the mean daily temperature is above -5  °C, since for 195 

these months temperatures will likely be above freezing at least part of the time. A threshold value of 0 °C slightly increased 

the positive temperature trends at lower elevations in WKSK, but meant no trends for the highest elevations could be 

determined. The trends show that temperatures in the melt season have generally increased, with the northern part of the 

domain heating up the fastest and parts of the Indo-Gangetic Plain, Kunlun Shan, Karakoram, and the Tibetan Plateau showing 

only modest increases in temperature. The snowfall trends have a very different pattern, with most of the Tibetan Plateau 200 

showing an increase and the western and southern mountain ranges, such as the Himalaya and the Hindu-Kush, showing a 

decrease in snowfall. The increase in snowfall in WKSK mainly occurs in May, June, and September, whereas the decrease of 

snowfall in southwestern HMA occurs mainly in March (see Fig. 7 for region averages).  
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 205 
Figure 5: Trends between 1980-2010 of temperature in the melt season (a) and snowfall (b), averaged over 0.5x0.5° bins for clarity. 
Regions with monthly snowfall of less than 10 mm were masked out. The 2000 m elevation contour is indicated by a solid line. 

 
Figure 6: Time series of annual mean temperature (a), snowfall (b), mass balance (d) for representative 1x1° bins that have, on 
average, growing glaciers (38.5° N, 75.5° E, blue lines) and shrinking glaciers (34.5° N, 74.5° E, orange, dashed lines). Panel c shows 210 
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the time series of annual irrigation gift (green, dotted line) and annual surface moisture flux (black, dot-dashed line) for the most 
heavily irrigated point in the Tarim. 

 
Figure 7: a) Mean seasonal cycle of temperature and b) precipitation (thick lines) and snowfall (think lines) between 1980-2010 for 
the WKSK (blue lines) and northwestern HMA (orange, dashed lines), as shown in Fig. 11b,d. c) Mean seasonal cycle of the irrigation 215 
gift (green, dotted line) and surface moisture flux (black, dot-dashed line) of the most heavily irrigated point in the Tarim. d) Trends 
in precipitation (thick lines) and snowfall (thin lines) for the WKSK (blue lines) and southwestern HMA (orange, dashed lines), and 
the trend in irrigation from the most heavily irrigated point in the Tarim (green, dotted line), all as percentages of the annual mean 
value. 

 220 

Our trends show some similarities, but also major differences with respect to a similar WRF study that did not include irrigation 

and used another re-analysis dataset (Norris et al., 2018). For instance, our temperature trends do not exhibit the strong summer 

cooling at low altitudes (e.g. the Tarim basin), and are more in line with station data (Waqas & Athar, 2018; Xu, Liu, Fu, & 

Chen, 2010) in that respect. 

 225 
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3.3 Glacier mass balances 

The resulting pattern of simulated mass balance (Fig. 8) shows a strong resemblance to the measured pattern of mass balances 

of recent decades. Most notably, we also obtain growing glaciers in WKSK, whereas the glaciers in other regions show large 

mass losses. In fact, all points where we model glacier growth in Fig. 3a also show growth or stable conditions in observations 

(Brun et al., 2017; Kääb et al., 2015), except one point in Kääb et al., (2015). A more detailed quantitative comparison of the 230 

above results and the observed mass balances is hampered by the fact that our simulations only go out to 2010, but we compare 

our results for the period 2000-2008 in Fig. 9. The results generally match reasonably well, although our model seems to show 

too little growth for the growing glaciers. However, note that the errors on these observations (Brun et al., 2017) are large 

(~0.3 m w.e.). Furthermore, both the climate model and the glacier model will be associated with errors. By modulating the 

initial mass balance in the model, we find that on average 41% of the modelled mass balance in 2010 is determined by the 235 

initial mass balance in 1980. Although the mass balances in 1980 were observed to be less extreme than in the 21st century 

(Bolch et al., 2012; Maurer, Schaefer, Rupper, & Corley, 2019), parts of HMA already had negative mass balances then, with 

the magnitude of initial mass balances generally less than 0.4 m w.e. yr-1. This would result in an error on the mass balances 

in Fig. 8 of less than 0.2 m w.e. yr-1. Despite these uncertainties, our results clearly show that the climatic change of the recent 

decades has favoured growth of the glaciers in the regions where actual growth is observed, and not in the places where glaciers 240 

are melting fastest. 
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Figure 8: Simulated mean mass balance between 2000-2010 forced by changes in temperature and snowfall from WRF (a), only 
changes in temperature from WRF (b), and only changes in snowfall from WRF (c). Results are binned in 1x1° bins, and bins with 245 
total glacier volumes less than 5 km3 are not shown, to enable comparison with previous studies. The 2000 m elevation contour is 
indicated by a solid line. 

 

Figure 9: Comparison between mean modelled mass balances from this work, binned on a 1x1° grid as in Fig. 8, and those derived 
from observations of Brun et al. (2017), which are on the same grid, between 2000-2008. 250 

 

We also ran the glacier mass balance model forced by changes in temperature or snowfall only, to disentangle the model 

sensitivities of the two different variables on the glacier mass balances (Figures 8b and 8c).  These results show that the glaciers 

in the western and southern HMA mainly lose mass due to the increase in temperature, whereas the changes in precipitation 

have only a minor effect. On the other hand, in the regions where the glaciers are growing, the glaciers are barely affected by 255 

the temperature increases in our model. The glacier growth in these regions is mainly caused by an increase in snow (Fig. 8c). 

Furthermore, the increase in snow is possibly also responsible for moderating the temperature increases due to the high albedo 

of fresh snow, which leads to less energy being used for melt. However, the weak temperature response in WKSK is not only 

caused by the limited temperature trends, but is also due to the limited glacier temperature sensitivity there. We demonstrate 

this by forcing the glacier model with uniform temperature and precipitation trends (Fig. 10). The reduced temperature 260 

sensitivity is in line with previous work (Sakai & Fujita, 2017; Wang, Liu, Shangguan, Radic, & Zhang, 2019).  The decrease 

in snowfall in the western and southern HMA has a far smaller impact on the mass balance than the increase in temperature. 

Especially the Himalaya show a low sensitivity to precipitation (Fig. 10). To be able to model thousands of glaciers, our mass 

balance model is relatively simple and does not solve the full energy balance. A full energy balance model at 1 km resolution 

has shown that the temperature increases can amplify melt in the monsoon-dominated Himalaya, whereas snowfall increases 265 
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in the melt season can amplify glacier growth in the Karakoram (Bonekamp, de Kok, Collier, & Immerzeel, 2019). Hence, 

more detailed models will likely strengthen our conclusion that the observed mass gains are caused by snow increases, whereas 

the observed mass losses are mainly caused by temperature increases. Unfortunately, modelling the climate and glaciers of the 

entire HMA at a sub-kilometre resolution for 30 years is currently beyond our capabilities. 

 270 

 
Figure 10: Simulated mean mass balance between 2000-2010 forced by a spatially uniform and constant temperature increase of 
+0.01 °C yr-1, with snowfall kept constant (a), and a spatially uniform and constant snowfall increase of +0.5% yr-1 of the annual 
mean value (b). Panels a and b thus show the relative sensitivity to temperature and snowfall, respectively. 

3.4 Moisture sources 275 

The trends in moisture source regions for WKSK (Fig. 11a,b) indicate that the largest increases in moisture from a given source 

to precipitation in WKSK occur in the mountains themselves. This increase in recycling occurs mainly in May, and is also the 

main cause of the increase in precipitation in September (see Fig. 12). The increase in recycling is probably a natural 

consequence of the increased precipitation there. The regions with the second largest increases are the irrigated areas in the 

Tarim basin, which contributes mainly in May-July (see Figs. 7 and 12). In July, the increase in Tarim irrigation still contributes 280 

to increasing precipitation in WKSK, but it falls more in the form of rain, compared to May, where it is mainly snow (Fig. 7). 

Another region that contributes to the increase in precipitation in WKSK is the Junggar basin, northeast of the Tarim basin. 

This is another arid region that has experienced rapid increases in irrigation. The increases per grid point are lower there, but 

spread out over a larger area. A final source region with an overall large positive trend is the Caspian Sea and the Caucasus. 

Note again that, due to a systematic offset in surface moisture flux between WRF and ERA-Interim, the moisture source trends 285 

in the Tarim and HMA are underestimated with respect to the other regions. 
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Figure 11: Trends in the amount of moisture from a given source contributing to precipitation trends in the target area (a,c), with a 
detailed view (b,d) around the target area from which the parcels were released (contoured in bold) for WKSK (a,b) and 290 
southwestern HMA (c,d). Trends with magnitudes smaller than 0.02 mm yr-1 are made white. The 2000 m elevation contour in the 
WRF domain is indicated by a solid line. 
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Figure 12: Trends in the amount of moisture from a given source for WKSK for March (a), May (b), September (c) and for 
northwestern HMA in March (d). These months correspond to large negative or positive trends in snowfall in Fig. 7. Note the 295 
different scales. 

 

These results imply that evapotranspiration from irrigated areas in arid Northwest China play a large role in adding water to 

parts of HMA and hence to the observed positive mass balances. This is in line with recent work that shows that the recent 

wetting of Central Asia and the Tarim basin is associated with an increase in evapotranspiration in these regions (Dong et al., 300 

2018; Peng & Zhou, 2017; Peng, Zhou, Zhang, & Wu, 2018).  The increase in the total evapotranspiration is influenced by the 

increase in potential evapotranspiration (Fang, Chen, & Li, 2018), increase in water availability (Jian et al., 2018), and increase 

in irrigated land area. On the interannual timescale, precipitation in WKSK strongly correlates with the moisture source amount 

in the western Tarim basin (Pearson r=0.96 below 3500 m, r=0.68 for the entire WKSK, as indicated in Fig. 11b). A similar 

correlation exists between the WKSK precipitation and the Caspian Sea moisture source amount (r=0.89 below 3500 m, r=0.43 305 
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for the entire WKSK), showing the importance of the large-scale weather patterns. For the Junggar basin, this correlation is 

weaker (r=0.65 below 3500 m, r=-0.14 for the entire WKSK), since this region contributes in winter (Fig. 12). 

 

When performing the moisture tracking for the southwestern part of HMA, where snowfall has generally decreased (Fig. 

11c,d), also the Caspian Sea and the Junggar basin positively contribute to the snowfall trend, whereas for these ranges the 310 

Tarim basin does not contribute to the snowfall trend, with maximal trends in moisture sources of less than 0.1 mm yr-1. These 

results show that the irrigated areas in the Tarim basin are especially important in influencing the moisture supply to the 

Western Kunlun Shan (de Kok et al., 2018). 

4. Conclusion and discussion 

Our simulations, based on ERA-Interim and GLDAS reanalysis data, indicate that an increase of snowfall and a low 315 

temperature sensitivity are the main reasons why glaciers are growing or stable in western Kunlun Shan and Karakoram. This 

is the first time that the observed pattern of glacier mass balances in HMA is reproduced in a consistent way. Although the 

interannual variability of temperature and precipitation is reasonably reproduced, our models are associated with uncertainties, 

which are partly irreconcilable due to a lack of in situ measurements in WKSK. Furthermore, different parameterisations in 

the regional climate model, different irrigation schemes, and different glacier models will likely yield slightly different results. 320 

Using an ensemble of such approaches could be used to assess the robustness of the results presented here in the future. 

Furthermore, detailed studies at smaller scales will give more insight into individual glacier behaviour. 

 

We show that the growing irrigated area in the arid region of Northwest China plays an important role in the increase in 

snowfall in WKSK. Previous studies have already shown that increases of irrigation in Northwest China can add precipitation 325 

to neighbouring mountains (Cai et al., 2019; de Kok et al., 2018), but we now show this process of increasing irrigation is also 

important compared to other changes in the atmosphere over the last few decades. Already before 1980, irrigation has increased 

in Northwest China (Fang et al., 2018), possibly contributing to the stable glacier conditions then. Future evolution of snowfall 

in this part of HMA is partly linked to how the irrigated areas develop in the future. Changes in temperature, irrigated area, or 

irrigation efficiency are therefore important parameters in understanding future run-off from glaciers and snow in WKSK. The 330 

increase in water availability for irrigation in Northwest China might be partly the result of the loss of glacier mass in Tien 

Shan (Dong et al., 2018). The mass loss will first result in an increase in glacier melt run-off into the Tarim basin, but ultimately 

the run-off will decrease as the glaciers shrink to a small size (Kraaijenbrink et al., 2017). On the other hand, if the primary 

source of irrigation water is groundwater, the amount of irrigation for the region will also have a limited sustainable or 

economic level. Once the groundwater is depleted, the glaciers in WKSK will also receive less snowfall from this region, 335 

resulting in their retreat. The relative importance of groundwater extraction, melt from Tien Shan, and recycling from WKSK, 

for water availability in the Tarim is yet unknown and will require future study. Furthermore, improving the estimates of 
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irrigation gifts, e.g. by remote sensing, could also improve the past climate reconstruction of WKSK.  Greening and warming 

in West-Asia could provide additional snowfall to WKSK, together with an increase in westerly disturbances (Cannon et al., 

2014; Kapnick et al., 2014), but if temperatures in HMA keep increasing, the increase in melt will probably counteract glacier 340 

growth in most of HMA in the long term. It is clear that the coupling between glacier mass balance, runoff, and irrigation in 

different regions creates a complex problem of water availability, which will need to be researched further to inform decision 

makers on irrigation policies. 
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