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Abstract. Albedo reduction due to light-absorbing impurities can substantially enhance ice sheet surface melt by increasing 

surface absorption of solar energy. Glacier algae have been suggested to play a critical role in darkening the ablation zone in 10 

southwest Greenland. It was very recently found that the Sentinel-3 Ocean and Land Colour Instrument (OLCI) band ratio 

R709nm/R673nm can characterize the spatial patterns of glacier algal blooms. However, Sentinel-3 was launched in 2016 and 

current data are only available over three melting seasons (2016-2019). Here, we demonstrate the capability of the MEdium 

Resolution Imaging Spectrometer (MERIS) for mapping glacier algae from space and extend the quantification of glacier 

algal blooms over southwest Greenland back to the period 2004–2011. Several band ratio indices (MERIS chlorophyll-a 15 

indices and the impurity index) were computed and compared with each other. The results indicate that the MERIS two-band 

ratio index (2BDA) R709nm/R665nm is very effective in capturing the spatial distribution and temporal dynamics of glacier algal 

growth on bare ice in July and August. We analyzed the interannual (2004–2011) and summer (July–August) trends of algal 

distribution and found significant seasonal and interannual increases in glacier algae close to the Jakobshavn Isbrae Glacier 

and along the middle dark zone between the altitudes of 1200 m and 1400 m. Using broadband albedo data from the 20 

Moderate Resolution Imaging Spectroradiometer (MODIS) we quantified the impact of glacier algal growth on bare ice 

albedo, finding a significant correlation between algal development and albedo reduction over algae-abundant areas. Our 

analysis indicates the strong potential for the satellite algal index to be used to reduce bare ice albedo biases in regional 

climate model simulations. 

1 Introduction 25 

Snow and ice play a critical role in regulating the global energy balance through high surface albedos (Skiles et al., 2018; 

Warren, 1982). The presence of light-absorbing impurities, including abiotic materials (such as mineral dust and black 

carbon; e.g. Flanner et al., 2007; Goelles and Bøggild, 2017; Wientjes et al., 2011) and biogenic materials primarily 

produced by microbial processes (Chandler et al., 2015; Ryan et al., 2018; Stibal et al., 2017; Williamson et al., 2019), can 

substantially reduce the surface albedo of snow and ice and thus enhance surface melt. Increased meltwater further decreases 30 
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surface albedo, triggering a positive feedback mechanism between meltwater production and albedo decline (Box et al., 

2012; Tedesco et al., 2011, 2016). 

Snow algae and glacier algae are among the main microbial communities in supraglacial environments, which are distributed 

in Greenland, Antarctica, Alaska, Svalbard, the Himalayas, Siberia, the Rocky Mountains, or the European Alps (Anesio et 

al., 2017). Algal growth on glaciers and ice sheets not only plays an important role in local and regional carbon and nutrient 35 

cycles but is also crucial for regulating surface melt processes through the reduction in snow and ice albedo resulting from 

dark algae pigmentation (Lutz et al., 2014; Remias et al., 2012; Stibal et al., 2017; Yallop et al., 2012). Snow algae (mainly 

Chlorophyceae) are psychrophiles residing in glacial snow or snowfields and bloom on the snow surface after the onset of 

melting (Lutz et al., 2016, 2017). The visible colour of snow algae varies from green to yellow to orange and red, and is 

determined by the pigments (chlorophylls, xanthophylls, and secondary carotenoids, etc.) produced in different life stages 40 

(Anesio et al., 2017). Glacier algae (Zygnematales) are different from snow algae, and grow on the bare ice glacier surface 

when liquid water, nutrients, and photosynthetically active radiation are sufficient (Lutz et al., 2018; Stibal et al., 2017; 

Yallop et al., 2012). The earliest documentation about glacier algae dates to 1872. During an expedition to Greenland in 

1870, Adolf Erik Nordenskiöld and fellow explorers found ‘a brown polycellular alga’ on the ice surface and within 

cryoconite holes (Nordenskiöld, 1872). Several field studies (Lutz et al., 2018; Stibal et al., 2015, 2017; Uetake et al., 2010; 45 

Yallop et al., 2012) have investigated the species composition and cell structures of glacier algal communities. The primary 

glacier algal species are Ancylonema nordenskiöldii, Mesotaenium berggrenii, and Cylindrocystis brebissonii, which are 

green microalgae and produce pigments including chlorophyll-a, chlorophyll-b, beta-carotene, lutein, and violaxanthin. 

Ancylonema nordenskiöldii and Mesotaenium berggrenii also generate a phenolic purpurogallin pigment (purpurogallin 

carboxylic acid-6-O-b-D-glucopyranoside) which absorbs ultraviolet and visible radiation (Remias et al., 2012; Yallop et al., 50 

2012). It has been suggested that this purpurogallin pigment accounts for the brownish-grey colour of the algae-laden ice 

(Remias et al., 2012; Yallop et al., 2012). 

Recent studies have revealed a significant impact of glacier algal blooms on bare ice albedo in Greenland (Stibal et al., 2017; 

Tedstone et al., 2020; Williamson et al., 2018). Along the ablation zone over the southwest Greenland Ice Sheet, a dark ice 

band appears every summer season (Shimada et al., 2016; Tedstone et al., 2017). It was previously thought that this surface 55 

darkening was primarily caused by outcropping of ancient dust (Wientjes and Oerlemans, 2010). Recently, widespread 

glacier algal blooms were observed in the field and the dark pigments generated by glacier algae were argued to be a primary 

control on the presence of the dark band (Ryan et al., 2018; Stibal et al., 2017; Williamson et al., 2018; Williamson et al., 

2020). Field sampling and spectral measurements indicate that glacier algae have a greater effect on albedo reduction than 

other nonalgal impurities (Stibal et al., 2017). However, current field measurements of glacier algal abundance and surface 60 

albedo are limited to a very few sites and melting seasons, and it is logistically difficult to use laboratory techniques to 

measure glacier algae at a regional scale. The impact of glacier algal development on surface albedo over large spatial and 

temporal scales has not yet been quantified.  
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Remote sensing provides a synoptic and efficient way to characterize geospatial phenomena across large spatial scales. To 

date, using remote sensing methods to quantify snow or glacier algae extent or concentration is limited to a few studies (e.g. 65 

Cook et al., 2020; Ganey et al., 2017; Huovinen et al., 2018; Painter et al., 2001; Takeuchi et al., 2006; Wang et al., 2018). 

Painter et al. (2001) estimated the algal abundance of the snow alga Chlamydomonas nivalis over a snow-covered region in 

the Sierra Nevada of California from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery 

based on chlorophyll-a absorption features between 630 nm and 700 nm. Despite the high capability of airborne 

hyperspectral imaging data for detecting chlorophylls, the availability of hyperspectral imaging data is constrained over 70 

space and time. Several studies (e.g. Takeuchi et al. 2006; Ganey et al. 2017; Huovinen et al. 2018) mapped red snow algae 

based on carotenoid absorption features using satellite red and green bands.  

Mapping glacier algae using remote sensing is complicated by a number of factors, including the complex pigmentation of 

glacier algae, insufficient spectral and spatial resolution of satellite data, and the impact of dusts and underlying ice optics 

that are not yet well understood. The use of carotenoid features is not applicable to glacier algae, as they do not, to our 75 

knowledge, generate secondary carotenoids like snow algae (Painter et al., 2001; Takeuchi et al., 2006). The brownish-grey 

colour of glacier algae is attributed to the purpurogallin pigments, but the characteristic absorption peaks of purpurogallin 

pigments are concentrated in the ultraviolet spectrum at 278 nm, 304 nm, and 389 nm (Remias et al.,2012), which are not 

detectable by current satellite sensors. At visible wavelengths, the absorption by purpurogallin pigments is quite uniform, 

making it difficult to differentiate between glacier algae and other dark impurities from satellite data based on purpurogallin 80 

spectral properties.  

The spectral signature of chlorophyll-a, the primary photosynthetic pigment generated by glacier algae, however, is well-

suited for mapping glacier algae using satellite remote sensing techniques. Chlorophyll-a is widely used as a biomarker to 

detect or quantify algal blooms from remote sensing data (e.g. Gitelson, 1992; Painter et al., 2001), and it was recently found 

that the spectral signatures of chlorophyll-a in the red and near-infrared (NIR) region can be utilized for mapping glacier 85 

algae (Wang et al., 2018). The red-NIR spectral signature of chlorophyll-a, i.e. absorption at 665-681 nm and reflectance 

around 709 nm, is present in field hyperspectral data collected over ice surfaces covered by glacier algae (Cook et al., 2020; 

Stibal et al., 2017). The concentration of chlorophyll-a is generally used as a proxy for algal biomass or abundance, and 

based on this a number of algorithms have been developed to quantify the biomass contained in algal blooms occurring in 

aquatic systems (Beck et al., 2016; Blondeau-Patissier et al., 2014; Matthews, 2011; Xu et al., 2019a, 2019b). Using the two-90 

band ratio (R709nm/R673nm) method, Wang et al. (2018) quantified the spatial distribution of glacier algal blooms in southwest 

Greenland over the summer seasons in 2016 and 2017 from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) data. 

Despite the moderate (300 m) spatial resolution, the derived spatial pattern based on the red-NIR chlorophyll-a signature 

matches well with previous field observations (Stibal et al., 2015; Stibal et al., 2017; Williamson et al., 2018). As for higher 

spatial resolution remote sensing data, Cook et al. (2020) applied a random forest method to classify unmanned aerial vehicle 95 

(UAV) and the Sentinel-2 Multispectral Instrument (MSI) data for identification of high-algae biomass and low-algae 

biomass areas. However, these data have limitations in terms of spatial coverage, temporal resolution, and spectral 
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resolution. To establish a long-term time series quantification of glacier algae distribution and study the seasonal process of 

glacier algal blooms and the impact on albedo change, the use of chlorophyll-a-sensitive ocean color satellite sensors is 

promising. 100 

The Sentinel-3 OLCI is equipped with 21 spectral bands including seven narrow chlorophyll-a bands. The advanced band 

configuration of OLCI makes it a valuable sensor for mapping algal blooms not only in water but also on ice (Wang et al., 

2018). OLCI was designed based on the opto-mechanical and imaging design of the MEdium Resolution Imaging 

Spectrometer (MERIS) onboard the European Space Agency (ESA)’s Envisat satellite, operational from March 2002 to 

April 2012, which collected data in 15 spectral bands between 390 nm and 1040 nm. MERIS features in particular a 709 nm 105 

band where high levels of chlorophyll-a produce a characteristic reflectance peak. MERIS data have been broadly used for 

atmospheric and oceanic studies, with the primary goal of measuring the concentration of chlorophyll-a and suspended 

sediments in oceans, coastal waters, and inland lakes (Gower et al., 2008; Palmer et al., 2015). Similar configurations of the 

chlorophyll-targeted bands in terms of wavelength and bandwidth between MERIS and OLCI (Fig. 1a) point to the potential 

of using MERIS data to reconstruct the spatial distribution of glacier algae prior to 2012. In this study, we make use of the 110 

capability of MERIS for detecting chlorophyll-a to extend the quantification of glacier algae in southwest Greenland back to 

the 2004–2011 period, and further quantify the impact of glacier algal blooms on bare ice albedo by combining the time 

series data of MERIS and MODIS.  

2 Study area and data 

2.1 Study area and previous field observations 115 

Our study area is located between 66-71°N and 47-51°W in southwest Greenland. This area features high ablation rates and 

low surface albedos during summertime (Alexander et al., 2014; Fettweis et al., 2011; Moustafa et al., 2015; Stroeve et al., 

2013). With the progression of surface melt over time, a dark ice zone forms rapidly and reaches a maximum area from mid-

July to mid-August (Tedstone et al., 2017; Wang et al., 2018). The bare ice and dark ice areal extent is highly correlated with 

meltwater production and surface runoff simulated by the regional climate model Modèle Atmosphérique Régionale (MAR) 120 

(Wang et al. 2018). The peak time of surface darkening coincides with the occurrence of glacier algal blooms observed in the 

field. The ice alga Ancylonema nordenskiöldii and Mesotaenium berggrenii are the dominant species found in southwest 

Greenland during July and August (Lutz et al. 2018; Yallop et al. 2012; Williamson et al. 2018). Considering the growth 

season and surface habitat of glacier algae, we focus our analysis on bare ice in July and August.  

There are a limited number of field studies measuring glacier algal abundance and reflectance spectra over the study area 125 

(Cook et al., 2020; Stibal et al., 2015; Stibal et al., 2017; Williamson et al., 2018), and no field measurements were 

coincident with the acquisition time of the Envisat MERIS data. Here we utilized the previous field observations in a 

qualitative way for comparison purposes, and explored the extension of an empirical function derived from Sentinel-3 OLCI 

data (Wang et al., 2018) to MERIS data for characterizing the temporal variations of algal population with surface albedo 
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change. We utilized field data first presented by Stibal et al. (2015) and Stibal et al. (2017) to validate patterns of spatial 130 

variability in glacier algae distribution and to compare with satellite data to validate the chlorophyll-a spectral signal. Stibal 

et al. (2015) collected shallow surface ice cores and measured algal abundance over 14 sites in Greenland during May-

September 2013, of which the sites DS (69°28.56'N, 49°34.838'W), KAN_M (67°3.964'N, 48°49.356'W), and KAN_L 

(67°5.798'N, 49°56.303'W) are within our study area. KAN_M and KAN_L are located along the Kangerlussuaq transect 

(K-transect), and DS is located near to the Jakobshavn Isbrae Glacier. Stibal et al. (2015) documented the algal abundance 135 

averaged over the sampling season (2013 summer) for each site, finding cell counts of 66±31 cells/ml (KAN_L), 5688±3147 

cells/ml (KAN_M) and 10621±2073 cells/ml (DS), respectively. During the 2014 summer season, Stibal et al. (2017) 

collected both algal abundance and hyperspectral reflectance measurements via an Analytical Spectral Devices (ASD) Field 

Spectrometer over a site near the automatic weather station S6 (67°04.779'N, 49°24.077'W) on the K-transect. They 

collected multiple samples each observation day and published the datasets of glacier algal abundance and reflectance 140 

spectra at a 10 nm spectral resolution (Stibal et al., 2017). Here we used the field hyperspectral data to compare with the 

satellite spectra to validate the chlorophyll-a signal.  

2.2 Satellite data 

2.2.1 MERIS Level-2 data 

We used the full spatial resolution (300 m) MERIS Level-2 data acquired during July and August from 2004 to 2011 145 

(https://earth.esa.int/web/guest/-/meris-full-resolution-full-swath-6015). The MERIS Level-2 data were processed from the 

Level-1b data (top-of-atmosphere radiances in 15 spectral bands shown in Fig. 1a). ESA adopted different processing 

techniques to generate the Level-2 data over land, water, and clouds. The Level-2 data over land include the normalized 

surface reflectance in 13 spectral bands, corrected for the atmospheric effects of gaseous absorption and stratospheric 

aerosols (ESA, 2011). The full resolution Level-2 data from May 2002 to April 2012 were released at the MERCI file 150 

archive (https://merisfrs-merci-ds.eo.esa.int/) in February 2015. We identified 146 cloudless MERIS images acquired on 135 

days from July to August between 2004 and 2011. Since there were no cloudless images available for the 2002 summer 

season and only three images for the 2003 summer over the study area, we excluded these two years from our analysis. For 

those images affected by clouds over the study area, we checked the MERIS Level-2 Flag data including the pixel types 

classified as water, land, and cloud. However, the Flag data fail to correctly capture all the cloud pixels due to limitations of 155 

the algorithm in differentiating clouds from other bright surfaces like snow and ice (ESA, 2011). In this regard, we manually 

removed the cloud pixels (patches) from each MERIS image. 

https://earth.esa.int/web/guest/-/meris-full-resolution-full-swath-6015
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Figure 1. Spectral response functions of (a) MERIS (red), OLCI (blue), and (b) MODIS (black), and WorldView-2 (orange) over 

the wavelength range of 350-1050 nm. All the MERIS and OLCI bands are within the 350-1050 nm range, where photosynthetic 160 
and photoprotective pigments have spectral responses. Four MODIS bands (over land) and eight WorldView-2 bands are within 

this spectral range, but with much coarser spectral resolutions. In both sub-plots, the dashed line shows hyperspectral ASD field 

spectrometer data (right vertical axis) collected over algae-abundant ice by Stibal et al. (2017), containing chlorophyll-a signal at 

the red-NIR wavelengths (red highlighted region). The plotted field spectrum (sample code: Ab.25.06.14.D1) was measured on 25 

June 2014 at 67°04.779'N, 49°24.077'W (near the automatic weather station S6 along the K-transect), with an algal abundance 165 
measurement of 121664 cells/ml (Stibal et al., 2017). 

2.2.2 MODIS data 

We used the MODIS/Terra daily surface reflectance product (MOD09GA Version 6) and daily snow cover product 

(MOD10A1 Version 6). The MOD09GA data include the atmospherically corrected surface reflectance for the 620-670 nm, 

841-876 nm, 459-479 nm, 545-565 nm, 1230-1250 nm, 1628-1652 nm, and 2105-2155 nm MODIS bands (Fig. 1b). The 170 

MOD10A1 data include broadband albedo estimated based on the MOD09GA product. We used the version 6 data which 

are greatly improved in sensor calibration, cloud detection, and aerosol retrieval and correction relative to version 5 (Casey 

et al., 2017; Lyapustin et al., 2014; Toller et al., 2013). Version 6 data are recommended for assessing temporal variability of 

surface albedo since they are corrected for sensor degradation issues that impacted earlier versions (Casey et al., 2017). The 
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spatial resolution of the MODIS datasets is 500 m. We resampled the MODIS data to 300 m using a nearest neighbour 175 

resampling method. The cloud masks in the MOD10A1 data were applied to exclude clouds. 

2.2.3 WorldView-2 imagery 

We also used WorldView-2 imagery to validate the spectral signal of glacier algae captured by MERIS data. The 

WorldView-2 satellite was launched in October 2009, collecting data in nine spectral bands (panchromatic, coast, blue, 

green, yellow, red, red edge, NIR, and NIR2; Fig. 1b) at a very high spatial resolution (~2 m for the multispectral bands). 180 

WorldView satellites have high geolocation accuracy owing to their three-axis stabilized platform equipped with high-

precision GPS and attitude sensors (Wang et al., 2016). Although the WorldView-2 spectral bands have wide bandwidths, 

the red (630-690 nm) and red edge (705-745 nm) bands can capture the chlorophyll-a signal (Fig. 1b), and have been used 

for mapping algal species in nearshore marine habitats (Reshitnyk et al., 2014). We obtained WorldView-2 imagery acquired 

in July and August (2009-2011) from the Polar Geospatial Center (PGC, https://www.pgc.umn.edu/). The images were 185 

provided as orthorectified top-of-atmospheric radiances in eight multispectral bands. We performed atmospheric corrections 

to the radiance images and obtained surface reflectance images using the MODerate resolution atmospheric TRANsmission 

(MODTRAN) based Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) (Anderson et al., 2002). The sub-

Arctic model and rural aerosol model were used for correction of atmospheric effects caused by water vapour and aerosols 

(Legleiter et al., 2013).  190 

2.3 Modèle Atmosphérique Régionale (MAR) outputs 

The regional climate model Modèle Atmosphérique Régionale (MAR, Fettweis et al., 2017) combines atmospheric 

modelling (Gallée and Schayes, 1994) with the Soil Ice Snow Vegetation Atmosphere Transfer Scheme (De Ridder and 

Gallée, 1998) to simulate surface energy balance and mass balance processes over the Greenland and Antarctic ice sheets. In 

this study, we examined the relationship between the MAR albedo bias (e.g. Alexander et al., 2014; Moustafa et al., 2015) 195 

and glacier algal blooms. The snow albedo in MAR is determined by snowpack temperature, temperature gradient, and 

liquid water content, and the bare ice albedo is scaled based on the accumulated surface water (Zuo and Oerlemans, 1996; 

Alexander et al., 2014). Since the MAR albedo scheme does not account for impurities, there are significant biases in MAR 

albedo over the southwest Greenland ablation zone (Alexander et al., 2014). We used the 7.5 km resolution MAR v3.9 daily 

outputs, forced by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim; Dee et al., 200 

2011).  

https://www.pgc.umn.edu/
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3 Methods 

3.1 Bare ice mapping 

We mapped bare ice cover from each MERIS image using a thresholding method applied to surface reflectance data (e.g. 

Shimada et al., 2016; Tedstone et al., 2017; Wang et al., 2018). To be consistent with previous studies, we used MODIS-205 

derived bare ice maps as a reference to determine the optimal threshold for the MERIS data. We removed tundra and ocean 

pixels using the MEaSUREs Greenland Ice Mapping Project classification mask (Howat et al., 2014). We selected 31 

MOD09GA images that were coincident with MERIS overpasses and were cloud free over the study area. Following 

Tedstone et al. (2017), we applied a threshold to the MODIS 841-876 nm reflectance (R841-876 nm), using the criterion R841-876 

nm<0.6 to extract bare ice reference maps from selected MODIS images. For coincident MERIS images, we iteratively 210 

applied a threshold value ranging from 0 to 1, increasing by 0.01 at each iteration to the MERIS band 13 (865 nm) and 

compared the MERIS and MODIS bare ice cover. The optimal threshold was determined based on the F1 score accuracy 

metric, which is the harmonic average of precision and recall, defined as follows:  

 

F1 = 2 * (precision * recall) / (precision + recall)                                                                                                                    (1) 215 

 

where precision is calculated as NTP / (NTP + NFP) and recall is calculated as NTP / (NTP + NFN). NTP is the number of true 

positives (the number of pixels classified as bare ice by both the MODIS and MERIS data), NFP is the number of false 

positives (the number of pixels that are only classified as bare ice by the MERIS data), and NFN is the number of false 

negatives (the number of pixels that are only classified as bare ice by the MODIS data). The average F1 score was calculated 220 

for each threshold based on those 31 image pairs. The threshold of 0.53 yielded the highest F1 score (0.957). We excluded 

supraglacial lakes using the modified normalized difference water index (MNDWI, Yang and Smith, 2013), defined as: 

 

MNDWI = (Rblue - Rred) / (Rblue + Rred)                                                                                                                                        (2) 

 225 

where Rblue is the reflectance at 442 nm (MERIS band 2) and Rred is the reflectance at 665 nm (MERIS band 7). Pixels with 

MNDWI greater than 0.14 (Yang and Smith, 2013) were identified as lake pixels and excluded from analysis. Using the 

same iterative method described above, we also determined an optimal threshold of 0.47 to extract dark ice pixels (pixels 

with bare ice containing substantial surface impurities) using the 620 nm MERIS band, following Shimada et al. (2016) and 

Tedstone et al. (2017). This band has been used to delineate dark ice by applying a threshold based on the assumption that 230 

visible wavelengths including the red band are mostly affected by light-absorbing impurities rather than surface water and 

grain size variations (Shimada et al., 2016; Tedstone et al., 2017; Wang et al., 2018).  
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3.2 Chlorophyll-a indices and impurity index 

Chlorophyll-a is the primary photosynthetic pigment generated by glacier algal cells (Williamson et al., 2018; Yallop et al., 

2012). Hyperspectral field measurements (Fig. 2d, Cook et al., 2020; Stibal et al., 2017) and the Sentinel-3 OLCI spectra 235 

(Wang et al., 2018) both exhibit the typical spectral signatures of chlorophyll-a at the red and NIR wavelengths over algae-

abundant ice surfaces, featuring a reflectance peak around 709 nm and absorption features around 665-681 nm. Pure ice has 

lower reflectance at 709 nm compared to shorter wavelengths (Hall and Martinec, 1985). The magnitude of the reflectance 

peak at 709 nm relative to 665-681 nm is highly dependent on the chlorophyll-a content (Binding et al., 2013; Gitelson, 

1992). Figure 2d shows the MERIS spectra over a dark ice pixel, compared with WorldView-2 spectra and field 240 

hyperspectral measurements by Stibal et al. (2017). The selected MERIS pixel, located near the Jakobshavn Isbrae Glacier, 

is close to the site DS where Stibal et al. (2015) measured a high abundance of glacier algae during the 2013 summer season. 

The MERIS image (Fig. 2a) was acquired on 5 July 2010, and the WorldView-2 image (Fig. 2b and Fig. 2c) was acquired on 

9 July 2010. The field hyperspectral curves shown in Fig. 2d were measured over dark ice (R620nm<0.4) with high algal 

abundance (greater than 10000 cells/ml), featuring chlorophyll-a signatures in the red-NIR region. Despite the differences in 245 

absolute values of surface reflectance, the spectral shapes of the MERIS, WorldView-2 and field spectra match quite well, 

particularly with regard to the presence of chlorophyll-a, validating the ability of MERIS data to capture the glacier algae 

spectral signal.  
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Figure 2. Comparison between MERIS, WorldView-2, and field spectra over algae-abundant dark ice. (a) MERIS Level-2 image 250 
(true colour composite) acquired on 5 July 2010. Pixels with missing data are shown in light blue. (b) WorldView-2 surface 

reflectance image acquired on 9 July 2010 over the square area in (a). (c) Zoomed-in WorldView-2 image, with the area (red 

square) corresponding to the selected MERIS pixel in (a). (d) Reflectance spectra for MERIS and WorldView-2 (2010), and field 

hyperspectral measurements collected over the algae-abundant dark ice at S6 by Stibal et al. (2017) in 2014. 

To map glacier algae using the chlorophyll-a spectral signature, we calculated several MERIS chlorophyll-a indices (Table 255 

1), including the two-band NIR–Red index (2BDA), three-band NIR–Red index (3BDA), normalized difference chlorophyll 

index (NDCI), and maximum chlorophyll index (MCI) (Moses et al., 2012; Mishra and Mishra, 2012; Binding et al., 2013). 

The 2BDA and 3BDA methods have been widely applied to estimate chlorophyll-a concentration in aquatic systems using 

MERIS data (Beck et al., 2016; Moses et al., 2009; Xu et al., 2019a, 2019b), and have proved to be highly accurate for 

chlorophyll-a retrieval in turbid coastal waters characterized by complex optical properties (Moses et al., 2012). The NDCI 260 

(Mishra and Mishra, 2012) was defined based on the concept of the normalized difference vegetation index (NDVI). The 

MCI measures the height of the 709 nm reflectance peak relative to the baseline obtained by interpolating reflectance 

between 681 nm and 753 nm (Binding et al., 2013). In addition, we also calculated the impurity index (Dumont et al., 2014) 
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to compare with the chlorophyll-a indices. The impurity index is the ratio between the natural logarithms of the spectral 

albedos at the green and NIR bands, and was constructed to quantify the impurity content over the Greenland Ice Sheet upon 265 

the assumption that the visible wavelengths are much more sensitive to impurity content than the NIR wavelengths. 

Radiative transfer modelling experiments have shown that the impurity index is less affected by snow grain size variations 

than the presence of impurities (Dumont et al., 2014).  

 

Table 1. Equations and MERIS bands used for calculation of different ratio indices. 270 

Indices Equation MERIS bands 

Two-band NIR–Red index (2BDA) R709nm / R665nm B7, B9 

Three-band NIR–Red index (3BDA) (R665nm
-1 - R709nm

-1) * R753nm B7, B9, B10 

Normalized Difference Chlorophyll Index (NDCI) (R709nm - R665nm) / (R709nm + R665nm) B7, B9 

Maximum Chlorophyll Index (MCI) (R709nm - R681nm) - (R753nm - R681nm) * (709 - 681) / (753 - 

681) 

B8, B9, B10 

Impurity index  ln (R560nm) / ln (R865nm) B5, B13 

 

3.3 Sensitivity analysis based on radiative transfer modelling 

To evaluate the sensitivity of chlorophyll indices to dust presence, we performed radiative transfer modelling tests using the 

Snow, Ice, and Aerosol Radiation model (SNICAR; Flanner et al., 2007, 2009). SNICAR is a multi-layer, two-stream 

radiative transfer model for simulating the spectral albedos of snow over the 300-5000 nm wavelength range (at a 10 nm 275 

spectral resolution), accounting for various factors including illumination conditions, snow grain size (30–1500 μm), snow 

layer properties, and dust concentrations, etc. The SNICAR online tool (available at snow.engin.umich.edu) allows for 

simulating the radiative effects of dust in four size bins, in ranges of 0.1-1.0, 1.0-2.5, 2.5-5.0, and 5.0-10.0 μm. Dust optical 

properties in SNICAR are based on an estimate of global-mean characteristics approximated as a mixture of quartz, 

limestone, montmorillonite, illite, and hematite. We simulated the spectral albedos for varying sizes and concentrations of 280 

dust under the following conditions: direct incident radiation, a solar zenith angle of 60 degrees, clear sky conditions for 

Summit, Greenland, a snow grain effective radius of 1500 μm (approximating the ice surface), a snowpack thickness of 100 

m, a snowpack density of 400 kg/m3, a range of dust concentrations (0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 5, 8, 10, 30, 50, 80, 

100, 300, 500, 800, 1000, 1500, 2000, 2500, and 3000 ppm), and four dust sizes (dust 1: 0.1–1.0μm; dust 2: 1.0–2.5μm; dust 

3: 2.5–5.0μm; dust 4: 5.0–10.0 μm). We also tested different values of snow density (400 kg/m3 vs. 900 kg/m3), and found 285 

that the snow density value had a negligible effect on the simulation results. To evaluate the impact of snow grain size on the 

2BDA index, we performed dust-free SNICAR simulations for different values of snow grain effect radius between 500 µm 

and 1500 µm (Fig. A1, Appendix A). We calculated the 2BDA index for each dust-free scenario, finding the lowest 2BDA 

value (0.959) for the 1500-µm spectra and the highest 2BDA value (0.976) for the 500-µm spectra. We compared these two 
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2BDA values with the histogram distribution of the 2BDA values calculated for the MERIS ‘clean’ (R620nm>0.65) bare ice 290 

pixels (Fig. A1c). The sensitivity test suggests that the dust-free spectrum simulated using the 1500-µm grain size is a good 

approximation to the MERIS bare ice spectrum. Nevertheless, to account for the potential influence of grain-size changes on 

the sensitivity of 2BDA index to dust presence, we also repeated the SNICAR simulations with varying dust sizes and 

concentrations with a snow grain effective radius of 500 µm.  

4 Results 295 

4.1 Comparison between different ratio indices 

Figure 3 shows the MERIS spectra over four distinct sites within our study area to illustrate the spectra associated with 

different surface types. Each site represents a typical surface type, including clean bare ice, dark ice with a significant 

chlorophyll-a signal, dark ice with a less significant chlorophyll-a signal, and a supraglacial lake. Figure 3b shows that each 

surface type is characterized by a distinct spectral curve. The difference between the spectral curves for the two dark ice sites 300 

is particularly notable. Figure 3c shows the normalized spectral curves relative to the clean ice spectrum. Both of the dark ice 

sites have a reflectance at 620 nm of less than 0.47 and are classified as ‘dark ice’ based on the thresholding method 

discussed above (Shimada et al., 2016; Tedstone et al., 2017). However, the northern dark ice site has a chlorophyll-a 

spectral signature between 665 nm and 753 nm that matches the field spectra of algae-abundant ice (Fig. 2d), while at the 

southern dark ice site, the reflectance peak at 709 nm is much less pronounced. Since the magnitude of the chlorophyll-a-305 

related spectral signal is directly related to algae concentration, we termed the northern site as ‘dark ice (high chlorophyll-a)’ 

and the southern site as ‘dark ice (low chlorophyll-a)’ in Figure 3 and Table 2. The differences illustrate that pixels classified 

as “dark ice” can have different spectral properties, and in particular differences associated with reflectance characteristics of 

chlorophyll-a. 

We calculated the 2BDA, 3BDA, NDCI, MCI, and impurity indices over bare ice (R865 nm<0.53) for each MERIS image. 310 

Table 2 lists the ratio indices and the reflectance at 620 nm over the four sites shown in Fig. 3a based on a MERIS image 

acquired on 14 August 2011, to illustrate the differences between indices. The 2BDA, 3BDA, and NDCI chlorophyll-a 

indices use similar spectral bands and are in general well-correlated; they are highest over the northern dark ice site, and 

lowest over the supraglacial lake. The MCI chlorophyll-a index, in contrast, reaches a maximum over clean bare ice. The 

MCI index measures the height of the 709 nm reflectance peak relative to the baseline between 681 nm and 753 nm, and is 315 

therefore sensitive to the bare ice spectrum. This index may be less sensitive to the relatively low chlorophyll-a content over 

ice, and is more suitable for monitoring intense algal blooms with very high chlorophyll-a concentrations in water (Binding 

et al. 2013). For the impurity index, the clean bare ice has the lowest value, followed by the supraglacial lake, dark ice with 

the weaker chlorophyll-a signal, and dark ice with the stronger chlorophyll-a signal (Table 2). The supraglacial lake has a 

higher impurity index relative to clean ice, suggesting that the impurity index may include the darkening effect caused by 320 

meltwater presence. We find that the 2BDA, 3BDA and NDCI indices are most suitable for detection of chlorophyll-a, given 
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their specificity to chlorophyll-a signal bands, the sensitivity of the impurity index to liquid water, and the sensitivity of the 

MCI index to the bare ice spectrum. Of these three indices, we selected the 2BDA index to characterize the glacier algae 

distribution owing to its simplicity and effectivity.  

 325 

Figure 3. MERIS spectra of different surface types. (a) MERIS Level-2 image (false colour composite) acquired on 14 August 2011 

and locations of the four sample sites. Each site has an area of 1.2 km by 1.2 km, composed of 16 MERIS pixels. (b) MERIS 

reflectance in 13 spectral bands over the four sites, illustrated by mean and standard deviation values for each band over each site. 

(c) Normalized reflectance relative to the clean ice spectra.   

 330 

Table 2. Calculated ratio indices and surface reflectance at 620 nm over the four sites.   

Surface type 2BDA 3BDA NDCI MCI Impurity R620nm 

Bare ice (clean) 0.960 -0.037 -0.021 0.011 0.457 0.683 

Dark ice (high chlorophyll-a) 1.035 0.035 0.017 0.008 0.955 0.369 

Dark ice (low chlorophyll-a) 0.986 -0.014 -0.007 0.005 0.809 0.362 

Supraglacial lake 0.839 -0.131 -0.087 0.000 0.635 0.040 

 

4.2 Sensitivity of the 2BDA index to non-algal factors 

Given that dust may change the spectral reflectance of bare ice and affect the 2BDA index, we analyzed the sensitivity of 

2BDA index to dust presence based on the SNICAR simulations for varying dust sizes and concentrations. We should note 335 

here that there has been some discussion in past literature regarding hematite-rich dust (e.g. Tedesco et al., 2013; Cook et al., 
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2020), which could produce a different spectral response. However, the field study of Cook et al. (2020) found very low 

concentrations of such dust, and therefore we consider its impact to be negligible. Using the simulated spectra, we calculated 

the 2BDA and impurity indices for each dust size and concentration. Figure 4 shows the 2BDA index vs. impurity index 

calculated for the SNICAR simulations using a snow grain effective radius of 1500 µm (with circle diameters representing 340 

the magnitude of dust concentrations for four different dust sizes), along with the density scatterplots of impurity vs. 2BDA 

index calculated from the MERIS data. The SNICAR simulations show that the impurity index is more sensitive to dust than 

the 2BDA index. Figure 4 illustrates that the upper bound of the impurity index calculated from the MERIS data is around 

1.0. This maximum value corresponds to a dust concentration of ~500 ppm (for the 5.0-10.0 μm dust range), which is 

consistent with the measurements of Cook et al. (2020), who reported mean and maximum dust concentrations of 342 ppm 345 

and 519 ppm respectively over a field site within the study area. However, SNICAR simulations indicate that an impurity 

index of 1.0 corresponds to a maximum 2BDA value of ~0.99. Therefore, the presence of dust alone cannot explain the high 

2BDA index values present in Fig. 4. This comparison suggests that for our study area, areas with a 2BDA index greater than 

0.99 are not likely to be false positives caused by dust. We also repeated this analysis using a snow grain effective radius of 

500 μm (Fig. A1d, Appendix A). We find that the snow grain size mainly affects the lower range of 2BDA values, while the 350 

higher 2BDA values are less affected by grain-size changes. For the 500-µm grainsize scenario, 2BDA values higher than 

~0.995 remain unaffected (Fig. A1d). Thus, the high MERIS 2BDA values are insensitive to dust presence regardless of 

grain-size variations.  

 

Figure 4. Impurity index vs. 2BDA index for MERIS bare ice pixels (density scatter plot with colours indicating relative 355 
frequency), excluding missing data in our study area, between 2004 and 2011. Circles show impurity vs. 2BDA index from 

SNICAR simulations (with a snow grain effective radius of 1500 µm) with varying concentrations of dust (for four different dust 

sizes). The circle size corresponds to the dust concentration, and dashed lines show the polynomial regression for each of the 

different dust sizes. 
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Although the bare ice spectrum can also be affected by other factors such as air bubbles and meltwater presence, there is no 360 

evidence suggesting that these factors can generate the chlorophyll-a-like spectral signature with a higher reflectance at 709 

nm as compared with 665 nm. In fact, ice with different concentrations of air bubbles has a consistent spectral shape between 

665 nm and 709 nm (Condom et al., 2018), and meltwater exhibits a similar pattern to ice at this wavelength range (Fig. 3b), 

with both the ice and water spectra characterized by a decreased reflectance from 665 nm to 709 nm. The sensitivity of the 

2BDA index to glacier algae can be further demonstrated using the field dataset of Cook et al. (2020). Table B1 and Figure 365 

B2 (Appendix B) indicate strong positive correlations between measured cell abundance and the 2BDA index calculated 

from coincident in-situ hyperspectral data, particularly for those samples with a measured cell abundance of greater than 

10000 cells/ml, which have an average 2BDA index of 1.09±0.073. In comparison, the samples with a measured cell 

abundance of lower than 10000 cells/ml have an average 2BDA index of 0.98±0.015. 

4.3 Spatial variability 370 

To examine spatial variability on a broader scale, Fig. 5 shows the spatial patterns of the mean 2BDA index, impurity index, 

reflectance at 620 nm, and MODIS broadband albedo for the bare ice zone in our study area, averaged over 135 days when 

MERIS images are available between 2004 and 2011. Figure 5a, which shows patterns of the 2BDA index, suggests glacier 

algae are abundant at the DS region close to the Jakobshavn Isbrae Glacier between the altitudes of 600 m and 1200 m, and 

in the middle ablation area (68.5°N-66.5°N) between 1200 m and 1400 m. These patterns are consistent with glacier algal 375 

maps derived from Sentinel-3 OLCI data for the 2016 and 2017 summer season (Wang et al., 2018). The relative magnitude 

of the 2BDA values between the DS, KAN_L, and KAN_M sites also matches the relative magnitude of field measurements 

of glacier algal abundance (Stibal et al., 2015; circles on Fig. 5), with the highest 2BDA index and algal abundance at the DS 

site, a lower value at the KAN_M site, and the lowest value at the KAN_L site. 

A comparison between Figs. 5a and 5b and an examination of variation of the indices with elevation (Fig. A2, Appendix A) 380 

indicate a similarity in the spatial distribution of the two indices but also notable differences. In particular, the 2BDA index 

reaches a peak at an elevation of 1300 m, while the impurity index peaks at 1180 m. As suggested by our sensitivity analysis 

discussed in Section 4.2, the 2BDA index is primarily sensitive to chlorophyll-a, while the impurity index is sensitive to 

materials that darken the electromagnetic spectrum in visible wavelengths, including abiotic impurities (e.g. outcropping 

particulates; Wientjes et al., 2012), biological impurities, and liquid water. The map of reflectance at 620 nm, the band 385 

commonly used to delineate dark ice using a threshold (determined to be 0.47 for MERIS), is shown in Fig. 5c. Similar to the 

impurity index, the 620 nm reflectance and MODIS broadband albedo (Fig. 5d) reach a minimum value at 1180 m in 

elevation (Fig. A2; Fig. 5d). Comparison between the three indices and MODIS albedo suggests that algal abundance is 

highest between 1200 and 1400 m in elevation, contributing to reduced albedo, while other factors may play a more 

important role in albedo reduction at lower elevations. In particular, the darkening in some areas between 1000 m and 1200 390 

m in elevation could be attributed to longer exposure of bare ice resulting in increased consolidation of particulates with melt 

(Tedesco et al., 2016), where “wavy” patterns of outcropping dust can be observed (Wientjes and Oerlemans, 2010; Fig. A3, 
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Appendix A). In contrast, imagery (WorldView-2) suggests that these “wavy” patterns may not be present at higher 

elevations where the appearance of dark material is more consistent with distributed algal material (Fig. A3). Other factors 

that may contribute to a reduction in MODIS albedo include liquid water and surface crevasses (e.g. Ryan et al., 2018), 395 

though their fraction is small relative to other surface types (Ryan et al., 2018).  

 

Figure 5. Spatial patterns of the mean 2BDA index (a), impurity index (b), reflectance at 620 nm (c), and MODIS broadband 

albedo (d) over the bare ice zone during July and August from 2004 to 2011. The elevation contours illustrate the spatial variations 

of each variable with altitude. The cross labels show the spatial locations of the field sites DS, KAN_L, and KAN_M and 400 
magnitude of glacier algal abundance (circle labels) measured by Stibal et al. (2015) in 2013. 

4.4 Interannual variability 

The annual time series (July-August mean) of the 2BDA index (Fig. 6a) and the impurity index (Fig. 6b) show the 

interannual variability of algal abundance and impurity content, indicating a general increasing trend in bare ice area, algal 

abundance, and total impurity content between 2004 and 2011, particularly after 2006. The spatial extent of glacier algae 405 

also expanded towards higher elevations (1200 m – 1400 m) over this period. Between 2004 and 2011, the 2BDA index 

reached a maximum in 2010 when high air temperatures and intensive surface melt occurred over Greenland (Tedesco et al., 

2011). The impurity index exhibits similar interannual variability compared with the 2BDA index, but also exhibits different 

spatiotemporal variations between 1000–1200 m and 1200–1400 m in the middle ablation area. Figure A4 (Appendix A) 
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illustrates the interannual variability of the average 2BDA and impurity indices at different elevation levels (600-800m, 800-410 

1000m, 1000-1200m, and 1200-1400m). In particular there are notable differences in variability of the 2BDA index between 

the 1000-1200m and 1200-1400m levels. The interannual variability of the 2BDA and impurity indices is also coherent with 

variability in Greenland ice sheet-wide summer albedo, which was lowest in 2010 and highest in 2006 for the period 2004–

2011 (Tedesco et al., 2018).  

 415 

Figure 6. Maps of mean 2BDA index (a) and impurity index (b) over July and August from 2004 to 2011.  

We also calculated interannual trends in the 2BDA index, impurity index, and MODIS broadband albedo using linear 

regression analysis, with the mean 2BDA index, impurity index, or MODIS albedo for each year as the dependent variable 
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and the year as the independent variable. Pixels with observations during fewer than five years were discarded from the 

analysis. Figure 7 shows the regression coefficients for 2BDA and impurity indices, and MODIS albedo vs. time. The 420 

corresponding R2 and P-value estimates are shown in Fig. A5 (Appendix A). There were two primary regions within our 

study area that exhibited significant increases in algal abundance from 2004 to 2011 (Fig. 7a), the DS region in the north and 

the southern region (68.5°N–66.5°N) between 1200 m and 1400 m in elevation. Other areas do not show statistically 

significant trends. The interannual trend of the impurity index (Fig. 7b) shows a larger spatial extent with a significant 

increasing trend as compared with the 2BDA index. Figure 7c shows that the areas with increasing algal abundance and 425 

increasing impurity index also had significant albedo (July-August mean) reduction from 2004 to 2011. The albedo 

reduction was roughly -0.025 to -0.04 per year over the K-transect area (between 1200 m and 1400m in elevation) and within 

the DS area. The spatial patterns of declining albedo more closely resemble the patterns of impurity index as opposed to the 

2BDA index, suggesting that the impurity index quantifies multiple processes related to surface darkening in addition to 

glacier algae.  430 

 

Figure 7. Interannual trends (regression coefficients with year) of the 2BDA index (a), Impurity index (b), and MODIS albedo (c) 

from 2004 to 2011.  

4.5 Seasonal trends of algal growth over July and August 

To better understand seasonal dynamics of glacier algae, we examined intra-annual trends in the 2BDA index during the 435 

months of July and August. We estimated the temporal trend of the 2BDA index from July to August for each MERIS pixel. 

For each pixel and each day, we calculated the average 2BDA index using the same-day 2BDA indices of multiple years. To 

account for the differences between different years, we applied a temporal smoothing function with a window size of three 
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days to the daily average 2BDA data. Pixels with more than 15 days of observations were kept for linear regression analysis, 

with the daily 2BDA index as the dependent variable and the time (in days) as the independent variable.  440 

Figure 8 illustrates the pattern of seasonal trends across the southwest Greenland ablation area. Figures 8b and 8c show the 

spatial distribution of seasonal trends across the area, while Fig. 8a shows examples of the daily 2BDA time series at the 

three field sites KAN_L, KAN_M, and DS. At the coastal KAN_L site, which had the lowest algal cell concentration (66 ± 

31 cells/ml), the average 2BDA index is less than 0.98 during July and August, and there is no significant temporal trend. At 

the KAN_M and DS sites, with higher cell concentrations (5688±3147 and 10621±2073 cells/ml respectively), 2BDA values 445 

were mostly greater than 0.98, and there were significant increases in the 2BDA index during July and August (of 0.0004 

and 0.0007 day-1 respectively), suggesting dramatic algal growth. The results indicate that the higher concentrations of algae 

are associated with a significant increasing trend over the course of a season. Indeed, the highest seasonal trends in the 

middle ablation area (68.5°N-66.5°N) are found in the 1200 to 1400 m elevation band, also the region of highest 2BDA 

index.   450 

The time series in Fig. 8a suggest that the period of algal growth at KAN_M occurred primarily between mid-July and mid-

August, beginning later than at the DS site. Between 20 July and 20 August, the regression slope was 0.0009 day -1 for both 

DS and KAN_M. This time window is consistent with the rapid algal colonization observed in field (Stibal et al., 2017; 

Williamson et al., 2018; Yallop et al., 2012; Lutz et al. 2018) and the patterns of temporal variability derived from Sentinel-3 

data (Wang et al., 2018). To test whether higher growth rates later in the season were present across the region, we also 455 

examined region-wide trends between 20 July and 20 August (Fig. 8c). The magnitude of trends for the shorter period are 

higher over a broad region, and R2 values are higher, indicating a shorter growth period across much of the region, with the 

exception of the area around the DS site in the north. We also explored the interannual variability of seasonal patterns over 

the DS and KAN_M sites (Fig. A6, Appendix A). Despite the interannual variations of 2BDA index, the regression slopes of 

2BDA versus time (day) through mid-July to mid-August for different years were comparable to the slope of the aggregated 460 

time series between 2004 and 2011, particularly for the KAN_M site. Over the DS site, the algal growth rates were above-

average during the growth seasons in 2005, 2009, and 2011 (Fig. A6). The DS site is located in lower elevations, where 

warmer temperatures may promote a faster growth rate.  
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Figure 8. Temporal trends of the 2BDA index over July and August. (a) 2BDA time series and temporal trend 465 

analysis over the KAN_L, KAN_M, and DS sites. (b) Regression slope and R2 estimates of the temporal trend analysis 

for the period of July–August (for areas where the p value <=0.05). (c) Regression slope and R2 estimates of the 

temporal trend analysis for the period of 20 July–20 August (for areas where the p value <=0.05).  

4.6 Impact of glacier algal blooms on surface albedo in July and August 

To investigate the potential impact of algal changes on albedo variability, we quantified the relationship between glacier 470 

algal blooms and surface albedo in July and August based on the daily time series data of the 2BDA index and MODIS 

broadband albedo. A daily albedo time series obtained by averaging and smoothing the MODIS daily albedo data from 2004 

to 2011 was derived using the same method for deriving the 2BDA seasonal trends. Figure 9 shows the derived temporal 

trends in MODIS albedo from 1 July to 20 August. The days after 20 August were excluded from the analysis since 

snowfalls often happen in late August. The DS area had the most significant albedo reduction over July and August, up to 475 

0.004~0.006 per day. In the middle ablation zone between the altitudes of 1000 m and 1200 m the albedo reduction rate was 

0.002~0.004 per day, and the reduction rate was 0.002~0.003 per day in the zone between 1200 m and 1400 m in elevation.  
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Figure 9. Temporal trends in MODIS broadband albedo during July and August (over 2004-2011). (a) Regression coefficients of 480 
surface albedo with time (day) from 1 July to 20 August. (b) Corresponding R2 estimates. 

We analysed the relationship between surface albedo reduction and algal growth using the time series data of MODIS 

broadband albedo and the MERIS 2BDA index. Figure 10 shows the results of regression analysis with MODIS albedo as 

the dependent variable and the MERIS 2BDA index as the independent variable. The analysis indicates a statistically 

significant correlation between algal growth and albedo decrease at the DS area between the altitudes of 800 m and 1200 m, 485 

the middle ablation zone between the altitudes of 1200 m and 1400 m, and the 1000–1200 m area near the K-transect. Over 

these areas, the regression coefficient ranged from -4 to -2. Given the temporal rate of change of 2BDA index of 0.001 per 

day (Section 4.5), the surface albedo decreases by 0.002–0.004 per day in association with glacial algal growth. Figure 10 

shows that algal growth can generally explain the temporal decrease in surface albedo during July and August in areas with 

significant albedo trends (Fig. 9), except in a portion of the middle ablation zone between the altitudes of 1000 m and 1200 490 

m where the correlation is less significant and other factors likely contribute to the observed albedo reduction. 
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Figure 10. Relationship between surface albedo and 2BDA index. (a) Regression coefficients. (b) Standard errors of the correlation 

coefficients. (c) P values. (d) R2 values. (e) and (f) show surface albedo versus 2BDA index at Site 1 and Site 2, respectively. 495 

5 Discussion 

5.1 Sensitivity to subpixel variability 

In this study, we utilized the chlorophyll-a signal generated by glacier algae in the red-NIR region (Fig. 2d) to quantify the 

spatiotemporal variability of glacier algae at a regional scale for the summer seasons of 2004-2011 in southwest Greenland. 

The specific wavelengths and narrow bandwidths of MERIS designed for chlorophyll-a detection make MERIS archive data 500 

a powerful tool for studying supraglacial algal communities. The chlorophyll-a signal present in the MERIS spectra is 

consistent with (nearly) coincident WorldView-2 data and hyperspectral field measurements collected over dark ice with 

high algal abundance (Fig. 2d). Similar to the Sentinel-3 OLCI ratio index R709nm/R673nm, the MERIS 2BDA index 

R709nm/R665nm can effectively quantify the algal growth pattern during July and August (Fig. 8). Using SNICAR simulations, 

we examined the potential impact of dust on the 2BDA index. The comparison between SNICAR simulations and MERIS 505 
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ratio indices indicates a high sensitivity of the 2BDA index to glacier algae as compared to dust (Fig. 4). Here we explore the 

sensitivity of the 2BDA index to subpixel variability using a linear mixing method based on the field spectral measurements 

of Cook et al. (2020) and the SNICAR-simulated spectra for dust (size 4 with a concentration of 500 ppm, snow grain 

effective radius as 1500 µm). The spectra used for linear mixing experiments are shown in Fig. B3a (Appendix B). By 

specifying the areal percentage of the impurity-covered (algae or dust) surface at subpixel scale, we calculated the mixed 510 

spectra by linearly combining the algae (four samples with different measured algal abundance) or dust spectra (SNICAR-

simulated) with the bare ice spectrum (measured algal abundance of 0 cells/ml) weighted by areal percentage. Figure B3b 

(Appendix B) shows the 2BDA index calculated from the mixed spectra varying with the areal percentage of algae or dust at 

the subpixel scale. It is shown that the 2BDA index dramatically increases with the areal percentage of glacier algae, being 

consistent with the positive correlation between the 2BDA index and algal abundance. In contrast, the 2BDA index is much 515 

less sensitive to dust areal coverage. The results indicate that even with sub-pixel variability of surface materials, the 

satellite-derived 2BDA index is still strongly sensitive to the presence of algae. High-resolution UAV mapping by Ryan et al. 

(2018) suggests that the areal percentage of distributed impurities is up to 65%~95% within individual MODIS pixels (500-

meter resolution) over the dark zone in southwest Greenland, indicating that a high sub-pixel areal percentage of algae is 

possible. Our linear mixing experiments (Fig. B3b) indicate that the relatively high 2BDA values derived from satellite are 520 

unlikely to be achieved without the presence of glacier algae, and that the MERIS 2BDA index can effectively capture the 

glacier algae variability, especially within the dark zone.    

5.2 Relationship between regional climate model albedo bias and glacier algae 

Our analysis suggests a strong negative correlation between surface albedo and 2BDA index during July and August 

primarily in algae-abundant areas close to the Jakobshavn Isbrae Glacier and within the middle ablation zone (68.5°N-525 

66.5°N) between 1200 m and 1400 m in elevation. It is also important to know whether the MERIS 2BDA index could 

explain the discrepancy between the satellite-measured albedo and bare ice albedo in climate models which do not currently 

simulate the effects of biology and other impurities. The MAR regional climate model, for instance, exhibits a positive 

albedo bias along the southwestern Greenland ice sheet margin because of this (e.g. Alexander et al., 2014). Figure 11a 

shows a comparison between MODIS albedo and MAR albedo over the study area (including both bare ice and snow), 530 

indicating the overestimation of MAR albedo for the dark areas with MODIS albedo less than 0.5. There is a significant 

negative correlation between the albedo difference (MODIS albedo minus MAR albedo) and the 2BDA index (Fig. 11b), 

indicating that the positive MAR albedo bias increases with algal abundance.  
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Figure 11. (a) Comparison between MAR albedo and MODIS albedo over the study area for July and August from 2004 to 2011. 535 
The dashed line shows the linear fit between MODIS albedo and MAR albedo. The black line is the 1:1 reference line. (b) 

Relationship between the MERIS 2BDA index and the albedo difference between MODIS and MAR, with the dashed-line showing 

the linear fit. The colour scheme in both (a) and (b) illustrates the relative data distribution density (yellow means higher density, 

and blue means lower density).  

The spatial pattern of the MAR albedo bias (Fig. 12a) is consistent with the satellite-derived impurity distribution (e.g. Fig. 540 

5b). Over the dark areas, the MAR albedo was overestimated by 0.16±0.03 as compared to the MODIS albedo. We further 

examined the relationship between the albedo bias (MODIS albedo minus MAR albedo) and the 2BDA index for the 

seasonal trend between 1 July and 20 August, finding a significant correlation in the DS site region (Figs. 12b, 12c, 12d). 

Figure 12d shows that the albedo bias between MODIS and MAR has a significant negative correlation with the 2BDA 

index. The estimated regression coefficient is -3.4439. Combined with the estimated temporal trend in the 2BDA index over 545 

time of 0.0009 per day (Fig. 8), the algal growth can explain a -0.0031 daily change in the albedo bias between MAR and 

MODIS at the DS site. Assuming a growth season extending from 1 July to 20 August (51 days), algal growth can explain a 

total difference of -0.158 between MODIS and MAR albedos. In comparison, the albedo bias in the middle zone between 

1000 m and 1400 m is less well-explained by glacier algae. This is partially consistent with our previous analysis that the 

albedo reduction at 1000 m–1200 m is poorly related to algal growth. Between 1200 m and 1400 m the correlation between 550 

the 2BDA index and the MAR bias is not strong (Fig. 12c) even though there is a fairly strong correlation between the 

2BDA index and MODIS albedo. This suggests that in this area, although MAR does not include the effects of algae, the 

decrease in albedo associated with liquid water ponding in MAR may approximate the trends associated with increasing 
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algae concentrations. In addition to parameterizing glacier algal growth, other processes related to albedo reduction such as 

consolidation of impurities melted from snow should be also accounted for in the future. 555 

 

Figure 12. (a) Albedo difference between MODIS albedo and MAR albedo (MODIS albedo minus MAR albedo) averaged over the 

study period. (b) Regression coefficients of albedo difference with 2BDA index. (c) R2 estimates for the regression analysis. (d) 

Scatterplot of albedo difference versus 2BDA index over the DS algae-abundant area and the equation for the linear fit.  

5.3 Relationship between 2BDA index and algal population 560 

In order to use remote sensing data to quantify the temporal change of algal population with time, it is necessary to establish 

an empirical relationship between 2BDA index and algal abundance. However, there is no field data for glacial algal 

abundance coincident with the MERIS operational period. In ocean color studies, the relationship between 2BDA index and 

chlorophyll-a concentration is generally formulated as an exponential function or a linear function (Matthews, 2011; 

Gholizadeh et al., 2016). Wang et al. (2018) derived an exponential function relating the Sentinel-3 OLCI reflectance ratio 565 

R709nm/R673nm and field data for glacier algal abundance (Stibal et al., 2015; Williamson et al., 2018) as:   

𝑦 = 10−35 ∗ 𝑒87.015∗𝑥                                                                                                                                                                (3) 

where x denotes the reflectance ratio and y denotes the algal abundance (cells/ml). Following from equation (3), the 

empirical relationship between algal abundance and 2BDA index can be represented in a general form as: 

𝑦 = 𝑎 ∗ 𝑏𝑐𝑥                                                                                                                                                                                (4) 570 

where x denotes the 2BDA index, y is algal abundance, 𝑏 is the base number of the exponential function (𝑒 in equation 3), 

and 𝑎 and 𝑐  are the regression coefficients. The time for one algal population doubling (the number of algal cells has 

doubled) can be calculated as the reciprocal of 
𝑑

𝑑𝑡
(𝑙𝑜𝑔2𝑦), where 𝑡 represents time. Based on equation (4) and derivative 

rules,  
𝑑

𝑑𝑡
(𝑙𝑜𝑔2𝑦) can be represented as: 
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𝑑

𝑑𝑡
(𝑙𝑜𝑔2𝑦) = 𝑐 ∗ 𝑙𝑜𝑔2𝑏 ∗

𝑑𝑥

𝑑𝑡
                                                                                                                                                       (5) 575 

where 
𝑑𝑥

𝑑𝑡
 is the rate of change of 2BDA with time, i.e. the regression coefficient from the temporal trend analysis of 2BDA 

index versus time (Section 4.5; Figure 8). Similarly, the relationship between surface albedo (𝛼) and algal population 

doubling level (𝑙𝑜𝑔2𝑦) can be calculated using: 

𝑑𝛼

𝑑(𝑙𝑜𝑔2𝑦)
=

1

𝑐∗𝑙𝑜𝑔2𝑏
∗
𝑑𝛼

𝑑𝑥
                                                                                                                                                                (6) 

where 
𝑑𝛼

𝑑𝑥
 is the regression coefficient of surface albedo 𝛼 vs. 2BDA index (Section 4.6; Figure 10).  580 

Given the similarity between the OLCI and MERIS band configurations and the negligible differences between the 673 nm 

and 665 nm reflectance, we attempted to use equations (3), (5), and (6) to calculate the algal population doubling time 

corresponding to various values of the regression coefficients of 2BDA vs. time, as well as the albedo change rate due to 

each algal population doubling corresponding to different regression coefficients of albedo vs. 2BDA. The results of these 

calculations are listed in Table 3 and Table 4, respectively. According to Fig. 8c, the areas with significant algal growth trend 585 

(R2>0.5) between 20 July and 20 August had a mean regression coefficient of 0.00076±0.0002, which corresponds to a mean 

algal population doubling time of 11.2±2.6 days. The DS area had faster algal growth rate than other areas, which 

corresponds to a doubling time of 9.6±2.7 days. Figure 10a indicates that the regression coefficient of albedo vs. 2BDA over 

the algae-abundant areas ranges between -4 to -2, corresponding to a surface albedo decrease of 0.032~0.016 for each algal 

population doubling. Although these values were inferred using the Sentinel-3 derived relationship and there are 590 

uncertainties (e.g. spectral mixing) associated with algal abundance quantification, it is notable that our derived doubling 

time and albedo impact estimates are comparable to previous field studies. Williamson et al. (2018) reported a doubling time 

of 7.18±1.04 days for algae-abundant ice (at the K-transect) based on field data collected during the summer of 2016. Stibal 

et al. (2017) estimated a net albedo reduction of 0.038±0.0035 for each algal population doubling based on in-situ 

measurements of glacier algal abundance and coincident surface albedo. Despite the apparent agreement, further research is 595 

required to build a robust relationship between 2BDA index and algal abundance and also quantify the uncertainties caused 

by different factors.  

 

Table 3. Inferred algal population doubling time for given regression coefficients of 2BDA vs. time  

Regression coefficient of 2BDA vs. time Population doubling time (days) 

0.0004 19.91 

0.0005 15.93 

0.0006 13.28 

0.0007 11.38 

0.0008 9.96 

0.0009 8.85 

0.0010 7.97 
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0.0015 5.31 

0.0020 3.98 

 600 

Table 4.  Inferred surface albedo change rate due to algal doubling given regression coefficients of albedo vs. 2BDA index  

Regression coefficient of albedo vs. 2BDA Albedo change rate per population doubling 

-5.0 -0.040 

-4.5 -0.036 

-4.0 -0.032 

-3.5 -0.028 

-3.0 -0.024 

-2.5 -0.020 

-2.0 -0.016 

-1.5 -0.012 

-1.0 -0.008 

 

5.4 Potential drivers for glacier algae variability 

Due to the impact of glacier algal blooms on bare ice albedo, it is fundamental to understand the factors affecting algal 

growth. Lutz et al. (2018) analysed the composition of glacier algal communities near the K-transect between 27 July and 14 605 

August 2016 using high-throughput sequencing and subsequent oligotyping techniques. The glacier algae species of 

Ancylonema nordenskiöldii and Mesotaenium berggrenii were found as the dominant taxa. Glacier algae lack a flagellated 

stage and are less capable of migrating upwards to snow layers at the beginning of melting season (Anesio et al., 2017). 

Therefore, glacier algal growth is restricted to the bare ice surface, which is consistent with our finding that glacier algal 

blooms tend to occur extensively from late-July to mid-August when the bare ice is exposed. However, somewhat 610 

paradoxically, the areas at lower altitude have longer duration of bare ice exposure, whereas intense glacier algal blooms 

occur at higher altitude up to 1200-1400 m along the middle ablation zone. One possible reason for this discrepancy could be 

that the growth of glacier algae is influenced by liquid water (e.g. Tedstone et al., 2017) and nutrient availability. Although 

liquid water is a prerequisite for algal growth, Wang et al. (2018) found a negative correlation between algal abundance and 

meltwater production, which was attributed to hydrological flushing of algae during periods of excessive meltwater and 615 

surface runoff (Takeuchi, 2001; Uetake et al., 2010). These results do not contradict the importance of liquid water to algal 

growth as indicated by Tedstone et al. (2017), but rather suggest that there is an optimal amount of melt that may be required 

to support algal growth, with too little or too much melt resulting in lower algal concentrations. 

To examine potential drivers of algal growth, we explored the relationships between the 2BDA index and topographic 

variables as well as near surface temperature and meltwater production simulated by MAR (Fig. C1, Appendix C), by 620 

separating the data into two-dimensional bins and calculating the average 2BDA index for each bin. The comparison 
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suggests that glacier algae are mostly distributed over flat areas with fewer topographic undulations (Fig. C1a). The areas 

suitable for glacier algal growth have moderate but not excessive melting (Fig. C1b). This further supports the hypothesis 

that high melt has a negative effect on algal development. In regard to the suitable temperature, glacier algae are so far 

known to be well-adapted to temperatures close to 0°C (Anesio et al., 2017). Although no significant correlations have been 625 

found between algal abundance and air temperature, Figure C2 (Appendix C) shows dips in measured daily algal abundance 

(Stibal et al., 2017) coinciding with below-freezing near-surface MAR-simulated daily air temperatures at the K-transect S6 

station during the 2014 summer, suggesting that freezing temperatures negatively impact algal growth. 

We also examined interannual variations in climate variables in relation to the 2BDA index. Figure 13 shows the MAR-

simulated shortwave and longwave downward radiation fluxes, cloud cover, snowfall, rainfall, meltwater production, and 630 

near surface air temperature averaged over July and August across the study area from 2004 to 2011. The high 2BDA algal 

index during 2008-2010 (Fig. 5a and Fig. 13a) coincides with reduced cloud cover and higher incoming shortwave radiation 

(Fig. 13b). This period is also characterized by less rainfall (Fig. 13c), reducing the possibility of hydro-flushing. Figure 13d 

shows that the high algal index years of 2008 and 2009 exhibited less melting and lower temperature than the other years, 

suggesting that these variables may play a less important role in algal growth than shortwave radiation. Given the importance 635 

of shortwave radiation for photosynthesis of glacier algae, the results suggest that air temperature, surface melt, and bare ice 

exposure may be important factors at the beginning stage of glacier algal habitat development, while downward shortwave 

radiation could be most important during the proliferation stage. These dynamics could be influenced by recent atmospheric 

circulation changes in Greenland, with patterns of anomalous anticyclonic circulation and higher 500 hPa geopotential height 

becoming more frequent (e.g. Hanna et al., 2016; Mioduszewski et al., 2016), associated with reduced cloud cover (Hofer et 640 

al., 2017) and increased downward shortwave radiation. However, more research is required to fully understand these 

relationships and quantify the effects of various factors on glacier algal growth. In the context of future ice sheet change, it is 

therefore vital to understand the interactions between the supraglacial microbiome and climate change (Cavicchioli et al., 

2019) for better projection of future ice sheet mass balance.  
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 645 

Figure 13. (a) Average 2BDA index over bare ice and maximum bare ice area from 2004 to 2011 (MERIS). (b) July-August mean 

of downward shortwave and longwave radiation fluxes and cloud cover over the study area from 2004 to 2011 (MAR). (c) July-

August mean of rainfall and snowfall (MAR). (d) July-August mean of meltwater production and near surface temperature 

(MAR).  

6 Conclusions 650 

We examined the spatiotemporal variability of glacier algal blooms in southwest Greenland during July and August from 

2004 to 2011 using the chlorophyll-a detection capability of MERIS. We calculated a number of remote sensing ratio indices 

including chlorophyll-a indices and the impurity index. The results indicate that similar to the Sentinel-3 OLCI ratio index of 

R709nm/R673nm, the MERIS 2BDA index of R709nm/R665nm can effectively quantify the spatial distribution and seasonal growth 

pattern of glacier algae, with results highly consistent with field measurements. There was an increasing trend of glacier 655 

algal abundance and impurity content within the dark area close to Jakobshavn Isbrae Glacier and the area close to the K-

transect at an altitude of 1200 m–1400 m, in conjunction with a declining trend of surface albedo over the 2004 to 2011 

period. We quantified the impact of glacier algal growth on surface albedo over July and August, and found significant 

correlations between albedo reduction and algal growth over algae-abundant areas. Our analysis points to the great potential 

of using satellite ratio indices to parameterize the impact of glacier algae on surface albedo, thereby reducing the albedo bias 660 

in regional climate models. Nevertheless, the surface darkening along the middle ablation zone between 1000 m and 1200 m 

in elevation cannot be well-explained by algal growth, indicating that other processes related to surface darkening need 
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further investigation and quantification. Future research should also be directed toward understanding the climate drivers of 

glacier algae variability and parameterizing their growth dynamics in regional climate model simulations.  

Data availability 665 

MERIS level-2 data are available at the MERCI file archive (https://merisfrs-merci-ds.eo.esa.int/), courtesy of the European 

Space Agency. MODIS MOD09GA and MOD10A1 data can be accessed from the NASA Land Processes Distributed 

Active Archive Center (https://search.earthdata.nasa.gov/). WorldView-2 imagery were provided by the Polar Geospatial 

Center (PGC, https://www.pgc.umn.edu/) at the University of Minnesota. MAR v3.9.3 outputs are available 

at ftp://ftp.climato.be/fettweis/.MARv3.9.3.  670 

Appendix A 

 

https://merisfrs-merci-ds.eo.esa.int/
https://search.earthdata.nasa.gov/
https://www.pgc.umn.edu/
ftp://ftp.climato.be/fettweis/.MARv3.9.3
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Figure A1. (a) SNICAR dust-free simulations for different snow grain sizes (500–1500 µm). (b) Zoomed-in graph of (a) showing 

details of spectral albedo values at 665 nm and 709 nm. (c) Histogram of the 2BDA index for MERIS bare ice pixels with 620-nm 

reflectance greater than 0.65 (clean ice) and the corresponding 2BDA values for the SNICAR dust-free simulations with snow 675 
grain size of 500 and 1500 µm. (d) Impurity index vs. 2BDA index for MERIS bare ice pixels (density scatter plot with colours 

indicating relative frequency), and for SNICAR simulations (circles and dashed lines) with snow grain size of 500 µm for varying 

concentrations of dust (four different dust sizes). The circle size corresponds to the dust concentration, and dashed lines show the 

polynomial regression for each of the different dust sizes. 

 680 

Figure A2. Spatial variations of the average 2BDA index, impurity index, 620 nm reflectance, and MODIS albedo over bare ice at 

different elevations within the study area (20-meter elevation interval). For surface elevation, we used the 30-meter resolution 

MEaSUREs Greenland Ice Mapping Project (GIMP) Digital Elevation Model (Howat et al., 2014; 2015). 
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 685 

Figure A3. Average 2BDA index (2004-2011) for a subset of our study area (a), and comparison between WorldView-2 imagery 

over a dark ice site with low 2BDA index at 1000-1200m elevation (b) and a dark ice site with high 2BDA index at 1200-1400m 

elevation (c). The WorldView-2 image in (b) illustrates the ‘wavy’ pattern that Wientjes and Oerlemans (2010) suggested was 

caused by ancient ice outcropping. The WorldView-2 images are radiometrically calibrated (Top-of-Atmosphere radiances) and 

orthorectified, and are shown as a true color composite (Red channel: 659 nm band; Green channel: 546 nm band; Blue channel: 690 
478 nm band). 
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Figure A4. Interannual variability of the 2BDA index (a) and impurity index (b) at the elevation levels of 600-800m, 800-1000m, 

1000-1200m, and 1200-1400m within the study area.  695 

 

 

Figure A5. R2 and P values for the interannual trends of the 2BDA index, impurity index, and MODIS albedo from 2004 to 2011.  
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 700 

Figure A6. Temporal trends of 2BDA index from mid-July to Mid-August in different years at sites DS (a) and KAN_M (b).  
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Appendix B  705 

Table B1. Measured algal cell abundance from the field dataset of Cook et al. (2020) with the 2BDA index calculated from 

coincident hyperspectral measurements. The highlighted rows are samples with cell abundance of greater than 10000 cells/ml.  

Sample ID Cell abundance (cells/ml) 2BDA index 

13_7_SB1 2688 0.9614 

13_7_SB2 13375 1.0075 

13_7_SB3 938 0.9813 

13_7_SB4 4500 1.0371 

13_7_SB5 0 0.9653 

14_7_SB1 30313 1.0953 

14_7_SB2 3063 0.9868 

14_7_SB3 7938 0.9554 

14_7_SB4 17938 0.9939 

14_7_SB5 41000 1.2218 

14_7_SB6 0 0.9555 

14_7_SB7 12438 1.0850 

14_7_SB8 0 0.9863 

14_7_SB9 21875 1.0808 

14_7_SB10 24875 1.1257 

15_7_SB1 1438 0.9908 

15_7_SB2 7250 0.9497 

15_7_SB3 30313 1.0810 

15_7_SB4 4250 0.9665 

15_7_SB5 938 0.9839 

20_7_SB1 11375 1.0536 

20_7_SB2 7563 0.9939 

20_7_SB3 7625 1.0122 

21_7_SB1 92250 1.2635 

21_7_SB2 44861 1.1411 

21_7_SB3 750 0.9922 

21_7_SB4 14313 1.0296 

21_7_SB5 1063 0.9731 

21_7_SB7 33229 1.0794 

21_7_SB8 1188 0.9440 

21_7_SB9 313 1.0097 

21_7_SB10 17563 1.0763 

23_7_SB1 250 0.9765 

23_7_SB2 938 0.9754 

23_7_SB3 8563 1.0141 

23_7_SB4 21125 0.9975 

23_7_SB5 28563 1.1131 

24_7_SB1 1875 0.9985 
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 710 

Figure B2. Scatterplot of measured cell abundance versus 2BDA index listed in Table B1.  

 

 

Figure B3. Spectral linear mixing experiments. (a) Field hyperspectral measurements of four algae-abundant samples (21_7_SB1, 

21_7_SB2, 23_7_SB5, and 21_7_SB10) and one bare ice sample (zero algal abundance, 14_7_SB6) from Cook et al. (2020), and the 715 
SNICAR-simulated spectra for the dust scenario (size 4 at concentration of 500 ppm). (b) 2BDA index calculated from the linearly 

mixed spectra with varying areal percentage at subpixel scale for algae (different algal abundances) and dust scenarios.   
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Appendix C  

 720 

Figure C1. (a) 2BDA index versus surface elevation and roughness (elevation variability within each MERIS pixel). (b) 2BDA 

index versus near surface temperature and meltwater production simulated by MAR. The colour bars in (a) and (b) indicate the 

average 2BDA index for each two-dimensional bin defined by the two variables on the horizontal and vertical axes. 

 

Figure C2. MAR-simulated near-surface air temperature (°C, black circle, left axis) and in situ measured algal abundance (log2 725 
cells/ml, blue triangles, right vertical axis) at the S6 weather station at the K-transect during July-August 2014 by Stibal et al. 

(2017).  
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