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Editor 

Your TCD manuscript "Quantifying spatiotemporal variability of ice algal blooms and the impact 

on surface albedo in southwest Greenland" received two constructive reviews where both 

reviewers identified methodological issues and questions, which you already partly clarified in 

your author comments. 

Now I would like to ask you to upload a revised version of the manuscript together with an author's 

response where you clearly address the comments of the reviewers. In this revised version I think 

it is specially important to address the topic of sensitivity of the 2BDA methods to changes in dust, 

ice properties, etc. and this may even include this sensitivity in your results (and not only 

discussion). 

Response: We sincerely thank the editor and two anonymous reviewers for their insightful and 

constructive comments and suggestions. We have endeavored to address all the comments and 

improve the manuscript to our best. In particular, to address the comments regarding the sensitivity 

of the 2BDA index to glacier algae as compared to other factors, we included new sections (3.3 

Sensitivity analysis based on radiative transfer modelling, 4.2 Sensitivity analysis of 2BDA 

index to non-algal factors, and 5.1 Sensitivity to subpixel variability) to analyze and discuss 

the impacts of dust presence, ice properties, and scale issues on 2BDA index. We used the radiative 

transfer model SNICAR and the spectral linear mixing method to analyze and discuss those factors. 

To support our statements, we added substantial details in the appendix and improved our figure 

presentations overall.  

In this document, we provide point-by-point responses to the reviewer comments, a summary list 

of all relevant changes made in the manuscript, and a copy of the manuscript with changes 

highlighted. We believe that the manuscript has been greatly improved in this revision and we 

hope that the revised manuscript will be suitable for publication.   
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Anonymous Referee #1 

Overall: 

The authors have presented a paper that attempts to quantify biomass over the western Greenland 

Ice Sheet using the well known “rededge” technique that they refer to as “2BDA”, which is often 

used for detecting chlorophyll containing biota such as photosynthetic algal blooms in oceanic 

and lacustrine environments, vegetation and crop mapping. Biomass quantification over the 

Greenland Ice Sheet is a worthy research goal because Greenland Ice Sheet glacier algae very 

likely play an important role in controlling the ablation zone albedo that is not yet accounted for 

in energy balance models. This is well within the scope of The Cryosphere and the scientific 

question is worthy of consideration in this journal. There are some very useful aspects to the paper, 

including demonstration that there are ablation zone albedo processes that SMB models currently 

do not account for, the albedo time series over the western ablation zone, and the comparison 

between different band ratios. However, there are some major issues that need to be addressed 

before I can recommend publication. More detail is provided below. 

Response: We greatly appreciate the reviewer’s careful review of our manuscript. Many thanks 

for suggesting to use SNICAR model to assess the sensitivity of 2BDA index to various dust 

concentrations. In this revision, we believe the manuscript has been greatly improved by 

incorporating the reviewer comments. Please see our responses below.  

 

Major Comments: 

1)There is past literature that emphasises the importance of discounting abiotically generated 

rededge signals before assuming them to be diagnostic of photosynthetic life (see Sparks et al. 

2009; Seager et al. 2005). The vulnerability of the rededge to false positives is demonstrable using 

a simple radiative transfer model (easily replicated inbrowser via http://snow.engin.umich.edu/). 

Fig 1A shows the results from SNICAR runs where all variables were held constant except the 

mass concentrations of completely inorganic impurities (Flanner et al.’s (2009) “global average 

dusts, type 4”). The lowest 2 spectral albedo curves returned a false positive 2BDA result (1.002 

and 1.005). In Figure 1B, the model is run again identically but with a hematiterich mineral dust 

taken from Polashenski et al. (2015), giving eight 2BDA false positives (1.004, 1.015, 1.026, 1.031, 

1.039, 1.043 1.046). Tedesco et al. (2013) suggested that hematiterich red dusts are present in the 

GrIS ablation zone (we note that Cook et al. (in review) disagreed about that but their paper 

remains unpublished). Taking Tedesco et al. (2013) to be correct about the prevalence of red dusts 

on the Greenland ablation zone therefore invalidates the rededge as a biomarker due to the 

demonstrable potential for false positives. Convincing empirical data is required to demonstrate 

that the 2BDA signal is exclusively biological and robust to these types of false positive results. 

A) B) 

http://snow.engin.umich.edu/
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Fig 1: A) SNICAR runs with diffuse irradiance, homogenous snow with grain diameter 500 micron, 

density 400 kg m3 and Flanner et al. (2009)’s “dust 4” in the upper 1 mm, in mass concentrations of 

0.1, 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0 ugdust/gice. B) Identical SNICAR runs but with Polashenski 

et al. (2015)’s high hematite dust. 

Response: We thank the reviewer for pointing out the issue of potential impacts by dusts. In this 

revision, we addressed this concern by conducting SNICAR simulations with various parameter 

settings as the reviewer suggested. We would like to clarify that our objective is not to define a 

universal biomarker for detecting photosynthetic life. To our understanding, the two papers the 

reviewer mentioned that address the potential false signal resulting from dusts (Sparks et al. 2009 

and Seager et al. 2005; not in the reference list), are in the extraterrestrial context.  

However, our research is conducted based on the understanding that widespread glacier algal 

blooms occur on the bare ice zone in southwest Greenland, which have been confirmed by 

numerous studies (Cook et al., 2020; Lutz et al., 2014; Remias et al., 2012; Ryan et al., 2018; 

Stibal et al., 2015; Stibal et al., 2017; Williamson et al., 2019; Yallop et al., 2012). Nevertheless, 

to evaluate the sensitivity of the 2BDA index to various dust sizes and concentrations, we 

performed radiative transfer modelling experiments using SNICAR, by setting the grain size of 

snow to 500 microns and 1500 microns. However, we cannot generate the same results using the 

dust concentrations specified by the reviewer (0.1, 0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0 μgdust/gice). 

Using these parameters, the 2BDA index is less than 0.97 for all dust sizes (dust 1, dust 2, dust 3, 

and dust 4) when the grain size is 1500 microns, and less than 0.98 when grain size is 500 

microns. The 2BDA index would be over 1.0 only when the dust concentrations are greater than 

~800 ppm.  

In this revision, we added the section 3.3 (Sensitivity analysis based on radiative transfer modelling) 

and section 4.2 (Sensitivity analysis of 2BDA index to non-algal factors) to specifically analyze 

this issue. Using a grain size of 1500 microns produces a spectral curve that is closest to the MERIS 

bare ice spectra. The SNICAR experiments were performed with the following parameters: direct 

incident radiation, a solar zenith angle of 60 degrees, clear-sky conditions (for Summit Greenland), 

a snow grain effective radius of 1500 micron (to approximate the ice surface), a snowpack 

thickness of 100 m (to avoid any influence of the sub-snowpack albedo), a snowpack density of 

400 kg/m3, and dust concentrations of (0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 5, 8, 10, 30, 50, 80, 100, 

300, 500, 800, 1000, 1500, 2000, 2500, and 3000 ppm) for four dust sizes (dust 1: 0.1–1.0μm; dust 

2: 1.0–2.5μm; dust 3: 2.5–5.0μm; dust 4: 5.0–10.0 μm). We also tested different density values but 
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these did not affect the simulation results. In addition to the 2BDA index, we also calculated the 

impurity index for the SNICAR simulations, and found that the impurity index is more sensitive 

to dusts than the 2BDA index (Figure 4 in the revised manuscript, shown below). The figure (below) 

shows scatterplots of impurity index vs. 2BDA index calculated for the SNICAR simulations (with 

the diameter of circles representing the magnitude of dust concentrations for four different dust 

sizes), and density scatterplots from the MERIS data (impurity vs. 2BDA indices over bare ice). 

The results indicate that relatively high concentrations of dust would increase the 2BDA index, 

but would also result in a large increase in the impurity index.  By contrast, the upper bound of the 

impurity index we calculated from the MERIS data is around 1.0, below the impurity index values 

for the highest dust concentrations. These results suggest that relatively high 2BDA values 

(especially above 0.99, corresponding to an impurity index of 1.0) are unlikely to be caused by 

dusts, because the presence of dusts would also result in an impurity index of above 1.0. This 

indicates that for our study area, the glacier algae identified with a 2BDA index greater than 0.99 

are not likely to be false positives caused by dusts. Finally, even below this threshold, the slope of 

the 2BDA vs. impurity index is shallower than the SNICAR-generated curves, suggesting that the 

2BDA index is generally more sensitive to chlorophyll-a than to dust. 

With regard to the possible presence of hematite-rich dust, the samples of Tedesco et al. (2013) 

were from cryoconite holes, and are not necessarily representative of the ice surface; and the 

hematite concentration in those samples was actually very low. Cook et al. (2020) also found that 

the local bare-ice mineral dust is poor in hematite and rich in weakly absorbing quartz and feldspar 

minerals. Therefore, the hematite has a negligible influence on the detected chlorophyll-a signal 

at the red-NIR region.   

  

Figure 4 (in the revised manuscript). Impurity index vs. 2BDA index for MERIS bare ice pixels (density scatter plot with 

colours indicating relative frequency), excluding missing data in our study area, between 2004 and 2011. Circles show 

impurity vs. 2BDA index from SNICAR simulations with varying concentrations of dust (with four different dust sizes). 

The circle size corresponds to the dust concentration, and dashed lines show the polynomial regression for each of the 
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different dust sizes. The circle size corresponds to the dust concentration, and dashed lines show the polynomial regression 

for each of the different dust sizes. 

2) The authors do not account for the spectral albedo of the ice itself. Ice albedo can vary 

dramatically independently of light absorbing particles and cause the 2BDA value to change, 

undermining the biomass quantification. Figure 2 shows identical simulations to Fig 1, except the 

grain size is increased to 1500 microns. False positive results are returned as before, but the value 

of the 2BDA indexes and therefore the retrieved biomass – change (Flanner et al. (2009) dust 

=1.0009 and 1.004; Polashenski et al. (2015) dust = 1.0018, 1.014, 1.026, 1.032, 1.040, 1.043, 

1.045, 1.046). The retrieved biomass therefore changed without any change in impurity loading. 

On real glacier ice where the ice albedo can vary by tens of percent independently of impurity 

concentration due to weathering crust development, meltwater accumulation and drainage, 

topography, impurity mixing and glaciological structure, the potential for highly error prone 

retrievals is likely very high. The authors need to demonstrate that their band ratio is not 

vulnerable to this uncertainty, or that they can quantify and correct for it. 

A) B) 

 

Fig 2: A) SNICAR runs with diffuse irradiance, homogenous 1500 micron, 400 kgm3 snow with 

Flanner et al. (2009)’s “dust 4” in the upper 1 mm, in mass concentrations of 0.1, 0.3, 0.5, 0.8, 

1.0, 1.5, 2.0, 2.5, 3.0 ugdust/gice. B) Identical SNICAR runs but with Polashenski et al. (2015)’s 

high hematite dust. 

Response: The sensitivity of the 2BDA index to dust presence (over snow with a 1500 microns 

grain size to approximate ice) has been discussed above.  

We agree on the point that ice albedo changes with impurity concentration, meltwater presence, 

topography and crevasses, as discussed by Ryan et al. (2018). But also, as suggested by Ryan et 

al. (2018), the distributed impurities explain most of the spatial variability of surface albedo. In 

addition, it should be noted that variations in albedo due to other factors including water, other 

impurities, and ice albedo does not necessarily affect the 2BDA index. Ice with different 

concentrations of air bubbles has a consistent spectral shape between 665 nm and 709 nm (Condom 

et al., 2018), and meltwater exhibits a similar pattern at this wavelength range, both of which are 

characterized by a decreasing reflectance from 665 nm to 709 nm. The sensitivity of the 2BDA 

index to glacier algae can be further demonstrated using the field dataset of Cook et al. (2020), as 

illustrated by Table C1 and Figure C2 (in the revised manuscript, shown below). The MERIS band 

ratio between 709 nm and 665 nm (both bands have bandwidths of 10 nm) is specifically designed 
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for chlorophyll-a, and less affected by dusts as we discussed above. To our knowledge, the 

meltwater, weathering crust, and crevasses do not cause the pattern of increasing reflectance from 

665 nm to 709 nm. In our revised Figure 2d (shown below), it is clearly shown that the MERIS 

exhibits the red-NIR spectral signature caused by chlorophyll-a, which matches multiple field 

hyperspectral data measurements over algae-abundant dark ice (which are likely subject to varying 

ice conditions). We have added discussions in section 4.2 accordingly.  

 

Figure C2 (in the revised manuscript). Scatterplot of measured cell abundance versus 2BDA index listed in Table C1 based 

on the published field dataset of Cook et al. (2020).  
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Figure 2 (in the revised manuscript). Comparison between MERIS, WorldView-2, and field spectra over algae-abundant 

dark ice. (a) MERIS Level-2 image (true colour composite) acquired on 5 July 2010. Pixels with missing data are shown in 

light blue. (b) WorldView-2 surface reflectance image acquired on 9 July 2010 over the square area in (a). (c) Zoomed-in 

WorldView-2 image, with the area (red square) corresponding to the selected MERIS pixel in (a). (d) Reflectance spectra 

for MERIS and WorldView-2 (2010), and field hyperspectral measurements collected over the algae-abundant dark ice at 

S6 by Stibal et al. (2017) in 2014. 

3) The authors do not adequately address the problem of scale mismatches between the normal 

length scales of typical algal blooms (biomass varies dramatically over 110 m length scales) and 

the satellite used to gather their data (300 x 300m). Surface heterogeneity must surely introduce 

major uncertainties as the spectral reflectance of each pixel is the combined product of many 

highly variable surfaces. How would, for example, cryoconite, surface water, dust, crevasses and 

surface topography at the subpixel scale affect their biomass quantification? These unquantified 

factors must influence the predicted cell concentration independently of realworld changes to the 

mass concentration of algae, but they are not discussed in the paper. 

Response: In this revision, we added section 5.1 (Sensitivity to subpixel variability) to discuss the 

scale issues. Based on our SNICAR experiments, and analysis of the 2BDA and impurity indices, 

the 2BDA index is less sensitive to the presence of dust, which means that the high 2BDA index 

is uniquely biological. Given the sensitivity of MERIS to the presence of chlorophyll-a, the 2BDA 

index can capture well the chlorophyll-a signal generated by glacier algae. To examine the 

potential impact of spatial heterogeneity on the MERIS 2BDA index, we performed spectral linear 

mixing experiments using the field hyperspectral measurements of Cook et al. (2020) for glacier 

algae and bare ice and the SNICAR-simulated spectra for dust. We obtained the mixed spectra 

(Figure C3 in the manuscript, shown below) by specifying the different areal percentage of 

algae/dust vs. bare ice, and calculated the corresponding 2BDA index for the mixed spectra. It is 

shown that the 2BDA index dramatically increases with the areal percentage of glacier algae, being 

consistent with the assumption that the 2BDA index is positively correlated with the algal 

abundance. In contrast, the 2BDA index has much less sensitivity to dust. The high-resolution 

UAV mapping by Ryan et al. (2018) suggests that the areal percentage of the distributed impurities 

is up to 65%~95% within individual MODIS pixels (500-meter resolution) over the dark zone in 

southwest Greenland. Our linear mixing experiments (Figure C3b) suggest that the MERIS 2BDA 

index can capture the glacier algae variability within the dark zone. In addition, our comparison 

between the MERIS spectra, WorldView-2 spectra, and field hyperspectral data (Figure 2 in the 

manuscript, shown above) shows that the chlorophyll-a signature at the red-NIR region is quite 

consistent between different source measurements with different spatial scales.  
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Figure C3 (in the revised manuscript). Spectral linear mixing experiments. (a) Field hyperspectral measurements of four 

algae-abundant samples (21_7_SB1, 21_7_SB2, 23_7_SB5, and 21_7_SB10) and one bare ice sample (zero algal abundance, 

14_7_SB6) from Cook et al. (2020), and the SNICAR-simulated spectra for the dust scenario (size 4 at concentration of 500 

ppm). (b) 2BDA index calculated from the linearly mixed spectra with varying areal percentage at subpixel scale for algae 

(different algal abundances) and dust scenarios.   

4) There is insufficient detail regarding the use of field spectroscopic measurements as “ground 

truth”. Only one single field spectrum is presented in the paper and the measurement conditions 

are not reported. Has it been picked because it matches well with the MERIS spectrum, is it a mean 

(in which case of how many samples, and what do the error bars look like) or is it the only available 

spectrum? How do other spectra in the field dataset compare? Can the authors provide evidence 

to suggest that centimeter scale field spectroscopy measurements are truly representative of the 

biomass over entire MERIS pixels? 

Response: We have revised the text to include more details on how we used the field data by Stibal 

et al. (2015) and Stibal et al. (2017). In our study, we used those field data in a qualitative way to 

validate the spatial variations of algal concentration magnitude derived from the satellite data, and 

to compare the field hyperspectral measurements over algae-abundant ice with the MERIS spectra 

and WorldView-2 spectra. The field measurements are collected after the period of MERIS 

measurements, precluding direct comparison with field data. In this revision, we revised Figure 2d 

(shown above) to include additional field spectra collected over dark ice (R620nm<0.4) with high 

algal abundance (cell concentrations greater than 10000 cells/ml). As illustrated by Figure 2d, the 

spectral characteristics at the red-NIR region match well between MERIS spectra, WorldView-2 

spectra and field spectra. The match between MERIS spectra (300 meter) and WorldView-2 

spectra (2 meter) also indicate that the chlorophyll-a signal cannot be masked out because of large 

spatial scales, given the high areal percentage of the distributed impurities within the MERIS pixel, 

as illustrated by Figure 2 (in the revised manuscript) and given the estimation of Ryan et al. (2018) 

that the areal percentage of the distributed impurities is about 65~95% within individual MODIS 

pixels (500-meter resolution) in dark ice areas. 
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5) The authors are selective with their citing of literature under review. If they wish to include 

papers still under discussion they should explain why the issues of spatial scale encountered in 20 

m Sentinel2 pixels discussed by Cook et al (in review) and Tedstone et al. (in review) do not also 

apply to their 300 m MERIS pixels. If they decide to stick to published literature they should explain 

how the presence of hematiterich dusts on the ablating Greenland Ice Sheet as reported by Tedesco 

et al. (2013) does not invalidate their assumption that the rededge is uniquely biological. 

Response: We removed the references to all discussion papers since they are not referenceable. 

The paper by Cook et al. (2020) is now published, and we have included this citation in our 

introduction section and discussion section. We also mentioned the potential impact of hematite 

dust (Tedesco et al. 2013) on the 2BDA index in section 4.2. As we mentioned above, the hematite 

has a negligible impact on the 2BDA index in our context.  

 

Specific Comments: 

Title: As suggested by Daniel Remias in the open discussion forum, please adopt the generally 

accepted terminology “glacier algae” that distinguishes these algae from those found in sea ice. 

Response: As suggested, we have changed ‘ice algae’ to ‘glacier algae’ throughout the text.  

General point about chlorophyll: Referring to “chlorophyll” is somewhat ambiguous as it could 

imply total chlorophyll or one of several chlorophyll variants. Please be specific that you mean 

chlorophylla. 

Response: We have revised the text as suggested.  

L39: Any citation for yellow/orange snow algae? They are normally thought of as green or red. 

Response: We have added the citation (Anesio et al., 2017) for the yellow/orange pigmentation of 

snow algae.  

L71: The authors rightly criticise carotenoid based remote sensing methods because of possible 

false positives due to “dirt” but ignore the potential for equivalent rededge false positives due to 

dust. 

Response: In this revision, we ran a number of SNICAR simulations with variant dust sizes and 

concentrations. Based on the SNICAR simulations, we calculated both the 2BDA and impurity 

indices for different dust configurations, and evaluated the potential impact of dust presence on 

2BDA index. Please see details in the revised section 4.2 (Sensitivity analysis of 2BDA index to 

non-algal factors).  

L75: The authors claim chlorophyll is the appropriate pigment to use to identify ice algae despite 

also stating that the coloration of the algae is primarily due to purpurogallin pigments. Why, then, 

is that not the appropriate pigment to use to identify glacier algae? 

Response: Compared with the purpurogallin pigment, Chlorophyll-a is more appropriate for 

mapping glacier algae for the following reasons: 
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1) Chlorophyll-a is the primary photosynthetic pigment of glacier algae (Williamson et al., 2018). 

The ocean color satellite sensors like Envisat MERIS and Sentinel-3 OLCI are designed to 

capture the Chlorophyll-a signal from highly-absorptive and optically complex water bodies, 

which means that the ocean color sensors are highly sensitive to the chlorophyll-a presence, 

making them very useful tools for glacier algae detection based on the biological signatures.  

2) According to the studies by Remias et al. (2012) and Williamson et al. (2018), the spectral 

signatures (absorption peaks) of the purpurogallin pigment are concentrated in the UV region 

(278 nm, 304 nm, and 389 nm, Remias et al.,2012). To our knowledge, no satellite sensor can 

detect these spectral signatures. Although the purpurogallin pigment is very likely to account 

for the brownish-grey colour of glacier algae, its absorption over the entire visible spectrum is 

quite uniform, making it difficult to differentiate from other dark impurities. In contrast, 

chlorophyll-a can generate very strong spectral signatures at the red and NIR region, which are 

supported by field hyperspectral measurements for both snow algae and glacier algae. (e.g. 

Ganey et al., 2017; Painter et al., 2001; Stibal et al., 2017; Cook et al., 2020). 

We have revised the text (introduction section) to discuss and compare the suitability of 

purpurogallin vs. chlorophyll-a for glacier algae mapping.  

 

L75: “owing to its unique spectral signatures between 665 710nm (Gitelson, 1992; Painter et al., 

2001; Wang et al., 2018)”: Chlorophylla absorbs in narrow bands around 680 nm and 440 nm. 

Any effects extending up to 710 nm are due to interactions with the surrounding medium. This is 

why Painter et al. (2001) was able to use the narrow 680 nm absorption feature as a diagnostic 

tool for Chlorophylla detection. 

Response: By ‘unique spectral signatures between 665-710nm’, we are referring to the absorption 

between 665-681 nm and the reflectance peak around 710nm. Painter et al. (2001) used the 680nm 

absorption feature by calculating the integral of the absorption scaled by its continuum spectra. 

Painter et al. (2001) retrieved the continuum spectrum by linearly interpolating the reflectance 

peaks at 630 nm and 700 nm, which similarly to our study, essentially used the relative difference 

between the absorption and reflectance features at the red-NIR region. Their method is specifically 

applicable for hyperspectral data like AVIRIS, but is limited for satellite multispectral data. We 

have revised the text to improve the clarity.  

L79: “Quantification of ice algae biomass from satellite data based on the chlorophylla feature 

has received less attention since the chlorophyll related satellite bands designed for land generally 

have coarse spectral resolutions.” This is just one of many reasons why remotely detecting algae 

over glacier ice is not simple. Other complexities include the complex pigmentation of the algae, 

the spatial resolution of the remote sensing instruments relative to the typical length scales of 

individual surface features (including algal blooms) and critically the optics of the underlying ice 

that vary dramatically over space and time and which are not yet well described. These issues are 

as important as the spectral resolution and must be acknowledged. 

Response: We have revised the text (introduction section) to acknowledge these issues.  
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L100 – 120: Much more detail is required here. For example, how many actual field samples were 

used to validate your remote sensing retrievals? What were the biomasses measured at those sites? 

What were the measurement conditions? On which dates were spectra available at which sites? 

Were the measurement times conistent and how do they compare to the satellite overpass times? 

What was the sensor footprint size for the field measurements and how were these upscaled to the 

satellite pixel scale? 

Response: We have revised this section and made clarifications on how we used the field 

measurements. It should be noted that we utilized those field data in a qualitative way for 

comparison with the satellite signals, rather than in a quantitative way for direct algal biomass 

inversion. The Envisat MERIS was operational from March 2002 to April 2012. To our knowledge, 

there were no algal field data coincident with the satellite data. In our study, we estimated the 

growth rate (population doubling time) and albedo reduction rate (for each population doubling) 

using a simple mathematical conversion and empirical relationship established from the Sentinel-

3 OLCI data and field data (Wang et al. 2018). We did not directly estimate the algal biomass or 

abundance from MERIS data since no coincident field data are available. We attempted to apply 

the Sentinel-3 retrieved empirical relationship to estimate the population doubling time and albedo 

reduction rate due to algae, and the results match well with the spatial variability from previous 

field observations.  

Figure 1: Please provide details of the field spectrum presented as the dashed line. Where/when 

was it collected and how does it compare to other field spectra presented in this paper? 

Response: We have added more details in the figure caption (below) to describe the field spectrum.  

Figure 1. Spectral response functions of (a) MERIS (red), OLCI (blue), and (b) MODIS (black), and 

WorldView-2 (orange) over the wavelength range of 350-1050 nm. All the MERIS and OLCI bands are within 

the 350-1050 nm range, where photosynthetic and photoprotective pigments have spectral responses. Four 

MODIS bands (over land) and eight WorldView-2 bands are within this spectral range, but with much coarser 

spectral resolutions. In both sub-plots, the dashed line shows hyperspectral ASD field spectrometer data (right 

vertical axis) collected over algae-abundant ice by Stibal et al. (2017), containing chlorophyll-a signal at the 

red-NIR wavelengths (red highlighted region). The plotted field spectrum (sample code: Ab.25.06.14.D1) was 

measured on 25 June 2014 at 67°04.779'N, 49°24.077'W (near the automatic weather station S6 along the K-

transect), with an algal abundance measurement of 121664 cells/ml (Stibal et al., 2017). 

L209: Chlorophylla is the primary photosynthetic pigment, but not the primary light absorbing 

pigment. In both the studies you have cited the chlorophylla absorption feature is actually 

extremely subtle – in fact in Cook et al. (in review) it was only really discernable in the derivative 

spectra and indistinguishable in the raw reflectance. In Stibal et al. (2017) the spectrum are 

presented with a very truncated yaxis to make the pigment feature discernable. 

Response: We agree with the reviewer on the point that Chlorophyll-a is the primary 

photosynthetic pigment but not the primary light absorbing pigment. However, this does not mean 

that Chlorophyll-a cannot be used as the biomarker to detect glacier algae. According to the 

literature, the purpurogallin pigments are the primary light absorbing pigments for glacier algae. 

As we mentioned above, the characteristic spectral signatures generated by purpurogallin pigments 

(that might be used as biomarker for glacier algae detection) are concentrated in the ultraviolet 

region (278 nm, 304 nm, and 389 nm). To our knowledge, current satellite sensors cannot capture 
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the spectral signals at these wavelengths, which means that the spectral properties of purpurogallin 

pigments in the UV region cannot be utilized for glacier algae detection from space. The absorption 

features of the purpurogallin pigments are quite uniform over the entire visible spectrum, with no 

characteristic spectral signatures that can be used by satellite sensors to differentiate glacier algae 

from other dark materials. Although the Chlorophyll-a spectral signature (between 665 nm and 

709 nm) generated by glacier algae is not as strong as the algal blooms in aquatic systems, the 

spectral characteristics of Chlorophyll-a are indeed present on the spectral curve, which are 

particularly obvious in the derivative spectra (shown in Cook et al. 2020) and the normalized 

spectra (revised Figure 3c, shown below).  

 

Figure 3 (in the revised manuscript). MERIS spectra of different surface types. (a) MERIS Level-2 image (false colour 

composite) acquired on 14 August 2011 and locations of the four sample sites. Each site has an area of 1.2 km by 1.2 km, 

composed of 16 MERIS pixels. (b) MERIS reflectance in 13 spectral bands over the four sites, illustrated by mean and 

standard deviation values for each band over each site. (c) Normalized reflectance relative to the clean ice spectra. 

L211: “pure ice” has lower reflectance at red wavelengths compared to shorter wavelengths. 

Response: We have revised the text as ‘Pure ice has lower reflectance at 709 nm compared to 

shorter wavelengths (Hall and Martinec, 1985).’ 

L216220: This line of reasoning borrows heavily from studies of chlorophylla dominated species 

in other environments and still requires the rededge to be validated over glacier ice where LAP 

and meltwater mixing, complex pigmentation and ice optics are potential confounding variables. 

Response: We agree that the mixture of dusts, algal pigments, meltwater, and ice optics could 

complicate the surface spectra. In this revision, we discussed the potential impacts of these 

variables on the 2BDA index by incorporating the SNICAR simulations. Although the 2BDA 

index is developed and well-validated for ocean color applications, the rationale for glacier algae 

detection based on the chlorophyll-a spectral signature at the red-NIR region is very similar to that 

of algal detection in aquatic environments, particularly for turbid case 2 waters (Blondeau-Patissier 
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et al., 2014; Matthews, 2011). Similar to the dark ice surface, the case 2 waters are also optically 

complex, largely affected by the colored dissolved organic matter (CDOM) and suspended 

sediments. The 2BDA index based on the 665nm and 709nm bands utilizes the reflectance peak 

near 709 nm, which has been widely tested and validated for the case 2 waters. Using Figure 2 (in 

the revised manuscript, shown above), we intend to show that the algae-laden ice has the 

chlorophyll-a spectral signature, which is consistent between the 300-meter MERIS spectra, 2-m 

WorldView-2 spectra, and the in-situ hyperspectral data. Multiple in situ spectra have been added 

to Figure 2 illustrating that the chlorophyll-a spectral signature is present across multiple 

measurement samples and dates. 

Figure 2: How did the authors select the field spectrum to plot on this figure? Is this the average 

of all available? If so please provide error bars and number of observations. Also, 184 cells/mL 

reported in the legend is a tiny amount of algae, unlikely to explain the albedo reduction observed 

–is this a typo? What was the mineral dust type and concentration in the same area – could it also 

explain the rededge? How much of the albedo reduction can be attributed to the algae and how 

much to melt water/dust? If the absorption is mostly due to chlorophylla as the authors suggest, 

why is the absorption maximum outside of the chlorophyll absorption range shown in Fig 2c and 

why does it extend across the visible wavelengths? Why do the field spectra and remotely sensed 

spectra diverge below ~640 nm? 

Response: The field spectrum we selected from Stibal et al. (2017) is used here as an example to 

show that the chlorophyll-a spectral characteristics (665-709 nm) over algae-abundant ice, and the 

satellite data (2-meter resolution WorldView-2 and 300-meter MERIS imagery) have similar 

spectral features at this red-NIR region. The selection criteria include high measured algal 

abundance (184184 cells/ml) and dark appearance (R620nm<0.45, consistent with the dark ice 

delineation criteria by Shimada et al., 2016 and Tedstone et al. 2017). To further illustrate the red-

NIR spectral signature of glacier algae, we added multiple field spectra from locations where algal 

cell concentrations were measured at greater than 10,000 cells/ml to Figure 2, showing consistent 

spectral shapes in this wavelength region. For detailed information about the field data, including 

dust composition and albedo reduction caused by different variables, please refer to Stibal et al. 

(2017). As mentioned above, we have added a section analyzing the impact of dusts on 2BDA 

index in the revised discussion. ‘The absorption maximum outside of the chlorophyll absorption 

range’ can be explained by the purpurogallin pigments. The low absorption and uniform absorption 

in this range actually emphasizes the importance of using the ‘red-edge’ feature to detect glacier 

algae. We are not suggesting that ‘the absorption is mostly due to chlorophyll-a’, instead, we are 

suggesting to use the chlorophyll-a feature (absorption at 665 nm and reflectance peak at 709 nm) 

to detect glacier algae. We have revised the text to clarify this point. The divergence between the 

field spectra and satellite spectra below ~640 nm may be caused by two factors: 1) the uncorrected 

Rayleigh scattering effect that affects shorter visible wavelengths (particularly the blue band). and 

2) spectral mixing with ice. Both can make the reflectance at shorter wavelengths higher, however, 

the reflectance ratio between 709 nm and 665 nm is less affected by these factors. 

Figure 3: A) “Agust”->August;  

Response: The typo has been corrected. 
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B) The authors present spectra for “dark → ice (more chlorophyll)” and “dark ice (less 

chlorophyll)”. However, there does not seem to be any positive 2BDA signal in the latter spectrum 

at all. Is it actually “dark ice (no chlorophyll)”? If so, there are additional darkening processes 

occurring on the ice. What processes are darkening the ice in those areas and to what extent do 

those ice darkening processes also influence the biomass retrievals in areas where there is a 

positive 2BDA result? What effect does this have on retrieved biomass? What is the detection limit 

for the 2BDA method? 

Response: We have corrected the figure to refer to “high chlorophyll-a” and “low chlorophyll-a”. 

To illustrate the chlorophyll-a signal better, we also plotted the relative surface reflectances 

(MERIS) for different surface types normalized to the clean ice spectra (Figure 3c in the revised 

manuscript) since the primary background spectral signal is from ice. For both water and ice, the 

spectrum shows a decrease in reflectance from 665 nm to 709 nm, which is opposite to the 

chlorophyll-a spectrum. A 2BDA signal of less than one therefore does not imply that there is no 

chlorophyll-a present. A smaller rate of decrease could still be produced by low amounts of 

chlorophyll-a. Using the 2BDA index, we do not intend to classify the ice surface into ‘algae’ vs. 

‘no algae’. We use the 2BDA index to show the magnitude of glacier algal blooms varying over 

space and time. We think it is more appropriate to use ‘high chlorophyll-a’ and ‘low chlorophyll-

a’ to describe those two sites. We agree with the reviewer that more discussions and investigations 

are needed to quantify the impacts of other darkening processes on 2BDA index. In this revision, 

we added the analysis of dust impacts on 2BDA index based on SNICAR simulations in section 

4.2 (Sensitivity analysis of 2BDA index to non-algal factors). We found that by combining the 

2BDA index with the Impurity Index, we can exclude the possibility of false positives when the 

2BDA index is greater than 0.99.   

L413: Cook et al. (in review) mention that a rededge signal was present in most of their algal 

hyperspectral data but they do not mention false positive rates and they opted not to use that 

method for their spatial upscaling. It would therefore be useful to know the false positive rate in 

the present study and how it scales to 300m MERIS pixels. 

Response: Cook et al. (2020, published online) showed that the ‘red-edge’ spectral signal due to 

chlorophyll-a is present in their hyperspectral measurements for algae-covered ice, which further 

supports the chlorophyll-a signal we observed in the 300-meter MERIS image and the 2-meter 

WorldView-2 image. In this revision, we revisited the field dataset of Cook et al. (2020). They 

provided coincident data of cell abundance and hyperspectral measurements for a number of field 

sites (Table C1 in the revised manuscript). Based on their field datasets, we calculated the 2BDA 

index for each sample, and Figure C2 (in the revised manuscript, shown above) shows the strong 

correlation between cell abundance and 2BDA index based on the Cook et al. (2020) field data. 

To investigate potential scale issues, we added a discussion section (5.1 Sensitivity to subpixel 

variability) to analyze the sensitivity of 2BDA index to subpixel variability of glacier algae vs. 

dust by performing spectral linear mixing experiments based on the Cook et al. (2020) field 

spectral data and the SNICAR-simulated dust spectral data. As we discussed above, the MERIS 

2BDA index is capable of capturing the glacier algae at the 300-meter resolution scale. This is 

further supported by the comparison between the WorldView-2 image (2-meter resolution) and 
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the MERIS image (Figure 2 in the revised manuscript, shown above). Although we can observe 

spatial heterogeneity within one MERIS pixel, the dark materials are widespread over the entire 

area. This is also consistent with the UAV mapping results by Ryan et al. (2018), showing that the 

areal percentage of the distributed impurities is up to 90% within individual MODIS pixels (500-

meter resolution) over the dark zone in southwest Greenland. Nevertheless, it is important to 

investigate the pixel mixture problems more rigorously in the future and the limit of algae 

distribution within each pixel that can cause detectable chlorophyll-a signal. Based on our 

discussion on dust impacts and the spatial scale of MERIS imagery, we think that using MERIS 

data is more likely to cause false negatives instead of false positives given the sensor detection 

limit to weaker chlorophyll-a signals.   

L416: It is not clear to me from the manuscript precisely how you have inferred algal cell 

abundance. Please provide further methodological details. 

Response: The methods for computing algal population doubling were described in Section 4.3 

(Lines 363-376 in the original manuscript). However, this section may have been somewhat 

unclear. In this revision, we have clarified how the population doubling time was estimated based 

on the fitted coefficients between 2BDA and time (section 4.5 in the revised manuscript). We did 

not directly infer the algal cell abundance using the 2BDA index, instead, we used the empirical 

relationship established based on the Sentinel-3 OLCI band ratio and previous field measurements 

(Wang et al., 2018) and mathematical conversions.  

L450460: Another explanation for this is that the overall ice albedo is lower, there may be 

smoother ice and more water at the surface, and rather than there being less algae, the rededge 

signal is simply erased by an overall dampening of the spectrum across all wavelengths (i.e. 

putting dark impurities on dark ice has a less detectable effect that putting the same impurities on 

otherwise bright ice). Can the authors demonstrate that this is not the case? 

Response: As we have discussed above, the 2BDA index is sensitive to the absorption and 

reflectance peaks of chlorophyll-a, which is not a feature of other surface types. As the 2BDA 

index is a ratio of two different wavelength bands, a uniform reduction in “background” albedo 

should have a small effect. A change in the shape of the “background” spectrum (the relative 

reflectance at 709 nm relative to 665 nm would be required to have a large impact on 2BDA. 

Observed spectra shown in Figure 2 (in the revised manuscript, shown above) suggest that 

differences in the average magnitude of the reflectance spectrum do not appear have a strong 

impact on the shape of the reflectance spectra, and therefore likely do not strongly impact the 

2BDA index either. 

References: 

Cook et al. (in review) Glacier algae accelerate melt rates on the south western Greenland Ice Sheet, The 

Cryopshere, https://www.thecryospherediscuss.net/tc201958/#discussion 

Painter, T. H., Duval, B., and Thomas, W. H.: Detection and quantification of snow algae with an 

airborne imaging spectrometer, Appl. Environ. Microbiol., 67, 5267–5272, 

https://doi.org/10.1128/AEM.67.11.52675272.2001, 2001. 

https://doi.org/10.1128/AEM.67.11.52675272.2001
https://doi.org/10.1128/AEM.67.11.52675272.2001
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Tedesco, M., Foreman, C., Anton, J., Steiner, N., Schwartzman, T.: Comparative analysis of 

morphological, mineralogical and spectral properties of cryoconite in Jakobshavn Isbr?, Greenland, and 

Canada Glacier, Antarctica. Annals of Glaciology, 54(63), 147157. doi:10.3189/2013AoG63A417, 2013. 

Tedstone, A. J., Cook, J. M., Williamson, C. J., Hofer, S., McCutcheon, J., IrvineFynn, T., Gribbin, T., 

and Tranter, M.: Algal growth and weathering crust structure drive variability in Greenland Ice Sheet ice 

albedo, The Cryosphere Discuss., https://doi.org/10.5194/tc2019131, in review, 2019. 

 

Anonymous Referee #2 

Overview 

This manuscript uses data from the MERIS satellite sensor to seek to quantify glacier algae bloom 

dynamics over the south west Greenland ablation zone. They justify their use of this sensor for 

detecting algal blooms by reference to their previous work using the very similar Sentinel-3 OLCI 

on the same topic (Wang et al, 2018), by selected references to some field observations, and by 

wider reference to remote sensing of ocean-borne algal blooms. 

Response: We greatly appreciate the reviewer’s careful reading and useful suggestions, which 

have improved our manuscript. In this revision, we believe that we have sufficiently addressed the 

concerns raised by the reviewer. Please see our responses below.  

Major comments 

The manuscript tests several remote sensing ratio indices and shows that, to some extent, the 2BDA 

approach retrieves a different signal to that obtained by the ‘bulk’ Impurity Index or simple red 

band threshold approaches. This is a useful exercise in seeking to understand what signals can be 

retrieved from the MERIS/OLCI sensors. 

As the manuscript is presented currently, I have some major concerns which prevent me from 

recommending publication in The Cryosphere. 

There are known problems with seeking to apply band ratios/indices designed for chlorophyll-a 

retrieval from water bodies but which this manuscript does not engage with. I appreciate that the 

main studies which highlight these problems, by Cook et al. (TCD) and Tedstone et al. (TCD), are 

currently undergoing review and so were unlikely to have been available at the time when this 

study was started. But nevertheless, there is a lack of discussion of the wider literature on this 

issue; instead, Wang et al (2018) is cited as proof that chlorophyll-a-focused band ratios are 

appropriate for detecting glacier algae blooms, but I find that discussion of these problems is 

lacking there too, and so their 2018 paper is not an especially strong foundation on which to base 

the present study. 

Response: In this revision, we added the section 3.3 (Sensitivity analysis based on radiative 

transfer modelling) and section 4.2 (Sensitivity analysis of 2BDA index to non-algal factors) to 

analyze and discuss the sensitivity of the 2BDA index to dust presence using SNICAR simulations 

with varying dust sizes and concentrations (more details are in the response to reviewer#1). Our 

results indicate that the 2BDA index is much less sensitive to dust presence than the impurity index, 

https://doi.org/10.5194/tc2019131
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and in our context (with impurity index mostly less than 1.0), the high 2BDA index (greater than 

0.99) is unlikely caused by dust. Given that the 2BDA index is specifically designed for 

chlorophyll-a retrieval and the narrow bandwidths of MERIS, the 2BDA index (especially at 

values greater than 0.99) is uniquely biological due to glacier algae.  

Since discussion papers are not referenceable, we did not cite any discussion paper in this revision. 

The papers by Cook et al. (2020) and Tedstone et al. (2020) were published very recently, and 

have been added to our references. Cook et al. (2020) discussed the ‘red-edge’ feature of glacier 

algae caused by chlorophyll-a, and we have revisited their field data in this revision. In addition, 

we cited the paper by Williamson et al. (2020) who also noted the chlorophyll-a absorption feature 

at ~675 nm besides the purpurogallin absorption.   

As I understand it, the core of this problem is two-fold: (1) the optics of bare ice are insufficiently 

well understood to be able to guarantee that the reduction in reflectance around 667 nm compared 

to 710 nm is uniquely biological; and (2) other light absorbing impurities may interfere or present 

the same signal. Thus, based on published field evidence, there is little evidence that the band ratio 

approach is uniquely biological. Cook et al. (TCD) and Tedstone et al. (TCD) have more 

information on this and note that phenolic compounds for in the dominant glacier algae species 

can obscure potentially diagnostic spectral features. This being the case, NDCI etc may simply be 

measuring some combination of slightly different surface characteristics to the Impurity Index 

approach, rather than yielding information specifically on glacier algae growth. Thus, regarding 

inter-annual mapping of ‘dark ice’ vs glacier algae, there may be little advance on Shimada et al. 

(2016) or Tedstone et al. (2017), both of whom considered inter-annual variability in ‘dark ice’ 

dynamics over the timescales addressed here. 

Response: We agree that the optics of bare ice and light absorbing impurities can complicate the 

spectral signal, but we respectfully disagree that “based on published field evidence, there is little 

evidence that the band ratio approach is uniquely biological”. Current field studies (Stibal et al., 

2017; Cook et al., 2020) presented the field hyperspectral data of dark ice with abundant glacier 

algae, and their data show the chlorophyll-a signature at the red-NIR region. However, they did 

not apply the band ratio approach, which doesn’t necessarily mean that ‘there is little evidence that 

the band ratio approach is uniquely biological’. As we discuss below, the ice/snow optics have 

little impact on the 2BDA index, and based on radiative transfer modelling experiments (response 

to reviewer #1, and revised section 4.2), the upper limit of the dust impact on the 2BDA index is 

around 0.99. In contrast, the impurity index is more sensitive to dust presence. In the revised text, 

we have added more discussion and figures to show the difference between impurity index and 

2BDA index. We also respectfully disagree with the statement ‘Thus, regarding inter-annual 

mapping of ‘dark ice’ vs glacier algae, there may be little advance on Shimada et al. (2016) or 

Tedstone et al. (2017), both of whom considered inter-annual variability in ‘dark ice’ dynamics 

over the timescales addressed here’, since according to our results (Figure 5 in the manuscript), 

there are differences between 2BDA index, impurity index, and the R620nm reflectance that 

Shimada et al. (2016) and Tedstone et al. (2017) used for dark ice delineation. We would like to 

argue that their method doesn’t account for any biological signal specific to glacier algae, and is 

more likely to be influenced by meltwater presence, ice optics and other impurities. 
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On justification of the 2BDA, Wang et al. (2018) point to Painter et al. (2001) as evidence that 

glacier algae can detected using chlorophyll-a indices. However, Painter et al refers to the specific 

case of snow algae growing on snow surfaces, which is not relevant here as this study engages 

only with bare ice surfaces. Thus, retrievals in this study can in fact be based only on paired cell 

counts and field spectra acquired by Stibal et al. (2017), a study which also indicates that 

chlorophyll-a-based approaches could be useful for remote sensing. However, the spectra that 

Stibal et al (2017, Figure 3) present refers only to high algal abundance ice, over centimetres 

patch scales, which is not representative of OLCI or MERIS 300 m data. Some consideration of 

the scale mismatch is therefore required. 

Response: We respectfully disagree with the reviewer on the point that the specific case of snow 

algae growing on snow surfaces is not relevant to the discussion of glacier algae growing on bare 

ice surfaces. There are differences between snow and ice spectra, but both of them are 

characterized by decreased reflectance at 709 nm as compared with 665 nm. The spectral signature 

of ice and snow themselves exhibit a slope opposite to that of the chlorophyll-a spectra at this 

region. Although snow algae and glacier algae are distinct species, they both generate chlorophyll-

a for photosynthetic activity and chlorophyll-a is their major photosynthetic pigment. The colours 

of snow algae and glacier algae are different mainly because snow algae generate secondary 

carotenoids which have a reflectance peak in red band. However, according to Painter et al. (2001), 

this carotenoid feature does not block the chlorophyll-a absorption signal around 680 nm.  

Therefore, Painter et al. (2001) were able to detect snow algae using the chlorophyll-a signature 

between 630 nm and 700 nm using the absorption at 680 nm and the reflectance features at 630 

nm and 700 nm. Glacier algae have brownish-grey colour because they generate purpurogallin 

pigments, and at the same time, they also generate chlorophyll-a for photosynthesis (similar to 

snow algae). However, as we noted in response to the first reviewer, compared with the 

purpurogallin pigment, Chlorophyll-a is more appropriate for mapping glacier algae for the 

following reasons: 

1) Chlorophyll-a is the primary photosynthetic pigment of glacier algae (Williamson et al., 2018). 

The ocean color satellite sensors like Envisat MERIS and Sentinel-3 OLCI are designed to 

capture the Chlorophyll-a signal from highly-absorptive and optically complex water bodies, 

which means that the ocean color sensors are highly sensitive to chlorophyll-a presence, 

making them very useful tools for glacier algae detection based on the biological signatures.  

2) According to the studies by Remias et al. (2012) and Williamson et al. (2018), the spectral 

signatures (absorption peaks) of the purpurogallin pigment are concentrated in the UV region 

(278 nm, 304 nm, and 389 nm, Remias et al.,2012). To our knowledge, no satellite sensor can 

detect these spectral signatures. Although the purpurogallin pigment is very likely to account 

for the brownish-grey colour of glacier algae, its absorption over the entire visible spectrum is 

quite uniform, making it difficult to differentiate from other dark impurities. In contrast, 

chlorophyll-a can generate very strong spectral signatures in the red and NIR region, which is 

supported by field hyperspectral measurements for both snow algae and glacier algae. (e.g. 

Ganey et al., 2017; Painter et al., 2001; Stibal et al., 2017; Cook et al., 2020). 
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As we clarified in the text, we used the field measurements by Stibal et al. (2017) for qualitative 

evidence to show that the MERIS spectra, WorldView-2 spectra, and field hyperspectral data are 

consistent in terms of the spectral shape over algae-abundant ice. In this revision, we improved 

Figure 2d (in the revised manuscript) to include more field spectra data from Stibal et al. (2017) 

to illustrate that the chlorophyll-a spectral signature at the red-NIR region is present across 

multiple measurement samples and dates. Additionally, the recently published paper by Cook et 

al. (2020) also discussed the ‘red-edge’ feature present in their field data, which is attributed to the 

chlorophyll-a generated by glacier algae. Examining the field measurements and hyperspectral 

data of Cook et al. (2020), we find a strong sensitivity of the 2BDA index derived from field 

hyperspectral data with coincident measured cell abundance.  We have added Table C1 and Figure 

C2 showing the relationship between cell abundance and the 2BDA index. 

In regard to the scale issues, we added section 5.1 (Sensitivity to subpixel variability) to discuss 

the effects of spatial scale on the 2BDA index. Based on our SNICAR experiments, and analysis 

of the 2BDA and impurity indices, the 2BDA index is less sensitive to the presence of dust, which 

means that the high 2BDA index is uniquely biological. Given the sensitivity of MERIS to the 

presence of chlorophyll-a, the 2BDA index can effectively capture the chlorophyll-a signal 

generated by glacier algae. To examine the potential impact of spatial heterogeneity on the MERIS 

2BDA index, we performed spectral linear mixing experiments using the field hyperspectral 

measurements of Cook et al. (2020) for glacier algae and bare ice and the SNICAR-simulated 

spectra for dust. We obtained the mixed spectra (Figure C3 in revised the manuscript, shown below) 

by specifying the different areal percentage of algae/dust vs. bare ice, and calculated the 

corresponding 2BDA index for the mixed spectra. It is shown that the 2BDA index dramatically 

increases with the areal percentage of glacier algae, being consistent with the assumption that the 

2BDA index is positively correlated with algal abundance. In contrast, the 2BDA index has much 

less sensitivity to dust. The high-resolution UAV mapping by Ryan et al. (2018) suggests that the 

areal percentage of the distributed impurities is up to 65%~95% within individual MODIS pixels 

(500-meter resolution) over the dark zone in southwest Greenland. Our linear mixing experiments 

(Figure C3b, shown below) suggest that the MERIS 2BDA index can capture the glacier algae 

variability within the dark zone. In addition, our comparison between the MERIS (300-meter 

resolution) spectra, WorldView-2 (2-meter resolution) spectra, and field hyperspectral data (Figure 

2 in the manuscript, shown below) shows that the chlorophyll-a signature at the red-NIR region is 

quite consistent between different source measurements at different spatial scales. Therefore, 

MERIS data can effectively capture the glacier algae signal over southwest Greenland; 

nevertheless, we agree with the reviewer that more investigations on the scale and spectral mixing 

issues are needed in future studies. Besides, as we noted in our response to reviewer #1, we 

excluded the possibility of false positives caused by dusts when the 2BDA index is greater than 

0.99. 
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Figure C3 (in the revised manuscript). Spectral linear mixing experiments. (a) Field hyperspectral measurements of four 

algae-abundant samples (21_7_SB1, 21_7_SB2, 23_7_SB5, and 21_7_SB10) and one bare ice sample (zero algal abundance, 

14_7_SB6) from Cook et al. (2020), and the SNICAR-simulated spectra for the dust scenario (size 4 at concentration of 500 

ppm). (b) 2BDA index calculated from the linearly mixed spectra with varying areal percentage at subpixel scale for algae 

(different algal abundances) and dust scenarios. 

 

Figure 2 (in the revised manuscript). Comparison between MERIS, WorldView-2, and field spectra over algae-abundant 

dark ice. (a) MERIS Level-2 image (true colour composite) acquired on 5 July 2010. Pixels with missing data are shown in 

light blue. (b) WorldView-2 surface reflectance image acquired on 9 July 2010 over the square area in (a). (c) Zoomed-in 
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WorldView-2 image, with the area (red square) corresponding to the selected MERIS pixel in (a). (d) Reflectance spectra 

for MERIS and WorldView-2 (2010), and field hyperspectral measurements collected over the algae-abundant dark ice at 

S6 by Stibal et al. (2017) in 2014. 

Possibly a more minor concern: the cell counts used as field validation in this manuscript are very 

high, at 105 cells ml (Figure 2d), but I’m not sure that we would expect to see such high counts 

over these larger spatial scales (e.g. Williamson et al.,2018, FEMS). Furthermore, the field 

spectra seem to have quite high reflectance for the quoted cell counts compared to other field 

spectra in the literature, e.g. Figure A1 in Tedstone et al. (2017, TC). The field spectra shown here 

seems to be that in Stibal et al. (2017, GRL, Figure 3), but a cell count is not quoted there and so 

I raise this question here in case there has been an error in transforming Stibal et al’s data for 

this study. 

Response: In this revision, we clarified in the text on how we used the field data by Stibal et al. 

(2017). The field hyperspectral measurements collected by Stibal et al. (2017) were used for 

qualitative purposes for comparison with the MERIS spectra over dark ice to validate the 

chlorophyll-a spectral signature at the red-NIR region, specifically the bands of 709 nm and 665 

nm used for 2BDA index calculation. We have revised Figure 2d (shown above) by adding 

multiple in situ spectra collected over the algae-abundant dark ice (R620nm<0.4, and algal 

concentration >=10000 cells/ml) to illustrate that the chlorophyll-a spectral signature is present 

across multiple measurement samples and dates. We have double checked the original data 

published by Stibal et al. (2017) and ensured the correctness of our plotted spectra.  

The study also presents data that undermines its application of a Chlorophyll-a based band ratio 

approach. Figure 3b shows some averaged MERIS surface reflectance curves. Dark Site (Less 

Chlorophyll) has higher reflectance at 665 than 709 nm and so with 2BDA this site would 

presumably diagnose as ‘clean ice’ by comparison to the Clean Ice spectrum plotted above it. I do 

not see any comment upon this issue elsewhere in the text. 

Response: We respectfully disagree with the reviewer that our presented data in Figure 3 

undermines its application of a Chlorophyll-a based band ratio approach. As we responded to 

reviewer#1, we have corrected the figure to refer to “high chlorophyll-a” and “low chlorophyll-a”. 

For both water and ice, the spectrum shows a decrease in reflectance from 665 nm to 709 nm, 

which is opposite that of the chlorophyll-a spectrum. A 2BDA signal of less than one therefore 

does not imply that there is no chlorophyll-a present. A smaller rate of decrease could still be 

produced by low amounts of chlorophyll-a. Using the 2BDA index, we do not intend to classify 

the ice surface into ‘algae’ vs. ‘no algae’. We use the 2BDA index to show the magnitude of glacier 

algal blooms varying over space and time. We think it is more appropriate to use ‘high chlorophyll-

a’ and ‘low chlorophyll-a’ to describe those two sites. To illustrate the chlorophyll-a signal better, 

we have revised the text to discuss this issue and added a subplot (Figure 3c in the manuscript, 

shown below) to show the normalized MERIS surface reflectances relative to the clean ice 

spectrum. 

 We agree with the reviewer that more discussions and investigations are needed to quantify the 

impacts of other darkening processes on 2BDA index. In this revision, we added the analysis of 

dust impacts on 2BDA index based on SNICAR simulations in section 3.3 (Sensitivity analysis 
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based on radiative transfer modelling) and section 4.2 (Sensitivity analysis of 2BDA index to non-

algal factors). We found that by combining the 2BDA index with the Impurity Index, we can 

exclude the possibility of false positives when the 2BDA index is greater than 0.99.  

 

Figure 3 (in the revised manuscript). MERIS spectra of different surface types. (a) MERIS Level-2 image (false colour 

composite) acquired on 14 August 2011 and locations of the four sample sites. Each site has an area of 1.2 km by 1.2 km, 

composed of 16 MERIS pixels. (b) MERIS reflectance in 13 spectral bands over the four sites, illustrated by mean and 

standard deviation values for each band over each site. (c) Normalized reflectance relative to the clean ice spectra.  

I’m very confused about how the algal population doubling times were calculated. This is a critical 

part of the manuscript as it underpins the assertion that there is a 0.02-0.04 reduction rate in 

albedo for each algal population doubling. 

Response: The methods for computing algal population doubling time were described in Section 

4.3 (Lines 363-376 in the original manuscript). However, this section may have been somewhat 

unclear. In this revision, we have clarified how the population doubling time was estimated based 

on the fitted coefficients between 2BDA and time (section 4.5 in the revised manuscript). 

Overall, I would urge nuanced engagement with the question of how confident can we be that the 

differences between 2BDA, Impurity Index and Dark Ice metrics are due solely to algae and not 

to other processes that might affect this band ratio? I suggest that this needs much clearer 

explanation in the methods about how Stibal et al’s field data were used in this manuscript, and 

some nuanced discussion of the uncertainties surrounding Chlorophyll-a indices on ice surfaces. 

If these issues are addressed then the revised manuscript may be suitable for publication. 

Response: As we mentioned above, we have analyzed the sensitivity of 2BDA index and impurity 

index to dust presence by using the SNICAR simulations with variant dust sizes and concentrations 

(Section 4.2, Figure 4 in the manuscript). We have excluded the possibility of false positives for 

glacier algae detection caused by dusts using the 2BDA index (particularly greater than 0.99).   
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We have clarified in the text on how we used the field data from Stibal et al. (2017). The match 

between the MERIS spectra, WorldView-2 spectra, and field spectra (Figure 2 in the manuscript, 

shown above) indicates the chlorophyll-a signal can be effectively captured by MERIS. 

 

Minor comments 

I agree with the short comment by Daniel Remias that this manuscript should use the terminology 

‘glacier algae’ in preference to ‘ice algae’. 

Response: As suggested, we have changed ‘ice algae’ to ‘glacier algae’ through the text.  

The introduction includes wide-ranging references to both glacier algae and snow algae. Detailed 

discussion of the snow algae literature is not relevant here as this study focuses only on bare ice 

surfaces, so the introduction would benefit from being focused solely on glacier algae. 

Response: We respectfully disagree with the reviewer on this point. We think it is important to 

discuss the differences between snow algae and glacier algae, as the differences may not be clear 

to a broader audience, as well as the similarities and techniques that can help inform our current 

study. 

P3 L71: define what is meant by ‘dirt’. 

Response: We used ‘dirt’ according to the studies by Painter et al. (2001) and Takeuchi et al. 

(2006). However, since glacier algae do not generate secondary carotenoids like snow algae, the 

spectral characteristics of carotenoids are not relevant to our study. To avoid ambiguity, we have 

removed the statement ‘the spectral characteristics of dirt may resemble those of carotenoids’ from 

the manuscript.  

P8 L209. Cook et al. (2019, Cryosphere Discussions) are cited for the first time here. If it is being 

cited then it should be introduced earlier during the lit. review section of the Introduction. 

Alternatively, if taking the view that Cook et al is under discussion and that it isn’t ‘referenceable’, 

then all references to it should be removed. 

Response: This paper is currently published online (Cook et al., 2020). We have included it in the 

introduction and updated the reference. 

P9 L226: please quantify how the ‘best’ means of quantifying ice algae was obtained. This is not 

clear, either here or in the subsequent text. 

Response: We have rewritten the paragraph to improve the clarity.  

P9 L229: Dumont et al. (2014) focussed on impurity loading upon snow surfaces. Please comment 

further on the suitability of the Impurity Index for ice surfaces. 

Response: The Impurity Index (Dumont et al., 2014) is the ratio between the natural logarithms 

of the spectral albedos at 545–565 nm (visible green band) and at 841–876 nm (NIR band). This 

index was built upon the hypothesis that the surface reflectances at visible wavelengths are more 

sensitive to impurity content than at the NIR wavelengths, and Dumont et al. (2014) found that the 
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Impurity Index is almost insensitive to grain size based on their field measurements and radiative 

transfer modelling results. Given the similar spectral shapes of snow and ice and the general 

assumption in radiative transfer modelling that ice has larger grain size than snow, we think it is 

suitable to apply the Impurity Index to the ice surface. Besides, Dumont et al. (2014) quantified 

the impurity content using this index over the Greenland Ice Sheet for the May–July period from 

2003 to 2013, including the bare ice zone in southwest Greenland. We have added more details in 

the text to describe the impurity index.  

Results, section 4.1: I find this section very difficult to read. It would benefit from re-writing and 

introduction of paragraph breaks. 

Response: This section has been rewritten as suggested and additional paragraph breaks have been 

added for clarity. 

Fig. 3a: typo, August spelt ‘Agust’ Fig. 3b: provide MERIS band numbers at top of plot to aid 

cross-comparison back to Table 1. The colours of the two dark ice spectra lines are too similar to 

be able to tell them apart in print. 

Response: We have revised the figure as suggested. We also added a subplot to show the 

normalized MERIS reflectances to the clean ice spectrum, showing the spectral signature of 

chlorophyll-a better.  

P11 L275: full stop missing after ‘1400 m’. 

Response: We have revised the text accordingly.  

P12 L278-290: I do not follow the arguments being made in this section. Further, I disagree with 

the statement made in reference to Fig. 4, that ‘Similar to the Impurity Index, the dark ice area is 

not only limited to the algae-abundant areas’. My examination of Fig 4 suggests that this is cherry-

picking as conversely I saw plenty of evidence of a very good match between the two indices. As 

the authors central premise is that the 2BDA is ‘uniquely biological’ and so therefore yielding 

details not provided by the Impurity index or Dark ice index I propose that quantification beyond 

eye-balling the associated plots is required – ideally some statistical approach. 

Response:  In this revision, we changed the color scheme for each variable (2BDA, Impurity Index, 

R620nm, and MODIS bare ice albedo). The revised figure shows better the differences between 

those variables. Figure 5a (in the revised manuscript, shown below) clearly shows that along the 

central dark zone, 2BDA is highest at the elevation level of 1200-1400m, and comparatively the 

Impurity index is highest at the elevation level of 1000-1200m. The R620nm used for dark ice 

delineation in previous studies (Shimada et al. 2016; Tedstone et al. 2017) has the lowest value at 

the elevation level of 1000-1200m, more consistent with the Impurity Index. To show the spatial 

variation in more detail, we have also added a supplementary figure (Figure A1 in the revised 

manuscript, shown below) to illustrate the variations of different indices with elevation (at a 20-

meter interval), which also shows the differences clearly. We have rewritten the text accordingly.  
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Figure 5 (in the revised manuscript). Spatial patterns of the mean 2BDA index (a), impurity index (b), reflectance at 620 

nm (c), and MODIS broadband albedo (d) over the bare ice zone during July and August from 2004 to 2011. The elevation 

contours illustrate the spatial variations of each variable with altitude. The cross labels show the spatial locations of the 

field sites DS, KAN_L, and KAN_M and magnitude of glacier algal abundance (circle labels) measured by Stibal et al. 

(2015) in 2013. 
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Figure A1 (in the revised manuscript). Spatial variations of the average 2BDA index, impurity index, 620 nm 

reflectance, and MODIS albedo over bare ice at different elevations within the study area (20-meter elevation 

interval). For surface elevation, we used the 30-meter resolution MEaSUREs Greenland Ice Mapping Project 

(GIMP) Digital Elevation Model (Howat et al., 2014; 2015). 

P12 L288-290: this study has no field data for the wavy patterns caused by ancient ice outcropping 

and does not provide any zoomed satellite imagery which shows them, so the reference to Wientjes 

and Oerlemans (2010) strikes me as somewhat speculative. 

Response: The study by Wientjes and Oerlemans (2010) indeed has no field data for the wavy 

patterns caused by ancient ice outcropping, but they do show the zoomed in ASTER satellite image 

(15-meter resolution) in their Figure 8 to illustrate the observed wavy patterns which are typical 

for outcropping tilted layers of ice. In our context, the 2BDA index indicates that along the central 

dark zone, there were more glacier algae distributed at the elevation level of 1200-1400m as 

compared with the 1000-1200m elevation level. However, the darkening index (R620nm, e.g. 

Shimada et al., 2016 and Tedstone et al., 2017) and the Impurity Index (Dumont et al., 2014) 

indicate that the 1000-1200m elevation zone also contains high impurity content, suggesting that 

other darkening processes potentially played an important role in this area. Therefore, we discussed 

the possibility of ancient ice outcropping in this area based on Wientjes and Oerlemans (2010). In 

this revision, we provided additional evidence (Figure A2 in the revised manuscript, shown below) 

to support this observation, using 2-meter resolution WorldView-2 images to show the differences 

between those two elevation zones. The WorldView-2 image (Figure A2b) clearly shows the wavy 

patterns mentioned by Wientjes and Oerlemans (2010) at 1000-1200m, and very different textures 

are visible at 1200-1400m (Figure A2c) where high algae content was identified using the 2BDA 

index.  

 

Figure A2 (in the revised manuscript). Average 2BDA index (2004-2011) for a subset of our study area (a) and 

comparison between WorldView-2 imagery over a dark ice site with low 2BDA index at 1000-1200m elevation 

(b) and a dark ice site with high 2BDA index at 1200-1400m elevation (c). The WorldView-2 image in (b) 
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illustrates the ‘wavy’ pattern that Wientjes and Oerlemans (2010) suggested was caused by ancient ice 

outcropping. 

P13 L302: ‘exhibits different spatiotemporal variations’. Are these differences statistically 

significant? They are almost impossible to identify by eye, apart from in one or two years of 

record 2BDI. Consider doing some elevational binning to support your case. 

Response: In this revision, we grouped the annual 2BDA and Impurity Index time series into 

different elevation bins (600-800m, 800-1000m, 1000-1200m, and 1200-1400m), to better 

illustrate the differences, and calculated the average values for each elevation bin. We also added 

a supplementary figure (Figure A3, shown below) in the appendix to show the annual time series 

of 2BDA and Impurity indices for different elevation levels, and revised the text accordingly.  

 

Figure A3 (in the revised manuscript). Interannual variability of the 2BDA index (a) and impurity index (b) at 

the elevation levels of 600-800m, 800-1000m, 1000-1200m, and 1200-1400m within the study area. 

Fig. 5: add 2BDA and Impurity index labels to each row of subplots. 

Response: We have revised the figure as suggested. 

Fig. 6: What p-value where these trends culled at, if at all? I also note that the R2 values in the 

referenced appendix plot are very small. 

Response: We added the p-value maps to Figure A4 (in the revised manuscript) to show the spatial 

extent where the annual 2BDA index, Impurity Index, and MODIS broadband albedo have 

statistically significant annual trends from 2004 to 2011 which are limited to a few areas. Although 

the trends in most areas are not statistically significant at the 95% confidence level, we still think 

it is useful to examine the patterns of interannual trends for the different indices. We have revised 

the text to make note of the locations where Figure A4 shows statistically significant trends. 

Fig. 7: Please provide some indication of measurement spread at each point, e.g. +/- 1 s.d. I would 

also prefer to see just the 2014 MERIS data for comparison with the 2014 algal abundance time 

series, rather than the aggregate 2004-2011 time series which is shown currently. Previous work 
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e.g. Shimada et al. (2016) and Tedstone et al. (2017) has shown that there is considerable inter-

annual variability and so I think more value here could come from detailed analysis of how algal 

growth proceeds in each season. 

Response: Since the Envisat MERIS was operational from March 2002 to April 2012, we are 

unable to provide a 2014 MERIS time series coincident with the 2014 field data. In this revision, 

we removed the figure from our manuscript. To consider the algal growth in different seasons, we 

extracted the seasonal growth functions (2BDA vs. time) for different seasons and compared with 

the growth function extracted from the ‘climatological’ averages over the two example sites 

KAN_M and DS (Figure A5 in the revised manuscript, shown below). 

 

Figure A5 (in the revised manuscript). Temporal trends of 2BDA index from mid-July to Mid-August in 

different years at sites DS (a) and KAN_M (b).  

P16 L342-359: very wordy. Requires paragraphing. Also consider in here which assertions can 

be retained once major review comments are addressed. It remains particularly difficult to 

follow the links with the field data despite close reading of the m/s. 

Response: We have rewritten and restructured this section, and have added more text describing 

how and why we compared the remote sensing data to previous field data. 

Fig. 8: (a) panels use inter-annual averages of each day and are therefore not especially useful at 

the process-level: like any other process, algal growth is not actually dependent on time but on a 

range of processes. Examination of individual years with varying melt season characteristics 

would therefore be more useful. At the very least, it would be good to see faint lines for each year 

plotted into the background of these panels. Associated question: how much ‘noise’ is there in 

individual years relative to the ‘climatological’ averages being shown? 

Response: We aggregated the daily data in different years to estimate the overall seasonal trend 

since the data for some years are not sufficient to obtain a reliable seasonal trend. We agree that 

algal growth is a complicated process, being affected by multiple factors like nutrients, meltwater, 

sunlight, temperature, and so on, which needs further investigation in the future by combining in 
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situ and remote sensing observations with meteorological and regional climate modelling data. 

However, characterizing the seasonal trend of algal growth over time is still useful for 

understanding the average patterns of seasonal growth across multiple years. In this revision, we 

added a supplementary figure (Figure A5, shown above) to show the temporal variations of 2BDA 

index in different years over the sites KAN_M and DS (algae-abundant area), showing that the 

regression slope of 2BDA vs. time is quite consistent between different years despite some 

variability at the DS site.  

Fig. 8c and section 4.4: is the chosen breakpoint of 20 August statistically significant? 

Response: We choose 20 August as the breakpoint because for most of the years we studied, 

snowfall happened after 20 August and covered the bare ice surface where glacier algae grow. In 

this revision, we removed the points with p-value greater than 0.05 from Figure 8b and Figure 8c.  

 

Figure 8 (in the revised manuscript). Temporal trends of the 2BDA index over July and August. (a) 2BDA time series 

and temporal trend analysis over the KAN_L, KAN_M, and DS sites. (b) Regression slope and R2 estimates of the temporal 

trend analysis for the period of July–August (for areas where the p value <=0.05). (c) Regression slope and R2 estimates of 

the temporal trend analysis for the period of 20 July–20 August (for areas where the p value <=0.05). 

Discussion: excessively wordy in places, can be shortened without loss of meaning. Fig. 11: 

provide colorbar to interpret density colors. Consider providing R2 values instead of just R. 

Response: We have revised the discussion section to improve clarity. We added the colorbar to 

Figure 11 as suggested. We use R instead of R2 as our focus is to discuss the correlations between 

MAR albedo and MODIS albedo, and between the albedo bias and 2BDA index. The metric R 



30 
 

describes the strength of linear association between two variables, while R2 is generally used in 

regression models to represent the amount of variability in y (dependent variable) that can be 

explained by the regression model, which is not the focus in our context.   

Text of page 22: this paragraph is overly long. It requires a re-structure. 

Response: We have restructured this part into three paragraphs and have revised the text.  

P22 L456-459: might be worth noting here that this is opposite to the results of Tedstone et al. 

(2017). 

Response: We have added discussion of the Tedstone et al. (2017) study as suggested.  

 L460: ‘For each of the two variables’ 

Response: We have changed the text accordingly.  

P23 L474-481: reads hugely speculatively, especially given the relative lack of process-level 

understanding about ice algae available in the literature. 

Response: This statement is indeed somewhat speculative, but we have provided these suggestions 

based on our analysis as a point of discussion for future study. We restructured and rewrote this 

section to clarify that these statements are somewhat speculative and more work is necessary to 

better understand these relationships. 

Fig. 13a,b: why was a white mid-point of _0.97 chosen? Aren’t algae judged to be present at 

values < 1? 

Response: We didn’t intend to use 0.97 as a thresholding point. We changed the color scheme to 

avoid the confusion caused by color scheme. We also moved the subplots (a) and (b) to the 

appendix (Figure B1). As noted in the response to reviewer #1, there is no particular threshold for 

which algae are deemed to be present or not present. Algae may still be present at 2BDA values 

less than 1, as the background bare ice spectrum shows a decrease from 665 to 709 nm.  However, 

as we note in response to reviewer #1, there is a higher likelihood of dust impacting the 2BDA 

index below values of 0.99. 
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Figure B1 (in the revised manuscript). (a) 2BDA index versus surface elevation and roughness (elevation 

variability within each MERIS pixel). (b) 2BDA index versus near surface temperature and meltwater 

production simulated by MAR. The colour bars in (a) and (b) indicate the average 2BDA index for each two-

dimensional bin defined by the two variables on the horizontal and vertical axes. 

Fig. 13c,d,e: I am not sure what the relevance of providing these data are. At the very least it 

would be useful to add some kind of annual 2BDI and Impurity Index time series for comparison 

with the provided metrics. 

Response: We added the annual 2BDA time series to the figure as suggested. This analysis is 

meant to be a preliminary investigation of possible relationships between algae and climate forcing, 

and is provided as a discussion point for future research.  

 

Figure 13 (in the revised manuscript). (a) Average 2BDA index over bare ice and maximum bare ice area from 

2004 to 2011 (MERIS). (b) July-August mean of downward shortwave and longwave radiation fluxes and cloud 

cover over the study area from 2004 to 2011 (MAR). (c) July-August mean of rainfall and snowfall (MAR). (d) 

July-August mean of meltwater production and near surface temperature (MAR). 

Reference for the response 

Anesio, A. M., Lutz, S., Chrismas, N. A. M. and Benning, L. G.: The microbiome of glaciers and ice sheets, NPJ 

Biofilms Microbiomes, 3, 10, 2017. 

Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R. and Brando, V. E.: A review of ocean color remote 

sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal 

and open oceans, Prog. Oceanogr., 123, 123–144, 2014. 

Condom, T., Dumont, M., Mourre, L., Sicart, J. E., Rabatel, A., Viani, A. and Soruco, A.: Technical note: A low-cost 

albedometer for snow and ice measurements – theoretical results and application on a tropical mountain in Bolivia, 

Geoscientific Instrumentation, Methods and Data Systems, 7(2), 169–178, doi:10.5194/gi-7-169-2018, 2018. 
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Summary list of all relevant changes made in the manuscript 

 Sections Changes 

 
Author info 

We changed the correspondence email address as 

wangshujie23@gmail.com 

Text 

1 Introduction  

We rewrote paragraphs #5 and #6 to address the reviewers’ 

comments, particularly about using the spectral feature of 

chlorophyll-a instead of the purpurogallin pigment.  

2.1 Study area and 

previous field 

observations 

We added more details about the field datasets and how we used 

them in this study. 

3.2 Chlorophyll-a 

indices and 

impurity index 

We added more details on the different indices, particularly the 

discussion about the impurity index as Reviewer#2 suggested.  

3.3 Sensitivity 

analysis based on 

radiative transfer 

modelling 

We added this new section in this revision to describe how we used 

the SNICAR model to examine the sensitivity of 2BDA index to dust 

presence.  

4.1 Comparison 

between different 

ratio indices 

We rewrote most of this section as Reviewer#2 suggested. In the 

course of making corrections to the manuscript we discovered a 

minor error in calculating the 3BDA index (which was not used to 

produce any results in the manuscript). The change does not affect 

any of our results or conclusions and we have corrected the 

manuscript with the correct 3BDA values. 

4.2 Sensitivity 

analysis of 2BDA 

index to non-algal 

factors 

We added this new section to analyze and discuss the sensitivity of 

the 2BDA index to dust presence and ice properties.  

4.3 Spatial 

variability 
We improved the readability of this section.  

4.4 Interannual 

variability 

For clarity, we moved some of the text to this new section and 

improved the writing for better readability.  

4.5 Seasonal 

trends of algal 

growth over July 

and August 

We improved the writing of this section and provided more 

methodological details about calculation of population doubling 

times.  

5 Discussion 

We restructured the Discussion into three sections: 5.1 Sensitivity to 

subpixel variability, 5.2 Relationship between regional climate 

model albedo bias and glacier algae, and 5.3 Potential drivers for 

glacier algae variability. 

5.1 Sensitivity to 

subpixel 

variability 

We added this new section to discuss the sensitivity of 2BDA index 

to the scale of MERIS data, by performing spectral linear mixing 

experiments using the field data and SNICAR-simulated data.   
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5.3 Potential 

drivers for glacier 

algae variability 

We restructured and rewrote this part by incorporating Reviewer#2’s 

comments.  

Figures 
Figure 1 

Added more descriptions about the field spectrum in the figure 

caption 

Figure 2 

Added more field spectra of glacier algae-laden ice based on Stibal 

et al. (2017), to illustrate the consistency of the chlorophyll-a 

spectral signal between MERIS, WorldView-2, and field data.  

Figure 3 

Revised as Reviewer#2 suggested, and added a subplot to show the 

reflectance spectra of different surface types normalized to the bare 

ice spectra.  

Figure 4 

New figure added in this revision, to support the sensitivity analysis 

of the 2BDA index to dust presence based on SNICAR simulations 

and MERIS data. 

Figure 5 
Figure 4 in the original manuscript. Changed color scheme for better 

illustrating the spatial variability of different indices. 

Figure 6 
Figure 5 in the original manuscript. Changed as Reviewer#2 

suggested. Changed color scheme for better illustration.  

Figure 8 
Changed subplots (b) and (c) by removing the pixels with P value 

greater than 0.05.  

Figure 11 Changed as Reviewer#2 suggested by adding color bar. 

Figure 13 

Added the time series of 2BDA index and maximum bare ice extent 

as a subplot, and moved the original subplots (a) and (b) to Appendix 

B as Figure B1.  

Other changes Removed the original Figure 7 from the manuscript. 

Appendix 

Figure A1 

New supplementary figure added in this revision, to show the 

different spatial variability of different indices varied with elevation 

levels. 

Figure A2 

New supplementary figure added in this revision, to illustrate the 

wavy patterns potentially caused by dust outcropping at 1000-1200m 

elevation based on high-resolution WorldView-2 imagery.  

Figure A3 

New supplementary figure added in this revision, to show the 

interannual variability of 2BDA index and impurity index at the 

elevation levels. 

Figure A4 Changed from the original Figure A1. Added the maps of P values. 

Figure A5 

New supplementary figure added in this revision, to show the 

temporal trends of 2BDA index through mid-July to Mid-August in 

different years at sites DS (a) and KAN_M (b). 

Figure B1 
Moved from the original Figure 13(a) and (b). Changed color 

scheme to avoid ambiguity as noted by Reviewer#2.  

Table C1 

New supplementary table added in this revision, obtained from the 

field data of Cook et al. (2020), which provides additional evidence 

showing the positive correlations between 2BDA index and algal cell 

abundance.  

Figure C2 
New supplementary figure added in this revision, plotted based on 

Table C1.  

Figure C3 

New supplementary figure added in this revision, showing the 

spectral linear mixing results to support the discussion section 5.1 

about the scale issues.  
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Abstract. Albedo reduction due to light-absorbing impurities can substantially enhance ice sheet surface melt by increasing 10 

surface absorption of solar energy. IceGlacier algae have been suggested to play a critical role in darkening the ablation zone 

in southwest Greenland. It was very recently found that the Sentinel-3 Ocean and Land Colour Instrument (OLCI) band ratio 

R709nm/R673nm can characterize the spatial patterns of iceglacier algal blooms. However, Sentinel-3 was launched in 2016 and 

current data are only available over three melting seasons. (2016-2019). Here, we demonstrate the capability of the MEdium 

Resolution Imaging Spectrometer (MERIS) for mapping iceglacier algae from space and extend the quantification of 15 

iceglacier algal blooms over southwest Greenland back to the period 2004–2011. Several band ratio indices (MERIS 

chlorophyll-a indices and the impurity index) were computed and compared with each other and against field measurements. 

The results indicate that the MERIS two-band ratio index (2BDA) R709nm/R665nm is very effective in capturing the spatial 

distribution and temporal dynamics of iceglacier algal growth on bare ice in July and August. We analyzed the interannual 

(2004–2011) and summer (July–August) trends of algal abundancedistribution and found significant increasing trends of 20 

iceseasonal and interannual increases in glacier algae close to the Jakobshavn Isbrae Glacier and along the middle dark zone 

between the altitudes of 1200 m and 1400 m. Using broadband albedo data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) we quantified the impact of iceglacier algal growth on bare ice albedo, finding a 0.02~0.04 

reduction rate in albedo for each algal population doubling. Our analysis indicates the strong potential for the satellite algal 

index to be used to reduce bare ice albedo biases in regional climate model simulations. 25 

1 Introduction 

Snow and ice play a critical role in regulating the global energy balance through high surface albedos (Skiles et al., 2018; 

Warren, 1982). The presence of light-absorbing impurities, including abiotic materials (such as mineral dust and black 

carbon; e.g. Flanner et al., 2007; Goelles and Bøggild, 2017; Wientjes et al., 2011) and biogenic materials primarily 

produced by microbial processes (Chandler et al., 2015; Ryan et al., 2018; Stibal et al., 2017; Williamson et al., 2019), can 30 
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substantially reduce the surface albedo of snow and ice and thus enhance surface melt. Increased meltwater further decreases 

surface albedo, triggering a positive feedback mechanism between meltwater production and albedo decaydecline (Box et 

al., 2012; Tedesco et al., 2011, 2016). 

Snow algae and iceglacier algae are among the main microbial communities in supraglacial environments, which are 

distributed in Greenland, Antarctica, Alaska, Svalbard, Himalayathe Himalayas, Siberia, the Rocky Mountains, andor the 35 

European Alps (Anesio et al., 2017). Algal growth on glaciers and ice sheets not only plays an important role in local and 

regional carbon and nutrient cycles but is also crucial for regulating surface melt processes through the reduction in snow 

and ice albedo resulting from dark algae pigmentation (Lutz et al., 2014; Remias et al., 2012; Stibal et al., 2017; Yallop et 

al., 2012). Snow algae (mainly Chlorophyceae) are psychrophiles residing in glacial snow or snowfieldsnowfields and bloom 

on the snow surface after the onset of melting (Lutz et al., 2016, 2017). The visible colour of snow algae varies from green, 40 

to yellow to orange and red, and is determined by the pigments (chlorophylls, xanthophylls, and secondary carotenoids, etc.) 

produced in different life stages. Ice (Anesio et al., 2017). Glacier algae (Zygnematales) are different from snow algae, and 

grow on the bare ice glacier surface when liquid water, nutrients, and photosynthetically active radiation are sufficient (Lutz 

et al., 2018; Stibal et al., 2017; Yallop et al., 2012). The earliest documentation about iceglacier algae dates to 1872.  During 

an expedition to Greenland in 1870, Adolf Erik Nordenskiöld and fellow explorers found ‘a brown polycellular alga’ on the 45 

ice surface and within cryoconite holes (Nordenskiöld, 1872). Several field studies (Lutz et al., 2018; Stibal et al., 2015, 

2017; Uetake et al., 2010; Yallop et al., 2012) have investigated the species composition and cell structures of iceglacier 

algal communities. The primary iceglacier algal species are Ancylonema nordenskiöldii, Mesotaenium berggrenii, and 

Cylindrocystis brebissonii, which are green microalgae and produce pigments including chlorophyll-a, chlorophyll-b, beta-

carotene, lutein, and violaxanthin. Ancylonema nordenskiöldii and Mesotaenium berggrenii also generate a phenolic 50 

purpurogallin pigment (purpurogallin carboxylic acid-6-O-b-D-glucopyranoside) which absorbs ultraviolet and visible 

radiation (Remias et al., 2012; Yallop et al., 2012). It has been suggested that this purpurogallin pigment accounts for the 

brownish-grey colour of the algae-laden ice (TedstoneRemias et al., 20172012; Yallop et al., 2012). 

Recent studies have revealed a significant impact of iceglacier algal blooms on bare ice albedo in Greenland (Stibal et al., 

2017; Tedstone et al., 2020; Williamson et al., 2018). Along the ablation zone over the southwest Greenland Ice Sheet, a 55 

dark ice band appears every summer season (Shimada et al., 2016; Tedstone et al., 2017). It was previously thought that this 

surface darkening was primarily caused by outcropping of ancient dust (Wientjes and Oerlemans, 2010). Recently, 

widespread iceglacier algal blooms were observed in the field and the dark pigments generated by iceglacier algae were 

argued to be a primary control on the presence of the dark band (Ryan et al., 2018; Stibal et al., 2017; Williamson et al., 

2018).; Williamson et al., 2020). Field sampling and spectral measurements indicate that iceglacier algae have a greater 60 

effect on albedo reduction than other nonalgal impurities (Stibal et al., 2017). However, current field measurements of 

iceglacier algal abundance and surface albedo are limited to a very few sites and melting seasons, and it is logistically 

difficult to use the laboratory techniques to measure iceglacier algae at a regional scale. The impact of iceglacier algal 

development on surface albedo over large spatial and temporal scales has not yet been quantified.  
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Remote sensing provides a synoptic and efficient way to characterize geospatial phenomena across large spatial scales. To 65 

date, using remote sensing methods to quantify snow or iceglacier algae extent or concentration is limited to a few studies 

(e.g. Cook et al., 2020; Ganey et al., 2017; Huovinen et al., 2018; Painter et al., 2001; Takeuchi et al., 2006; Wang et al., 

2018). Painter et al. (2001) estimated the algal abundance of the snow alga Chlamydomonas nivalis over a snow-covered 

region in the Sierra Nevada of California from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral 

imagery based on chlorophyll-a absorption features between 630 nm and 700 nm. Despite the high capability of airborne 70 

hyperspectral imaging data for detecting chlorophyllchlorophylls, the availability of hyperspectral imaging data is 

constrained over space and time. Several studies (e.g. Takeuchi et al. 2006; Ganey et al. 2017; Huovinen et al. 2018) mapped 

red snow algae based on carotenoid absorption features using satellite red and green bands. However, 

Mapping glacier algae using remote sensing is complicated by a number of factors, including the complex pigmentation of 

glacier algae, insufficient spectral and spatial resolution of satellite data, and the impact of dusts and underlying ice optics 75 

that are not yet well understood. The use of carotenoid features in mapping iceis not applicable to glacier algae is 

questionable, as ice algaethey do not, to our knowledge, generate secondary carotenoids like snow algae, and additionally, 

the spectral characteristics of dirt may resemble those of carotenoids (Painter et al., 2001; Takeuchi et al., 2006). While 

theThe brownish-grey colour of iceglacier algae is attributed to the purpurogallin pigment, pigments, but the characteristic 

absorption peaks of purpurogallin pigments are concentrated in the detailedultraviolet spectrum at 278 nm, 304 nm, and 389 80 

nm (Remias et al.,2012), which are not detectable by current satellite sensors. At visible wavelengths, the absorption by 

purpurogallin pigments is quite uniform, making it difficult to differentiate between glacier algae and other dark impurities 

from satellite data based on purpurogallin spectral and optical properties of purpurogallin are not well-understood, and the 

proper remote sensing bands/wavelength necessary to detect it are not yet known. Instead,.  

The spectral signature of chlorophyll-a, the primary photosynthetic pigment, is generally used as a  generated by glacier 85 

algae, however, is well-suited for mapping glacier algae using satellite remote sensing techniques. Chlorophyll-a is widely 

used as a biomarker to detect algaeor quantify algal blooms from remote sensing data owing to its unique spectral signatures 

between 665-710 nm ((e.g. Gitelson, 1992; Painter et al., 2001; ), and it was recently found that the spectral signatures of 

chlorophyll-a in the red and near-infrared (NIR) region can be utilized for mapping glacier algae (Wang et al., 2018). The 

red-NIR spectral signature of chlorophyll-a, i.e. absorption at 665-681 nm and reflectance around 709 nm, is present in field 90 

hyperspectral data collected over ice surfaces covered by glacier algae (Cook et al., 2020; Stibal et al., 2017). The 

concentration of chlorophyll-a is commonlygenerally used as a proxy for algal biomass, upon which  or abundance, and 

based on this a number of algorithms have been developed to quantify the algal biomass contained in algal blooms occurring 

in aquatic systems (Beck et al., 2016; Blondeau-Patissier et al., 2014; Matthews, 2011; Xu et al., 2019a, 2019b). 

Quantification of ice algae biomass from satellite data based on the chlorophyll-a feature has received less attention since the 95 

chlorophyll-related satellite bands designed for land generally have coarse spectral resolutionsUsing the two-band ratio 

(R709nm/R673nm) method, Wang et al. (2018) quantified the spatial distribution of glacier algal blooms in southwest Greenland 

over the summer seasons in 2016 and 2017 from the Sentinel-3 Ocean and Land Colour Instrument (OLCI) data. Despite the 
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moderate (300 m) spatial resolution, the derived spatial pattern based on the red-NIR chlorophyll-a signature matches well 

with previous field observations (Stibal et al., 2015; Stibal et al., 2017; Williamson et al., 2018). As for higher spatial 100 

resolution remote sensing data, Cook et al. (2020) applied a random forest method to classify unmanned aerial vehicle 

(UAV) and the Sentinel-2 Multispectral Instrument (MSI) data for identification of high-algae biomass and low-algae 

biomass areas. However, these data have limitations in terms of spatial coverage, temporal resolution, and spectral 

resolution. To establish a long-term time series quantification of glacier algae distribution and study the seasonal process of 

glacier algal blooms and the impact on albedo change, the use of chlorophyll-a-sensitive ocean color satellite sensors is 105 

promising. 

Recently, Wang et al. (2018) demonstrated the capability of the The Sentinel-3 Ocean and Land Colour Instrument (OLCI) 

in mapping ice algae based on the spectral signatures of chlorophyll-a at the red and near-infrared (NIR) spectrum range. 

OLCI is equipped with 21 spectral bands which includeincluding seven narrow chlorophyll-sensitivea bands. OLCI’sThe 

advanced band configuration of OLCI makes it a valuable sensor for mapping algal blooms not only in water but also on ice. 110 

The spatial pattern of ice algal abundance derived from the 709 nm to 673 nm OLCI reflectance ratio is consistent with field 

measurements collected on the southwest Greenland ice sheet (Wang et al., 2018). OLCI was designed based on the opto-

mechanical and imaging design of MEdium Resolution Imaging Spectrometer (MERIS) onboard the European Space 

Agency (ESA)’s Envisat satellite, operational from March 2002 to April 2012, which collected data in 15 spectral bands 

between 390 nm and 1040 nm. MERIS features in particular a 709 nm band where high levels of chlorophyll-a produce a 115 

characteristic reflectance peak. MERIS data have been broadly used for atmospheric and oceanic studies, with the primary 

goal of measuring the concentration of chlorophyll pigments-a and suspended sediments in oceans, coastal waters, and 

inland lakes (Gower et al., 2008; Palmer et al., 2015).  MERIS features in particular a 709 nm band where high levels of 

chlorophyll-a have a characteristic reflectance peak. The similar2015). Similar configurations of the chlorophyll-targeted 

bands in terms of wavelength and bandwidth between MERIS and OLCI (Fig. 1a) point to the great potential of using 120 

MERIS data to reconstruct the spatial distribution of iceglacier algae prior to 2012. In this study, we make use of the 

capability of MERIS for mapping ice algal blooms, detecting chlorophyll-a to extend the quantification of iceglacier algae 

extent and abundance in southwest Greenland back to the 2004–2011 period, and further quantify the impact of iceglacier 

algal blooms on bare ice albedo by combining the multiyear time series data of MERIS and MODIS.  

2 Study area and data 125 

2.1 Study area and previous field observations 

Our study area is located between 66-71°N and 47-51°W in southwest Greenland. This area is featured byfeatures high 

ablation rates and low surface albedos during summertime (Alexander et al., 2014; Fettweis et al., 2011; Moustafa et al., 

2015; Stroeve et al., 2013). With the progression of surface melt over time, a dark ice zone forms rapidly and reaches a 

maximum area from mid-July to mid-August (Tedstone et al., 2017; Wang et al., 2018). The bare ice and dark ice areas 130 
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areareal extent is highly correlated to thewith meltwater production and surface runoff simulated by the regional climate 

model Modèle Atmosphérique Régionale (MAR) (Wang et al. 2018). The peakingpeak time of surface darkening coincides 

with the occurrence of iceglacier algal blooms observed in the field. The ice alga Ancylonema nordenskiöldii and 

Mesotaenium berggrenii are the dominant species found in southwest Greenland during July and August (Lutz et al. 2018; 

Yallop et al. 2012; Williamson et al. 2018). Considering the growth season and surface habitat of iceglacier algae, we focus 135 

our analysis on bare ice in July and August.  

There are a limited number of field studies measuring ice algal abundance and reflectance spectra over our study area. Stibal 

et al.glacier algal abundance and reflectance spectra over the study area (Cook et al., 2020; Stibal et al., 2015; Stibal et al., 

2017; Williamson et al., 2018), and no field measurements were coincident with the acquisition time of the Envisat MERIS 

data. Here we utilized the previous field observations in a qualitative way for comparison purposes, and extended the derived 140 

empirical function from the Sentinel-3 OLCI data (Wang et al., 2018) to MERIS data for characterizing the temporal 

variations of algal population with surface albedo change. We utilized field data first presented by Stibal et al. (2015) and 

Stibal et al. (2017) to validate patterns of spatial variability in glacier algae distribution and to compare with satellite data to 

validate the chlorophyll-a spectral signal. Stibal et al. (2015) collected shallow surface ice cores and measured algal 

abundance over 14 sites in Greenland during May-September 2013, inof which the sites DS (69°28.56'N, 49°34.838'W), 145 

KAN_M (67°3.964'N, 48°49.356'W), and KAN_L (67°5.798'N, 49°56.303'W) are within our study area. KAN_M and 

KAN_L (Fig. 4a) are located along the Kangerlussuaq transect (K-transect), and DS (Fig. 4a) is located near to the 

Jakobshavn Isbrae Glacier. TheyStibal et al. (2015) documented the algal abundance (mean ± standard deviation values) 

averaged over the sampling periodseason (2013 summer) for each site, finding cell counts of 66±31 cells/ml (KAN_L), 

5688±3147 cells/ml (KAN_M) and 10621±2073 cells/ml (DS), respectively. During the 2014 summer season, Stibal et al. 150 

(2017) collected both algal abundance and hyperspectral reflectance measurements via an Analytical Spectral Devices 

(ASD) Field Spectrometer over a site near the automatic climateweather station S6 (67°04.779'N, 49°24.077'W) on the K-

transect. They collected multiple samples each observation day and published the datasets of iceglacier algal abundance and 

reflectance spectra at a 10 nm spectral resolution (Stibal et al., 2017). In this study,Here we used thesethe field 

measurements both qualitatively and quantitatively as ground truthhyperspectral data to compare with the satellite spectra to 155 

validate the patterns of ice algal blooms derived from satellite datachlorophyll-a signal.  

2.2 Satellite data 

2.2.1 MERIS Level-2 data 

We used the full spatial resolution (300 m) MERIS Level-2 data acquired during July and August from 2004 to 2011 

(https://earth.esa.int/web/guest/-/meris-full-resolution-full-swath-6015). The MERIS Level-2 data were processed from the 160 

Level-1b data (top-of-atmosphericatmosphere radiances in 15 spectral bands shown in Fig. 1a). ESA adopted different 

processing techniques to generate the Level-2 data over land, water, and clouds. The Level-2 data over land include the 

https://earth.esa.int/web/guest/-/meris-full-resolution-full-swath-6015
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normalized surface reflectance in 13 spectral bands, corrected for the atmospheric effects of gaseous absorption and 

stratospheric aerosols (ESA, 2011). The full resolution Level-2 data from May 2002 to April 2012 were released at the 

MERCI file archive (https://merisfrs-merci-ds.eo.esa.int/) in February 2015. We identified 146 cloudless MERIS images 165 

acquired on 135 days from July to August between 2004 and 2011. Since there were no cloudless images available for the 

2002 summer season and only three images for the 2003 summer over the study area, we excluded these two years from our 

analysis. For those images affected by clouds over the study area, we checked the MERIS Level-2 Flag data including the 

pixel types classified as water, land, and cloud. However, the Flag data fail to correctly capture all the cloud pixels due to 

algorithm limitations of the algorithm in differentiating clouds from other bright surfaces like snow and ice (ESA, 2011). In 170 

this regard, we manually removed the cloud pixels (patches) from each MERIS image. 

 

 

Figure 1:. Spectral response functions of (a) MERIS (red), OLCI (blue), and (b) MODIS (black), and WorldView-2 (orange) over 

the spectrumwavelength range of 350-1050 nm. All the MERIS and OLCI bands are within thisthe 350-1050 nm range, where 175 
photosynthetic and photoprotective pigments have spectral responses. Four MODIS bands (over land) and eight WorldView-2 

bands are within this spectrumspectral range, but with much coarser spectral resolutions. In both sub-plots, the dashed line shows 

hyperspectral ASD field spectroradiometerspectrometer data (right vertical axis) collected over algae-abundant ice (by Stibal et 

al., . (2017), containing the chlorophyll-a signal at the red-NIR wavelengths (red highlighted region). The plotted field spectrum 
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(sample code: Ab.25.06.14.D1) was measured on 25 June 2014 at 67°04.779'N, 49°24.077'W (near the automatic weather station S6 180 
along the K-transect), with an algal abundance measurement of 121664 cells/ml (Stibal et al., 2017). 

2.2.2 MODIS data 

We used the MODIS/Terra daily surface reflectance product (MOD09GA Version 6) and daily snow cover product 

(MOD10A1 Version 6). The MOD09GA data include the atmospherically corrected surface reflectance atfor the MODIS 

bands of 620-670 nm, 841-876 nm, 459-479 nm, 545-565 nm, 1230-1250 nm, 1628-1652 nm, and 2105-2155 nm MODIS 185 

bands (Fig. 1b). The MOD10A1 data include broadband albedo estimated based on the MOD09GA product. We used the 

version 6 data which are greatly improved in sensor calibration, cloud detection, and aerosol retrieval and correction relative 

to version 5 (Casey et al., 2017; Lyapustin et al., 2014; Toller et al., 2013). Version 6 data are encouraged to be 

usedrecommended for assessing temporal variability of surface albedo assince they are corrected for sensor degradation 

issues impactingthat impacted earlier versions (Casey et al., 2017). The spatial resolution of the MODIS datasets is 500 m. 190 

We resampled the MODIS data to 300 m using a nearest neighbour resampling method. The cloud masks in the MOD10A1 

data were applied to exclude the clouds. 

2.2.3 WorldView-2 imagery 

In addition to those previous field measurements, weWe also used WorldView-2 imagery to validate the spectral signal of 

iceglacier algae oncaptured by MERIS data. The WorldView-2 satellite was launched in October 2009, collecting data in 195 

nine spectral bands (titled panchromatic, coast, blue, green, yellow, red, red edge, NIR, and NIR2, Fig. 1b) at a very high 

spatial resolution (~2 m for the multispectral bands). WorldView satellites have high geolocation accuracy owing to their 

three-axis stabilized platform equipped with high-precision GPS and attitude sensors (Wang et al., 2016). Although the 

WorldView-2 spectral bands have wide bandwidths, the red (630-690 nm) and red edge (705-745 nm) bands can capture the 

chlorophyll-a signal (Fig. 1b), whichand have been used for mapping algal species in nearshore marine habitats (Reshitnyk 200 

et al., 2014). We obtained WorldView-2 imagery acquired in July and August (2009-2011) from the Polar Geospatial Center 

(PGC, https://www.pgc.umn.edu/).https://www.pgc.umn.edu/). The images were provided as orthorectified top-of-

atmospheric radiances in eight multispectral bands. We performed atmospheric corrections to the radiance images and 

obtained surface reflectance images using the MODerate resolution atmospheric TRANsmission (MODTRAN) based Fast 

Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) (Anderson et al., 2002). The sub-Arctic model and rural 205 

aerosol model were used for correction of atmospheric effects caused by water vapour and aerosols (Legleiter et al., 2013).  

2.3 Modèle Atmosphérique Régionale (MAR) outputs 

The regional climate model Modèle Atmosphérique Régionale (MAR, Fettweis et al., 2017) combines atmospheric 

modelling (Gallée and Schayes, 1994) with the Soil Ice Snow Vegetation Atmosphere Transfer Scheme (De Ridder and 

Gallée, 1998) to simulate surface energy balance and mass balance processes over the Greenland and Antarctic ice sheets. In 210 

https://www.pgc.umn.edu/
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this study, we examined the relationship between the MAR albedo bias (e.g. Alexander et al., 2014; Moustafa et al., 2015) 

and iceglacier algal blooms. The snow albedo in MAR is determined by snowpack temperature, temperature gradient, and 

liquid water content, and the bare ice albedo is scaled based on the accumulated surface water (Alexander et al., 2014). Since 

the MAR albedo scheme does not account for impurities, there are significant biases between thein MAR albedo and 

MODIS albedo over the southwest Greenland ablation zone (Alexander et al., 2014). We used the 7.5 km resolution MAR 215 

v3.9 daily outputs, forced by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim; 

Dee et al., 2011). MAR v3.9 features minor bug fixes and differences in tuning relative to MAR v3.5.2 (Fettweis et al., 

2017).  

3 Methods 

3.1 Bare ice mapping 220 

We mapped bare ice cover from each MERIS image using a thresholding method applied to surface reflectance data (e.g. 

Shimada et al., 2016; Tedstone et al., 2017; Wang et al., 2018). To be consistent with previous studies, we used MODIS-

derived bare ice maps as a reference to determine the optimal threshold for the MERIS data. We removed tundra and ocean 

pixels using the MEaSUREs Greenland Ice Mapping Project classification mask (Howat et al., 2014). We selected 31 

MOD09GA images that were coincident with MERIS overpasses and were cloud free over the study area. Following 225 

Tedstone et al. (2017), we applied a threshold to the MODIS 841-876 nm reflectance (R841-876 nm), using the criterion R841-876 

nm<0.6 to extract bare ice reference maps from selected MODIS images. For coincident MERIS images, we iteratively 

applied a threshold value ranging from 0 to 1, increasing by 0.01 at each iteration to the MERIS band 13 (865 nm) and 

compared the MERIS and MODIS bare ice cover. The optimal threshold was determined based on the F1 score accuracy 

metric, which is the harmonic average of precision and recall, defined as followingfollows:  230 

 

F1 = 2 * (precision * recall) / (precision + recall)                                                                                                                       

(1) 

 

where precision is calculated usingas NTP / (NTP + NFP) and recall is calculated usingas NTP / (NTP + NFN). NTP is the number 235 

of true positives (the number of pixels classified as bare ice by both the MODIS and MERIS data),  NFP is the number of 

false positives (the number of pixels that are only classified as bare ice by the MERIS data), and NFN is the number of false 

negatives (the number of pixels that are only classified as bare ice by the MODIS data). AverageThe average F1 score was 

calculated for each threshold based on those 31 image pairs. The threshold of 0.53 yielded the highest F1 score (0.957). We 

also excluded supraglacial lakes using the modified normalized difference water index (MNDWI, Yang and Smith, 2013), 240 

defined as: 
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MNDWI = (Rblue - Rred) / (Rblue -+ Rred)                                                                                                                                        

(2) 

 245 

where Rblue is the reflectance at 442 nm (MERIS band 2) and Rred is the reflectance at 665 nm (MERIS band 7). Pixels with 

MNDWI greater than 0.14 (Yang and Smith, 2013) were identified as lake pixels and excluded from analysis. Using the 

same iterative method described above, we also determined an optimal threshold of 0.47 to extract dark ice pixels (pixels 

with bare ice containing substantial surface impurities) using the 620 nm MERIS band, following Shimada et al. (2016) and 

Tedstone et al. (2017). This band was commonlyhas been used to delineate dark ice by applying a threshold based on the 250 

assumption that visible wavelengths including the red band are mostly affected by light-absorbing impurities rather than 

surface water and grain size variations (Shimada et al., 2016; Tedstone et al., 2017; Wang et al., 2018).  

3.2 Ice algae mapping from MERIS spectra ratio Chlorophyll-a indices and impurity index 

Chlorophyll-a is the primary photosynthetic pigment generated by iceglacier algal cells (Williamson et al., 2018; Yallop et 

al., 2012). Hyperspectral field measurements (Fig. 2d, Cook et al., 20192020; Stibal et al., 2017) and the Sentinel-3 OLCI 255 

spectra (Wang et al., 2018) both showexhibit the typical spectral signatures of chlorophyll-a at the red and NIR wavelengths 

over the algae-abundant ice surface, featured bysurfaces, featuring a reflectance peak around 709 nm and absorption features 

around 665-681 nm. Pure ice, in contrast, has increased absorptionlower reflectance at 709 nm as compared to shorter 

wavelengths (Hall and Martinec, 1985). The magnitude of the reflectance peak at 709 nm relative to 665-681 nm is highly 

dependent on the chlorophyll-a content (Binding et al., 2013; Gitelson, 1992). Figure 2d shows the MERIS spectra over a 260 

dark ice pixel, compared with the WorldView-2 spectra and the field hyperspectral measurements by Stibal et al. (2017). The 

selected MERIS pixel, located near to the Jakobshavn Isbrae Glacier, is close to the site DS where Stibal et al. (2015) 

measured a high abundance of iceglacier algae during the 2013 summer season. The MERIS image (Fig. 2a) was acquired on 

5 July 2010, and the WorldView-2 image (Fig. 2b and Fig. 2c) was acquired on 9 July 2010. The field hyperspectral curves 

shown in Fig. 2d were measured over dark ice (R620nm<0.4) with high algal abundance (greater than 10000 cells/ml), 265 

featuring chlorophyll-a signatures in the red-NIR region. Despite the differences in absolute values of surface reflectance, the 

spectral shapes of the MERIS, WorldView-2 and field spectra match quite well, particularly with regard to the presence of 

the chlorophyll-a, validating the ability of MERIS data to capture the glacier algae spectral signal, which validates the ice 

algal signal in the MERIS data.  
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Figure 2:. Comparison between the MERIS, WorldView-2, and field spectra over algae-abundant dark ice. (a) MERIS Level-2 

image (true colour composite) acquired on 5 July 2010. Pixels with missing data are shown in light blue. (b) WorldView-2 surface 

reflectance image acquired on 9 July 2010 over the square area in (a). (c) Zoomed-in WorldView-2 image, with the area (red 275 
square) corresponding to the selected MERIS pixel in (a). (d) Reflectance spectra comparison betweenfor MERIS, and 

WorldView-2, (2010), and the field hyperspectral measurements collected over the algae-abundant dark ice at S6 by Stibal et al. 

(2017).) in 2014. 

In order to identify the best means of quantifying iceTo map glacier algae using the chlorophyll-a spectral signature, we 

calculated a number of different band ratio several MERIS chlorophyll-a indices (Table 1), including the well-established 280 

MERIS chlorophyll indices two-band NIR–Red index (2BDA), three-band NIR–Red index (3BDA), normalized difference 

chlorophyll index (NDCI), and maximum chlorophyll index (MCI) (Moses et al., 2012; Mishra and Mishra, 2012; Binding et 

al., 2013) and the Impurity index (Dumont et al., 2014).). The two-band (2BDA) and three-band (3BDA) red-NIR 

algorithms3BDA methods have been widely applied to estimation ofestimate chlorophyll-a concentration in aquatic systems 

(using MERIS data (Beck et al., 2016; Moses et al., 2009; Xu et al., 2019a, 2019b), and have proved to be highly accurate to 285 

retrievefor chlorophyll-a contentretrieval in turbid coastal waters with characterized by complex optical properties from 
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MERIS data ((Moses et al., 2012). The normalized difference chlorophyll index (NDCI,  (Mishra and Mishra, 2012) was 

defined followingbased on the concept of the normalized difference vegetation index (NDVI). The maximum chlorophyll 

index (MCI) measures the height of the 709 nm reflectance peak relative to the baseline interpolated by the reflectances 

atobtained by interpolating reflectance between 681 nm and 753 nm (Binding et al., 2013). In addition, we also calculated 290 

the impurity index (Dumont et al., 2014) to compare with the chlorophyll-a indices. The Impurityimpurity index is different 

from the chlorophyll indices mentioned above, as it does not utilizeratio between the chlorophyll-anatural logarithms of the 

spectral characteristics. This indexalbedos at the green and NIR bands, and was constructed to quantify the snow impurity 

content over the Greenland Ice Sheet upon the assumption that the visible wavelengths are much more sensitive to impurity 

content than the NIR wavelengths. Radiative transfer modelling experiments have shown that the impurity index is less 295 

affected by the snow grain size variations than the presence of impurities (Dumont et al., 2014) based on the assumption that 

impurities decrease the reflectance at visible bands more than the NIR bands.).  

 

Table 1. Details on theEquations and MERIS bands used for calculation of different ratio indices. 

Indices Equation MERIS bands 

Two-band NIR–Red index (2BDA) R709nm / R665nm B7, B9 

Three-band NIR–Red index (3BDA) (R665nm
-1 - R709nm

-1) /* R753nm B7, B9, B10 

Normalized Difference Chlorophyll Index (NDCI) (R709nm - R665nm) / (R709nm + R665nm) B7, B9 

Maximum Chlorophyll Index (MCI) (R709nm - R681nm) - (R753nm - R681nm) * (709 - 681) / (753 - 

681) 

B8, B9, B10 

Impurity index  ln (R560nm) / ln (R865nm) B5, B13 

 300 

3.3 Sensitivity analysis based on radiative transfer modelling 

To evaluate the sensitivity of chlorophyll indices to dust presence, we performed radiative transfer modelling tests using the 

Snow, Ice, and Aerosol Radiation model (SNICAR; Flanner et al., 2007, 2009). SNICAR is a multi-layer, two-stream 

radiative transfer model for simulating the spectral albedos of snow over the 300-5000 nm wavelength range (at a 10 nm 

spectral resolution), accounting for various factors including illumination conditions, snow grain size, snow layer properties, 305 

and dust concentrations, etc. The SNICAR online tool (available at snow.engin.umich.edu) allows for simulating the 

radiative effects of dust in four size bins, in ranges of 0.1-1.0, 1.0-2.5, 2.5-5.0, and 5.0-10.0 μm. Dust optical properties in 

SNICAR are based on an estimate of global-mean characteristics approximated as a mixture of quartz, limestone, 

montmorillonite, illite, and hematite. We simulated the spectral albedos for varying sizes and concentrations of dust under 

the following conditions: direct incident radiation, a solar zenith angle of 60 degrees, clear sky conditions for Summit, 310 

Greenland, a snow grain effective radius of 1500 μm (approximating the ice surface), a snowpack thickness of 100 m, a 

snowpack density of 400 kg/m3, a range of dust concentrations (0.1, 0.3, 0.5, 0.8, 1, 1.5, 2, 2.5, 3, 5, 8, 10, 30, 50, 80, 100, 



13 

 

300, 500, 800, 1000, 1500, 2000, 2500, and 3000 ppm), and four dust sizes (dust 1: 0.1–1.0μm; dust 2: 1.0–2.5μm; dust 3: 

2.5–5.0μm; dust 4: 5.0–10.0 μm). We tested different values of snow grain effective radius (500 μm vs. 1500 μm) and snow 

density (400 kg/m3 vs. 900 kg/m3). The snow density value has a negligible effect on the simulation results. The simulated 315 

spectra using a snow grain effective radius of 1500 μm is the best approximation to the MERIS spectra for clean bare ice. 

4 Results 

4.1 Comparison between different ratio indices 

Figure 3 shows the MERIS spectra over four distinct sites. within our study area to illustrate the spectra associated with 

different surface types. Each site represents a typical surface type such as, including clean bare ice, dark ice with a 320 

significant chlorophyll-a signal, dark ice with a less significant chlorophyll-a signal, orand a supraglacial lake. Figure 3b 

shows that each surface type is characterized by a distinct spectral curve, particularly . The difference between the spectral 

curves for the two dark ice sites. is particularly notable. Figure 3c shows the normalized spectral curves relative to the clean 

ice spectrum. Both of thesethe dark ice sites have a surface reflectance at 620 nm of less than 0.47 and are classified as ‘dark 

ice’ based on the thresholding method discussed above (Shimada et al., 2016; Tedstone et al., 2017). The difference is 325 

thatHowever, the northern dark ice site has a chlorophyll-a spectral signature between 665 nm and 753 nm that matches the 

field spectra of algae-abundant ice (Fig. 2d), while at the southern dark ice site, the reflectance peak at 709 nm is much less 

pronounced. The differences illustrate that pixels classified as “dark ice” can have different spectral properties, and in 

particular differences associated with reflectance characteristics of chlorophyll-a. 

We calculated the ratio indices including 2BDA, 3BDA, NDCI, MCI, and Impurity index impurity indices over bare ice 330 

(R865 nm<0.53) for each MERIS image. The chlorophyll indices of 2BDA, 3BDA, and NDCI use similar spectral bands and 

are in general very highly correlated to each other. Table 2 lists the ratio indices and the surface reflectance at 620 nm over 

thosethe four sites shown in Fig. 3a based on thea MERIS image acquired on 14 August 2011. It is shown that , to illustrate 

the differences between indices. The 2BDA, 3BDA, and NDCI chlorophyll-a indices of 2BDA, 3BDA, and NDCIuse similar 

spectral bands and are in general well-correlated; they are highest over the northern dark ice site where we identified the 335 

chlorophyll signal, and lowest over the supraglacial lake. InThe MCI chlorophyll-a index, in contrast, the chlorophyll index 

of MCI cannot well represent the chlorophyll signal we observed, which reaches a maximum over the clean bare ice. This 

may be due to the fact thatThe MCI is more suitable for monitoring intense algal blooms with very high chlorophyll 

concentrations in water (Binding et al. 2013) while not applicable to the ice algal blooms with comparatively lower 

chlorophyll content. In addition, MCIindex measures the height of the 709 nm reflectance peak relative to the baseline 340 

between 681 nm and 753 nm, which could be alsoand is therefore sensitive to the bare ice spectrum. Therefore, we selected 

the 2BDAThis index may be less sensitive to characterize thethe relatively low chlorophyll-a content over ice, and is more 

suitable for monitoring intense algal abundance owing to its simplicity and effectivity.blooms with very high chlorophyll-a 

concentrations in water (Binding et al. 2013). For the Impurityimpurity index, the clean bare ice has the lowest value, 
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followed by the supraglacial lake, dark ice with the weaker chlorophyll-a signal, and dark ice with the stronger chlorophyll-a 345 

signal.  (Table 2 shows that the). The supraglacial lake also has a high Impurityhigher impurity index relative to clean ice, 

suggesting that the Impurityimpurity index may include the darkening effect caused by meltwater presence. We find that the 

2BDA, 3BDA and NDCI indices are most suitable for detection of chlorophyll-a, given their specificity to chlorophyll-a 

signal bands, the sensitivity of the impurity index to liquid water, and the sensitivity of the MCI index to the bare ice 

spectrum. Of these three indices, we selected the 2BDA index to characterize the glacier algae distribution owing to its 350 

simplicity and effectivity.  
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Figure 3:. MERIS spectra of different surface types. (a) MERIS Level-2 image (false colour composite) acquired on 14 August 

2011 and locations of the four different sample sites. Each site has an area of 1.2 km by 1.2 km, composed of 16 MERIS pixels. (b) 355 
MERIS surface reflectance in 13 spectral bands over the four sites, illustrated by the mean and standard deviation values for each 

band over each site. (c) Normalized reflectance relative to the clean ice spectra.   

 

Table 2. The calculatedCalculated ratio indices and the surface reflectance at 620 nm over the four sites.   

Surface type 2BDA 3BDA NDCI MCI Impurity R620nm 

Bare ice (clean) 0.960 -0.112037 -0.021 0.011 0.457 0.683 

Dark ice (morehigh chlorophyll-a) 1.035 0.231035 0.017 0.008 0.955 0.369 

Dark ice (lesslow chlorophyll-a) 0.986 -0.122014 -0.007 0.005 0.809 0.362 

Supraglacial lake 0.839 -250.1060.131 -0.087 0.000 0.635 0.040 

 360 

Figure 4 shows the spatial patterns of the mean 2BDA index, Impurity index, surface reflectance at 620 nm, and 

MODIS broadband albedo for the bare ice zone, averaged over those MERIS images acquired on 135 days from 2004 

to 2011. Figure 4a suggests ice4.2 Sensitivity of the 2BDA index to non-algal factors 

Given that dust may change the spectral reflectance of bare ice and affect the 2BDA index, we analyzed the sensitivity of 

2BDA index to dust presence based on the SNICAR simulations for varying dust sizes and concentrations. We should note 365 

here that there has been some discussion in past literature regarding hematite-rich dust (e.g. Tedesco et al., 2013; Cook et al., 

2020), which could produce a different spectral response. However, the field study of Cook et al. (2020) found very low 
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concentrations of such dust, and therefore we consider its impact to be negligible. Using the simulated spectra, we calculated 

the 2BDA and impurity indices for each dust size and concentration. Figure 4 shows the 2BDA index vs. impurity index 

calculated for the SNICAR simulations (with circle diameters representing the magnitude of dust concentrations for four 370 

different dust sizes), along with the density scatterplots of impurity vs. 2BDA index calculated from the MERIS data. The 

SNICAR simulations show that the impurity index is more sensitive to dust than the 2BDA index. Figure 4 illustrates that 

the upper bound of the impurity index calculated from the MERIS data is around 1.0. This maximum value corresponds to a 

dust concentration of ~500 ppm (for the 5.0-10.0 μm dust range), which is consistent with the measurements of Cook et al. 

(2020), who reported mean and maximum dust concentrations of 342 ppm and 519 ppm respectively over a field site within 375 

the study area. However, SNICAR simulations indicate that an impurity index of 1.0 corresponds to a maximum 2BDA 

value of 0.99. Therefore, the presence of dust alone cannot explain the high 2BDA index values present in Fig. 4. This 

comparison suggests that for our study area, areas with a 2BDA index greater than 0.99 are not likely to be false positives 

caused by dust.  

 380 

Figure 4. Impurity index vs. 2BDA index for MERIS bare ice pixels (density scatter plot with colours indicating relative 

frequency), excluding missing data in our study area, between 2004 and 2011. Circles show impurity vs. 2BDA index from 

SNICAR simulations with varying concentrations of dust (with four different dust sizes). The circle size corresponds to the dust 

concentration, and dashed lines show the polynomial regression for each of the different dust sizes. 

Although the bare ice spectrum can also be affected by other factors such as air bubbles and meltwater presence, there is no 385 

evidence suggesting that these factors can generate the chlorophyll-a-like spectral signature with a higher reflectance at 709 

nm as compared with 665 nm. In fact, ice with different concentrations of air bubbles has a consistent spectral shape between 

665 nm and 709 nm (Condom et al., 2018), and meltwater exhibits a similar pattern to ice at this wavelength range (Fig. 3b), 

with both the ice and water spectra characterized by a decreased reflectance from 665 nm to 709 nm. The sensitivity of the 

2BDA index to glacier algae can be further demonstrated using the field dataset of Cook et al. (2020). Table C1 and Figure 390 
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C2 (Appendix C) indicate strong positive correlations between measured cell abundance and the 2BDA index calculated 

from coincident in-situ hyperspectral data, particularly for those samples with a measured cell abundance of greater than 

10000 cells/ml, which have an average 2BDA index of 1.09±0.073. In comparison, the samples with a measured cell 

abundance of lower than 10000 cells/ml have an average 2BDA index of 0.98±0.015. 

4.3 Spatial variability 395 

To examine spatial variability on a broader scale, Fig. 5 shows the spatial patterns of the mean 2BDA index, impurity index, 

reflectance at 620 nm, and MODIS broadband albedo for the bare ice zone in our study area, averaged over 135 days when 

MERIS images are available between 2004 and 2011. Figure 5a, which shows patterns of the 2BDA index, suggests glacier 

algae are abundant at the DS region close to the Jakobshavn Isbrae Glacier between the altitudes of 600 m and 1200 m, and 

in the middle ablation area (68.5°N-66.5°N) between 1200 m and 1400 m, these. These patterns are consistent with those of 400 

iceglacier algal maps derived from the Sentinel-3 OLCI data for the 2016 and 2017 summer season (Wang et al., 2018). The 

relative magnitude of the 2BDA values between the DS, KAN_L, and KAN_M sites also matches the field measurements of 

ice algal abundance (Stibal et al., 2015). Figure 4b indicates that the spatial extent of the high Impurity index region in the 

middle ablation area extends lower in elevation than the area of high algal index (1000 m to 1400 m for the Impurity index 

vs. 1200 m to 1400 m for the algae index). The Impurity index was designed to capture all types of impurities, indicating the 405 

presence of both abiotic (e.g. relative magnitude of field measurements of glacier algal abundance (Stibal et al., 2015; circles 

on Fig. 5), with the highest 2BDA index and algal abundance at the DS site, a lower value at the KAN_M site, and the 

lowest value at the KAN_L site.outcropping particulates; Wientjes et al., 2012) and biological impurities, which is incapable 

of distinguishing ice algae from other impurities.  A map of surface reflectance at 620 nm (Fig. 4c) was generated for 

comparison with the algal and impurity index maps, since this band was commonly used to delineate dark ice by applying a 410 

threshold (determined to be 0.47 for the MERIS data). Similar to the Impurity index, the dark ice area (R620 nm<0.47) is not 

only limited to the algae-abundant areas. Compared with the elevation level of 1200 m – 1400 m, the zone between 1000 m 

and 1200 m has lower surface reflectance at 620 nm (Fig. 4c) as well as lower MODIS broadband albedo (Fig. 4d). 

Comparison between these four maps suggests that highly-abundant ice algae were present at the DS area and the middle 

1200 m – 1400 m area, while the darkening at the middle 1000 m – 1200 m area could be attributed to longer exposure of 415 

bare ice and increased consolidation of particulates with melt (Tedesco et al., 2016), where the ‘wavy’ patterns caused by 

ancient dust outcropping were also observed (e.g. Wientjes and Oerlemans, 2010).  

A comparison between Figs. 5a and 5b and an examination of variation of the indices with elevation (Fig. A1) indicate a 

similarity in the spatial distribution of the two indices but also notable differences. In particular, the 2BDA index reaches a 

peak at an elevation of 1300 m, while the impurity index peaks at 1180 m. As suggested by our sensitivity analysis discussed 420 

in Section 4.2, the 2BDA index is primarily sensitive to chlorophyll-a, while the impurity index is sensitive to materials that 

darken the electromagnetic spectrum in visible wavelengths, including abiotic impurities (e.g. outcropping particulates; 

Wientjes et al.,  
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2012), biological impurities, and liquid water. The map of reflectance at 620 nm, the band commonly used to delineate dark 

ice using a threshold (determined to be 0.47 for MERIS), is shown in Fig. 5c. Similar to the impurity index, the 620 nm 425 

reflectance and MODIS broadband albedo (Fig. 5d) reach a minimum value at 1180 m in elevation (Fig. A1; Fig. 5d). 

Comparison between the three indices and MODIS albedo suggests that algal abundance is highest between 1200 and 1400 

m in elevation, contributing to reduced albedo, while other factors may play a more important role in albedo reduction below 

1200 m in elevation. In particular, the darkening between 1000 m and 1200 m in elevation could be attributed to longer 

exposure of bare ice resulting in increased consolidation of particulates with melt (Tedesco et al., 2016), where “wavy” 430 

patterns of outcropping dust can be observed (Wientjes and Oerlemans, 2010; Fig. A2). In contrast, imagery (WorldView-2) 

suggests that these “wavy” patterns may not be present at higher elevations where the appearance of dark material is more 

consistent with distributed algal material (Fig. A2). Other factors that may contribute to a reduction in MODIS albedo 

include liquid water and surface crevasses (e.g. Ryan et al., 2018), though their fraction is small relative to other surface 

types (Ryan et al., 2018).  435 

 

Figure 4:5. Spatial patterns of the mean 2BDA index (a), Impurityimpurity index (b), surface reflectance at 620 nm (c), and 

MODIS broadband albedo (d) over the bare ice zone during July and August from 2004 to 2011. The elevation contours illustrate 

the spatial variations of each variable with altitude. The cross labels show the spatial locations of the field sites DS, KAN_L, and 

KAN_M measured by Stibal et al. (2015), along with theand magnitude (circle labels) of iceglacier algal abundance for each site.  440 
(circle labels) measured by Stibal et al. (2015) in 2013. 
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4.24 Interannual trends of ice algal blooms, impurity content, and surface albedo variability 

The annual time series (July-August mean) of the 2BDA index (Fig. 5a6a) and the Impurityimpurity index (Fig. 5b6b) show 

the interannual variability of algal abundance and impurity content, indicating a general increasing trend ofin bare ice area, 

algal abundance, and total impurity content frombetween 2004 toand 2011, particularly after 2006. The spatial extent of 445 

iceglacier algae also expanded towards higher elevations (1200 m – 1400 m).) over this period. Between 2004 and 2011, the 

2BDA index reached a maximum in 2010 when high air temperatures and intensive surface melt occurred over Greenland 

(Tedesco et al., 2011). The Impurityimpurity index hasexhibits similar interannual variability tocompared with the 2BDA 

index, but also exhibits different spatiotemporal variations between 1000 m – –1200 m and 1200 m – –1400 m atin the 

middle ablation area. Figure A3 illustrates the interannual variability of the average 2BDA and impurity indices at different 450 

elevation levels (600-800m, 800-1000m, 1000-1200m, and 1200-1400m). In particular there are notable differences in 

variability of the 2BDA index between the 1000-1200m and 1200-1400m levels. The interannual variability of the 2BDA 

and Impurityimpurity indices is also coherent with variability in Greenland ice sheet-wide summer albedo, which was lowest 

in 2010 and highest in 2006 for the period 2004 – –2011 (Tedesco et al., 2018).  

 455 
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Figure 5:6. Maps of mean 2BDA index (a) and Impurityimpurity index (b) over July and August from 2004 to 2011.  

We also calculated the interannual trends ofin the 2BDA index, Impurityimpurity index, and MODIS broadband albedo 

using linear regression analysis, with the mean 2BDA index, Impurityimpurity index, or MODIS albedo for each year as the 

dependent variable and the year as the independent variable. Pixels with observations during fewer than five years were 460 

discarded from the analysis. Figure 67 shows the regression coefficients for 2BDA, Impurity and impurity indices, and 

MODIS albedo vs. time, and the. The corresponding R2 and P-value estimates are shown in Fig. A1A4. There were two 

primary regions (Fig. 6a)within our study area that hadexhibited significant increases in algal abundance from 2004 to 2011, 

including (Fig. 7a), the DS region in the north and the southern region between (68.5°N and –66.5°N) between 1200 m and 
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1400 m in elevation. Other areas do not show statistically significant trends. The interannual trend of the Impurityimpurity 465 

index (Fig. 6b7b) shows a larger spatial extent with a significant increasing trend as compared with the 2BDA index. Figure 

6c7c shows that the areas with increasing algal abundance and increasing impurity index also had significant albedo (July-

August mean) reduction from 2004 to 2011. The albedo reduction was roughly -0.025~ to -0.04 per year over the K-transect 

area (between 1200 m and 1400m in elevation) and within the DS area. The spatial patterns of declining albedo more closely 

matchresemble the patterns of impurity index as opposed to the 2BDA index, suggesting that the impurity index quantifies 470 

multiple processes related to surface darkening in addition to iceglacier algae cover.  

 

 

Figure 6:7. Interannual trends (regression coefficients with year) of the 2BDA index (a), Impurity index (b), and MODIS albedo 

(c) from 2004 to 2011.  475 

4.3 Ice 5 Seasonal trends of algal developmentgrowth over summer months of July and August 

To better understand seasonal dynamics of iceglacier algae, we examined intra-annual trends in the 2BDA index during the 

months of July and August. We estimated the temporal trend of the 2BDA index from July to August for each MERIS pixel. 

For each pixel and each day, we calculated the average 2BDA index using the same -day 2BDA indices of multiple years. To 

account for the differences between different years, we applied a temporal smoothing function with a window size of three 480 

days to the daily average 2BDA data. Pixels with more than 15 days of observations were kept for linear regression analysis, 

with the daily 2BDA index as the dependent variable and the time (dayin days) as the independent variable. Our results 

indicate that the 2BDA index can also capture the temporal dynamics of ice algal development during summer.  

Figure 7 shows a comparison between 8 illustrates the pattern of seasonal trends across the southwest Greenland ablation 

area. Figures 8b and 8c show the spatial distribution of seasonal trends across the area, while Fig. 8a shows examples of the 485 
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daily 2BDA time series of the 2BDA index and the field measurements of ice algal abundance over the K-transect 

observation site (S6) at 67° 04.779’ N, 49° 24.077’ W (Stibal et al., 2017). The field measurements were collected during the 

2014 summer season. We calculated the mean algal abundance for each observation daythree field sites KAN_L, KAN_M, 

and converted it to cell doubling scale usingDS. At the logarithmic function. The daily 2BDA index (left axis in Fig. 7) was 

calculated by aggregatingcoastal KAN_L site, which had the same day 2BDA indices of multiple years between 2004 lowest 490 

algal cell concentration (66 ± 31 cells/ml), the average 2BDA index is less than 0.98 during July and 2011. ItAugust, and 

there is shown that 2BDA index has coherentno significant temporal trendstrend. At the KAN_M and DS sites, with the field 

measurements, particularly the higher cell concentrations (5688±3147 and 10621±2073 cells/ml respectively), 2BDA values 

were mostly greater than 0.98, and there were significant increases in the 2BDA index during July and August (of 0.0004 

and 0.0007 day-1 respectively), suggesting dramatic algal growth. The results indicate that the higher concentrations of algae 495 

are associated with a significant increasing trend from over the course of a season. Indeed, the highest seasonal trends in the 

middle ablation area (68.5°N-66.5°N) are found in the 1200 to 1400 m elevation band, also the region of highest 2BDA 

index.   

The time series in Fig. 8a suggest that the period of algal growth at KAN_M occurred primarily between mid-July toand 

mid-August., beginning later than at the DS site. Between 20 July and 20 August, the regression slope was 0.0009 day-1 for 500 

both DS and KAN_M. This time window is consistent with the rapid algal colonization observed in field (Stibal et al., 2017; 

Williamson et al., 2018; Yallop et al., 2012; Lutz et al. 2018).  A similar mid-July to mid-August increase was also found by 

Wang et al. (2018) using Sentinel-3 OLCI data.2018) and the patterns of temporal variability derived from Sentinel-3 data 

(Wang et al., 2018). To test whether higher growth rates later in the season were present across the region, we also examined 

region-wide trends between 20 July and 20 August (Fig. 8c). The magnitude of trends for the shorter period are higher over a 505 

broad region, and R2 values are higher, indicating a shorter growth period across much of the region, with the exception of 

the area around the DS site in the north. We also explored the interannual variability of seasonal patterns over the DS and 

KAN_M sites (Fig. A5). Despite the interannual variations of 2BDA index, the regression slopes of 2BDA versus time (day) 

through mid-July to mid-August for different years were comparable to the slope of the aggregated time series between 2004 

and 2011, particularly for the KAN_M site. Over the DS site, the algal growth rates were above-average during the growth 510 

seasons in 2005, 2009, and 2011 (Fig. A5). The DS site is located in lower elevations, where warmer temperatures may 

promote a faster growth rate.  
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Figure 7: The July-August time series of the 2BDA index (2004-2011) and the field measurements of ice algal abundance (2014) at 

the Stibal et al. (2017) field site S6.  515 

Figure 8a shows the daily 2BDA time series at the three field sites KAN_L, KAN_M, and DS, as examples of areas with 

different seasonal trend patterns, while Figs. 8b and c show the spatial distribution of seasonal trends across the west coast 

ablation area. The three field sites illustrate the temporal evolution of algal abundance. There was no significant temporal 

trend in 2BDA index at KAN_L, and the 2BDA index was less than 0.98 through July and August. In comparison, the 2BDA 

index at KAN_M and DS had statistically significant increasing trends with time, and the 2BDA values were mostly greater 520 

than 0.98, indicating that dramatic algal growth occurred at KAN_M and DS through the summer season. This pattern is 

highly consistent with the measured ice algal abundance during the 2013 summer (Stibal et al., 2015). The site KAN_L had 

fewer ice algal cells (66±31 cells/ml) than the sites KAN_M (5688±3147 cells/ml) and DS (10621±2073 cells/ml), and ice 

algal blooms appeared to be more intense at DS than KAN_M. The time series in Fig. 8a suggest that the period of algal 

growth at the KAN_M occurred primarily between mid-July and mid-August, with the start of growth occurring later than at 525 

the DS site. Between 20 July and 20 August, the regression coefficient was 0.0009 day-1 for both DS and KAN_M, 

suggesting a nearly constant growth rate during the fast proliferation stage of ice algae. Throughout July and August, the 

regression coefficient was 0.0007 and 0.0004 for DS and KAN_M, respectively. To test whether this period of algal growth 

was consistent, across the region, we calculated temporal trends for 20 July–20 August (Fig. 8c). The magnitude of trends is 

larger for this period and R2 values are higher over a broader region, suggesting that this shorter period of growth occurs 530 

over a wide region.  In the DS region, however, the R2 values and magnitude of trends are similar for the two periods, 

indicating that the growth period is longer in the DS region relative to other areas (consistent with the KAN_M vs. DS time 

series).   
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 535 

Figure 8:. Temporal trends of the 2BDA index over July and August. (a) 2BDA time series and temporal trend analysis over the 

KAN_L, KAN_M, and DS sites. (b) Regression coefficientsslope and R2 estimates of the temporal trend analysis for the period of 

July–August. (for areas where the p value <=0.05). (c) Regression coefficientsslope and R2 estimates of the temporal trend analysis 

for the period of 20 July–20 August. (for areas where the p value <=0.05).  

 540 

To make our estimates more comparable to previous studies, we calculated the algal population doubling time forfrom the 

different regression coefficients ofseasonal trends in the 2BDA index with time. Wang et al. (2018) derived an empirical 

relationship between the Sentinel-3 OLCI reflectance ratio R709nm/R673nm and the ice algal abundance,glacier algal abundance 

(Stibal et al., 2015; Williamson et al., 2018) using an exponential fit. The empirical relationship is represented as 

y=10-35 e87.015x                                                                                                                                                                             (3) 545 

where x denotes the reflectance ratio and y denotes the algal abundance (cells/ml). Given the similarity between the OLCI 

and MERIS band configurations and the negligible differences between the 673 nm and 665 nm reflectance, we used Eq. (3) 

to derive the relationship between the MERIS 2BDA index (x) and algal population doubling (log2y cells/ml) aslevel (log2y 

cells/ml, i.e. the number of times the observed number of cells has doubled). Taking the base-2 logarithm of Eq. (3) gives the 

equation: 550 
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log2y = log2e * 87.015 * x – 35 * log210                                                                                                                                    (4) 

Therefore, based on the regression coefficient (denoted as a) of 2BDA versus time, the algal population doubling time can be 

approximated as 1 / (log2e * 87.015 * a), asThe algal population doubling time can then be derived by examining the 

regression coefficient (denoted as a) of 2BDA versus time, which gives the rate of change of 2BDA with time (dx/dt). From 

Eq. (4), the rate of change of population doubling with respect to the 2BDA index (dlog2y/dx) is log2e * 87.015. Combining 555 

dlog2y/dx with the regression coefficient a (dx/dt) the change in population doubling level with time (dlog2y/dt) is log2e * 

87.015 * a, and the time for one algal population doubling is therefore estimated as 1 / (log2e * 87.015 * a). Values of 

population doubling time corresponding to various values of a are listed in Table 3. The areas with significant algal growth 

trend (R2>0.5) between 20 July and 20 August (Fig. 8c) had a mean regression coefficient of 0.00076±0.0002, 

andcorresponding to a mean algal population doubling time of 11.2±2.6 days. The DS area had faster algal growth rate than 560 

other areas, which was estimated to bewith a doubling time of 9.6±2.7 days. This estimate is comparable to the field study by 

Williamson et al. (2018) who reported a doubling time of 7.18±1.04 days for algae-abundant ice (at the K-transect).  

 

Table 3. Algal population doubling time for different regression coefficients of 2BDA index with day 

Regression coefficient Population doubling time (days) 

0.0004 19.91 

0.0005 15.93 

0.0006 13.28 

0.0007 11.38 

0.0008 9.96 

0.0009 8.85 

0.0010010 7.97 

0.0015 5.31 

0.0020 3.98 

  565 

4.46 Impact of iceglacier algal blooms on surface albedo in July and August 

WeTo investigate potential impact of algal changes on albedo variability, we quantified the impact of icerelationship 

between glacier algal blooms onand surface albedo in July and August based on the daily time series data of the 2BDA index 

and MODIS broadband albedo. Similar to deriving the July-August trend of 2BDA index, we generated aA daily albedo time 

series afterobtained by averaging and smoothing the MODIS daily albedo data from 2004 to 2011. was derived using the 570 

same method for deriving the 2BDA seasonal trends. Figure 9 shows the derived temporal trends ofin MODIS albedo from 1 

July to 20 August. The days after 20 August were excluded from the analysis since snowfalls often happenedhappen in late 

August. The DS area had the most significant albedo reduction over July and August, up to 0.4~0.6% per day. In the middle 
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ablation zone between the altitudes of 1000 m and 1200 m the albedo reduction rate was 0.2~0.4% per day, and the reduction 

rate was 0.2~0.3% per day in the zone between 1200 m and 1400 m in elevation.  575 

 

 

Figure 9:. Temporal trends ofin MODIS broadband albedo induring July and August. (over 2004-2011). (a) Regression coefficients 

of surface albedo with time (day) from 1 July to 20 August. (b) Corresponding R2 estimates. 

We converted the 2BDA index (x) to the algal population doubling level (log2y) using the derived Eq. (4) in section 4.35. 580 

Figure 10 shows results of a regression analysis for algal population doubling vs. surface albedo. The analysis shows a 

statistically significant correlation between algal growth and albedo reduction at the DS area between the altitudes of 800 m 

and 1200 m, the middle ablation zone between the altitudes of 1200 m and 1400 m, and the 1000–1200 m area nearby the K-

transect. Over these areas, the regression coefficient ranged between -0.04 to -0.02, indicating a surface albedo decrease of 

2~4% for each algal population doubling. This estimate is comparable to results from the field study by Stibal et al. (2017) 585 

who estimated a net albedo reduction of 0.038±0.0035 for each algal population doubling based on the in-situ measurements 

of iceglacier algal abundance and coincident surface albedo. In general, iceglacier algal growth explains most of the temporal 

variability of surface albedo in July and August between 1000 and 1400 m in elevation, except the middle area between 1000 

m and 1200 m in elevation where there are probably other factors contributinglikely contribute to the observed albedo 

reduction.  590 
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Figure 10:. Relationship between algal population doubling and surface albedo. (a) Regression coefficients. (b) Standard errors of 

the correlation coefficients. (c) P values. (d) R2 values. (e) and (f) show algal population doubling versus surface albedo at Site 1 

and Site 2, respectively. 595 

5 Discussion 

In this study, we demonstrated that MERIS data can be used for characterization of the spatial distribution and temporal 

dynamics of ice algal blooms in southwest Greenland. This enables the construction of a long-term time series data of ice 

algae in combination with the new-generation satellite sensor Sentinel-3 OLCI in the future. Despite the moderate spatial 

resolution of the MERIS sensor, its narrow bandwidths and specific band wavelengths designed for chlorophyll make the 600 

MERIS archive data a powerful tool to study the spatiotemporal variability of algal communities in supraglacial 

environment. The chlorophyll signal of ice algae presented in the MERIS spectra is very consistent with the coincident 

(nearly) WorldView-2 data and the field hyperspectral measurements collected over algae-abundant ice. Similar to the 

Sentinel-3 OLCI ratio index R709nm/R673nm, the MERIS 2BDA index R709nm/R665nm can effectively quantify the algal growth 

pattern through July to August. This ratio index is further supported by a very recent study (Cook et al., 2019) which shows 605 
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that the ratio of the reflectance peak at 709 nm relative to 665 nm increases with ice algal abundance based on the field 

measurements of algal abundance and coincident reflectance spectra.  

5.1 Sensitivity to subpixel variability 

In this study, we utilized the chlorophyll-a signal generated by glacier algae in the red-NIR region (Fig. 2d) to quantify the 

spatiotemporal variability of glacier algae at a regional scale for the summer seasons of 2004-2011 in southwest Greenland. 610 

The specific wavelengths and narrow bandwidths of MERIS designed for chlorophyll-a detection make MERIS archive data 

a powerful tool for studying supraglacial algal communities. The chlorophyll-a signal present in the MERIS spectra is 

consistent with (nearly) coincident WorldView-2 data and hyperspectral field measurements collected over dark ice with 

high algal abundance (Fig. 2d). Similar to the Sentinel-3 OLCI ratio index R709nm/R673nm, the MERIS 2BDA index 

R709nm/R665nm can effectively quantify the algal growth pattern during July and August (Fig. 8). Using SNICAR simulations, 615 

we examined the potential impact of dust on the 2BDA index. The comparison between SNICAR simulations and MERIS 

ratio indices indicates a high sensitivity of the 2BDA index to glacier algae as compared to dust (Fig. 4). Here we explore the 

sensitivity of the 2BDA index to subpixel variability using a linear mixing method based on the field spectral measurements 

of Cook et al. (2020) and the SNICAR-simulated spectra for dust (size 4 with a concentration of 500 ppm). The spectra used 

for linear mixing experiments are shown in Fig. C3a. By specifying the areal percentage of the impurity-covered (algae or 620 

dust) surface at subpixel scale, we calculated the mixed spectra by linearly combining the algae (four samples with different 

measured algal abundance) or dust spectra (SNICAR-simulated) with the bare ice spectrum (measured algal abundance as 0) 

weighted by areal percentage. Figure C3b shows the 2BDA index calculated from the mixed spectra varying with the areal 

percentage of algae or dust at the subpixel scale. It is shown that the 2BDA index dramatically increases with the areal 

percentage of glacier algae, being consistent with the positive correlation between the 2BDA index and algal abundance. In 625 

contrast, the 2BDA index is much less sensitive to dust areal coverage. The results indicate that even with sub-pixel 

variability of surface materials, the satellite-derived 2BDA index is still strongly sensitive to the presence of algae. High-

resolution UAV mapping by Ryan et al. (2018) suggests that the areal percentage of distributed impurities is up to 65%~95% 

within individual MODIS pixels (500-meter resolution) over the dark zone in southwest Greenland, indicating that a high 

sub-pixel areal percentage of algae is possible. Our linear mixing experiments (Fig. 3Cb) indicate that the relatively high 630 

2BDA values derived from satellite are unlikely to be achieved without the presence of glacier algae, and that the MERIS 

2BDA index can effectively capture the glacier algae variability, especially within the dark zone.    

5.2 Relationship between regional climate model albedo bias and glacier algae 

Our analysis indicatessuggests that surface albedo decreases by 0.02~0.04 for each algal population doubling during July and 

August primarily in algae-abundant areas close to the Jakobshavn Isbrae Glacier and within the middle ablation zone 635 

(68.5°N-66.5°N) between 1200 m and 1400 m in elevation. It is also important to know whether the MERIS 2BDA index 

could explain the discrepancy between the satellite-measured albedo and climate modelbare ice albedo,  in climate models 
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which is fundamental to improvedo not currently simulate the albedo scheme and surface energy budget estimates in effects 

of biology and other impurities. The MAR regional climate models like MAR. Previous studiesmodel, for instance, exhibits 

a positive albedo bias along the southwestern Greenland ice sheet margin because of this (e.g. Alexander et al., 2014) have 640 

demonstrated a positive albedo bias of MAR in comparison with the MODIS albedo along the southwest Greenland Ice 

Sheet, which results from the fact that the algae and other impurities are not yet included in the albedo scheme.). Figure 11a 

shows thea comparison between MODIS albedo and MAR albedo over the study area (including both bare ice and snow), 

indicating the overestimation of MAR albedo for the dark areas with MODIS albedo less than 0.5. There wasis a significant 

negative correlation between the albedo difference (MODIS albedo minus MAR albedo) and the 2BDA index (Fig. 11b), 645 

which meansindicating that the positive MAR albedo bias increases with the algal abundance.  

 

 

Figure 11:. (a) Comparison between MAR albedo and MODIS albedo over the study area for July and August from 2004 to 2011. 

The dashed line and equation showshows the linear fittingfit between MODIS albedo and MAR albedo. The black line is the 1:1 650 
reference line. (b) Relationship between the MERIS 2BDA index and the albedo difference between MODIS and MAR., with the 

dashed-line showing the linear fit. The colour scheme in both (a) and (b) illustrates the relative data distribution density (yellow 

means higher density, and blue means lower density).  

The spatial pattern of the MAR albedo bias (Fig. 12a) is consistent with the satellite-derived impurity distribution. (e.g. Fig. 

5b). Over the dark areas, the MAR albedo was overestimated by 0.16±0.03 as compared to the MODIS albedo. We further 655 

examined the relationship between the albedo bias (MODIS albedo minus MAR albedo) and the algal population for the 

seasonal trend between 1 July and 20 August, finding a significant correlation between them in the DS area (Figsite region 

(Figs. 12b and Fig., 12c, 12d). Figure 12d indicates that each population doubling can explain a -0.0274 bias between the 
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MODIS and MAR albedos. Although there are also negative correlations between the algal population and the MODIS-

MAR albedo difference like Fig. 12d at the DS site. In comparison, the albedo bias in the middle zone between 1000 m and 660 

1400 m, the correlations are  is less significant as compared to the DS area.well-explained by glacier algae. This is partially 

consistent with our previous analysis that the albedo reduction at 1000 m – –1200 m is poorly related to algal growth. 

Between 1200 m and 1400 m the correlation between the derived algal population and the MAR bias is not strong (Fig. 12c) 

even though there is a fairly strong correlation between algal population and MODIS albedo. This suggests that in this area, 

although MAR does not include the effects of algae, the decrease in albedo associated with liquid water ponding in MAR 665 

may approximate the trends associated with increasing algae concentrations. In addition to parameterizing the iceglacier 

algal growth, other processes related to albedo reduction caused by impurities such as consolidation of impurities melted 

from snow should be also accounted for in the future.  

 

 670 

Figure 12:. (a) Albedo difference between MODIS albedo and MAR albedo (MODIS albedo minus MAR albedo) averaged over 

the study period. (b) Regression coefficients of albedo difference with 2BDA-derived algal population doubling (log2 cells/ml). (c) 

R2 estimates for the regression analysis. (d) Scatterplot of albedo difference versus algal population doubling over the DS algae-

abundant area and the linear fitting equation for the linear fit.  

5.3 Potential drivers for glacier algae variability 675 

Due to the increasing trend impact of iceglacier algal blooms and their significant impact on bare ice albedo, it is 

fundamental to understand the factors affecting the algal growth. Lutz et al. (2018) analysed the composition of iceglacier 

algal communities near the K-transect between 27 July and 14 August 2016 using high-throughput sequencing and 

subsequent oligotyping techniques. The iceglacier algae species of Ancylonema nordenskiöldii and Mesotaenium berggrenii 

were found as the dominant taxa. IceGlacier algae lack a flagellated stage and are less capable of migrating upwards to snow 680 
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layers at the beginning of melting season (Anesio et al., 2017). Therefore, the iceglacier algal growth is restricted to the bare 

ice surface, which is consistent with our finding that iceglacier algal blooms tend to occur extensively from late-July to mid-

August when the bare ice is mostly exposed and less affected by snowfalls. The. However, somewhat paradoxically, the 

areas at lower altitude have longer duration of bare ice exposure, whereas intense iceglacier algal blooms occur at higher 

altitude up to 1200 m – -1400 m along the middle ablation zone. The One possible reason for this discrepancy could be that 685 

the growth of iceglacier algae also depends on the availability of is influenced by liquid water and nutrients in addition to the 

surface habitat of bare ice. Particulates melted from ancient ice layers have been suggested to be an important nutrient source 

for ice algae growth (Stibal(e.g. Tedstone et al., 2017; Wientjes et al., 2012).) and nutrient availability. Although liquid water 

is a prerequisite for algal growth, Wang et al. (2018) found a negative correlation between algal abundance and meltwater 

production, which was attributed to hydrological flushing of algae during periods of excessive meltwater and surface runoff 690 

(Takeuchi, 2001; Uetake et al., 2010). Figure 13a-b showThese results do not contradict the importance of liquid water to 

algal growth as indicated by Tedstone et al. (2017), but rather suggest that there is an optimal amount of melt that may be 

required to support algal growth, with too little or too much melt resulting in lower algal concentrations. 

To examine potential drivers of algal growth, we explored the relationships between the 2BDA index and the topographic 

variables as well as the near surface temperature and meltwater production simulated by MAR. For each two variables, we 695 

separated (Fig. B1), by separating the data into two-dimensional bins and calculatedcalculating the average 2BDA index for 

each bin. It is suggestedThe comparison suggests that iceglacier algae are mostly distributed over flat areas with lessfewer 

topographic undulations (Fig. 13aB1a). The areas suitable for iceglacier algal growth have moderate but not excessive 

melting conditions (Fig. 13bB1b). This further supports the hypothesis that active hydrological processes havehigh melt has 

a negative effect on algal development. In regard to the suitable temperature, iceglacier algae are so far known to be well 700 

adapted to the temperaturetemperatures close to the freezing point of water 0°C (Anesio et al., 2017). Although no 

significant correlations have been found between algal abundance and air temperature, the algal growth appears to be 

affected by cold freezing temperatures as suggested by Fig. B1 whichFigure B2 shows the daily simulated near surface 

temperature along with the dips in situ measured daily algal abundance (Stibal et al.., 2017) coinciding with below-freezing 

near-surface MAR-simulated daily air temperatures at the K-transect S6 station induring the 2014 summer. Figure 13c-e 705 

show, suggesting that freezing temperatures negatively impact algal growth. 

We also examined interannual variations in climate variables in relation to the 2BDA index. Figure 13 shows the MAR-

simulated shortwave and longwave downward radiation fluxes, cloud cover, snowfall, rainfall, meltwater production, and 

near surface air temperature averaged over July and August across the study area from 2004 to 2011. The high 2BDA algal 

index induring 2008-2010 (Fig. 5a and Fig. 13a) coincides with lessreduced cloud cover and morehigher incoming 710 

shortwave radiation (Fig. 13c13b). This period is also characterized by less rainfallsrainfall (Fig. 13d13c), reducing the 

possibility of hydro-flushing possibility. . Figure 13e13d shows that the high algal index years of 2008 and 2009 with high 

algal index hadexhibited less melting and lower temperature than the other years, suggesting that meltwater production and 

air temperature these variables may play a less dominantimportant role in algal growth than shortwave radiation in ice algal 
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development.. Given the importance of shortwave radiation for photosynthesis of iceglacier algae, we arguethe results 715 

suggest that air temperature, surface melt, and bare ice exposure aremay be important factors at the beginning stage of 

iceglacier algal habitat development, while downward shortwave radiation has a primary control oncould be most important 

during the proliferation stage of ice algae.. These dynamics may relate to thecould be influenced by recent atmospheric 

circulation changechanges in Greenland, with patterns of anomalous anticyclonic circulation and higher 500 hPa 

geopotential height becoming more frequent (e.g. Hanna et al., 2016; Mioduszewski et al., 2016), associated with reduced 720 

cloud cover (Hofer et al., 20162017) and increased downward shortwave radiation. ThereforeHowever, more research is 

required to fully understand these relationships and quantify the effects of various factors on glacier algal growth. In the 

context of future ice sheet change, it is therefore vital to understand the interactions between the supraglacial microbiome 

and climate change (Cavicchioli et al., 2019) for better projection of future ice sheet mass balance.  

 725 
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Figure 13:

 

Figure 13. (a) Average 2BDA index over bare ice and maximum bare ice area from 2004 to 2011 (MERIS). (b (a) 2BDA index 

versus surface elevation and roughness (elevation variability within each MERIS pixel). (b) 2BDA index versus near surface 

temperature and meltwater production simulated by MAR. The colour bars in (a) and (b) indicate the average 2BDA index for 730 
each two-dimensional bin defined by the two variables on horizontal and vertical axis. (c) July-August mean of downward 

shortwave and longwave radiation fluxes and cloud cover over the study area from 2004 to 2011. (MAR). (c) July-August mean of 

rainfall and snowfall (MAR). (d) July-August mean of rainfall and snowfall. (e) July-August mean of meltwater production and 

near surface temperature. (MAR).  

6 Conclusions 735 

We examined the spatiotemporal variability of iceglacier algal blooms in southwest Greenland during July and August from 

2004 to 2011 using the chlorophyll-a detection capability of MERIS. We calculated a number of remote sensing ratio indices 

including chlorophyll-a indices and the impurity index. The results indicate that similar to the Sentinel-3 OLCI ratio index of 

R709nm/R673nm, the MERIS 2BDA index of R709nm/R665nm can effectively quantify the spatial distribution and seasonal growth 

pattern of iceglacier algae, with results highly consistent with field measurements. There was an increasing trend of 740 

iceglacier algal abundance and impurity content at the dark area close to Jakobshavn Isbrae Glacier and the area close to K-

transect at altitude of 1200 m – –1400 m, being coherentin conjunction with the reducinga declining trend of surface albedo 

in thisover the 2004 to 2011 period. We quantified the impact of iceglacier algal growth on surface albedo over July and 

August, and found that each algal population doubling would decreasedecreases the surface albedo by 2~4 percent. Our 

analysis points to the great potential of using the satellite ratio indexindices to parameterize the impact of iceglacier algae on 745 
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surface albedo and, thereby reducing the albedo bias in regional climate models. Nevertheless, the surface darkening along 

the middle ablation zone between 1000 m and 1200 m in elevation cannot be well explained by algal growth, indicating that 

other processes related to surface darkening need further investigation and quantification. Future research should also be 

directed toward understanding the climate drivers of iceglacier algae variability and parameterizing their growinggrowth 

dynamics using regional climate model outputs.  750 

Data availability 

The MERIS level-2 data are available at the MERCI file archive (https://merisfrs-merci-ds.eo.esa.int/), courtesy of the 

European Space Agency. The MODIS MOD09GA and MOD10A1 data can be accessed from the NASA Land Processes 

Distributed Active Archive Center (https://search.earthdata.nasa.gov/). The WorldView-2 imagery were provided by the 

Polar Geospatial Center (PGC, https://www.pgc.umn.edu/) at the University of Minnesota. MAR v3.9.3 outputs are available 755 

at ftp://ftp.climato.be/fettweis/.MARv3.9.3.   

Appendix A 

 

 

Figure A1. Spatial variations of the average 2BDA index, impurity index, 620 nm reflectance, and MODIS albedo over bare ice at 760 
different elevations within the study area (20-meter elevation interval). For surface elevation, we used the 30-meter resolution 

MEaSUREs Greenland Ice Mapping Project (GIMP) Digital Elevation Model (Howat et al., 2014; 2015). 

https://merisfrs-merci-ds.eo.esa.int/
https://search.earthdata.nasa.gov/
https://www.pgc.umn.edu/
ftp://ftp.climato.be/fettweis/.MARv3.9.3
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Figure A2. Average 2BDA index (2004-2011) for a subset of our study area (a) and comparison between WorldView-2 imagery 765 
over a dark ice site with low 2BDA index at 1000-1200m elevation (b) and a dark ice site with high 2BDA index at 1200-1400m 

elevation (c). The WorldView-2 image in (b) illustrates the ‘wavy’ pattern that Wientjes and Oerlemans (2010) suggested was 

caused by ancient ice outcropping. 

 

 770 
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Figure A3. Interannual variability of the 2BDA index (a) and impurity index (b) at the elevation levels of 600-800m, 800-1000m, 

1000-1200m, and 1200-1400m within the study area.  

 

 

Figure A4. R2 ofand P values for the interannual trends of the 2BDA index (a), Impurity, impurity index (b),, and MODIS albedo 775 
(c) from 2004 to 2011.  
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Figure A5. Temporal trends of 2BDA index from mid-July to Mid-August in different years at sites DS (a) and KAN_M (b).  

Appendix B  780 

 

Figure B1. (a) 2BDA index versus surface elevation and roughness (elevation variability within each MERIS pixel). (b) 

2BDA index versus near surface temperature and meltwater production simulated by MAR. The colour bars in (a) and (b) 

indicate the average 2BDA index for each two-dimensional bin defined by the two variables on the horizontal and vertical 

axes. 785 
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Figure B1B2. MAR-simulated near surface temperature (°C, black circle, left axis) and in situ measured algal abundance (log2 

cells/ml, blue triangletriangles, right vertical axis) overat the S6 weather station at the K-transect during 2014 July-August 2014 

by Stibal et al. (2017).  

 790 
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Appendix C  

Table C1. Measured algal cell abundance from the field dataset of Cook et al. (2020) with the 2BDA index calculated from 

coincident hyperspectral measurements. The highlighted rows are samples with cell abundance of greater than 10000 cells/ml.  

Sample ID Cell abundance (cells/ml) 2BDA index 

13_7_SB1 2688 0.9614 

13_7_SB2 13375 1.0075 

13_7_SB3 938 0.9813 

13_7_SB4 4500 1.0371 

13_7_SB5 0 0.9653 

14_7_SB1 30313 1.0953 

14_7_SB2 3063 0.9868 

14_7_SB3 7938 0.9554 

14_7_SB4 17938 0.9939 

14_7_SB5 41000 1.2218 

14_7_SB6 0 0.9555 

14_7_SB7 12438 1.0850 

14_7_SB8 0 0.9863 

14_7_SB9 21875 1.0808 

14_7_SB10 24875 1.1257 

15_7_SB1 1438 0.9908 

15_7_SB2 7250 0.9497 

15_7_SB3 30313 1.0810 

15_7_SB4 4250 0.9665 

15_7_SB5 938 0.9839 

20_7_SB1 11375 1.0536 

20_7_SB2 7563 0.9939 

20_7_SB3 7625 1.0122 

21_7_SB1 92250 1.2635 

21_7_SB2 44861 1.1411 

21_7_SB3 750 0.9922 

21_7_SB4 14313 1.0296 

21_7_SB5 1063 0.9731 

21_7_SB7 33229 1.0794 

21_7_SB8 1188 0.9440 

21_7_SB9 313 1.0097 

21_7_SB10 17563 1.0763 

23_7_SB1 250 0.9765 

23_7_SB2 938 0.9754 

23_7_SB3 8563 1.0141 

23_7_SB4 21125 0.9975 

23_7_SB5 28563 1.1131 

24_7_SB1 1875 0.9985 

 795 
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Figure C2. Scatterplot of measured cell abundance versus 2BDA index listed in Table C1.  

 

 800 

Figure C3. Spectral linear mixing experiments. (a) Field hyperspectral measurements of four algae-abundant samples (21_7_SB1, 

21_7_SB2, 23_7_SB5, and 21_7_SB10) and one bare ice sample (zero algal abundance, 14_7_SB6) from Cook et al. (2020), and the 

SNICAR-simulated spectra for the dust scenario (size 4 at concentration of 500 ppm). (b) 2BDA index calculated from the linearly 

mixed spectra with varying areal percentage at subpixel scale for algae (different algal abundances) and dust scenarios.   
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