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The authors would like to thank all the referees’ invaluable comments. The following 
revisions and corresponding replies are made for each comment (in green italic font). Also, a 
revised version of the manuscript is provided as attachment. The replies to comments from 
referee #1 are on page 1 to 6 of this document, while those for referee #1 on page 7 to 10 and 
those for referee #3 on page 11. The revisions are highlighted in the manuscript and attached 
after page 11 (with brief info of the comment/reply), and the highlighting is color-coded as 
follows: yellow for revisions to comments from referee #1, red for referee #2, and green for 
referee #3.  
 
 
Reply to comments of Referee #1: 
 
The data used for the study are well presented. But the diagnosis performed are sometimes 
not enough explained or do not cleary serve the objective. Moreover, it is not fully clear to 
me which scientific objective is pursued with this analysis. Perhaps two many numbers dilute 
the aim... 
Reply to the general comment: the authors thank the reviewer for pointing out the 
shortcomings of manuscript in conveying the main idea and results of the study. We would 
like to emphasize that the purpose of the study is to learn about the variability of the 
measured/retrieved sea ice thickness parameters by current airborne and satellite remote 
sensing. Thickness parameters include: radar and laser freeboard, and snow depth, and 
there are 3 topics for study: variability, the scaling of variability, and co-variability 
(between snow and freeboard). The analysis of variability may be greatly affected by 
measurement/data-processing errors, therefore, we pay attention especially how these 
uncertainties may affect the estimation of the true, inherent physical variability of these 
parameters. Therefore, the main purpose is two-fold: (1) on the observational technique side, 
we want to study the variability and scaling by different approaches; and (2) on the scientific 
side, the inherent physical behavior of variability scaling and implications of the processes. 
Inevitably, these two issues are entangled in many cases, including this study. 
 
Specific comments 
 
[page#3, row#25-27] "On the other hand, by adopting the same the geophysical corrections 
of CS-2, Yi et al. (2018) effectively aligns the retrieved freeboard across CS-2 products and 
greatly reduces the systematic differences." Could you clarify? 
Reply: in order to clarify, we revise this sentence as: “On the other hand, with the same 
geophysical correction of CS-2 and snow depth correction based on OIB SnowRadar, the 
mean freeboards from four CS-2 retrackers are all in agreement with ATM by 0.05 m (Yi et 
al. 2018)”. 
 
[page#4, row#22] "sea-surface height correction" "correction" is not relevant here, I would 
simply write "sea surface height"  
Reply: corrected. 
 
[page#4, row#24] "in the freeboard estimation of the sea floes" I would remove "of the sea 
floes"  
Reply: corrected by removing “of the sea floes”. 
 
[page#4, row#25] "the freeboard uncertainty that is associated with SSH correction" SSH is 
not a correction. I would say SSH estimation or SSH retrieval  
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Reply: corrected to “… associated with SSH estimations”. 
 
 [page#6, row#33-34] "Since SSH height information are shared among freeboard data, we 
treat this uncertainty as bias and ignore it in the scaling analysis" I don’t fully agree. Sea 
level anomaly (SLA) interpolation between the leads includes mean sea surface (MSS) error 
which is not necessary a bias. At the scale you are focus on, the explanation you give on 
page#8 row#5-7 seems more appropriate.  
Reply: the authors have revised this sentence to be more accurate, as follows: Since along-
track SSH’s are usually constructed with observations on much larger spatial scales (over 
100 km), their uncertainty is not considered in the variability scaling which involves local 
averaging within several kilometers. 
 
[page#7, row#9&18&32] "SSH correction" Not appropriate. Do you mean geophysical 
corrections (troposphere, ionosphere, tide)? Or Sea level estimation? 
Reply: “SSH correction” is revised to “mean SSH estimation and local sea-level correction”, 
which is a more precise statement. 
 
[page#7, row#15] equation (4) I prefer the (equivalent) formulation by Kurtz 2014 
F_i=F_r+h_s (1-c_s/c) 
Reply: the equation (no. 4) is revised as indicated. The approximation to the coefficient for 
the correction (1-c_s/c) is taken as 0.25 according to Tilling et al. (2018, ASR). If it is 
computed according to Kurtz et al., (2014, TC) under the snow density assumption of 
330kg/m3, this coefficient is about 0.22. With either estimation, the major result of F_r (radar 
freeboard) is not affected.  
 
[page#11, row#14] "Since with random samples, the effects of [. . .] inhomogeneity are very 
limited" Could you explain? 
Reply: since there exists: (1) autocorrelation of nearby samples and (2) inhomogeneity of the 
sea ice cover (within 37.5km by 37.5 km) that is sampled, samples randomly chosen will be 
physically away from each other, which will attenuate the effect of BOTH local correlation 
AND inhomogeneity of the region where the samples are collected. With random sampling 
strategy, the variability is expected to decrease with respect to sample count for averaging 
(STDEV decreasing with the square root of M). This is indeed observed in Fig. 3a. Since it 
does not provide any further insight into the scaling of the parameters, this strategy is only 
provided as a baseline for reference. 
 
[page#12, fig#3] Could you explain how each point of the curve has been computed? Does 
the size of the considered area change for each point? (fig3a) On fig.3b do you change M for 
each point, leading to a scale = M*resolution? I don’t understand why STDEV is larger 
when averaging (3b vs 3a). 
Reply: for the 3 subfigures in Fig. 3, each color corresponds a specific local region in Fig. 
2(b-d), which are local regions that contain good OIB coverage. Each curve in Fig. 3 is 
produced with averaging several OIB samples, and the referee is correct that the scale is 
computed as linear to the sample count.  For example, 800 m corresponds to 20 OIB samples, 
which involves averaging of 20 random (or local) samples for subfigure a (or b and c). The 
different behavior of variability decrease (slower decrease in b than a) is mainly due to two 
factors. First, the local positive correlation of the parameter (Hs or Fr or Fs) causes the 
variability to decrease slower. Second, the sea ice cover within the region of study is 
inherently inhomogeneous, so local averaging will not attenuate the variability that is present 
on the spatial scale that is larger than the sample footprint. The larger variability with local 
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averaging (b) than random sampling (a) is actually fully expected. As mentioned in Sec. 3.1, 
when we use the randomized sampling, the STDEV decreases with the square root of sample 
count M, which follows the theory for independent samples quite well. On the contrary, local 
averaging is the typical manner of scaling analysis, which is more informative of the physical 
variability of the sea ice cover. And indeed, it shows slower variability decrease with larger 
scale (subfigure b). This figure is further revised to align the range in y-axis (STDEV) for 
clearer viewing. 
 
[page#12, row#5] "SSH correction" Not appropriate. Do you mean geophysical corrections 
(troposphere, ionosphere, tide) ? Or Sea level estimation ? 
Reply: “SSH correction” is revised to “SSH estimation”, which is the correct term as used in 
Ricker et al., (2014). 
 
[page#12, row#11-12] It is not so easy to compare fig#3b and #3c as the y-scale are 
different. 
Reply: the updated figure (also shown below) contains aligned scale for the y-axis. 

 
 
[page#12, row#15-16] "However, Fs is controlled by both sea ice thickness and snow 
distribution, and it shows comparable variability as Fr at larger scales." But Fr(OIB) is 
linked to hs as it is estimated using Fs and hs. 
Reply: the authors agree with the referee on the comment, therefore, the sentence is revised 
as follows: “Fs, similar to Fr, is controlled by both sea ice thickness and snow depth, and it 
also shows comparable variability as Fr at larger scales.” 
 
[page#13, row#6] "Each point represents a local region" Does it mean that 1 point 
corresponds to the STDEV over 37.5x37.5km2? 
Reply: the referee is correct that each point corresponds to variability (STDEV) over 
37.5x37.5km2. 
 
[page#13, row#10] "As is shown, there exists statistically significant correlation between 
OIB and CS-2" It seems not so significant to me. . . and it is even worse at 400m. 
Reply: the authors have revised the figures to include information of correlation and 
statistical fittings: r for the correlation coefficient (specifically, Pearson’s product moment 
correlation coefficient adopted here), the linear fitting relationship, and p-value for the 
statistical significance of the correlation. All the fitting lines contain significant correlation 
between the freeboard variances at 0.01 level (i.e., p < 0.01). See also below for further info. 
 
[page#13, row#11&15&30] p < 0.01 Could you explain what is p? What does it mean? 
Reply: p is the probability value (p-value). In statistical hypothesis testing, it is frequently 
adopted for the testing the null hypothesis that there exists no relationship between the 
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observed phenomena. If p-value is smaller than a certain significance level (of which 0.05 is 
adopted by many practices), then the corresponding correlation (indicated by r) is considered 
significant. A p-value lower than 0.01 (which holds for all the fittings in the figure) indicates 
that the positive correlation is highly significant. 
 
[page#13, row#13] "more strict waveform filtering in AWI’s protocol as compared with 
ESA" Could you explain? Is it linked to waveform classification or editing? 
Reply: the relevant differences between ESA (Baseline-C) and AWI are formally listed as 
below: (1) ESA uses a 70% threshold for the amplitude of the first peak for floe echoes 
surface tracking point while AWI use a 50% threshold at the first maximum of radar-echo-
power-based method to determine surface elevation for leads and floes; (2) in AWI’s 
protocol, radar freeboards (on the per-waveform level) that are too large or small are not use 
for further processing, while in ESA’s product, there is no such filtering (Bouffard et al., 
ASR, 2018). Therefore, this sentence is rewritten as: “more strict waveform filtering in AWI’s 
protocol than ESA’s, in order to eliminate outliers according to radar freeboard values”. 
 
[page#13, row#29-30] “However, there still exists statistically significant (p < 0.01) cor- 
relation between VAR of CS-2 and that of OIB/CryoVEx.” I am not convinced that the 
correlation is significant. . . 
Reply: the statistical information (r and corresponding p-value) is added in Fig. 3c. After re-
checking, we do confirm that indeed the positive correlation is significant at 0.01 level 
(p=0.001). In order to further support our argument, we have included in Fig. 3 the analysis 
with AWI CS-2 Fr product, along-side ESA Fr (baseline-C). As shown in Fig. 3d/e/f (which 
compare against Fig. 3a/b/c), all the fittings show significant correlation at 0.01 level 
between AWI’s product and OIB. 
 
[page#13, row#32-34] “For a given location, if the sea ice cover with larger (smaller) 
variability of Fr on the small spatial scale, CS-2 also consistently produces Fr samples that 
indicate higher (lower) variability.” I don’t understand this sentence; could you clarify? 
Reply: The sentence contained a grammatical error, and also for the sake of clarity, it is 
revised as: “For a given location, if the sea ice cover shows larger (smaller) Fr variance on 
the small scale, CS-2 also consistently produces Fr samples that contain larger (smaller) 
variance”. 
 
[page#14, fig#4] What does mean p<0.01? On fig#3b it seems that OIB variance is almost 
killed when Fr is averaged over 10 points. It seems not inline with fig#3b. 
Reply: the explanation for p-value (which is an indicator for the significance level of the 
correlation) is added as reply above. Fig. 4 is also updated with related statistical information. 
 
[page#14, row#1-2] "By using ESA CS-2 Fr product and following Fig. 4.a, we deduce the 
variability at OIB scale of 40 m (STDEV40m) using CS-2 samples (STDEVcs2)" Could you 
explain the scientific interest to do so? 
Reply: the purpose of deducing Fr variability at small scale (i.e., OIB) is that this info is NOT 
generally available across the Arctic basin. This is mainly due to the spatially and temporally 
limited coverage of OIB. Given the established relationship with collocating OIB and CS-2 
data, we can use this statistical relationship to attain a basin-scale Fr variability estimation 
with CS-2. This info can be further applied in many studies such as the thickness retrieval 
with CS-2 (Xu et al., Rem. Sens., 2018). 
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[page#15, row#9-10] "First, after eliminating the effect of random error of ICESat (σ = 5cm) 
from its sample variance" Could you explain how do you proceed? 
Reply: in specific, the random error variance (σ2 = 25cm2) is subtracted from the sample 
variance, which is what we mean by “eliminating”. The square root of the resulting value (as 
standard deviation) is then used to construct the PDF in Fig. 5c. 
 
[page#15, row#31-32] "Both smaller footprints and wider coverage (through more het- 
erogeneity) could induce larger variability in Fs" It not so clear to me how you can conclude 
this. . . 
Reply: the authors apologize for the ambiguous statement. The revisions include: (1) a new 
paragraph (page 16, line 1 to 8) to simulate OIB with ICESat interval of 175m, accompanied 
by added sub-figures to Fig. 5 (on page 17); (2) the revised sentence to the following: “Two 
factors affects the variability in Fs. First, with the increase in the aggregate footprint size, 
the variability decreases. Second, if the spatial coverage of samples increase while keeping 
the total footprint size constant, there is even more effective dampening in variability. This 
indicates that portion of variability on the local scale increases with wider coverage of local 
samplings.” 
 
[page#16, row#1] "covariability" (also on pages#16-18) Do you mean covariance? 
Reply: the referee is correct that by “covariability” we mean the relation of co-varying 
between snow depth and freeboard, which is estimated through sample covariance. 
 
[page#17, row#8] "that the thicker snow cover induce higher total freeboard" But over MYI, 
there could be ridges impacting Fs. . . I would have expect more correlation between low hs 
and low Fs over FYI. 
Reply: the authors agree with the referee that over the small spatial scale, sea ice ridges 
greatly impact Fs. Furthermore, we would like to acknowledge two facts. First, snow 
distribution and ice freeboard (or topographic features) may be dominated by difference 
processes and hence feature independent variability. Besides the negative covariance between 
the two, both Fi and Hs have large part of variability that are not included in (or explained 
by) this negative covariability. Second, as pointed out by the referee, ice features such as 
ridges might pose extra problem to our analysis. For example, it is shown that on highly 
deformed ridges, OIB’s snow radar may not be able to produce trustworthy retrieval of snow 
depth due to undetectable snow-ice and air-snow interfaces. In the manuscript we do note that 
specific versions of the OIB products (especially for snow depth) may quantitatively alter the 
results in this study. Therefore for revisions, we have added extra discussion in OIB part in 
Sec. 4, especially on this issue. 
 
[page#17, row#15] "Type-I error" Could you explain what does it mean? 
Reply: Type-I error is often referred to as false positive, which in this context corresponds to 
that the null hypothesis (that no negative covariability exists between Fi and Hs) can be more 
possibly falsely rejected, if the random error in Hs is not accounted for during the estimation 
of covariance. 
 
[page#17, row#21-22] "This result indicates that at small scale, there is complementary 
relationship between snow depth and ice freeboard." Could you explain what you mean? I 
would say they are uncorrelated (opposite variations). 
Reply: the authors would like to clarify that by “complementary” we actually mean the 
relationship of negative covariance between Fi and Hs: when Hs is higher (thicker snow), Fi 
is lower; when Hs is lower, Fi tends to be higher. This relationship is also reflected in various 
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field studies. For example, in Sturm (2002) and Sturm et al. (2002), it is shown that small-
scale interaction between the snow and ice produces thicker snow above pond ice (with lower 
Fi) than nearby hummocks (see Fig. 13 of the reference). As reported in Sec. 3.4 for 40m 
scale, the negative covariance between Fi and Hs is significant for 97% MYI regions and 
72% FYI regions (0.05 significance level). 
 
[page#18, row#13] "complementary effect" Could you explain what do you mean? masking 
effect? 
Reply: the authors would like to clarify that by “complementary effect”, we mean that the ice 
topography is attenuated by the snow’s distribution, which masks out the overall ice 
topography and reducing the variability in freeboard. 
 
[page#18, fig#6] Even if the covariance is positive, it is still around zero; so I don’t see any 
clear correlation between hs and Fs on this figure. 
Reply: the authors would like to point out that the PDF in Fig. 6 is based on sample 
covariance, which is in the unit of m2. Therefore, the absolute value seemingly near 0 does 
not indicate that the correlation coefficient is low or the correlation is not significant. 
Actually, as indicated in Sec. 3.4, over 95% local regions show statistically significant 
positive correlation (p<0.05) at 40m scale, with over 90% at 800m. Since many works have 
shown specific examples of relationship between Fs and Hs (such as Kwok et al. 2011, Zhou 
et al., 2018), we do not show any example here.  
 
[page#21, row#7] "This covariability is also reported by other works, including Kwok et al. 
(2011)" I think that the graphs used in this paper from Kwok are more relevant and easier to 
understand. 
Reply: the authors agree with the referee that a specific example is more indicative of this 
positive correlation. 
 
[page#21, row#31] "snow cover tends to complement sea ice topography" Do you mean 
mask? 
Reply: the authors acknowledge that the referee is correct that by “complement” we mean 
that the snow cover tends to attenuate the sea ice topography, and snow distribution that 
masks out ice topographic features might be a dominant factor.  
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Reply to comments of Referee #2: 
 
The paper presents a new and interesting view on covariability in radar and laser altimeter 
data of sea-ice and its snow cover. The paper is well written and results are presented in a 
clear way, so most of my comments below refer to what may be typos.  
 
Detailed comments: P1L10: despite over 5 years’ the time difference -> despite the over 5 
year time difference  
Reply: corrected. 
 
P2L12: perspective -> perspectives  
Reply: corrected. 
 
P2L17: in-situ observations of sea ice concentration is I believe equally chellenging  
Reply: the authors agree with the referee’s comment, and have revised it as: “… thickness 
parameters are challenging for observations …”. 
 
P2L24: added?? I suppose you mean that the local SSH is subtracted from the local floe’s 
height  
Reply: corrected by changing “added to the floe's height” to “subtracted from the floe’s 
range”. 
 
P2L28: too many "main/mainly"  
The main backscattering plane mainly resides close to the surface of the snow cover, and the 
main target is the retrieval of the snowfreeboard (Fs). -> The main backscattering plane 
resides close to the surface of the snow cover, and the target is the retrieval of snow 
freeboard (Fs). 
Reply: revised by deleting unnecessary words of “mainly” and “main”. 
 
P2L34:corrected freeboard ice freeboard -> corrected freeboard is called ice freeboard  
Reply: revised as indicated. 
 
P3L1: effective freeboard -> apparent freeboard  
Reply: corrected from “effective penetration” to “apparent penetration”. 
 
P3L12+13: You should indicate which is for radar and which is for laser  
Reply: revised in the location referencing these two equations. 
 
P4L17: parameter and its -> parameters and their  
Reply: revised. 
 
P4L24: sea floes -> ice floes  
Reply: revised with deletion of “of sea floes”. 
 
Figure 1: In the top part there is significant discrepancy between variable names in figure 
and in the paper text. Check the use of capital letters, subscript and superscript. 
(h_subscript_s_superscript_*, C_subscript_s etc)  
Reply: this figure is fully revised to use the same variable names as the text. 
 
P6L6: utilizes -> performs  
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Reply: corrected.  
 
P6L26: footprint -> footprints  
Reply: corrected. 
 
P6L29: You should refer to Eq 1 here. 
Reply: revised by adding the reference. 
 
P7L10: that radar -> that the radar  
Reply: corrected. 
 
P7L15: This is where the discrepancy in nomenclature with Figure 1 is most apparent, for 
example c_subscript_s should be C_subscript_s according to figure 1). Also explain what c is 
(speed of light in vacuum?). 
Reply: revised by adding necessary notation explanations in the text. 
 
P7L18: all these three products adopt threshold -> att three products adopt a threshold  
Reply: revised according to suggestion. 
 
P7L22: under same -> under the same 
Reply: corrected. 
 
P8L12: campaigns collocated -> campaigns have been colocated  
Reply: corrected. 
 
P8L14-15: we use dataset -> we use a dataset  
Reply: corrected. 
 
P8L20: under certain knowledge of -> under certain assumptions about  
Reply: corrected. 
 
P8L26: several -> a few  
Reply: corrected. 
 
P9L1: I suggest that you mention here that the ice drift will be discussed later. Also, there are 
many versions of the EASE grid. I gather that you are using a 12.5 kilometer EASE grid (or 
EASE2?)  
Reply : a sentence mentioning tests with ice drift correction is added by the end of the 
paragraph, as suggested by the referee. Besides, the referee is correct that we use EASE grid 
(instead of EASE2). 
 
P10L30: collocating -> colocation  
Reply: corrected. 
 
P11L8: speed -> rate  
Reply: corrected. 
 
P11L20: if slow -> if a slow  
Reply: corrected. 
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P11L20: can be induced -> can be inferred  
Reply: corrected. 
 
P12L5: Speckle noise should reduce by sqrt(M) whereas SSH correction will have much 
longer autocorrelation length scale. 
Reply: the authors agree with the comments from the referee on the different rate of error 
decrease with scale. 
 
P12L8: in range -> in the range  
Reply: corrected. 
 
P12L17-18: This indicates ...... Please explain better. Why does a faster decrease indicate 
that the snow is relatively more homogenous? 
Reply : when a faster decrease is witnessed for a certain parameter (decrease speed closer to -
0.5), then it indicates that there is lower heterogeneity of the parameter, since local average 
can more effectively attenuate its variability. The information above is added as the revision 
suggested by the referee.  
 
P13L7-8: Quite a mix of data sources, why? Have you checked for inconsistencies between 
the two datasets? 
Reply: the authors would like to clarify that the major reason of using both SICCI and U-
Bremen MYI concentration products is that neither of them provides full coverage of 2011 to 
2018. As reported by some studies, OSI-SAF MYI coverage product tends to underestimate 
the MYI extent, while U-Bremen product contains MYI concentration info, but tends to 
feature over-estimation (due to ambiguity with ASCAT on MYI coverage). Therefore, we use 
the combination of SICCI and U-Bremen product for the analysis. Since the two agrees quite 
well for regions where MYI or FYI dominates, we do not expect that the quantitative fittings 
of noise levels change much with the specific product we use. 
 
P13L20: Your estimates of noise levels would benefit from an estimate of the errorbars on the 
estimates. How accurate do you think your estimates are, and is 14 significantly larger that 
10? 
Reply: the author would like to clarify that these estimations are based on statistical fittings 
of Fr variability of OIB and CS-2, and it is challenging to attain an estimation of the 
uncertainty. They are only provided as another estimations of the noise level of CS-2 for FYI 
and MYI, which are compared with other estimations (such as Ricker et al., 2014) in the 
paper. 
 
Figure 4: In the figure captions (or even better titles on the figures) you should be more clear 
about the difference between a) and b). 
Reply: Fig. 4 is full revised to include both ESA (a, b and c) and AWI (d, e, and f) CS-2 
products. Also the caption is revised according to the referee’s suggestion.  
 
P14 and following you should change the 1000s separator "’" to "," or remove it. It is not 
necessary. 
Reply: all the “’” are removed, as suggested. 
 
P15L8: This results -> This result  
Reply: corrected. 
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P16L4: You introduce two measurement error terms (e and epsilon). You should explain whet 
they are/represent. 
Reply: the authors would like to point out that they have been introduced in Eqs. 3. A 
reference to Eqs. 3 is added here. 
 
P20L34: have underestimation -> may have underestimation  
Reply: revised as “may have underestimated”. 
 
P22L4: requires -> require  
Reply: corrected. 
 
P22L11. systematic observation -> systematic observations 
Reply: corrected. 
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Reply to comments of Referee #3: 
 
This is an interesting study which analyzes variability between CryoSat-2 and airborne data 
sets of freeboard from Operation IceBridge and CryoVEx. The analysis provides a useful 
look at scales of variability between the data sets which considers instrument noise, retrieval 
errors, and random error sources. 
 
I found this to be a well-written manuscript which provides valuable information useful for 
comparisons between the satellite and airborne data sets, as well as interpretation of results 
from the data sets on an independent basis. I just have a few minor comments listed below: 
 
P2 L30: I think it’s a misconception to state that the radar penetrates a certain percentage of 
the way through the snow cover, rather what happens is that the return contains energy from 
the snow surface, snow volume, and ice surface and depending on the local conditions and 
tracker used this can lead to a bias in the retrieval of ice freeboard.  
Reply: the authors have corrected this sentence to be accurate, as follows: “… the 
backscattering of radar signal may occur at the air-snow interface, through snow volume 
scattering, as well as at the snow-ice interface. With dry snow, it is usually assumed that 
radar signals can effectively penetrate the snow cover”. 
 
P3 L27: I believe the bandwidth-limited range resolution of CS-2 also greatly contributes to 
the low correlation on a shot-to-shot basis.  
Reply: the authors agree with the referee’s comment. Indeed the range resolution of CS-2 is 
limited to about 0.23m due to limited bandwidth of 320MHz. This will be a contributing 
factor of low correlation on a shot-to-shot basis, and the sentence is revised for the sake of 
completeness. However, with local averaging, the effect of limited range resolution behaves 
like a random error and should diminish fast. But as investigated by many studies, even with 
local averaging, the correlation of mean Fr is still quite low with airborne collocating tracks. 
The authors acknowledge that it should be a factor, but possibly not a major one.  
 
P14 L 7: There was actually temporally coincident data between OIB and ICESat in 2009, 
however the laser energy of ICESat had degraded substantially by this point to make data 
potentially problematic for a comparison such as this. 
Reply: the authors have made revisions to make the sentence more accurate, as follows: 
“Since there is no colocating data available between ICESat and OIB, …” 
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Abstract. Satellite and airborne remote sensing provide complementary capabilities for the observation of the sea ice cover.

However, due to the differences in footprint sizes and noise levels of the measurement techniques, as well as sea ice’s variability

across scales, it is challenging to carry out inter-comparison or consistency study of these observations. In this study we focus

on the remote sensing of sea ice thickness parameters, and carry out: (1) the analysis of variability and its statistical scaling

for typical parameters, and (2) the consistency study between airborne and satellite measurements. By using collocating data5

between Operation IceBridge and CryoSat-2 in the Arctic, we show that there exists consistency between the variability of

radar freeboard estimations, although CryoSat-2 has higher noise levels. Specifically, we notice that the noise levels vary among

different CryoSat-2 products, and for ESA CryoSat-2 freeboard product the noise levels are at about 14 and 20 cm for first-year

and multiyear ice, respectively. On the other hand, for Operation IceBridge and ICESat, it is shown that the variability of snow

(or total) freeboard is quantitatively comparable, despite the over 5 year time difference between the two datasets. Furthermore,10

by using Operation IceBridge data, we also find wide-spread negative covariance between ice freeboard and snow depth, which

only manifest at small spatial scales (40 m for first-year ice and about 80 to 120 m for multiyear ice). This statistical relationship

highlights that the snow cover reduces the overall topography of the ice cover. Besides, there is prevalent positive covariability

between snow depth and snow freeboard across a wide range of spatial scales. The variability and consistency analysis calls for

more process-oriented observations and modeling activities to elucidate key processes governing snow-ice interaction and sea15

ice variability on various spatial scales. The statistical results can also be utilized in improving both radar and laser altimetry,

as well as the validation of sea ice and snow prognostic models.
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1 Introduction

Sea ice and its snow cover is an integral component of the earth’s climate system. Basin-scale Arctic sea ice concentration

observations have been available since 1978 with passive microwave satellite remote sensing (Cavalieri et al., 1999). During

this period, the Arctic sea ice cover has undergone drastic changes, with record-lows of September extent minimums as a most

prominent feature. Accompanying the all-season shrinkage of the Arctic sea ice cover are the overall thinning of the sea ice5

(Stroeve et al., 2014), as well as the transition to younger ice age (Lindell and Long, 2016). Besides, the thermodynamics of sea

ice and the polar air-sea interaction is greatly modulated by the snow over the sea ice (Webster et al., 2018). Due to snow’s low

thermal conductivity and high albedo, it can effectively insulate air-sea heat exchange and play important roles in the positive

albedo feedback. With climate warming, there are also growing evidences of changes in snow properties (Webster et al., 2014).

However, there still exist large gaps in understanding snow processes, especially its interaction with sea ice, mainly due to10

limited observations and deficiencies of sea ice and climate models. Sea ice, together with its snow cover, is a focus for the

international research community, from both observational and modeling perspectives.

Among various sea ice parameters, the thickness parameters, including sea ice thickness (hi ) and snow depth (hs ), are

essential to sea ice related climate research and key applications. Ice thickness is a direct indicator of the history of both

thermodynamic and dynamic interaction between polar atmosphere and ocean. Due to its longer persistence, ice thickness and15

volume can be potentially utilized to improve forecasts on seasonal or longer scales (Chen et al., 2017; Blockley and Peterson,

2018). However, despite their importance, thickness parameters are challenging for observations in both in-situ campaigns and

remote sensing. Satellite altimetry is the major approach for the estimation of sea ice thickness at basin-scale. By sending

active signals from the satellite to the earth’s surface and measuring the latency of backscattered signals, satellite altimetry

determines the range between the satellite and the scattering plane of the signal on the earth. This range is converted into the20

height information, and by differentiation of echoes on ice floe from those on water (i.e., leads), and retracking of lead and

floe height. Reconstruction of the local water level is carried out, based on water levels in leads and environment conditions

(large-scale dynamical height, tidal effects, atmospheric loading, etc). The correction for local sea-surface height (SSH) is then

subtracted from the floe’s range to retrieve the freeboard, which is the difference between the range of floes and that of the

reconstructed local water level.25

Fig. 1.a shows the typical parameters of thickness retrieval of sea ice, including satellite altimetry. There are two types of

satellite altimetry: laser altimetry and radar altimetry. For laser altimetry (Kwok and Cunningham, 2008), the main backscat-

tering plane resides close to the surface of the snow cover, and the target of retrieval is the snow freeboard (Fs ). For Ku-band

radar altimetry such as CryoSat-2 (Wingham et al., 2006), the backscattering of radar signal may occur at the air-snow in-

terface, through snow volume scattering, as well as at the snow-ice interface. With dry snow, it is usually assumed that radar30

signals can effectively penetrate the snow cover. According to Armitage and Ridout (2015), there is overall 82% penetration

into snow over multi-year ice (MYI) and 97% over first-year ice (FYI). Due to slower penetration speed (Cs) of radar signal

in the snow than in the air, the “raw” range includes a bias which should be accounted for by a correction term determined

by Cs and hs . This raw elevation before correction is denoted radar freeboard (Fr ), while the corrected freeboard is called
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ice freeboard (Fi ). Under the assumption of climatological snow density of 320 kg/m
3, the correction term is approximately

1/4 of hs . Fig. 1.a shows the general case of limited penetration (apparant penetration depth of hs
⇤), and the correction term

should be in turn associated with hs
⇤ (instead of hs ) for the non-biased elevation of the main reflection plane.

The freeboards are in turn converted into ice thickness estimations, under the assumption of hydrostatic equilibrium and

buoyancy relationships (Eqs. 1 for radar altimetry and 2 for laser altimetry). This conversion depends on accurate estimations5

of the following parameters: snow depth, snow density (⇢s), ice density (⇢i) and water density (⇢w). In existing CryoSat-2

based products, climatological snow depth and density based on Warren et al. (1999) are usually adopted for this conversion,

as well as for the correction term of slow radar propagation. For existing ICESat products, snow depth fields are reconstructed

based on accumulation of reanalysis-based precipitation and numerical sea ice drifts (Kwok and Cunningham, 2008). For both

types of altimetry, snow properties remains a major source of uncertainty in the retrieval of hi , while other factors including10

ice density also play important roles in determining the overall uncertainty (Zygmuntowska et al., 2014; Tilling et al., 2015).

hi =
� ⇢w

⇢w � ⇢i

�
·Fi +

� ⇢s

⇢w � ⇢i

�
·hs (1)

hi =
� ⇢w

⇢w � ⇢i

�
·Fs �

�⇢w � ⇢s

⇢w � ⇢i

�
·hs (2)

Airborne surveys provide high-resolution scanning of the sea ice cover, which usually feature more payload types and have

complementary observational capabilities with satellites. They also provide invaluable calibration and validation support for15

satellite retrieval. NASA’s Operation IceBridge (OIB) and ESA’s CryoSat Validation Experiment (CryoVEx) are representative

airborne campaigns which provide both scientific evidences of sea ice parameters and practical support to satellite altimetry.

For OIB, total freeboard and snow depth are retrieved, and sea ice thickness can be derived with altimetric relationships (Eqs.

2, see also Fig. 1.a). Commonly available on CryoVEx campaigns is the electromagnetic induction sensor (EM) which is towed

under the fixed-wing platform, and the total thickness of snow and ice (hi + hs) is retrieved.20

Both OIB and CryoVEx have limited coverage of the sea ice cover, and the measurements are concentrated along the flight

tracks. Nominally, the sea ice thickness and snow depth from OIB products has approximately 40-m resolution (see Sec. 2.1.1

for details). For CryoVEx, the footprint and cross-track coverage of airborne EM is about 50 to 70 m. Various existing works

have compared freeboard retrieval of CS-2 against OIB, and there is usually very low statistical correlation even for collocating

tracks (Kurtz et al., 2014; Xia and Xie, 2018; Yi et al., 2018). On the other hand, with the same geophysical correction of CS-225

and snow depth correction based on OIB SnowRadar, the mean freeboards from four CS-2 retrackers are all in agreement with

ATM by 0.05 m Yi et al. (2018). There are several contributing factors to the low correlation, including limited range resolution

of CS-2 (about 0.23 m), as well as low representation of OIB due to the relatively small OIB coverage compared with CS-2

(Fig. 1.b).

In this study, we investigate the variability and its scaling among airborne and satellite remote sensing of thickness pa-30

rameters. The parameters subjected to analyses include snow depth, radar freeboard and snow freeboard. The variability (in

terms of variance and standard deviation) of a certain parameter is essentially governed by its inherent, physical variability.

However, the estimation of variability through sampling is subjected to the footprint of observations and measurement errors
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(or noise levels) which are specific to each sensor/campaign. Therefore, we account for data product uncertainties during the

analysis of the variability and its scaling. In order to avoid the extra uncertainties in ice thickness retrievals (introduced during

the altimetric relationships), we analyze freeboard instead of ice thickness. The collocating data between CS-2 and OIB since

2011 during high winters of the Arctic are used for the analysis. Furthermore, data from collocating tracks between CS-2 and

airborne campaigns of OIB and CryoVEx are utilized. For laser altimetry, we adopt ICESat and study the statistical behavior of5

variability and compare with OIB (due to no available collocating data). Section 2 includes details of the dataset of satellite and

airborne campaigns, and the specific treatments and methods for analysis. Section 3 covers all the results, including: analysis

with collocating measurements between CS-2 and OIB, analysis of statistics of scaling for OIB and ICEsat, and covariabil-

ity analysis based on OIB dataset. In Section 4 we summarize the article and discuss related topics including the effects of

variability and covariability on sea ice altimetry and snow-ice interaction.10

2 Data and Methods

In this study, we focus on thickness related parameters measured by airborne and satellite campaigns for the Arctic sea ice. In

specific, the following datasets are used: (1) OIB datasets of 40-m scale snow depth, snow freeboard, derived ice freeboard and

radar freeboard; (2) CS-2 (ESA) per-sample radar freeboard that collocates with OIB; (3) ICESat per-sample total freeboard

during Feb., Mar., and Apr.; and (4) AEM measured total thickness of ice and snow from CryoVEx (collocating tracks with15

CS-2). Sec. 2.1 gives detailed introduction to these datasets, and Sec. 2.2 contains the necessary treatments for analyses and

inter-comparison.

Before the analysis, we also formally define the physical parameters and their measurement errors as follows. We denote

the measurement of any parameter a as a|obs which contains the linear combination of the inherent, physical status (a|phy) and

uncertainty terms, including the systematic bias (e) and the random error (✏). Adopting both e and ✏ allows us to differentiate20

the behavior of these two types of uncertainty during scaling analysis.

a|obs = a|phy + e + ✏ (3)

Biases (e) arise from both measurements and treatments to the measurements. As an example, sea-surface height in altimetry

is computed from local water level estimations based on sea ice lead detection. The retracking error in sea ice leads causes

uncertainty in the freeboard estimation. Therefore, the freeboard uncertainty that is associated with SSH estimations are usually25

persistent across adjacent altimetric samples, and at local scales it is treated as a bias. Biases affect the estimation of mean value

of the parameter, but not its second-order statistics (i.e., variance and standard deviation). On the other hand, random errors (✏)

which usually arise from measurements and limited by the sensors’ precision, are independent between samples and usually

follow normal distributions. During the analysis of variability, we only consider random errors, and ignore the contribution

from biases. With scaling, random errors usually diminishes fast through averaging. Based on these formulations, we carry out30

the sample-based analyses of variability and scaling (details in Sec. 2.3).

4



40 m ~12 m

~250 m

~400 m

~1500 m

~1 m2
m

2 (each dot)OIB

ICESat CryoSat-2~65 m

175 m

Snow Radar

ATM

Sea Water

Snow

Sea Ice

Radar Signal 
Propagation 

w/ CsCs 

Ku-Band Radar Altimetry
(CryoSat-2, Sentinel-3, etc.)

Snow Depth
(hshs)

Laser Altimetry
(ICESat, OIB ATM, etc)

UWB SnowRadar 
(OIB)

Ice freeboard
(FiFi)

Total freeboard
(FsFs)

Ice thickness
(hihi)

Effective 
penetration 
depth (h⇤

sh
⇤
s)

Radar freeboard
(FrFr)

Correction for Cs 
(~h

⇤
s/4h
⇤
s/4 or hs/4hs/4)

(b) Typical footprint and resolution of OIB, CryoSat-2 and ICESat

(a) Remote sensing of thickness parameters of sea ice

* not to scale *

Figure 1. Sea ice remote sensing by CryoSat-2, ICESat and Operation IceBridge.
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2.1 Datasets

2.1.1 Operation IceBridge

Since 2009, NASA’s Operation IceBridge (OIB) has been carrying out surveys with fixed-wing airborne remote sensing in the

western Arctic during high winter months (mainly around March and April). In each campaign, the sea ice cover along the

flight path is scanned with various onboard sensors, yielding high-resolution measurements of sea ice parameters, including5

freeboard, snow depth, visual images, etc. The major device onboard is the Airborne Topographic Mapper (ATM) which

performs conic scans with laser beams (Krabill, 2009). The coverage of the ATM on the ground is spiral, progressive scans

centered near the flight path, with: (1) each laser footprint at about 1 m
2, and (2) a swath of about 250 m for wide-swath setting

at the nominal flight heigh of about 460 m (as in Fig. 1.b). Under wide swath scanning, the nominal distance between each

point on the nadir of the path is about 2 to 3 m. For certain campaigns, narrow swath scanning is available, which increases10

the footprint density at nadir of the flight. Through visual inspection of imagery from onboard Digital Mapping System (DMS)

and differentiation between reflections from leads (water or very thin ice) and floes, the elevation of the sea ice floes (i.e., total

freeboard, Fs ) is retrieved (Kurtz et al., 2013).

Another sensor onboard for thickness parameter retrieval is the ultra-wide band snow radar (SnowRadar) from University

of Kansas (Leuschen, 2014). SnowRadar periodically sends 2 GHz to (about) 7 GHz wide-band microwave signals to the15

sea ice cover, and records backscattered waveforms. By retracking the major scattering planes in the waveforms, the travel

latencies between air-snow interface and snow-ice interface are tracked down, and the snow depths are retrieved under certain

assumptions of snow density and radar travel speed in snow (Kurtz et al., 2013). The nominal footprint size of SnowRadar

(with flight altitude at about 460 m) is 11 m across track and 14.5 m along-track on snow-covered sea ice (Kurtz et al., 2013),

with a minimum detectable snow depth of 5 cm.20

OIB campaigns date back to 2009, and in this study, we carry out analysis based on two OIB datasets that contain campaigns

between 2011 and 2017. The first is the IceBridge L4 Sea Ice Freeboard, SnowDepth, and Thickness (IDCSI4) product for OIB

campaigns between 2011 and 2013 (Kurtz et al., 2015). Since this product does not contain campaigns after 2013, we also use

the IceBridge Sea Ice Freeboard, Snow Depth, and Thickness Quick Look (Kurtz et al., 2012, updated each year) for campaigns

between 2014 and 2017. In these products, measurements of hs are averaged within each 40-m segment (about 50 SnowRadar25

samples), in order to reduce the noise level of individual SnowRadar footprints. In order to combine the measurements by

ATM and hs to generate ice freeboard (Fi ) and ice thickness, all the ATM height measurements within 20 m of the center of

the SnowRadar measurements are averaged to produce Fs (see the hollow circle in Fig. 1.b). Ice freeboard then is derived as:

Fi = Fs�hs. In turn, ice thickness can be computed using typical buoyancy relationship widely adopted in altimetry (Eqs. 1).

The measurement accuracy of independent ATM scans is about 3 cm (Martin et al., 2012), and usually over 200 ATM30

samples are averaged to produce Fs at 40-m scale. With averaging, the random error of Fs due to ATM measurement errors

is very small. The uncertainty of Fs is further determined by factors including available SSH observations within the local

regions, which are variable along the track and in the range from 1 cm to 30 cm (Kurtz et al., 2015). Since along-track SSH’s

are usually constructed with observations on much larger spatial scales (over 100 km), their uncertainty is not considered in
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the variability scaling which involves local averaging within several kilometers. The uncertainty of snow radar is inherently

limited by its range resolution of about 5 cm after windowing. The overall uncertainty of hs of OIB product is estimated to

be 5.7 cm through validation with in-situ data (Kurtz et al., 2013). In this study we adopt 5 cm as the random error associated

with hs .

2.1.2 CryoSat-2 (CS-2)5

The European Space Agency’s (ESA) satellite campaign CryoSat-2 has been monitoring the Arctic sea ice cover since autumn

of 2010. Onboard CryoSat-2 is the delay-doppler Ku-band radar altimeter SIRAL (Parrinello et al., 2018). By delay-doppler

treatment of pulse-limited radar signals and range tracking, CryoSat-2 achieves the nominal resolution of about 400 m by 1500

m (see Fig. 1.b), which greatly enhances that of conventional pulse-limited radar altimeters (Resti et al., 1999). Lead detection,

lead/floe retracking, mean SSH estimation and local sea-level correction is then carried out to convert L1 stacked waveforms to10

L2 Fr . Then Fr is converted into Fi with radar propagation speed and snow depth estimations (Fig. 1.a and Eqs. 4). For CS-2,

it is usually assumed that the radar signal fully penetrates the snow cover and the major scattering horizon is at the snow-ice

interface. However, there are growing evidence that the effective backscattering plane may be shifted upward, mainly due to

scattering within the snow cover (Ricker et al., 2015; King et al., 2018; Nandan et al., 2017). In the general case of limited

penetration (penetrated depth hs
⇤ smaller than the true hs ), the correction term associated with radar propagation speed should15

be changed accordingly (Fig. 1.a). As in Eqs. 4, the correction term is associated with the radar signal propagation in snow

(Cs) and in vacuum (C).

Fi = Fr +
�
1� Cs

C

�
·hs ⇡ Fr + 0.25 ·hs (4)

It is worth to note that there exist large differences of the L2 production protocols to produce ice freeboard, including ESA,

CPOM, AWI, among others. The differences mainly fall into 4 categories: (1) lead detection, (2) lead and floe retracking,20

(3) snow depth and its correction term, and (4) SSH correction. For example, all three products adopt a threshold based floe

retracker, but differ in terms of the specific threshold value (50% for ESA and AWI, and 70% for CPOM). Another example

is that the correction for slow radar propagation in snow cover for AWI (Ricker et al., 2014) and CPOM (Tilling et al., 2017)

are based on different climatological snow density and snow depth settings (Warren et al., 1999), while this correction is not

present in ESA’s product (baseline C). Despite these differences, as shown in Yi et al. (2018), under the same protocols for25

geophysical corrections, there is general consistency (within 5 cm) for the mean freeboard among these datasets. Beside, we

have also found that the correlation between the along-track freeboard measurements among these products are also very high

(not shown).

In this study, we mainly use ESA’s CS-2 L2 radar freeboard product (baseline-C) for analysis. We also adopt AWI’s L2

ice freeboard product for comparative studies, but carry out de-correction of the radar propagation speed to deduce the radar30

freeboard, following AWI’s protocol (Ricker et al., 2014). Since altimetric scans (such as CS-2) only cover the nadir of the

satellite’s ground path, it usually requires monthly measurements to achieve basin-scale coverage. Therefore, we use along-
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track freeboard data, and compile them when needed (see below for details). The freeboard uncertainty associated with speckle

noise is estimated at about 10 cm (Wingham et al., 2006). Besides, in AWI’s CS-2 protocols, the uncertainty associated with

SSH correction is in the range of 5 to 50 cm, while the bias caused by the fixed retracking threshold and limited penetration is

estimated to be 6 and 12 cm for FYI and MYI, respectively (Ricker et al., 2014). Since the uncertainty associated with SSH

is dependent on lead detection and specific treatments of along-track interpolation, its contribution to systematic error (e) and5

random error (✏) is also variable. For example, in Tilling et al. (2017), 100 km is chosen as the range of valid lead observations

for determining the local SSH. Therefore, the uncertainty associated with SSH at adjacent Fr samples along each track is highly

correlated, but it will be much more dependent on longer spatial ranges (e.g., over 100 km). This scale is usually much larger

than the scaling analysis in this study (usually within 2 km, see Sec. 3). Therefore, in this study, SSH related uncertainties in

freeboard measurements are treated as systematic error and ignored in the scaling analysis.10

2.1.3 CryoSat Validation Experiment (CryoVEx)

Another airborne campaign dataset we compare against satellite data is CryoVEx. Onboard sensors of CryoVEx include the

airborne electromagnetic induction sensor (AEM) and laser scanner, and total thickness of snow and ice (hi + hs ) is retrieved.

The effective resolution (footprint) by AEM is about 50 to 70 m (Haas et al., 2010, 2009), with an accuracy of 0.1 m on level

ice. In order to produce correspondence with CS-2 measurements, the flight lines of CryoVEx campaigns have been colocated15

with ground tracks of CS-2. Since there are relatively smaller overall coverage from CryoVEx campaigns, we use the available

CryoVEx data together with OIB campaigns (only collocating tracks with CS-2) for certain analysis. Specifically, we use a

dataset provided by ESA, which contains CryoVEx campaigns in 2011, 2012 and 2014.

2.1.4 ICESat

Between 2003 and 2009, NASA’s Ice, Cloud, and land Elevation Satellite (ICESat) carried out remote sensing of earth surface’s20

elevation with its onboard laser altimeter. The ground track of ICESat consists of illuminated regions of 65 m in diameter, with

consecutive ground footprints along flight track about 175 m apart (Kwok and Cunningham, 2008). With lead detection and

SSH estimations, the snow freeboard (Fs ) is retrieved. In turn, under certain assumptions about snow depth and snow/ice

density (Kwok and Cunningham, 2008), sea ice thickness is attained (Eqs. 2). Wintertime campaigns over the Arctic sea ice

yields basin-scale ice thickness fields on the bi-monthly basis.25

Since there is no colocating data available between ICESat and OIB, we carry out the analysis of statistical scaling and its

consistency with respect to ice types (MYI or FYI). In specific, we use ICESat along-track Fs product (Yi and Zwally, 2009)

for campaigns during high winters (February and March, or March and April) for analysis.

The precision of GLAS sensor is estimated to be a few centimeters, and in this study we adopt 5 cm as the noise level

for each ICESat footprint. As a reference, according to Kwok and Cunningham (2008), the 25-km segment mean Fs has the30

uncertainty of about 5 cm, which is inherently limited by tie-points during the production of Fs .
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2.2 Data summary and treatments

Fig. 2 shows all the geolocations of OIB and CryoVEx data as used in this study. Although OIB flight lines achieves large-scale

coverage, the actual area of Arctic sea ice cover as scanned by OIB is very small. In Fig. 2 we also show 3 local regions with

good OIB coverage. Each region corresponds to 3 ⇥ 3 EASE grid cells and has area of 37.5 ⇥ 37.5 km
2. For these regions,

the OIB flights contain recursive fly-overs or cross-over points. The valid ESA CS-2 sample points are shown for those within:5

(1) the same month of the corresponding OIB campaigns, and (2) the same EASE grid cells. It is worth noting that since ice

drift is prominent on the monthly scale, there exists potential risk of non-colocating measurements by OIB and CS-2 for the

regions of study. The analysis with ice drift corrections for CS-2 samples are further carried out in Sec. 4.

For each local region within the Arctic, we record the effective OIB sample count (40-m scale), denoted N , as an indicator

for OIB coverage at local regions. The value of N follows a long-tail distribution (not shown) for all the local regions, and10

in Fig. 2.a we show with different colors the regions with relatively better OIB coverage (N of the local region over 50-th

and 90-th percentile for all local regions). N ’s for the 3 regions in Fig. 2 are 1856, 2389 and 1907, which are all over 99-th

percentile for N . Due to the sparse OIB coverage even at local regions, in order to improve the representativeness of OIB and

avoid limited OIB sample count, we limit the analysis of OIB to the regions with relatively good OIB coverage (N over 50-th

percentile).15

2.2.1 Local regions as a basis for analysis

The statistical analyses in this study are mainly carried out on local regions (37.5 ⇥ 37.5 km
2). For any type of measurement

(OIB, CryoVEx, CS-2 or ICESat), we use the samples (usually organized in tracks) for each local region to carry out scaling

analysis. Basin-scale analysis is further carried out by using the statistics at local regions as samples. The purpose of using local

regions is to study the behavior of different measurements within a small region, which usually have relatively homogeneous20

sea ice cover. Besides, since airborne measurements are relatively scarce, adopting larger scales (e.g., over 100 km) will further

deteriorate the representativeness of the underlying sea ice cover. This spatial scale (37.5 by 37.5 km
2) is also on par with the

typical resolution by satellite passive microwave remote sensing, as well as the scale adopted by many gridded altimetry

products.

When comparing OIB with CS-2 or ICESat, in order to increase the correspondence of satellite data to (daily) airborne25

campaigns, we adopt all samples from the same month for CS-2 (or bi-monthly data from ICESat) for each local region for the

scaling analysis. On the other hand, for collocating tracks between airborne campaigns (OIB or CryoVEx) and CS-2, we only

use CS-2 measurements on the same tracks for analysis.

2.2.2 Treatments to Fr

In order to reduce the uncertainty, we choose ice freeboard instead of ice thickness for comparing satellite and airborne data.30

Furthermore, for the comparison between OIB and CS-2, we use Fr instead of Fi . Since Fi in CS-2 products contain potentially

different and incoherent snow corrections, we convert CS-2 Fi back into Fr when snow propagation has been applied in the
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dots.

product. In order to align OIB data with this treatment, Fr is simulated for each OIB 40-m sample, based on Fi and hs provided

by OIB (Eqs. 4). This equivalent radar freeboard by OIB takes into account the effect of slow propagation of radar in the snow

cover, and we assume total penetration of radar signal in the (OIB-measured) snow depth. Besides, we also analyze Fi from

OIB when it is needed. For the study with OIB and ICESat, we simply use Fs samples from both datasets for analysis and

comparison.5

2.3 Methods for scaling analysis

For a local region of 37.5 ⇥ 37.5 km
2 (9 EASE grid cells), we carry out the following analysis. For OIB, we locate segments

of OIB tracks that are: (1) from the campaigns within the same year and month, and (2) within the local region. For CS-2, we

locate segments of CS-2 tracks that are: (1) from the same month as the campaign, and (2) within the local region. For ICESat,

the treatment is similar with CS-2, utilizing bi-monthly ICESat tracks for each local region. As is shown in Fig. 1 and Sec.10

2.1, there is large difference between footprint and coverage among the remote sensing techniques, as well as uncertainties
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in measurements. For each local region, we consider the measurements from airborne campaigns and those from satellite

colocation, and carry out the scaling analysis.

At each local region, for a certain parameter (e.g., Fr from OIB and CS-2, or hs from OIB), the analysis mainly involves

analyzing the parameter’s variability and the change of its variability at coarser spatial scales. The variability at larger scales

beyond the original resolution is estimated by: (1) computing the locally-averaged values of the parameter based on samples,5

and (2) estimating the sample variance (VAR) or standard deviation (STDEV) from the (locally averaged) values. The sample

count for local averaging is denoted by M . When M = 1, the original resolution is adopted (without averaging). In order to

ensure enough sample count for estimating variability when M is large, we limit the analysis involving monthly altimetry

tracks to regions with OIB sample count N larger than 709 (over 50-th percentile, see Fig. 2.a for details). This allows over 30

samples even if using M = 20 (800 m) for local averaging with OIB data.10

If the parameter subjected to scaling analysis is independent and follows the same distribution within the region of analysis,

the sample variance should decrease at the rate of 1/M (or 1/
p

M for STDEV). However, other factors may modulate the

scaling of variability, including: (1) spatial correlation in adjacency (autocorrelation), (2) the inhomogeneity of the sea ice

cover within the region of study. Nonnegative auto-correlation and inhomogeneity would usually cause slower decrease of

variability under scaling. The faster the decrease speed is (approaching 1/
p

M for STDEV), the more homogeneous the15

parameter is within the region of study. Besides the local averaging based analysis, we also adopt a “randomized sampling”

strategy: M randomly chosen samples of the local region are averaged (instead of adjacent samples) to compute the statistics

of STDEV and VAR. Since with random samples, the effects of both autocorrelation and inhomogeneity are very limited, the

behavior of STDEV (or VAR) with scaling is expected to follow the assumption of independent variables (1/
p

M decrease in

STDEV).20

On the other hand, random errors (✏) in the measurements of the physical parameters would also affect variability analysis.

Specifically, they are assumed to be: (1) additive to the true physical value, (2) following Gaussian distribution, (3) independent

from measurement to measurement, and (4) independent from the true value of the physical parameter. Under these assump-

tions, the sample-estimated variability includes an additive term arisen the random error, and this term decreases with M (1/M

for VAR). Therefore, if a slow decrease in VAR (or STDEV) is witnessed during scaling, it can be inferred that the inherent25

properties of the physical parameter, rather than random error due to measurements, is the major cause.

3 Results and analysis

3.1 Analysis of sample regions

We start with analysis for the 3 regions with good OIB coverage (Fig. 2). By using OIB and CS-2 samples in these regions,

we compare the scaling of Fr and hs as measured by OIB, and CS-2 measured Fr . With randomized sampling, the sample30

standard deviation (STDEV) decreases with the square root of sample count M (or
p

M ) as used for averaging for both OIB

and CS-2 (Fig. 3.a). However, CS-2 shows overall much larger variability than OIB: (1) on the original resolution for both OIB

and CS-2, STDEV of Fr is already larger in CS-2 than OIB; (2) on the scale of 400 m (CS-2 footprint size in the along-track
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direction), STDEV of Fr of OIB is lower than 1/3 of that of CS-2. It is worth to note that at 400 m scale (with local averaging of

10 OIB samples of 40 m), the effective OIB footprint is still much smaller than (about 1% of) CS-2. With equivalent footprint

size, the STDEV as measured by OIB is expected to be much smaller than that of CS-2.

Based on local averaging, STDEV of Fr is also smaller in OIB than in CS-2 (Fig. 3.b). However, for both OIB and CS-2,

the decrease speed of STDEV with respect to M is much lower, especially for OIB. For OIB, the slopes of STDEV decrease is5

about -0.24, -0.27 and -0.27 for these 3 regions, respectively. For CS-2, the decreasing speeds are slightly higher, with slopes

of -0.28, -0.26 and -0.33. This indicates that at for both OIB and CS-2 measured Fr , there exists large spatial variability at

both the local scale (within several hundreds of meters) and larger scales.

The relatively higher variability of CS-2 Fr is suspected to be due to large noise level of CS-2 at the per-sample scale. The

STDEV of uncertainty due to speckle noise, SSH estimation and various other sources are estimated to be larger than 10 cm10

(Ricker et al., 2014). Therefore, gridding is usually carried out to generate monthly CS-2 sea ice thickness products to improve

both spatial coverage and reduce noise (Laxon et al., 2013). By aligning OIB with the along-track footprint size of CS-2 at

400 m, we show that the difference of Fr variability (STDEV) between CS-2 and OIB is in the range of 20 to 40 cm. This

comparison of uncertainty is then qualitatively consistent with previous studies. Systematic analysis with all OIB data is further

carried out in Sec. 3.2.15

For these 3 regions, we also compare the scaling of hs and Fs in Fig. 3.c with local averaging. Compared with Fr by OIB

(Fig. 3.b), Fs shows much lower variability on the wide range from 40 m (M = 1) to over 1 km (M > 25). Besides, the

reduction of STDEV of Fs from 40 m to 120 m is very small, and the overall reduction rate of Fs is also lower compared

with Fr (slopes at -0.21, -0.17 and -0.18 respectively). This indicates that compared with Fr , small-scale, local variability of

Fs is relatively low. Fs , similar to Fr , is controlled by both sea ice thickness and snow depth, and it also shows comparable20

variability as Fr at larger scales. Compared with Fs and Fr , hs shows the lowest overall variability. The decrease of STDEV

of hs with scaling is also the fastest, with slopes at: -0.43, -0.40 and -0.40. This indicates that local averaging attenuates hs

’s variability more effectively than both Fr and Fi . This also implies that within the region of study, the snow cover is more

homogeneous compared with freeboards.

3.2 Basin-scale analysis of radar freeboard scaling25

We extend the analysis of consistency between OIB and CS-2 to available OIB data on the basin-scale. Similar to regions in

Fig. 3, we carry out analysis for all local regions (each of 37.5 ⇥ 37.5 km
2) with good OIB coverage and collocating CS-2

measurements, and compute the scaling of Fr for each local region (similar to Sec. 3.1).

Sample variances (VAR) of both CS-2 and OIB for collocating local regions are shown in Fig. 4.a (original sample variances

with M = 1 for OIB) and 4.b (400 m with M = 10 for OIB). Each point represents a local region, and is colored according to30

the MYI fraction of the local region. Specifically, data from Korosov et al. (2018) are adopted for 2013 to 2017, and Ye et al.

(2016) for 2011 and 2012 when the former is not available.
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Figure 3. Statistical scaling of sea ice measurements by OIB and CS-2 for sample regions in Fig. 2. Scalings of Fr under randomized

sampling (or local averaging) by OIB (dots) and CS-2 (+) are shown in a (or b). Scalings of OIB measured hs (diamond) and Fs (dashed)

are shown in c.

We compute the linear fitting between the VAR of OIB and CS-2 for MYI (MYI fraction > 90%, red line) and FYI (MYI

fraction < 10%, blue line) dominated regions. As is shown, there exists statistically significant correlation between OIB and

CS-2 (p < 0.01) for both FYI and MYI at OIB’s original resolution (M = 1), as well as 400 m (M = 10).

We also carried out similar analysis with AWI’s per-track CS-2 product. In terms of the CS-2 freeboard retrieval, there is

more strict waveform filtering in AWI’s protocol than ESA’s, in order to eliminate outliners according to radar freeboard values.5

Accordingly, the radar freeboards from AWI show lower variability as compared with ESA. When using M = 10 for OIB, we

also witness much larger variance of Fr in AWI’s data than OIB. However, there also exists statistically significant fitting

(p < 0.01 for both FYI and MYI) between VAR of Fr from AWI’s product and that of OIB (not shown), which is consistent

with the analysis of ESA CS-2 product.

This result with basin-scale observations confirms that CS-2 generally shows larger variability of Fr than OIB. For M = 1,10

the intercept of the linear fitting of VAR both FYI and MYI are 0.019 and 0.04 m
2 respectively (Fig. 4.a). For M = 10, they

are 0.02 and 0.045 m
2 (Fig. 4.b). By assuming the additive nature of the CS-2 noise, we deduce that the noise levels of ESA

CS-2 Fr product for FYI and MYI are about 14 cm and 20 cm. The noise levels of AWI’s product are about 10 cm and 14 cm,

respectively. This estimation is slightly higher than existing studies of less than 10 cm as in Ricker et al. (2014).

In Fig. 4.c we show the analysis with data from collocating tracks between CS-2 and airborne campaigns of OIB and15

CryoVEx. Since no direct measurement of Fr is available from CryoVEx, we follow the density settings in altimetry (Sec. 2)

and approximate Fr with 1/10 of the total thickness. In total, 11 OIB tracks and 7 CryoVEx tracks are included in the analysis.

For CS-2, only samples on these collocating tracks are used for analysis. Similar to previous analysis, we divide the tracks into

local segments, and show the along-track 400 m average for OIB/CryoVEx to align with CS-2’s along-track footprint size.

The across-track footprint size for Fr is different by over 40 times between OIB (or CryoVEx) and CS-2. Compared with20

analysis based on monthly collocating CS-2 data (Fig. 4.b), there is a larger spread between the variance by collocating tracks
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Figure 4. Sample variance of Fr between OIB, CryoVex and CS-2. First row (a, b and c) compare ESA Fr with OIB and CryoVEx, while

second row (d, e and f) use AWI Fr product for the comparison. Panel a and d use the sample variances as measured by original OIB

resolution (40 m), while panel b and e uses those of OIB on 400 m resolution (local averaging with M = 10). Panel c and f show the

comparison of the collocating tracks of OIB and CVex with CS-2 on the scale of CS-2’s along-track footprint of 400 m.

of OIB/CryoVEx and CS-2, mainly due to reduced CS-2 sample count and limited representativeness. However, there still

exists statistically significant (p < 0.01) correlation between VAR of CS-2 and that of OIB/CryoVEx.

The analysis indicates that although there is a relatively high noise level of CS-2 freeboard products, the overall variability

is consistent with high-resolution, airborne measurement from OIB and CryoVEx. For a given location, if the sea ice cover

shows larger (smaller) Fr variance on the small scale, CS-2 also consistently produces Fr samples that contain larger (smaller)5

variance. This provides us an indirect method for estimating the variability of Fr at high resolution (e.g., 40 m for OIB) using

CS-2 samples which are relatively lower in resolution. By using ESA CS-2 Fr product and following Fig. 4.a, we deduce the

variability at OIB scale of 40 m (STDEV40m) using CS-2 samples (STDEVcs2) as follows:

STDEV40m = 0.45 ·STDEVcs2 + 0.10 ,for MY I (5)

STDEV40m = 0.24 ·STDEVcs2 + 0.07 ,for FY I (6)10

It is worth to note that the actual distribution of Fr at OIB scale is not directly reproducible with CS-2 Fr variability.

However, the 2nd-order moment of the distribution (STDEV or VAR) of Fr on OIB scale can be indirectly estimated.
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3.3 Scaling analysis of snow freeboard

In this section we compare the statistical scaling of Fs measurements by OIB and ICESat. Since there is no temporally col-

locating data, we compare the statistical consistency of Fs variability and scaling. Similar to Fr , the analysis of Fs scaling

is also based on local regions. For comparison, ICESat attains bi-monthly basin coverage in autumn and winter, while most

OIB campaigns are carried out during high winters in the western Arctic. Therefore we focus their measurements during Feb.,5

Mar. and Apr. in the western Arctic, and differentiate between FYI and MYI. Each local region for computing the STDEV and

scaling consists of about 7073 to 24100 ICESat bi-monthly samples for each of the 5 winters between 2003 and 2008. Since

there is no MYI fraction data product available for these years, we adopt the ice type as specified by ICESat and OIB datasets.

In total, 70673 and 96528 local regions for FYI and MYI are recorded by ICESat. Similar to ICESat data, all OIB tracks within

the same year for a local region is treated as a unit for computing STDEV.10

Fig. 5 shows the STDEV of Fs and its scaling. Based on original sample resolution for both ICESat (65 m in diameter) and

OIB (40 m in diameter), the modes of STDEV distribution for ICESat and OIB are 0.175/0.105 m (MYI/FYI) and 0.165/0.093

m (MYI/FYI), respectively (blue lines in Fig. 5.a and c). Both OIB and ICESat show larger variability of Fs for MYI than

FYI (about 50% higher STDEV). The effective footprint for ICESat is about 3320 m
2, and the area covered by OIB is lower

at 1260 m
2 (see Fig. 1.b). On the original footprint sizes, ICESat shows slightly higher variability. This result aligns well with15

the quantitative variability and uncertainty of these two products. First, after eliminating the effect of random error of ICESat

(� = 5cm) from its sample variance, the mode of STDEV distribution for ICESat is reduced from 0.175 m and 0.105 m to

0.168 m and 0.092 m. These values are close to those observed by OIB. As previously shown in the scaling analysis, there is

only slight decrease of Fs variability from 40 m to 80 m (Fig. 3.c). Therefore, on the native footprints, we consider that the

variability as measured by ICESat and OIB are consistent. ICESat measurements precede those of OIB by over 5 years, and20

we do not witness significant change in Fs variability across the Arctic basin during this period.

In Fig. 5.a and c, we also show the PDF of STDEV under local averaging. As is shown, at coarser spatial scales, the overall

variability of Fs drops for both OIB and ICESat. In order to accommodate the differences in footprint sizes and spatial coverage

by OIB and ICESat, we study two stages for scaling analysis: (1) M = 20 for OIB for comparison with M = 10 for ICESat,

and (2) M = 60 for OIB for comparison with M = 30 for ICESat. For the first stage, OIB coverage is 800 m of 20 consecutive25

and non-overlapping “dots” of 40 m in diameter, while ICESat footprint is 10 consecutive “dots” of 1’600 m apart, with each

dot covering about 3300 m
2. The aggregated footprint size for OIB is comparable to ICESat (25’000 m

2 for OIB and 33000

m
2 for ICESat). For the first stage, the modes of STDEV for OIB and ICESat are both at 0.1 m and 0.06 m for MYI and FYI

respectively. For the second stage, the modes are 0.06 to 0.07 m (MYI) and 0.04 to 0.05 m (FYI). Here we ignore the random

error’s effects, since the influence on sample STDEV is less than 2 mm for M > 20.30

We also compare the scaling behavior of Fs in Fig. 5.b (for OIB) and d (for ICESat). For each local region, the slope is

computed based on 40 m to 1200 m (M = 1 to M = 30) for OIB, and 65 m to 1750 m (M = 1 to M = 10) for ICESat. For

OIB, the modes of slope PDF for MYI and FYI are -0.2 and -0.16. For ICESat, they are of similar values at -0.2 and -0.16.

Also the distribution of slopes are quite similar with similar standard deviation of 0.07.
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As shown in Fig. 1.b, OIB footprints are spatially adjacent but for ICESat they are 175 m apart. As a consequence, the scaling

analysis with local averaging are different between the two. Therefore, we study the effect of interval between footprints of

ICESat (i.e., 175 m) on OIB measurements: along-track OIB samples that are 175 m apart are extracted for the study of

variability and scaling. The results are shown in Fig. 5.e and f, and the sample counts (M ) in Fig. 5.e are aligned with Fig.

5.c. While for M=1, the variability of Fs is the same as in Fig. 5.a, when M is larger, the detected variability of Fs decreases5

faster (Fig. 5.f). This indicates that when samples that are spread further are used for local averaging, the variability is more

effectively dampened. With aligned spatial intervals between samples, OIB shows comparable variability with ICESat for

M = 10 and M = 30 (Fig. 5.e), and the differences between the modes of STDEV are within 1 cm.

To summarize, the general behavior of Fs scaling by ICESat and OIB are consistent, with similar value in variability and scal-

ing behaviors. Although ICESat observations are several years before OIB campaigns, we do not observe significant changes10

in the variability of Fs and its scaling. It is also noted that both footprint size and spatial coverage are important to the compar-

ison of scaling behaviors. Two factors affects the variability in Fs . First, with the increase in the aggregate footprint size, the

variability decreases. Second, if the spatial coverage of samples increase while keeping the total footprint size constant, there

is even more effective dampening in variability. This indicates that the portion of variability on the local scale increases with

wider coverage of local samplings.15

3.4 Covariability of snow depth and freeboard

In this section we study the covariability between hs and freeboard measurements (both Fs and Fi ). We mainly use OIB

datasets for this analysis, since both hs and Fs are available, and they are measured and retrieved independently. The mea-

surement errors (e and ✏, as in Eqs. 3) are formulated as below, with differentiation between the observed (denoted by |o) and

inherent physical states (denoted by |p) of the parameters.20

Fs|o = Fs|p + eATM + ✏ATM (7)

hs|o = hs|p + eSR + ✏SR (8)

Fi|o = Fs|o �hs|o (9)

= Fi|p + (eATM � eSR) + (✏ATM � ✏SR) (10)

For covariability between Fs and hs , we show in Eq. 11 the deduction of covariance between Fs|p and hs|p. Hereby25

we assume: (1) statistical independence of errors (eATM , eSR, ✏SR and ✏ATM ) from physical parameters (Fs|p and hs|p), (2)

statistical independence relationships between errors, and (3) no local variability of bias terms. Then we deduce that the sample

covariance estimated from observations between Fs|o and hs|o is an un-biased estimator for the true, physical covariance. Fig.

6 shows the PDF of sample covariance between Fs and hs for local regions with good coverage (panel a and b for 40 m and

800 m, respectively). At 40 m, 95 % of all local regions show statistically significant positive covariance (hence correlation),30

while at 800 m, still 90 % retain positive covariance. This dominant feature is consistent with the physical perspective (Eqs. 2)

that the thicker snow cover induce higher total freeboard.
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Cov(Fs|o,hs|o) = Cov(Fs|p + eATM + ✏ATM ,hs|p + eSR + ✏SR)

= Cov(Fs|p,hs|p) (11)

For Fi and hs , we also deduce the covariability as in Eq. 12. Since Fi is a derived parameter from Fs and hs in OIB, the

estimation of covariance between Fi and hs may be biased by random errors. Specifically, random error in hs measurements

casts a positive offset on Cov(Fi|o,hs|o), by 2.5⇥10�3

M m
2 where M is the sample count for along-track averaging. This implies5

that under the alternative hypothesis of negative covariance between hs and Fi , using sample covariance without this correction

would increase the chance of Type-I error for the testing.

Cov(Fi|o,hs|o) = Cov(Fi|p + (eATM � eSR) + (✏ATM � ✏SR),hs|p + ✏SR)

= Cov(Fi|p,hs|p)��
2
SR (12)

Fig. 7.a and b show the distribution of derived Cov(Fi|p,hs|p) at 40 m and 800 m, respectively. At 40 m scale, for MYI-10

dominated, FYI-dominated, and mixed ice type regions, we have 97 %, 72 % and 91 % regions with negative covariance

(statistically significant at 95% confidence level). However, at 800 m, only 30 %, 8 % and 12 % regions shows negative

covariance, respectively. This result indicates that at small scale, there is complementary relationship between snow depth and

ice freeboard. This is probably due to sea ice and snow interaction at small spatial scale. First, sea ice topographical features are

more prominent at smaller spatial scales, which affect snow accumulation and result in deeper snow for local places with lower15

ice freeboard and thinner ice. On MYI with thicker ice and rougher topography, the negative covariability is more pronounced

than FYI. Second, since OIB campaigns are carried out during the high winters in the Arctic, thicker snow may have induced

lower ice thickness growth during the whole winter, which is a potential contributor to the thinner ice and lower freeboard.

On the other hand, the disappearance of this negative correlation at larger spatial scales indicates that this phenomena is

mostly dominant on small scales. At larger scale, snow-ice interaction due to sea ice topography is less dominant, with much20

fewer regions showing negative covariance. Besides, at 800 m, certain regions (about 29 % for FYI and 21 % for mixture)

show significant positive covariance between Fi and hs . Difference in snowfall accumulation may be the reason: compared

with younger ice, relatively older ice (with larger Fi ) are exposed to longer and heavier snowfall accumulation during autumn,

resulting in thicker snow and large hs [see Fig. 4 of Boisvert et al. (2018)].

Furthermore, we compute for each local region the spatial scale on which the negative covariance becomes statistically25

insignificant. For a local region, we define the critical scale (s) of snow distribution as the scale: (1) on which there is statistically

significant negative covariability between hs and Fi , and (2) beyond which the negative covariability is not evident. For all the

local regions with sufficient OIB coverage (N over 50-th percentile), the distributions of s for MYI, FYI and mixture region

are shown in Fig. 7.c. For FYI, about 28 % shows no negative covariance at 40 m, with the 90-th percentile of s at 280 m. For

MYI dominated regions and regions with MYI-FYI mixture, there exists a well-defined mode for s at 80 m, and a long-tail30

distribution (90-th percentile at 1120 m and 520 m, respectively). In Fig. 7.d we also show the spatial distribution of s in the
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Figure 6. Covariability between Fs and hs on 40 m (a) and 800 m scale.

Arctic basin. As is shown, there exists large spatial variability of s both locally and across the basin, and regions with MYI

usually feature much larger s. Regions where the roughest MYI manifests (north of CAA and Greenland, and certain regions

in Beaufort Sea with remnant MYI) show the largest s. Compared with FYI (s at about 40 m), thick MYI show much larger s

(over 500 m for certain regions), which is evident of snow cover’s complementary effect on reducing the sea ice cover’s overall

variability.5

4 Discussion and Conclusion

In this article we examine the variability, its scaling and consistency among various remote sensing methods for Arctic sea ice,

including airborne (OIB), radar altimetry (CS-2) and laser altimetry (ICESat). Analysis with collocating measurements by OIB

and CS-2 shows: although CS-2 products contain a higher noise level on the per-sample scale, there is statistical consistency

between variability of Fr as measured by OIB and CS-2. The noise level of ESA’s CS-2 baseline-C Fr product is estimated at10

14 to 20 cm, which is larger than current estimations. On the other hand, there is general consistency for both Fs variance and

its scaling by OIB and ICESat. We do not observe significant changes of these statistics from ICESat (2004 ⇠ 2008) to OIB

(2009 on). Furthermore, by using OIB data, we also discovered wide-spread negative covariability between ice freeboard and

snow depth at small spatial scales. This covariability generally diminishes at larger scales, indicating that the dominant role of

snow-ice interaction on local scales. The critical scale for the covariability is estimated using basin-wide OIB measurements,15

showing shorter ranges for FYI and much longer ranges for MYI with a long-tail distribution. The largest scale (over 500 m)

is generally witnessed on the roughest MYI in the Arctic basins.

Evaluation of variability
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Figure 7. Covariability between Fi and hs at 40 m (a) and 800 m scale (b). Distribution of sample-estimated covariance between hs and Fi

are shown (with correction for ✏SR). Critical spatial scale (s) for negative covariability between hs and Fi is shown in panel c (PDF) and d

(geolocations).
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For the comparison between OIB and CS-2, existing works mainly focus on the consistency of the mean freeboard or ice

thickness. As reported by Kurtz et al. (2014); Xia and Xie (2018), there is low correlation of Fr between OIB and CS-2, using

either gridded data or collocating tracks. Both retracking and geophysical corrections are shown to play an important role to

reduce the difference (or bias) between OIB and CS-2 (Xia and Xie, 2018; Yi et al., 2018). Usually the limited representative-

ness is attributed as the main cause of low correlation, which arises from differences in footprint size and spatial coverage. In5

this work, instead of mean values, we analyze second-order statistics (i.e., the variability) and its scaling for radar freeboards.

Although CS-2 shows much higher Fr variance than OIB even at 400-m scale, the statistically significant relationship is wit-

nessed. This result implies that the small-scale variability of Fr can be quantitatively informed with CS-2 samples, in spite of

high noise level of CS-2.

Specifics about OIB10

The analysis of OIB, CS-2 and ICESat data indicates that all the factors contribute to the variability and its scaling, including

measurement footprints, noise levels, and spatial coverage. Except for the analysis of collocating tracks, we treat (daily) OIB

campaigns and monthly CS-2 tracks as collocating sources of measurement. Since sea ice drift is prominent on the monthly

scale, we also carried out analysis with CS-2 sample points under drift corrections (e.g., using NSIDC drift). We didn’t notice

evident change in the results for the analysis of variability, its scaling, and the estimation of CS-2 noise levels.15

As for the data independency in OIB, since Fs and hs are directly retrieved with ATM and SnowRadar respectively, they are

considered as independent data. However, Fi , Fr and in turn hi , are computed indirectly from Fs and hs . The random error

in Fs and hs would cause uncertainty in both the variability and the covariability of these derived parameters. The analysis

of variability scaling is less affected by random errors, since with a larger sample count the noise level decreases fast. The

covariability between Fi and hs , however, can be shifted by noise in hs measurements, and the effects are accounted for20

computing covariances in Sec. 3.4.

Existing works, including Kwok et al. (2017), carried out evaluation of various OIB datasets. For example, Kwok et al.

(2017) shows general agreement, but systematic differences among hs retrievals, especially when the snow cover is thick (Fig.

4 and 5 of the reference). Since the validation showed good correlation of all hs products in Kwok et al. (2017), we consider

that adopting alternative OIB datasets will not qualitatively alter the results in this study. Specifically, the products used in25

our study (IDCSI4 and IDCSI2) may have underestimated hs , so we expect that a thicker hs product would result in higher

variability in hs , as well as more evident negative covariance between Fi and hs . Comparative studies of various OIB products

can be carried out in the future when they become available, following the methodology proposed in this study. In Kwok et al.

(2011), it is shown that OIB SnowRadar may not be able to attain stable retrieval of snow depth over sea ice ridges. This may

compromise the analysis through preferential sampling of snow depth. The effects of limited snow depth estimation over ridges30

is a subject of further analysis in future studies.

Effect of covariability on altimetry

The snow cover is a major source of uncertainty for both types of satellite altimetry. The variability of the measured free-

board, as well as the covariability between snow depth and freeboard can be exploited to improve satellite altimetry. For laser

altimetry, the positive covariability between Fs and hs is present across spatial scales (40 m to over 1 km), which covers the35
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typical footprint size of ICESat and ICESat-2. This covariability is also reported by other works, including Kwok et al. (2011)

(4 km scale) and Zhou et al. (2018) (scale ranging from 40 m to 240 m). Furthermore, in Zhou et al. (2018), nonlinear fittings

between hs and Fs (based on 40 m scale covariability) are utilized for the combined retrieval of hs and hi with L-band passive

radiometry with laser altimetry. For laser altimetry with prescribed snow depth estimations, this positive covariability can also

be utilized: (1) to avoid the artificial reduction of snow depth [in favor of non-negative ice freeboard as in Kwok and Cunning-5

ham (2008)], and (2) for the retrieval of ice thickness distribution with altimetric samples. Specifically, the covariability at the

satellite sensor’s footprint scale (65 m diameter for ICESat) should be utilized. On the other hand, for radar altimetry for which

Fi is the major target for retrieval, the negative covariance between hs and Fi only manifests at small scales. Whether there is

prevalent negative covariability at the footprint size of CS-2 is subjected to further study.

Based on the statistical fitting between the variability of OIB and CS-2, we derive an indirect method in Sec. 3.2 for estimat-10

ing the “real” variability at small scale (e.g., 40 m) using CS-2 samples. Then, the mean value of freeboard (or thickness) from

CS-2 can be combined with this derived variability, to better inform applications that utilize CS-2 datasets. These include sea

ice thickness assimilation applications [Chen et al. (2017) and Blockley and Peterson (2018) among others], which potentially

utilize mean thickness, mean freeboard, and freeboard samples from CS-2. However, statistical fitting specific to the CS-2

product should be utilized, since noise levels may differ among various products (see Sec. 3.2). It is worth noting that: it is not15

generally possible to directly estimate the freeboard distribution on small-scale with CS-2, given: (1) the large footprint size of

CS-2, and (2) its relatively high noise level at per-sample scale. For example, in King et al. (2018) the N-ICE2015 campaign

which surveyed local regions with second-year ice floes mixed with first-year floes and leads, the multi-modal distribution

(from high-resolution mapping) is absent in collocating CS-2 measurements (Fig. 10 of the reference). The physical features of

freeboard distribution on the CS-2 footprint size, such as multi-modality, depend on the specific sea ice type (age) mixture and20

mixture scale of the region. In this regard, other datasets, such as SAR images, ice type mixture maps (Korosov et al., 2018),

lead (history) maps (Zhou et al., 2017) can be utilized for a more holistic view of the ice cover.

Snow-ice interaction

There exists negative covariability between Fi and hs at small-scale, which is consistent with in-situ measurements. On

small scale, snow cover tends to complement sea ice topography (Sturm et al., 2002a), and the main factor may be snow25

accumulation through its interaction with topographic features such as ridges and refrozen ponds. Besides, snow depth also

feature variabilities due to snow’s own processes (other than those governed by ice), such as interaction with wind. On the

other hand, due to thermal insulation of snow cover, sea ice thickness growth may also be hindered by thicker snow, resulting

in “thick snow - thin ice” relationship. Compared with previous works which mainly are based on in-situ measurements, this

study, by utilizing OIB data, reveals the critical spatial scale for the covariability of snow distribution due to interaction with sea30

ice. The common spatial scale for the negative covaribility is below 40 m for FYI, and around 80 m with a long-tail distribution

for MYI.

The understanding of the dynamical and thermodynamical mechanisms that govern the statistical behaviors would require

efforts from both modeling and observational aspects. Current state of the art sea ice models, including those in climate studies,

usually contain major thermodynamic and dynamic processes of the sea ice cover, but many still lack snow related ones such as35
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snow (re)distribution and prognostic snow stratigraphy. Considering the complex and important roles of snow on modulating

air-sea interaction (Sturm et al., 2002b; Abraham et al., 2015), snow distribution and interaction with ice topography should be

accounted for by refining vertical resolution of the sea ice and snow cover, as well as better parameterizations for unresolvable

scales. The airborne and in-situ observations, including the statistics of variability and covariability in this study, can be utilized

to validate models and parameterization schemes. On the other hand, systematic observations during the freeze-up season5

are needed, in the pursuit of quantitative attribution to the statistics in snow distribution. Multi-scale and process-oriented

observational campaigns such as MOSAiC (Alfred-Wegener-Institut) could potentially shed more light on the snow cover’s

key processes and its complex interaction with sea ice.
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