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Abstract.

Ice rheology formulation is a key component of modern sea ice modeling. In the CICE6 community model, rheology and

landfast grounding/arching effects are simulated by functions of the sea ice thickness and concentration with a set of fixed

parameters empirically adjusted to optimize the model performance. In this study, we consider a spatially variable representa-

tion of these parameters to extend a two-dimensional EVP sea ice model with a formulation similar to CICE6. Feasibility of5

optimization of the rheological and landfast sea ice parameters is assessed via idealized variational data assimilation experi-

ments with synthetic observations of ice concentration, thickness and velocity. Taking into account that sea ice observations

are available daily, the experiments are configured for a 3-day data assimilation window in a rectangular basin. It is found that

the tangent linear and adjoint models featuring EVP rheology are unstable, but can be stabilized by adding a Newtonian damp-

ing term into the adjoint equations. The set of the observation system simulation experiments shows that landfast parameter10

distributions can be reconstructed after 5-10 iterations of the minimization procedure. Optimization of the sea ice initial con-

ditions and spatially varying parameters in the equation for the stress tensor requires more computation, but provides a better

hindcast of the sea ice state and the internal stress tensor. Analysis of the inaccuracy in the wind forcing and errors in the sea

ice thickness observations have shown reasonable robustness of the variational DA approach and feasibility of its application

to available and incoming observations.15

Copyright statement. TEXT

1 Introduction

Due to significant decline of the sea ice volume in the Arctic Ocean (AO) in the last decades and increase of the maritime

activity in the AO, the role of an accurate sea ice hindcast/forecast became an important component of the regional data

assimilation systems. Currently, there are several community sea ice models broadly used for modeling and reconstruction of20

the Arctic Ocean state through various Data Assimilation (DA) algorithms. Many of these models (e.g. Heimbach et al, 2010;

Zhang and Rothrock, 2003; Vancoppenolle et al. 2009; Massonnet et al. 2015) are based on the visco-plastic (VP) rheology
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proposed by Hibler (1979). In the last decades, several numerical approaches have been proposed for solving the VP problem

(Hibler, 1979; Zhang and Hibler, 1997; Lemieux et al, 2008). These approaches are based on implicit solvers and require a

significant number of iterations to achieve full convergence. Application of more efficient quasi-Newtonian solvers suffers25

from the lack of robustness and these are usually applied in the sea ice models of intermediate resolution (Lemieux et al., 2012;

Losch et al., 2014). In addition, implicit VP solvers are less convenient for implementing on massively parallel supercomputer

architectures. Despite these inconveniences the currently known four-dimensional variational (4dVar) sea ice models utilize an

implicit VP solver for time integration of the tangent linear and adjoint (TLA) models (Kauker et al, 2009; Heimbach et al,

2010).30

The Elastic-VP (EVP) rheology was proposed as an alternative explicit method which can be easily adopted for supercom-

puter architectures (Hunke and Duckowicz, 1997). In addition to the VP parameterization of the internal stress tensor, EVP

includes an additional elastic term which requires internal subcycling to damp elastic oscillations in order to achieve the VP

solution. The most widely used sea ice model with EVP rheology is the Community sea ICE model (CICE, Hunke et al., 2010)

which is currently maintained and developed by a group of institutions in North America and Europe known as the CICE Con-35

sortium. It is widely used in sea ice and coupled sea-ice modeling (e.g. Posey et al, 2010, Metzger et al, 2014, Yaremchuk et

al, 2019). There are multiple examples of 3dVar, ensemble-based DA systems utilizing the CICE (e.g., Zhang and Bitz, 2018),

but to our knowledge there is no 4dVar DA system based on the CICE model yet.

In the majority of sea ice models, the sea ice rheology is controlled by three major parameters (P ⇤, e, and ↵) describing re-

spectively the dimensional maximum ice strength per unit thickness, the ratio of yield ellipse major axes, and non-dimensional40

scaling of ice strength with its compactness. For modeling landfast ice near the coast and in the straits (so-called arching phe-

nomena), an additional parameter kT has been introduced to model the tensile strength (Konig Beatty and Holland, 2010). This

parameter is absent in the traditional (i.e. Hibler 1979) elliptical yield curve formulation.

Lemieux et al.(2015) proposed a number of additional parameters k1,k2,↵b, for better parameterization of the landfast ice

grounded in the shallow regions. Typically, the above mentioned rheological parameters (RPs) are constants and their values are45

defined empirically from multiple numerical experiments. RPs such as P ⇤ and e reflect the model parameterization rather than

physics and thus are directly unobservable (Kreyscher et al. 2000), but are nevertheless known to range within certain limits

(Harder and Fischer 1999). As a few examples, the typical values of P ⇤ determined from the sea ice drift were diagnosed to

vary within 27.5 kN/m2 (Hibler III and Walsh, 1982), 15-20 kN/m2 (Kreyscher et al., 1997, 2000), and 30–45 kN/m2 (Tremblay

and Hakakian, 2006). These studies indicate the existence of significant variations of the P ⇤ estimates, which may be attributed50

to both non-physical considerations (such as spatially variable model resolution), and spatio-temporal variations of the Arctic

sea ice.

Numerical experiments of Lemieux et al., (2016) with a coarse resolution pan-Arctic CICE-NEMO model have shown that

kT = 0.2 provides the best agreement with landfast strength observations in the Kara Sea, when the ellipse axes ratio ranges

within 1.2-1.4. The most sensitive parameters for sea ice grounding are the critical thickness parameter k1 and maximum basal55

stress parameter k2. The optimal values were found to be 8 and 15 N/m3 respectively with higher sensitivity with respect to k1

(Lemieux et al. 2015). However, fixed values of kT ,k1 and k2 cannot provide a universally good performance of the landfast
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modeling for different parts of the Arctic Ocean, suggesting that these parameters are the functions of local environmental

conditions. Physical properties of the sea ice also strongly depend on sea ice salinity, temperature and ice age (e.g. Anderson

and Weeks, 1958) indicating that different categories of sea ice may have different rheological properties.60

Thus, numerous modeling experiments and sea ice observations (e.g., Juricke et al, 2013; Toyota and Kimura, 2018) indicate

that spatially varying and properly optimized RPs should significantly improve the sea ice model performance. There were

multiple attempts to define sea ice model parameters in an optimal way. The early attempts followed a traditional “trial-

and-error” approach, involving multiple runs of a sea ice model with different sets of RPs (e.g. Miller et al, 2006, Uotila et

al, 2012), while others utilized the more advanced methods based on the Green’s function approach (Nguyen et al, 2011),65

ensemble Kalman filtering (Massonnet et et al., 2013) and genetic algorithms (Sumata et al., 2019). However, all of these

attempts sought a relatively small set of spatially invariant sea ice model parameters which provided an optimal sea ice model

solution for a period of several years or decades. The application of these algorithms for optimizing spatially varying RPs was

not considered, and from our point of view, is not straightforward due to the need of extremely high computational resources.

Also note, that the above listed algorithms are not suitable for simultaneous optimization of other model paratemers such as70

initial and open boundary conditions, or external forcing fields.

The major objective of our study is to find a numerically feasible method for simultaneous optimization of multiple model

parameters including the spatially varying RPs, initial conditions and forcing fields in the sea ice models based on EVP solvers

(e.g. CICE model). We suggest that, if successful, this approach can be adopted for optimizing the RPs in the operational sea

ice models (e.g. Posey et al., (2010), Metzger et al, (2014)) and provide more accurate short term (3–7 days) sea ice forecast.75

Feasibility of reconstructing the spatially varying fields of P ⇤ and e (as well as other model parameters) through the

variational DA of synthetic observations of Sea Ice Velocity/Concentration/Thickness (SIV/SIC/SIT) was recently analyzed by

Stroh et al, (2019) in the framework of the 1d (zonal) VP sea ice model. It was found that variational DA allows reasonable

reconstruction of spatially varying P ⇤ and e in the regions with strong convergence and significantly improves short range

hindcast/forecast of the sea ice state. In particular, it was shown that optimization of spatially varying P ⇤ and e provides more80

accurate reconstructions of the ridging areas, that cannot be achieved by optimizing initial sea ice state only.

Note, that optimization of the RPs through the 4Dvar DA approach allows us to efficiently use all available sea ice observa-

tions including sea ice velocity, that are rarely used for assimilation in sea ice DA systems. The latter is due to weak sensitivity

of the sea ice state with respect of the ice velocity (e.g. Kauker, et al., 2009). Roughly speaking, the 4dVar DA approach allows

us to use sea ice velocity observations for adjustment of the RPs and/or atmospheric forcing in an appropriate manner resulting85

in a better sea ice forecast (Stroh et al, 2019).

In this study, we extend the investigation to analyze the feasibility of RP optimization within a more advanced 2d sea ice

model based on the EVP rheology formulation of Lemieux et al., (2016). Our approach is based on application of the 4Dvar and

Observing System Simulation Experiment (OSSE) concepts (e.g. Nichols 2003, 2010) and follow the conventional twin-data

experiment approach (e.g. Goldberg and Heimbach, 2013). Similarly to Stroh et al, (2019), we developed the corresponding90

EVP TLA models and analyzed the feasibility of the optimization of spatially varying ellipse ratio and sea ice compressive

strength. In addition, we also analyzed the feasibility of optimizing two of the landfast sea ice parameters introduced by
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Lemieux et al.(2016). Through the multiple OSSEs we evaluate the quality of the RP reconstruction and analyze the impact

of spatially varying RPs on the sea ice state. A similar approach was recently proposed for optimization of the basal stress

parameters in the ice sheets model (Goldberg and Heimbach, 2013).95

Currently, satellite sea ice observations are typically available daily with a reasonably dense spatial resolution. Analysis of

the SAR images (e.g. Panteleev et al., 2019) indicates that in the marginal sea ice zone, the pancake/cake ice with floe sizes of

⇠1-20 m may be easily replaced by floes exceeding 1 km in size in one week. As a consequence, we configured the OSSEs

with a 3-day DA window assuming that such approach should have more impact on short term sea ice forecast.

The paper is organized as follows: Section 2 describes the implemented sea ice model, the details of the TLA codes and100

generation of synthetic observations and the first guess solution used in OSSE experiments. Results of these experiments

are described in Sections 3 (optimization landfast sea ice parameters) and 4 (optimization of compressive strength and ellipse

ratio), with special focus on the feasibility of optimizing spatially varying RPs in the context of present and future observational

coverage of sea ice at high latitudes. Section 5 summarizes the work and discusses directions of future research.

2 Sea ice model and its 4dVar implementation105

This section provides details of the sea ice model formulation, its associated linearizations, outlines the variational data assimi-

lation system used for optimization of the model parameters, and describes synthetic observations used to do so. To distinguish

between the parameter fields spatially varying in 2d and the fixed parameter values that were not subject to optimization, the

latter are marked by tildes. The major parameters of the model are listed in Table 1.

2.1 EVP sea ice model110

In the present study, we employed the sea ice model formulation of Lemieux et al.(2016) with the basal stress parameterization

and generalized Hibler (1979) yield curve. Equations of the model describe EVP ice physics coupled with SI dynamics which

is forced by the stresses ⌧ exerted on ice through its interaction with the bottom ⌧ b, atmosphere ⌧ a, and the ocean ⌧w:

⇢̃hA(@t + f̃k⇥)u = div�+ ⌧ b + ⌧ a + ⌧w (1)

T̃d @t�+ e2�+ 1
2 tr�(1� e2) I = Pp

⇥
(1+ kT )✏̇� �

2 (1� kT ) I
⇤
/�⇤ (2)115

@th= div(hu) (3)

@tA= div(Au) (4)

Here div, tr are the divergence and trace operators, k is the vertical unit vector, I is the 2⇥ 2 identity matrix, h,A, and u = {u,v}
are the 2d fields of ice thickness, concentration and velocity, and � and ✏̇ are the 2d fields of ice stress and the deformation rate
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The scalar field � used for normalization of the rhs in (2) is computed using the following expression (e.g., Hunke, 2001):

�(✏̇) =
1

e

⇥
(e2 � 1)(tr✏̇)2 +2tr(✏̇2)

⇤1/2
. (6)

To avoid numerical singularities at ✏̇= 0, the values of � are limited from below by the additional parameter �̃⇤ = 10�10 s�1,

so that �⇤(✏̇) = max(�,�̃⇤).125

The empirical parameters T̃d,P ⇤,kT and e in equations (1)-(4) define the elastic damping scale of sea ice, its internal

pressure, isotropic tensile strength, and the yield curve axes ratio respectively.

The internal ice pressure Pp is related to ice thickness and concentration in accordance with Hibler’s (1979) rheology:

Pp = P ⇤hAexp[�↵̃(1�A)] (7)

The typical values of the ice strength parameter P ⇤ and ↵̃ are listed in Table 1.130

The bottom and ocean stresses in eq. (1) were parameterized in accordance with Lemieux et al. (2015; 2016) and Hunke and

Lipscomb, (2008):

⌧ b = �Cbu ⌘�✓(h�Ahb/k̃1)
k2u

|u|+ ũ0
exp[�↵̃b(1�A)] (8)

⌧w = �C̃w⇢̃wA|u� uw|R⇥(u� uw) (9)

where ✓ is the Heaviside step function, hb is the ocean depth, R⇥ is the 2⇥2 matrix rotating the velocity vector by the turning135

angle ⇥ counterclockwise, ũ0 = 10�5 m/s, and uw is the water velocity (set to zero in the present study). The values of other

parameters (C̃w,⇢w, ↵̃b, k̃1 and k2) are listed in Table 1.

In contrast to the previous studies, where the free empirical parameters P ⇤, e,kT and k2 were assumed to be constant,

the present study attempts to retrieve their spatial variability from synthetic (satellite) observations of the sea ice state vector

C ⌘ {h,A,u} using variational DA technique.140

2.2 Adjoint and tangent linear models

Following Lemieux et al.(2016), model equations were discretized on the Arakawa B-grid and integrated forward in time using

a two-stage time stepping. At the first stage, the fields of velocity u and ice stress � were adjusted for 400 internal iterations

with a "subcycling time step" �ts=1.5 s to obtain the velocity values at the end of the advective time interval �t= 600 s, and

then the fields of ice concentration and thickness were updated using the explicit advective time step in equations (3)-(4). More145

detailed description of the model numerics and its TLA codes are given in Appendix A. Additional experiments with a larger

number of internal iterations (up to 2000), did not reveal any substantial difference in either forward model solution or in

stability of TLA models.

The TL code was derived by analytic differentiation of the above mentioned numerical scheme in the vicinity of a background

model trajectory. The adjoint code was obtained by transposition of the sparse matrix in the code simulating the action of the TL150

operator on a perturbed state vector. The most laborious part in deriving the TLA codes was associated with the linearization of

the rhs in eq. (2) with respect to ice velocities and RPs. Note that the first term in the rhs of the linearized eq. (2) is proportional

5
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Table 1. Model and assimilation system configuration parameters

Constant parameters

Name Symbol Value

Coriolis parameter f̃ 10�4 s�1

Ice density ⇢̃ 900 kg m�3

Water density ⇢̃w 1026 kg m�3

Water drag coefficient C̃w 0.0055

Turning angle ⇥ 0.4343 rad

Advective time step �t 600 s

Subcycling time step �ts 1.5 s

Elastic damping scale T̃d 0.72�t

Creep limit �̃⇤ 10�10 s�1

Compactness strength parameter ↵̃ 20

Compactness basal stress parameter ↵̃b 20

Critical thickness parameter k̃1 8

Controlled parameter fields

Name Symbol Range

Base Strength Parameter P ⇤ 22 – 33 kN/m2

Yield curve axes ratio e 1.0 – 3.1

Tensile/Compressive Strength ratio kT 0 – 0.8

Maximum basal stress parameter k2 0 – 20 N/m3

to the first derivatives of the velocity perturbations �u. As a consequence, the components of � are linear in the first derivatives

of �u after taking the explicit time step �ts in the linearized eq. (2). Moreover, the first-order derivatives in u keep their presence

in the rhs of the linearized eq. (1) due to spatial variability of the background fields in equations (6) and (7).155

This property of the TL equations of the subsystem (1)-(2) may require additional care in the specification of the subcycling

time step �ts because the gradients of the background fields of h and A may invoke considerably larger propagation speeds of

the effective elastic waves than those present in the original non-linear model. Consequently, the TL code could be constrained

by a more stringent stability criterion and require even smaller subcycling time steps than those used in the integration of the

full non-linear model. In particular, the non-linear stability criterion could be violated, for example, in the areas of strong ice160

convergence where the background field is characterized by the large values of SIT gradients which may cause, as it follows

from (7), large coefficients before the first-order derivatives of �u in the TL code of the second term in the rhs of eq. (2).

Preliminary numerical experimentation with the TL code exposed a necessity to reduce �ts as the TL solutions demonstrated

uncontrollable amplification of velocity perturbations over the areas of strong sea ice convergence in the background fields.

6
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Our attempts to reduce �ts by an order in magnitude reduced this type of amplification with a limited success. Martin Losch165

observed similar instability of the TL EVP solver in the MIT sea ice model (personal communication).

Instability of the linearized codes in the strongly non-linear regimes of the parent model is a well known phenomenon in

the ocean general circulation models (OGCMs). A heuristic solution of the problem was proposed by Hoteit et al, (2004) who

added extra diffusion in TLA codes to suppress unstable small-scale harmonics. This kind of treatment is achieved, however,

at the expense of the reduction of the TLA code accuracy (e.g., Yaremchuk et al, (2009)). Later, Yaremchuk and Martin,170

(2014) established a connection between the length of the DA window and the magnitude of the diffusion tensor in the TLA

regularization terms.

However, in the sea ice model considered, this type of regularization did not work even when the contribution of the stabi-

lization term was comparable in magnitude with the contributions from other terms in the TLA codes. We attribute this phe-

nomenon to the specific structure of the unstable modes in the TL equations, which often take the form of strongly anisotropic175

ridge-like structures (i.e. having a wide spatial spectrum of the SIT component) in the areas of ice convergence. As a conse-

quence they cannot be efficiently damped using an isotropic diffusion tensor in the TL momentum equations. A straightfor-

ward solution is to introduce spatially inhomogeneous diffusion tensor field (e.g. Yaremchuk and Nechaev, 2013), with local

anisotropy derived from the background solution. However, this would require a considerable reduction of �ts due to very large

diffusion along the ridges. As a simple alternative, we used a more simple Newtonian friction term, which homogeneously180

damps the entire spectrum of small perturbations. Numerical experimentation has shown that this approach worked generally

well using Newtonian damping time scale T̃d of 0.7�t. Additional experiments have shown that T̃d has to be decreased to 3�td
in the cases of stronger sea ice convergence in the regions with thick (h > 3 m) ice.

Testing the validity of the stabilized TLA codes was done in a way similar to Yaremchuk et al, (2009). The initial conditions

for the model thickness and concentration fields C = {h(x,0),A(x,0)} were slightly perturbed by the realizations of a random185

function R (viz. C(x,0)! C(x,0)+ ✏R(x)⌘ C+ �C), and the model and its TL version were integrated for t= 5�t. After

that, the dependence of the normalized difference between the non-linear solution and its TL approximation was checked by

computing the following quantity:

�(✏) =
|N(C+ �C)�N(C)�TL(�C)|

|N(C)| (10)

where N is the state vector of the non-linear model at time t generated by the initial conditions listed in the argument, and | · |190

is the euclidean norm. As it is evident from Fig. 1, the stabilized version of the TL code is characterized by �(✏)/ ✏, while the

correct TL code should provide the decay proportional to the square of ✏. Decay of � for the unstable TL code is slightly faster

than the stabilized one, but the respective solutions produce very noisy patterns causing much earlier stagnation of the descent

process as compared to the stabilized code.

It is noteworthy, that behavior of �(✏) in similar experiments with 1d VP sea ice model and corresponding TLA models195

(Stroh et al, 2019) agreed well with the ✏2 dependence of the Taylor expansion (blue line in Fig. 1). We speculate that, similar

to the 1d case, stability criteria of the 2d VP system may also be weakly affected by the TL transition due to the specific

nature of the linearization in the implicit momentum equation solver (see Appendix B). These considerations may indicate an

7
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Figure 1. TL approximation errors �(") of the EVP (black), regularized EVP (red), and 1d VP ice model (blue dashed) solutions.

additional attractive feature of the VP rheology in the practical 4dVar applications. Note also, that to the best of our knowledge,

the existing 4dVar sea ice models are based on VP solvers (MIT, Heimbach et al, 2010; NAOSIM, Kauker et al, 2009) and have200

never reported instability of their TLA codes.

In the OSSE experiments described below, the control variables included initial conditions for sea ice velocity, thickness

and concentration, the wind stress and the spatially varying RP fields of P ⇤, e, kT , and k2. For other RPs we utilized constant

values adopted from Lemieux et al., (2015, 2016) and listed in Table 1.

2.3 Simulated observations and cost functions205

In all OSSE experiments we used three types of simulated sea ice observations, trying to keep the magnitude of sea ice

observational errors close to realistic values.

The first type of data are accurate SIC observations, of which there are currently multiple gridded products based on various

remote sensing instruments with different spatial resolutions. After additional pre-processing, these observations are routinely

used in data assimilation systems (e.g. GOFS 3.1 DA system of Cummings and Smedstad, (2013)), with a nominal spatial210

resolution of 5 km and regionally low SIC representation errors (5%, Yaremchuk et al. 2019).

The second data type are SIT observations which contain moderate errors. Currently, the primary source of such data is

CryoSat-2, with 1 km and 5 km gridded 2-day averaged observations available from the Center for Polar Observations and

Modeling (http://www.cpom.ucl.ac.uk/csopr/seaice.html). Currently, the error estimates of CryoSat-2 SIT observations range

between 0.34–0.74 m (Alexandrov et al., 2010, Laxon et al. 2013, Tilling et al. 2018). The recently launched Icesat-2 satellite215

provides high resolution (40m) freeboard estimates https://icesat-2.gsfc.nasa.gov/ with higher accuracy. So, in the future, novel

observational platforms and methods of analysis will likely provide better spatial coverage (i.e. over the entire Arctic) and

8
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Table 2. List of the performed experiments

Experiment Grid size and

resolution �x

Description Objective Control

fields

KT

70⇥7, 15 km zonal wind forcing, true kT =0.6 Evaluate feasibility of optimizing kT in

narrow straits.

kT , h0, A0

K2

75⇥30, 15 km zonal wind forcing, true k2=15, sloping

bottom topography

Evaluate feasibility of optimizing k2 in

shallow seas

k2

GYRE-0,

GYRE-W

75⇥30, 30 km True solution with cyclonic wind forc-

ing and spatially varying P ⇤, e

Evaluate feasibility of optimizing P ⇤, e

in central Arctic under correct and bi-

ased wind forcing shallow sea.

P ⇤, e, h0

A0,

PIZ

75⇥30, 30 km True solution with convergent wind

forcing and spatially varying P ⇤, e

Evaluate feasibility of optimizing P ⇤, e

in PIZ areas under convergent winds

P ⇤, e,

h0, u0,

improved accuracy. In the experiments, we set SIT observation errors of 0.3 m, having in mind future improvements of the SIT

data accuracy. Similar error level was adopted by Stroh et al, (2019), who studied RP retrievals in a 1d sea ice model.

Accurate observations of sea ice velocities compose the third data type. An example product is the daily 25 km SIV analysis220

of various satellite and in situ sources (Tschudi et al. 2019). The respective uncertainties were established at 0.01–0.02 m/s

(Schwegmann et al. 2011; Sumata et al. 2015). New methods of sequential SAR image comparison can resolve high-resolution

SIV with an accuracy of 0.005 m/s (Komarov and Barber 2014), suggesting a possibility of high-precision SIV observations in

the near future. In the OSSEs reported below, inaccuracy of SIV is set to 0.01-0.025 m/s.

Simulated SIC, SIV and SIT observations were derived from the "true” solution with spatial decorrelation scale of 150 km225

and temporal decorrelation scale of 7 days. Taking into account that high resolution satellite SIC, SIV are currently available

on a daily basis over the entire Arctic Ocean and assuming they can be interpolated within every daily time frame, we set

synthetic observations to be available in all the space-time grid points (600⇥8990⇡ 5.4 · 106) of the model domain.

The standard state-space 4dVar DA approach of Le Dimet and Talagrand (1986) was utilized: the optimal vector C of

control variables was sought to ensure that observations of the model states lie close to assimilated observations within the230

prescribed time interval (assimilation window) which was set to 3 days in all the experiments. The DA procedure was performed

by minimizing the quadratic cost function J(C) which included simulated data and regularization (smoothness) terms both

characterized by the diagonal error covariance matrices (Appendix A). In addition, we applied bounding constraints on the

field values of ice concentration (0A 1), and the control fields of the rheological parameters (listed in the bottom of the

left column in Table 1).235

2.4 OSSEs

The major goal of the conducted OSSEs was to evaluate the feasibility of reconstructing the RPs through assimilation of the

SIV, SIC and SIT observations. The first group of the OSSEs (named KT and K2), analyze the feasibility of optimizing
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landfast ice parameters k2 and kT . The control vector in these experiments included only parameters k2 and kT , and first guess

initial conditions for SIT and SIC were assumed to be error-free and were not adjusted. Observations of the sea ice velocities,240

thickness and concentration were assimilated. In the second group of experiments forced by gyre-shaped winds (GYRE-0,

GYRE-W), we analyzed the feasibility of optimizing P ⇤ and e in the regions with spatially and temporally varying SIT and

SIC. In the third group, we analyzed the feasibility of optimizing P ⇤ and e in the Pack Ice Zone (PIZ) where SIT varies in space

and SIC is equal to 1. We also explore the impact of the P ⇤ and e optimization on the hindcast of ice thickness and internal

stress distributions. In the second and third groups of the experiments both the RPs and initial conditions were optimized, and245

the first guess sea ice initial conditions were accordingly disturbed. A list OSSEs and with short descriptions are assembled in

Table 2. The maximum number of control variables associated with the initial conditions (the number of ice model grid points

occupied by the SIT, SIC and SIV fields) was about 9000. The RP control fields were defined on coarser (�xp=15 (or 7)�x)

grids with bilinear interpolation on the model grid of the respective OSSEs. Thus, the maximum dimension of the RP control

vector never exceeded 36 elements. In all the experiments we assumed that SIT, SIC and SIV observations were available at250

all the space-time grid points of the model domain.

3 Optimization of the landfast parameters

3.1 Arching: optimization of kT

Formation of landfast ice in the deep narrow straits and between islands is a well known phenomenon in the Canadian

Archipelagos and in the Kara Sea (e.g. Lemieux et al, 2016). In the Nares Strait, landfast ice is observed periodically and255

typically its boundary has an arching shape (e.g. Ryan and Munchow, 2017).

To mimic this phenomenon, the sea ice model was configured in a narrow zonal domain forced by steady zonal wind for

3 days (Figure 2a). The initial distributions of SIT/SIC were zonally symmetric and values of the SIT/SIC fields were set

constant with respectively 2m/1.0 and 0.2m/0.7 values in the western and eastern parts of the domain, while initial velocities

were set to zero (Figure 2a). Following Konig Beatty and Holland, (2010), and Tremblay and Hakakian, (2006), the true value260

of kT was set to 0.6. Figure 2b shows, that after 3 days the sea ice in the western part of the domain did not drift eastward due

to internal tensile strength, which was strong enough to keep sea ice in place, i.e. forming landfast ice in the western part of the

domain. In the eastern part where the tensile strength was weaker due to thinner (0.2 m) ice and smaller SIC (0.7), the sea ice

moved eastward with typical velocities of about 0.1 m/s forming a polynya between the landfast ice area and thinner sea ice.

Due to the impact of the Coriolis force, ice moved slightly southward forming the polynya along the northern boundary and265

increasing SIC along the southern boundary.

The first guess solution was forced by the same wind but with kT =0. Figure 2c shows the first guess state at the end of the

assimilation window (t=3 days). It clearly shows that SI moved eastward with a speed of 0.1–0.15 m/s throughout the entire

domain, with the sharp boundary between thick and thin ice (Fig. 2a) deteriorating and the 10km wide polynya developing at

the western boundary. The landfast ice is completely absent in this solution due to the absence of tensile strength in ice (kT =0).270
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Figure 2. Results of the OSSEs optimizing kT : Top panels: True SIC and SIV with kT =0.6 at t=0 (a) and t=3 days (b). Middle panels The

first guess (c) and optimized (d) SIC and SIV fields at t=3 days; Bottom panels: evolution of the normalized cost function for the OSSE with

optimization of kT only (solid line) and with the joint optimization of kT ,h, and A (dashed line). Left panel shows optimized kT for the

experiment with perfect first guess SIC/SIT distributions at t= 0.

The 4dVar optimization of only kT (initial distributions of SIC and SIT were not optimized) provides a significant improve-

ment of the SIC and SIT (latter not shown) clearly seen in Figure 2d. The optimized kT is shown in Figure 2f and is very close

to the true (0.6) value almost everywhere in the western part of the domain while in the eastern part it is close to zero. Thus,

the optimization of kT enabled formation of the landfast ice in the western part of the model domain. Obviously, a similar

effect could be achieved with much higher values of kT . To remove this ambiguity, we added an additional term into the cost275

function, which is proportional to the integral of k2T over the domain. By minimizing the magnitude of kT we find the minimum

value of kT necessary for holding ice in place. Note, that optimization of kT was achieved in only four iterations (Figure 2e),

which is the result of the small dimension of the kT control vector due to representation of the RPs on a sparse grid in 4dVar

experiments. If the initial SIT and SIC distributions are not error-free, it is also possible to optimize the initial SIT and SIC in
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Figure 3. Results of the k2 optimization with k̃1 = 0.8: Upper panels: True SIC and SIV with k2=15 at t=0 and t=3 days respectively. SIT

distribution (meters) is shown by white contours in the left panel; Middle panels: The first guess SIC and SIV with k2=0 at t=3 days (c) and

(d) optimized SIC and SIV at t=3 days. Bottom panels: zonal topography profile (e), evolution of the normalized cost function for the OSSE

with optimization k2 (f), and the optimized k2 distribution (g).
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addition to kT . This kind of the optimization provides better SIT/SIC hindcast but requires more iterations to find the optimal280

solution (dashed line in Figure 2e).

3.2 Grounding effect: optimization of k2

Grounding on the shallows is another mechanism of landfast ice formation. This kind of landfast ice is typically observed

in the Laptev, Chukchi and East Siberian seas and along the northern Alaskan coast (e.g. Lemieux et al, 2015). To mimic

this phenomenon, the model was configured in the rectangular 1125⇥ 450 km domain (Figure 3) with zonally varying depth285

ranging between 3m at the western boundary and 33 m at the eastern boundary (Figure 3e). The model was forced by the

uniform zonal 10 m/s wind. The true solution was specified as follows. The initial SIC ranged between 0.2 and 1 while the

initial SIT was proportional to the SIC and ranged between 0.25m and 2.5m as shown in Figure 3a. Initial velocities and the

tensile/compressive strength ratio kT were set to zero, while the following true values of the RPs (Lemieux et al, 2016) were

used: the critical thickness parameter k̃1=8, basal stress parameter ↵̃b=20, and the maximum basal stress parameter k2=15290

N/m3. Figure 3b shows that after 3 days the sea ice moved eastward in most of the domain with a typical speed of 0.2-0.4 m/s,

but only in the south-western corner the combination of the SIT, SIC, and bottom topography was sufficient to keep sea ice in

place, thus forming the region of grounded landfast ice. Another interesting feature is the elongated polynya visible along the

eastern boundary of the landfast ice region approximately 400km off the western coastline (Figure 3b).

The first guess solution had the same parameters with the exceptions that k2 and SIV were both set to zero. Initial SIT and295

SIC fields were set to the true values. Despite the perfect initial condition, it is clearly seen that wind forcing moves sea ice

eastward with a speed of 0.3-0.4 m/s, and forms a polynya along the western boundary (Figure 3c) which does not exist in

the true solution (Figure 3b). The landfast ice region (i.e. area with zero velocities) in the southwestern corner is completely

absent. The above mentioned polynya separating the landfast ice from the moving ice in the south (bottom of Figure 3b) is also

absent in the first guess solution.300

The variational assimilation of the SIV, SIT and SIC observations targeted at optimization of k2 demonstrated a significant

improvement of SIT (not shown) and SIC, clearly seen in Figure 3d. In particular, the optimized solution produced the landfast

ice region and the polynya location that are nearly identical to those observed in true solution (Figure 3b).

The optimized field of k2 is shown in Figure 3g. The maximum values of k2 are very close to the “true” k2=15 N/m3. Note,

that the true k2 value was specified ad hoc and the grounding effect formally could be reached with smaller values of k2. This305

is clearly demonstrated in Figure 3g, where k2 is about 12 N/m3 over the major part of the landfast ice area in true solution (cf.

Figure 3b,g).

Similar to the KT experiment, an additional term penalizing the magnitude of k2 was added to the cost function, and the

optimized field of k2 was obtained after a relatively small number of iterations ( 10-12) (Figure 3f). Note also, that according

to equations (1) and (8), sea ice acceleration is directly proportional to k2 which should invoke faster convergence of the310

minimization procedure.

To demonstrate the robustness of the k2 optimization with respect to possible variations in k̃1 we conducted a similar

experiment with smaller true k̃1=2.5. As it seen from Figure 4a,b, the decrease of k̃1 causes a considerable decrease of the
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Figure 4. Results of the k2 optimization with k̃1 = 2.5: Upper panels: True SIC (color) and SIV distributions with k2 = 15 at t=0 (a) and t=3

days (b). SIT distribution (meters) is shown by white contours in the left panel. Bottom panels: optimized k2 distribution (c) and optimized

SIC and SIV at t=3 days (d).

landfast area in the southwestern corner. The landfast ice polynya also moved about 100km closer to the western coastline and

is now confined to the shallower region. The first guess solution for this experiment was the same as in Figure 3c with k2=0,315

i.e. all ice moved eastward. However, after 4dVar DA and optimization of k2 the reconstructed solution (Figure 4d) is nearly

identical to the true solution (Figure 4b). The optimized k2 is shown at Figure 4c and has the same spatial structure but slightly

smaller (⇠ 14 N/m2) maximum value as compared to the experiment with k̃1=8.

The parametrization of the grounding landfast ice also includes the critical thickness parameter k̃1, which was kept fixed

in the described experiments. According to multiple numerical simulations, the total landfast ice area is more sensitive to320

variations of k̃1 than k2 (Lemieux et al, 2015) because k̃1 can be interpreted as a scaling coefficient in the definition of the

critical ice thickness k̃1hc =Ahb (cf. eq. 8), and works as a “switch” which defines the areas of potential landfast ice generation.

However, the discontinuity of the Heaviside step function present in equation 8 significantly complicates k1 optimization

14
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through the gradient-based variational method. Formally, this problem can be regularized (e.g., Nicolsky et al., 2009), but

this approach requires additional optimization of the additional regularization parameter. In practice, this approach could be325

computationally less efficient. In the light of this consideration, we limit our study with analysis of the feasibility of the landfast

ice parameterizations to optimizing kT and k2.

4 Optimization of the ice strength and ellipse eccentricity fields

4.1 Cyclonic gyre experiments (GYRE-0/W)

The rheological parameters P ⇤ and e are the most important set of the parameters responsible for proper sea ice modeling in330

the deep part of the Arctic Ocean. To evaluate the feasibility of optimizing P ⇤ and e, the EVP model was configured for a

2250 x 900 km rectangular domain with initial true values of the SIC and SIT fields, as shown in Figure 5a. The true values

of P ⇤ and e varied as shown in Figure 5e,f within the following ranges: 22.5 kN/m2  P ⇤  32.5 kN/m2 and 1 e3. These

ranges were adopted from various studies (e.g. Hibler and Walsh, 1982; Kreyscher et al. 1997, 2000; Tremblay and Hakakian

2006; Lemieux et al. 2016). The true wind forcing had a form of the Gaussian-shaped cyclone with stationary position whose335

strength gradually increased by 1.5 times during the 3-day assimilation window. The resulting wind stress at t=0 is shown in

Figure 5c and had a maximum value of 0.7 N/m2. Initial SIV conditions were determined by a 100 minute model integration

starting from rest with the all other initial variables and parameters being the same. The initial internal stress was small, but

significantly increased after 3 days under the applied atmospheric forcing. Figures 5c-d show the trace of the stress tensor

Ptr =�tr�/2 at the beginning of the true state integration and after 3 days. The Ptr distribution has a clear maximum near the340

location with the coordinates (500 km, 500 km), which corresponds to the maximum pressure (⇠40 kN/m2) in the sea ice field

(e.g. Tremblay and Mysak, 1997). This maximum is due to strong convergence of the relatively thick ( 2.5m) sea ice in this

region. In the eastern part of the domain, Ptr is typically very low due to the divergence of the SIV and considerably thinner

( 0.5-1.5m) sea ice.

Noisy SIC, SIT and SIV observations were generated by adding spatially and temporally correlated noise (with the corre-345

lation scales of 150 km and 7 days) to each of the state variables of the true solution at every time step. The simulated data

mimics realistic observations such as those obtained from sources discussed in section 2.3, i.e. they have similar absolute errors

as most of the real observations available, nowadays. In the experiments we did not introduce any bias to ice observations since

it is a common assumption in the existing DA systems.

The magnitudes of the imposed noise correspond to the errors of the respective observational data sets, with the amplitudes350

of 0.05, 0.25–0.35 m, 0.025 m/s, and 0.01–0.025 N/m2 for SIC, SIT, SIV and wind stress respectively. The initial conditions

for the first guess solution were generated in a way similar to the true solution, with slightly larger decorrelation length scales

for SIT, SIC and SIV and spatially uniform values of P ⇤=27.5 kN/m2, e=2 and true wind forcing.

Despite the exact wind forcing, the first guess solution differs significantly from the true solution. Similarly to Stroh et

al, (2019), the optimization was conducted in three steps. First, we optimized initial SIV, SIT and SIC conditions C0 =355

{u0, h0,A0}. Then we sequentially optimized rheological components of the control vector Crh = {P ⇤, e} and finally con-

15

paragraph starting at l319:

Rather than using the numerical difficulties associated with the Heaviside function to wave off the optimization of k1, one could use this analysis to argue for a smooth parameterisation, that would also be more physical, because it is very unlikely that in a grid cell of a finite (usually large) extend of order (km) all ice ground at the same time and and instantaneously (like in a cloud scheme not the entire grid cell of a AGCM will soundly go through a phase transition). Instead a smooth transition is more appropriate as we expect the physics of sea ice to be smooth.
I can see that this is beyond the scope of the paper, but I also think that the scope of the paper is fuzzy with these two types of experiments. It’s not clear why the optimization of well established and very important parameters P* and “e” is juxtaposed with two parameters of a relatively new parameterisations that are hardly used.

Section 4 “eccentricity” is not what “e” is. It’s has been defined correctly before.

l335: had the form of a Gaussian-shaped cyclone

l348: as most of the currently available observations.

ll348: In the experiments we did not introduce any bias to ice observations since it is a common assumption in the existing DA systems.

rephrase so that it says what you mean (bias free observations in DA systems)

ll339: the trace of the stress tensor Ptr = −trσ/2

this is commonly called the first invariant of the stress tensor $\sigma_I$, or divergence of stress. Not sure why this needs a new name here.



Figure 5. True solution in GYRE-0/W-OSSEs: (a-b) evolution of the SIT, SIC (white contours) and SIV (black arrows) at t=0 (left panel)

and 3 days; (c-d) evolution of the trace Ptr of the internal stress tensor at t=0 (left) and 3 days. White arrows show the initial wind stress

caused by specified cyclonic wind forcing; (e-f) true distributions of P ⇤ (kN/m 2, left panel) and e.
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Figure 6. Results of the GYRE-0-OSSE: sub-optimal distribution of SIT, SIC (a) and Ptr (c) for t=3 days after optimization of the initial

conditions u0 ,h0, A0 using the first guess values of P ⇤=27 kN/m2 and e=2. The deviation norms Su and Str are shown. (b,d) is the same

as (a,c) but after additional optimization of P ⇤ and e; (e,f) – optimized distributions of P ⇤ (kN/m2) and e. Black arrows in (a,b) show the

difference between optimized and true SIV.
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ducted an additional optimization of the full control vector C = {C0, Crh}. Note that available SIV, SIT and SIC observations

efficiently constrain the respective initial conditions and thus provide a more accurate first guess for the final optimization of

the entire control vector. This is important for highly non-linear optimization problems whose cost functions may have multiple

minima.360

Figure 6a-d compares the model states after optimization of the initial conditions C0 with fixed P ⇤ and e (left panels) and

after additional spatial optimization of the P ⇤ and e (right panels). The major result of optimizing Crh is an improvement of

the SIV fields. The formal quantitative measure of the SIV improvement was evaluated by the function

Su =
X

⌦,k

|uk
opt � utrue|

where ⌦ is the model domain and index k=1,2 enumerates sub-optimal optimization stages: k = 1 using the initial conditions

control vector C0 only, and k = 2 employing of the full control vector C = {C0,Crh}. It was found that Su reduced almost 1.5

times after the additional optimization of the rheological parameters Crh (Figure 6a,b). Visual comparison of the sub-optimal

and fully optimized SIC shows a certain improvement after Crh as well. For example, the local minimum of the sub-optimal

SIC in the region with coordinates 700-1500 km and 180 km is about 0.7 (white contours in Figure 6a), while the fully365

optimized SIC has a minimum of 0.6 which agrees perfectly with the true SIC distribution (white contours in Figure 5b).

In this experiment we found that optimization of Crh yields only a marginal improvement of the SIT distribution. In par-

ticular, std(hk
opt �htrue) decreased from 0.23 m after optimization of the initial conditions to 0.2 m after additional Crh

optimization. The minor impact of Crh optimization on the SIT is probably due to relatively high SIT errors and substantial

difference between the first guess and observed SITs. Another possible reason is that Crh is not well controlled by the initial370

SIT distribution at the time scale of the relatively short 3-day assimilation window.

As expected, optimization of the rheological parameters Crh provides the major impact on the correction to the internal

stress tensor. Figures 6c,d, show that standard deviation of the differences between the true and the optimized values of Ptr

decreased by 35% after the additional optimization of the RPs. Note also, that the maximum value of fully optimized Ptr

(Figure 6d) is located in the close proximity of the true Ptr maximum (Figure 5d), while the maximum in sub-optimal Ptr is375

shifted almost 400 km northward. Comparison with true P ⇤ demonstrates that the optimized field agrees well with true P ⇤

almost everywhere with the only exception observed in the southwest corner of the domain (Figure 6e). This is caused by the

substantial SIV divergence (Figure 6a) which diminishes the role of rheological forcing in the region.

The reconstruction of e is not as accurate, as P ⇤ with the extreme values of the optimized e being 1.2 and 2.8, while the

respective true values are 1 and 3. Note, however, that spatial locations of extrema agrees well with true distribution. The380

exception is the local minimum in the south-western corner, where both e and P ⇤ disagree with true values being close to their

first guess values. Note, that significant improvement of Ptr and the internal stress components discussed above are directly

related to the more accurate optimization of the RP and SIV fields because both P ⇤ and e control the structure of the stress

tensor in eq. (2).

To analyze impact of the inaccuracy in the wind forcing we conducted an additional experiment where the center of the385

cyclonic disturbance was displaced 90 km westward mimicking a systematic error in the hypothetical atmospheric forecast.

18

l364: definition of $S_u$: why did you use this norm and not the more common RMSE? Or is this implied? Unclear

l368: std(hkopt − htrue)

In what sense is this form different from the definition of S_u? If it is different, why would you use different forms?

ll369: I find it much more plausible, that the impact on velocities is largest by optimising rheology parameters that directly affect the momentum equations. The effect on the thickness field will take longer assimilation windows because the changed dynamics needs time to advect thickness (and concentration). [And later you say so, why not here?]

l380: “that spatial locations of extrema agrees well with true distribution” 
fix grammar



Figure 7. Results of the GYRE-W-OSSE: optimized distribution of SIT, SIC (a) and Ptr (b) at t=3 days. Black/white arrows show the

differences between true and optimized SIV (a) and wind stress (b) respectively; (c,d) – optimized distributions of P ⇤ (kN/m2, left) and e.

The results obtained after full optimization of the control vector C = {C0,Crh} are shown in Figure 7. It is noteworthy, that

inaccurate position of the atmospheric cyclone causes significant errors (up to 0.2 N/m2, or 25%) in the wind stress forcing in

the central part of the domain (Figure 7b). As a result, the optimized SIV fields have essential ( 0.1 m/s) errors (Figure 7a) and

the integral measure of the SIV inaccuracy Su increased five times up to 0.64 m/s.390

At the same time, degradation of the SIT retrieval was not as significant, with a std(hk
opt �htrue) increase up to 0.25 m,

i.e. only by 25% as compared to the previous experiment with exact wind forcing. Similarly, the optimized SIC distribution

remained largely unchanged. The integral quality of the reconstruction of Ptr is 3.5kN, i.e. about 40-50% worse than in the

experiment with exact forcing, but it is important to note that the maximum in the Ptr is still in very good agreement with the

true solution.395

Although inaccurate wind forcing has a profound impact on the accuracy of P ⇤ and e retrievals, there is still an essential

level of similarity between the reconstructed and true rheological fields. For example, spatial distribution of the optimized P ⇤
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still has maxima in the western and eastern parts of the region and a minimum in the center of the domain (Figure 7c), while

the minimum of the e in the western part demonstrates certain agreement with true e distribution (Figure 5e,f). Note, that

inaccurate wind forcing affects the accuracy of P ⇤ retrievals to a less degree than e.400

4.2 PIZ-OSSE

In both experiments described in the previous section, the initial true SIC was rather close to 1 and decreased below 0.8 in

some regions after 3 days of integration (Figure 5a,b). Due to the exponential dependence of P on 1�A, (eq. 7) internal stress

decreases exp(4)⇡ 50 times, and therefore has a minor rheological impact of the sea ice dynamics in these regions. At the

same time in winter, most of the Arctic Ocean is almost completely covered by pack sea ice with SIC ranging between 0.98405

and 1. To mimic these conditions, we conducted another OSSE with spatially and temporally invariant sea ice concentration

A=1. Numerically this was achieved by removing the advection equation from eq. (4), and removing initial A0 from the control

vector C0.

The model domain, initial SIT, and P ⇤ and e distributions were the same as in GYRE-0/W-OSSEs. However, unlike the

cyclonic wind of the previous experiment, the atmospheric forcing is applied as a 20 m/s eastward wind at the western boundary410

which reverses zonal direction across the breadth of the domain (Figure 8c). In time, the wind speed was amplified 1.5 times (to

30 m/s) by the end of the DA window. The resulting wind stress at t=3d is shown in Figure 7c and has a maximum amplitude

about 0.5 N/m2.

The temporal evolution of the true SIT and SIV is shown at Figure 8a,b. Under the applied relatively strong wind forcing, sea

ice converges and SIT increases over almost everywhere, with an exception of the narrow bands along the western and northern415

boundaries, caused by the joint effect of the Coriolis force and coastal boundary conditions. The true SIV has a maximum of

about 0.4 m/s. The distribution of the Ptr shown in the lower panels of Fig. 8, has two clear maxima in the south with the

magnitudes of about 70 and 50 kN/m2. Note, that due to the ice convergence causing SIT growth, both Ptr maximuma increase

in magnitude and slightly ( 60 km) move towards each other.

The first guess initial SIT/SIV conditions and data for the PIZ-OSSE were derived from the true solution in a similar420

way as for GYRE-0-OSSE. Similarly, we specify the first guess with P ⇤=27.5 kN/m2, e=2, and the exact wind forcing. The

optimization was conducted in three steps by first optimizing C0, then Crh, and, finally, simultaneous optimization of C0 and

Crh.

Figure 9a,c shows SIT, and the difference between optimized and true SIV at t=3d after optimization of the initial conditions

only. Interestingly, despite less spatial variations in wind forcing, optimization of the initial conditions does not allow for425

accurate reconstruction of the SIV as we observed in the GYRE-0/W-OSSEs. The maximum errors in the eastern part of

the domain are about 0.1 m/s, being comparable in the magnitude with regional velocities. The relative accuracy of the SIV

reconstruction in the western part is slightly better, but is still considerably worse than in the previous OSSEs.

The sub-optimal distribution of Ptr (Figure 9c) differs significantly from true Ptr (Figure 8d) both quantitatively and quali-

tatively. For example std(P 1
tr(opt)-Ptr (true)) is 11.6 kN/m2, or about 30-35% of the domain-average value of Ptr. The qual-430
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l400: to a less degree than e.
fix grammar

ll403: To mimic these conditions, we conducted another OSSE with spatially and temporally invariant sea ice concentration A=1. Numerically this was achieved by removing the advection equation from eq. (4), and removing initial A0 from the control vector C0.

that changes the model and makes it difficult to understand the generality of the results. Why not construct an experiment where the ice strength is strong enough (relative to the wind) so that the system does not move? That would be more “realistic”

l413 “about 0.5 N/m2”

that’s a lot!

l415: “SIT increases over almost everywhere”

this raises the question of volume conservation. Does the model conserve volume, and is this important for the optimisation?

l418: maximuma
-> maxima (a spell checker would have found this)



Figure 8. True solution in PIZ-OSSEs: a-b) Evolution of the SIT and SIV (black arrows) at t=0 (left) and 3 days; c-d) evolution of the Ptr

of the internal stress tensor. White arrows show the wind stress forcing at t= 0; The distributions of P ⇤ (kN/m2) and e are the same as for

GYRE-0/W-OSS experiments (Fig. 5e,f).

itative difference is probably more important because sub-optimal Ptr distribution fails to provide two maximums discussed

above. Instead, the sub-optimal distribution of Ptr has only one maximum located in the center (Figure 8d).

Additional optimization of the rheological parameters Crh significantly improved the reconstructed SIV practically every-

where, so, the formal measure of the uncertainty Su decreased almost two times from 56 m/s down to 30 m/s (Figure 9b).

Similar improvements are visible in Ptr distribution (Figure 9d). The std[P 2
tr(opt)�Ptr(true)] decreased to 7.4 kN/m2 (by435

40%) and the fully optimized Ptr has two maxima as in the true Ptr distribution (Figure 8d).

The optimized P ⇤ and e are shown at Figure 9e,f. In the eastern part of the model domain, the reconstructed P ⇤ and e almost

perfectly agree with the true distributions of P ⇤ and e, while there is some difference between optimized and true rheology

in the western part. The effect could probably be attributed to the region with zero convergence along the western boundary

where the rheology does not play a significant role. There is also some quantitative difference between optimized and true e in440

the central part of the model domain but, qualitatively, the reconstructed field of e has all features of the true distribution.
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l431: “because sub-optimal Ptr distribution fails”

missing article

l431: maximums
maxima (used previously)

l435 “std[P 2 (opt) − P (true)]”
Ptr squared?

l437: in Figure 9e,f

ll439: The effect could probably be attributed to the region with zero convergence along the western boundary where the rheology does not play a significant role.

rephrase to be more specific.



Figure 9. Results of the PIZ-OSSE: sub-optimal distributions of SIT (a) and Ptr (c) at t=3 d after optimizing the initial conditions u0, h0, A0

and the first guess values of P ⇤=27.5 kN/m2 and e=2 The discrepancies Su and Str with the true solutions and shown. Panels b and d: same

as a and c, but after additional optimization of P ⇤, e; Bottom panels: optimized distribution of P ⇤ (kN/m2) and e. Black arrows show the

difference between optimized and true SIV for each optimization stage.
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5 Conclusions and discussion

The presented study continues our previous efforts (Stroh et al, 2019) and addresses the feasibility of retrieving spatially-

varying RPs through the 4dVar assimilation the satellite observations of SIV, SIC and SIT. To do the analysis, we developed

TLA codes with respect of all rheological parameters (except k1), initial conditions, and wind forcing for a single-category sea445

ice model recently proposed by Lemieux et al., (2016). The dynamical core of this model is based on conventional formulation

of the EVP rheology (Hunke and Dukowicz, 1997; Hunke and Lipscomb, 2008) and parameterizations of the grounding and

arching land fast ice recently proposed by Lemieux et al., (2015, 2016) and Koning Beatty and Holland, (2010). The model

was configured in multiple rectangular domains and included several simplifications. In particular, we constrained ourselves

to a single ice category, utilized a relatively simple but still widely used parameterization for the internal pressure (eq. 7), and450

employed the Lax-Wendroff scheme for ice advection (Appendix A).

It was found that TLA models for the EVP solver are unstable for the regions with high (>0.9) sea ice concentration and

require stabilization. The standard stabilization technique through the additional diffusion (Hoteit et al., 2005), widely used in

the OGCM inverse modeling, was found to be inefficient, but a simpler stabilization, based on Newtonian friction, appeared

to work well. Analysis of the TL approximation accuracy has shown that Newtonian stabilization has errors similar to the455

ones observed in the case of diffusion-based stabilization, and thus the Newtonian scheme can be successfully used in sea

ice models based on the EVP solvers. In the last decade several modifications of the EVP solvers were proposed to improve

the convergence (e.g., Bouillon et al, 2013, Kimmritz et al, 2016, Koldunov et al, 2019). We assume that these ideas could

benefit development of the respective TLA models. In particular, the Newtonian damping coefficient could be adjusted locally

to account for the background sea ice pressure/tensile strength and thus provide more efficient stabilization of the EVP TLA460

codes.

On the other hand, simple analysis (Figure 1, dashed line) indicates that the TLA model for the 1D VP sea ice solver

(Stroh et al, 2019) is stable provided that forward model satisfies the stability criterion (which is always the case). Similar

indications were obtained by Heimbach et al, (2010) and NAOSIM (Kauker et al, 2009), who did not observe instabilities in

the TLA codes of the sea ice models with VP rheologies. We may therefore conclude that numerical models with VP rheology465

(e.g. Hibler et al. (1979); Lemieux et al. 2008) do not require additional stabilization of the TLA codes, and are formally more

suitable for development of sea ice 4dVar DA algorithms. Note also, that due to their stability, VP TLA codes can be easily

incorporated into the parent sea ice models to provide improved Jacobian-free Krylov solvers for VP rheoplogy. This approach

was employed in the ocean model by Nechaev et al., (2005), where the internal matrix-Free BiCG solver was constructed using

the model’s TLA codes and in the IMEX algorithm, where the preconditioned Flexible GMRES algorithm was implemented470

in the Jacobian-free mode (Lemieux et al, 2014).

In a comprehensive series of OSSEs with a simplified EVP sea ice model, it was demonstrated that Newtonian stabilization

of the TLA codes allows reasonable reconstruction of the RPs. The numerical experiments included two series of the 4dVar

DA runs.
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l445 with respect to

l445: “all rheological parameters”
k2 (and k1) is not a rheological parameter and “k_T” is not a parameter that is commonly used (i.e. different from zero).

l448: “Lemieux et al., (2015, 2016) and Koning Beatty and Holland, (2010)”

(and elsewhere) remove “,” before “(“

Section 5 Conclusions and discussion

promises the unusual order of conclusions at the beginning followed by a discussion (why not do it conventionally with discussion first, followed by conclusions?),
but then starts with a long summary of the results where the actual conclusions are hidden in the details, and at the end there are two paragraphs of discussion. 

I suggest to re-write this section entirely

l455: “Analysis of the TL approximation accuracy has shown that Newtonian stabilization has errors similar to the ones observed in the case of diffusion-based stabilization, and thus the Newtonian scheme can be successfully used in sea ice models based on the EVP solvers.”

This analysis/discussion would be very important to understand in detail, because it is potentially something that readers may want to apply themselves. However, the “analysis” is extremely short, leaving out important aspects, like a stability analysis based on the value of the damping coefficients, etc. It would be interesting to understand, why this term successfully stabilizes the system, etc.

l471: Since you have cited Losch et al (2014) already, it could be cited here again, because there already AD tools were used to compute the matrix times vector operation necessary for the matrix free JFNK with FGMRES in a sea ice model, however without significant improvement over simpler finite difference schemes.



First, we analyzed the possibility of optimizing the RPs in two different landfast ice parameterization schemes incorporated475

in the CICE model (Hunke et al, 2010). In the current CICE6 version all landfast ice parameters are treated as spatially uniform

variables, which degrades the accuracy of the landfast ice simulations in various parts of the Arctic Ocean (Lemieux et al.,

2015), especially in the shallow sea and the narrow straits of the Canadian Archipelago. In this study, these parameters were

specified by spatially variable functions with a reduced number (10-36, Section 2.4) of free parameters that were optimized to fit

surface observations. The conducted OSSEs demonstrate that spatially varying landfast ice parameters kT and k2, responsible480

for grounding and arching phenomena, can be optimized at a relatively low computational cost (5-12 iterations).

Taking into account that landfast ice typically forms in shallow/coastal areas and in narrow straits, the landfast phenomena

can be controlled more efficiently by adding to the control the critical thickness parameter k1, which confines k2 variability to

shallow areas and narrow straits areas in a high-resolution pan-Arctic sea ice model. It should be noted that retrieval of k1 is

not straightforward because of non-differentiability of the grounding parameterization scheme (eq. 8). Optimizing k1 in sea ice485

models requires further development including more robust constrained minimization tools, such as genetic (Goldberg, 1989)

or very fast simulation annealing (Ingber, 1989) algorithms. Another approach is to use parametric regularization of k1, similar

to the one utilized by Nicolsky et al, (2009). In this case, TLA models require additional computation of the derivative with

respect to the regularization parameter specifying a smooth approximation (e.g, Lemieux and Tremblay, 2009) of the Heaviside

function in eq. (8). We are currently implementing this algorithm for the 2d VP solver.490

In the second group of OSSEs, we analyzed the possibility of reconstructing spatially varying sea ice strength P ⇤ and ellipse

axes ratio e distributions. The respective OSSEs employed simulated observations of SIV and SIC characterized by the root-

mean square errors of 0.025 m/s and 0.05, respectively, while SIT observations were simulated with uncertainties of 0.3 m,

which is about two times smaller than the errors of the CryoSat-2 observations. The OSSEs also assessed sensitivity of the

results with respect to systematic errors in wind forcing.495

The OSSEs with accurate (exact) wind forcing demonstrated the feasibility of relatively accurate reconstruction of the P ⇤

distribution and less successful, but still reasonable, reconstruction of the axes ratio distribution. Similar results were recently

obtained by Stroh et al.(2019) who used 1d sea ice model featuring VP parameterization of the RPs, supporting a higher impact

of the spatially varying P ⇤ than e on the DA quality. We also observed that regions of less accurate P ⇤ reconstructions are

typically collocated in the regions of strong sea ice divergence and/or SIC concentrations below 0.8, i.e. with the regions where500

rheology plays a lesser role in sea ice dynamics.

We also found that additional optimization of P ⇤ and e (after optimizing the initial state of sea ice) provides slightly more

accurate reconstruction of the SIT and SIC distributions and a significant improvement of the SIV and Ptr fields. Accurate

forecasting of Ptr is very important because it better informs avoidance of regions with excessive compressive stress.

The OSSE with zonal wind convergence in the pack ice (A=1) demonstrated even better quality in reconstructing e and505

especially P ⇤. This can be attributed to a stronger impact of the internal stress on sea ice dynamics in pack ice. Similarly to the

OSSEs with cyclonic wind pattern, we found that additional optimization of RPs provides smaller improvements in the SIT

and SIC hindcasts as compared to SIV and Ptr.
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l480: “kT and k2, responsible for grounding and arching phenomena” 
unless intended as a “chiasms”, I would turn the order around so that the first symbol corresponds to the to the first explanation (k2: grounding, kT: arching)

ll491: In the second group of OSSEs, we analyzed the possibility of reconstructing spatially varying sea ice strength P ∗ and ellipse axes ratio e distributions.

I would argue that this is the more important part of the paper and should come first.

l500: collocated in the regions of strong …

collocated with regions of strong …
I am also not sure if “collocate” is the correct word here. I would use “co-locate”

l502: provides a slightly more accurate reconstruction

l504: “Accurate forecasting of Ptr is very important because it better informs avoidance of regions with excessive compressive stress.”

not the right context.



We utilized a relatively small assimilation window (3 days) keeping in mind 4dVar application for improving short-term sea

ice forecasts in the ice pack and ice edge zones. In these regions, ice rheology typically changes at the time scales of several days510

(e.g. Panteleev et al, 2019) due to variations in the dynamic and/or thermodynamic forcing. In particular, wind variability may

cause profound changes of the ice edge, while in the ice pack, wind forcing is the major driving factor of polynya formation,

due to ice divergence and the ridging processes, when rheological forcing becomes important. Finally, sea ice observations are

typically available on a regular (daily) basis, in time, and are expected to gain spatial coverage and accuracy in the near future

for the SIC and SIV components that are directly observable from space, while SIT observations are still lacking accuracy due515

to the complex structure and uncertainties of the respective observation operators. These developments in data acquisition and

preprocessing will result in improved observability of the RP fields within the data assimilation systems.

In the present study we utilized realistic observational errors for SIV and SIC, while SIT errors were somewhat smaller than

the accuracy of currently available satellite observations. An additional set of experiments with more realistic SIT errors reveals

their stronger impact on the reconstruction quality of P ⇤ and e, while the reconstruction accuracy of the landfast ice parameters520

k2 and kT remained virtually unchanged. The incoming satellite platforms (e.g. ICEsat-2, https://icesat-2.gsfc.nasa.gov) with a

better SIT observation capability may deliver sufficiently dense and accurate SIT observations required for reasonably accurate

estimation of the P ⇤ and e in the internal regions of the Arctic Ocean. Of particular importance are in situ SIT and other types of

sea ice data that are currently planned to be collected in the framework of the MOSAiC (https://www.mosaic-expedition.org/)

experiment. These multi-variable and accurate atmospheric, oceanic, and sea ice observations should enable more accurate525

RPs estimation on the local scale through the 4dVar DA approach presented here. It is also noteworthy, that the extension of

the similar 4dVar DA based on the VP rheology may improve the accuracy of the reconstructed rheological parameters due to

better stability of the TLA codes in the VP formulation. This extension, as well as more realistic inversions employing more

complex rheological hypotheses (e.g., the Maxwell elasto-brittle rheology of Dansereau et al., (2016)), may be within the focus

of our studies in the near future.530

Appendix A: Model numerics and the cost function

In deriving the TL and adjoint models, we closely followed the EVP numerics given in Lemieux et al. (2016).

Introducing notations �1 = �xx +�yy , �2 = �xx ��yy , �3 = �xy , ✏1 = @xu+ @yv, ✏2 = @xu� @yv, ✏3 = @yu+ @xv, bulk

viscosity ⇣ = Pp(1+ kT )/2�⇤, and replacement pressure P = Pp�/�⇤, equation (2) can be split into three decoupled rela-

tionships:535

@t�1 + �1/T̃d = 2⇣ ✏1/T̃d �P (1� kT )/T̃d (A1)

@t�2 + e2�2/T̃d = 2⇣ ✏2/T̃d (A2)

@t�3 + e2�3/T̃d = ⇣ ✏3/T̃d (A3)

The first equation (A1) is obtained by taking the trace of (2). Subtracting the equation for �yy from the one for �xx in the set

of four relationships (2) yields (A2), while (A3) is just the equation for �xy extracted from the same set. Equations (A1-A3)540
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ll523: This is a totally generic and even inaccurate statement (in spite of its generality) that should be removed or adequately modified: On the one hand, it is not clear to me, how the MOSAiC observations that are very local should help to constrain a local model, where open boundaries and boundary conditions as control parameters should be an important aspect that is not even mentioned in this work. On the other hand, the MOSAiC observations are regionally too confined to serve as a serious data source for a large scale model. I do agree that MOSAiC will be substantial to future sea ice parameter studies, but mostly for slow thermodynamic  process and for fast stress parameter, because local drift and deformation as well as stress measurements are obtained. How these data will enter the presented system, is not even addressed in this work.



are advanced in time s using the Euler scheme with the subcycling time step �ts = "T̃d ("= 0.00347, see Table 1):

�s
1 = (1+ ")�1[�1 + "Pp (1+ kT )✏1/�

⇤ � "P (1� kT )] (A4)

�s
2 = (1+ e2")�1[�2 + "Pp(1+ kT )✏2/�

⇤] (A5)

�s
3 = (1+ e2")�1[�3 + "Pp(1+ kT )✏3/2�

⇤] (A6)

Hereinafter all the fields without superscripts are taken from the previous time steps. After that, velocity components in equation545

(1) are advanced in time:

mus/�ts �mfvs +Cbu
s + C̃w⇢̃wA|u|(us cos⇥� vs sin⇥) = mu/�ts + @x�

s
xx + @y�

s
3 + ⌧ax (A7)

mvs/�ts +mfus +Cbv
s + C̃w⇢̃wA|u|(us sin⇥+ vs cos⇥) = mv/�ts + @y�

s
yy + @x�

s
3 + ⌧ay (A8)

Here m= ⇢̃hA and ⌧ a is the atmospheric forcing. After the equations (A4-A8) are advanced in time for 400 time steps, the

ice thickness and concentration fields are updated using the obtained velocity and the Lax-Wendorff scheme.550

hn = h+ �tdiv(unh) (A9)

An = A+ �tdiv(unA) (A10)

All spatial derivatives present in (A4-A10) were discretized by finite differences on the Arakawa B-grid. At the boundaries we

used the condition u = 0. Initial conditions for u were set either to zero or defined through the model integration for 1 hour.

Initial conditions for A and h were specified as arbitrary functions.555

The TL code was obtained by the subtracting a solution of the numerical model X from the evolution equations of the

perturbed state, X + �X, and keeping only linear terms in the expansions of all the nonlinearities. Note, that the easiest way

to conduct this formal procedure is to apply a tangent liner and adjoint model compiler. In particular, this approach was used

for the development of the MIT and NAOSIM sea ice models (e.g., Kauker et al., 2009) and basal sea ice model (Goldberg

and Heimbach, 2013). Because of the availability of multiple automatic tools (e.g. TAMS (Giering and Kaminski, 1998;560

http://autodiff.com/tamc/), OpenAD (https://www.mcs.anl.gov/OpenAD/), we briefly outline the details of the development of

the EVP TLA models.

Perturbations of the auxiliary functions ✏1,2,3,m,⇣,Pp,P,Cb, of X are given by

�✏1 = @x�u+ @y�v; �✏2 = @x�u� @y�v; �✏3 = @x�v+ @y�u; �m= ⇢̃(A�h+h�A) (A11)

�⇣ = �Pp(1+ kT )/2�
⇤ + �kTPp/2�

⇤ � ��⇤Pp(1+ kT )/2�
⇤2 (A12)565

�Pp = (P ⇤
p h�A+P ⇤

pA�h+Ah�P ⇤
p )exp(�↵̃(1�A))+Pp↵̃�A (A13)

�P =
1

�⇤


��Pp +Pp���Pp

�

�⇤ ��
⇤
�

(A14)

��⇤ = ✓(�� �̃⇤)�� (A15)

�� =
1

e2�


e2✏1�✏1 + ✏2�✏2 + ✏3�✏3 �

�e

e
(✏22 + ✏23)

�
(A16)

�Cb = Cb

⇢
�h

hb
� �A

k̃1
+

�k2
k2

� u · �u
u2 + ũ0|u|

�
(A17)570
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Are Eq A7+8 solved implicitly? u^s and v^s appear in both equations on the left hand side

l550: the Lax-Wendorff scheme

the scheme is called “Lax-Wendroff”!!

l559: MIT -> MITgcm (Heimbach et al 2010)

l560: TAMS -> TAMC

l541: the slightly different form of \epsilon vs. \varepsilon is unfortunate, because both are “epsilon” and it’s easy to confuse this with strain rate tensor.



Hereinafter, all the terms with variations of the RPs and atmospheric forcing and variations of the quantities that may contain

those are underlined. Taking (A11-A17) into account, the TL equations of (A4-A10) are given by

��s
1 = (1+ ")�1[��1 � "�P (1� kT )+ "P �kT + "�Pp(1+ kT )✏1/�

⇤ + "Pp✏1�kT /�
⇤+

+"Pp(1+ kT )�✏1/�
⇤ � "Pp(1+ kT )✏1��

⇤/�⇤2 � "��1] (A18)

��s
2 = (1+ e2")�1[��2 + "�Pp(1+ kT )✏2/�

⇤ + "Pp✏2�kT /�
⇤ + "Pp(1+ kT )�✏2/�

⇤�575

�"Pp(1+ kT )✏2��
⇤/�⇤2 � "��2]� 2"e�e(1+ e2")�2(�2 + "Pp(1+ kT )✏2/�

⇤) (A19)

��s
3 = (1+ e2")�1[��3 + "�Pp(1+ kT )✏3/2�

⇤ + "Pp�kT ✏3/2�
⇤ + "Pp(1+ kT )�✏3/2�

⇤�

�"Pp(1+ kT )✏3��
⇤/2�⇤2 � "��3]� 2"e�e(1+ e2")�2(�3 + "Pp(1+ kT )✏3/2�

⇤) (A20)

(m�us +us�m)/�ts � f(vs�m+m�vs)+ �Cbu
s +Cb�u

s + C̃w⇢̃wA|u|(�us cos⇥� �vs sin⇥) =

= ⌧wx(u�u/u2 + �A/A)+ (u�m+m�u)/�ts + �⌧ax + @x��
s
xx + @y��

s
3 (A21)580

(m�vs + vs�m)/�ts + f(us�m+m�us)+ �Cbv
s +Cb�v

s + C̃w⇢̃wA|u|(�us sin⇥+ �vs cos⇥) =

= ⌧wy(v�v/u2 + �A/A)+ (v�m+m�v)/�ts + �⌧ay + @y��
s
yy + @x��

s
3 (A22)

�hn = �t div(�unh+ un�h)+ �t2(u2D̂�h+ �(u2)D̂h)/2 (A23)

�An = �t div(�unA+ un�A)+ �t2(u2D̂�A+ �(u2)D̂A)/2 (A24)

The last two terms in (A23-A24) are TL for Lax-Wendroff non-linear diffusion, and D̂ is the Laplacian operator. In the585

variational assimilation experiments we used the strong constraint state-space formulation of the problem, minimizing the cost

function:

J =
1

2

X

⌦

h
Wh(h�h0)2 +WA(A�A0)2 +Wu(u� u0)2 + W̃h(D̂h)2 + W̃A(D̂A)2 ++W̃u(D̂u)2

i
(A25)

Here, W , W̃ denotes the non-zero elements of the (diagonal) inverse error covariance matrices of the fields in the round

brackets, simulated observations are denoted by primes, and summation is made over the entire space-time computational grid590

⌦.

The optimization problem under the constraints imposed by the sea ice model (eq. A4-A10) requires minimization of the

modified cost function

Jm = J + J̃ ⌘ J +
X

⌦

Xt(C)X̃
t
, (A26)

where X̃
t

are the fields of Lagrangian multipliers containing the adjoints of the model state variables Xt specified in all595

the grid points in ⌦. The sequence Xt depends on control fields C = [C0,Cp] which include the initial state of the model

C0 ⌘ X0, and other control fields Cp which contain rheological parameters, and atmospheric forcing errors. The latter two

were defined on a sparser grid (in every 15th node of the computational grid for most of the conducted experiments) and

spatially interpolated on the model grid using the bilinear interpolation operator I. The minimization of the cost function with
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The for of eq. A180-A24 is unacceptable. I don’t think that any of the reviewers meant this, when asking for a better description of the TLA. 


eq. A18-20 shouldn’t the damping term be highlighted somehow? I am not even sure if -eps delta sig1 is the term.

eq A18-24: I don’t understand, why the time stepping algorithm has been used here to illustrate how the TLA works. It makes the entire presentation far more complicated and difficult to understand.

l584: “variational assimilation experiments we used the strong constraint state-space formulation of the problem, minimizing the cost function”

doesn’t the adjoint method start from the cost function defining the scalar product with respect to which the entire equations are derived? The presentation appears backwards through the eyes of the practitioner, but for understanding the principles of what has been done it’s not very useful.



respect to C was performed using the limited-memory quasi-Newtonian (M1QN3) method of Gilbert and Le Marechal (1989)600

with the additional range constraints for the selected control fields (Section 2.3) performed after each iteration. The M1QN3

algorithm requires a procedure for computation of the cost function gradient �J /�C with respect to C for a given value of the

control fields. This procedure was implemented in two steps.

First, the sequence of model states Xt(C) was computed by specifying the first guess values of the control fields C and

integrating equations (A4-A10) over the assimilation window for 3 days. In the course of integration, the derivatives �J /�Xt605

of the cost function (A25) where also computed and stored in memory. Note that this integration can be represented as setting

to zero the derivatives of Jm with respect to the adjoint fields X̃
t

in eq. (A26).

On the second sweep, the gradients �Jm/�C are calculated. In the process, �Jm/�Xt are set to zero for all t except t= 0

by integrating the adjoint of the TL equations backward in time with the rhs forcing terms equal to ��J /�Xt computed on the

first (forward) sweep. The adjoint equations, being linear in X̃
t
, are obtained by transposition of the TL system matrix in the610

right hand side of (A18-A24). During the backward integration, all the underlined terms in (A18-A24) containing variations

of Cp were set to zero to obtain the gradient of J with respect to X0 (�Jm/�C0) at the end of integration. In paralell, the

gradients �J /�Cp were calculated by computing the respective derivatives of the second term J̃ in (A26). Numerically, this

was done by replacing �Cp in (A18-A24) by the components of X̃
t

which enter the respective products in J̃ and performing

the corresponding summations in time where necessary. The gradients with respect to RPs and atmospheric forcing control615

variables are given by

�Jm

�P ⇤
p

= �"IT
X

t

(1+ kT )Ahexp(�↵̃(1�A))(✏1�̃1 + ✏2�̃2 + ✏3�̃3/2)/�
⇤ (A27)
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It is important to note that stability of the adjont model, being strictly related to the stability of the TL model, contains

the Newtonian damping given by the terms �"��1,2,3 in eq. (A18-A20). The adjoint model is integrated backward in time

and requires the solution of the forward model for the each time step of the backward sub-cycling procedure. This can be625

achieved either through re-calculating the forward solution, or storing it, which includes storing all the intermediate states

of the subcycling procedure, as well as space-time coordinates of the switches in the Heaviside functions. We elected the

second option. Note that, formally, implementation of the 4dVar DA approach does not require the TL model. However, the

28

l601: “with the additional range constraints for the selected control fields (Section 2.3)”

If you are using bounds, a better choice would have been an L-BFGS algorithm (as in m1qn3) with bounds, e.g. L-BFGS-B 

Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C. (1995). "A Limited Memory Algorithm for Bound Constrained Optimization". SIAM J. Sci. Comput. 16 (5): 1190–1208. doi:10.1137/0916069.
Zhu, C.; Byrd, Richard H.; Lu, Peihuang; Nocedal, Jorge (1997). "L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization". ACM Transactions on Mathematical Software. 23 (4): 550–560. doi:10.1145/279232.279236

http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html


l612: paralell -> parallel

l623: adjont -> adjoint

l624: “the Newtonian damping given by the terms −εδσ1,2,3 in eq. (A18-A20)”

this information should’ve come much earlier …

Eq A27-31: the symbol $\mathcal{I}^T$ is not introduced. I have no idea what this is. It should be the “adjoint” model, i.e. the transpose of the tangent linear model matrix, which is never explicitly formed.



development of the TL model cannot be avoided because of the necessity to check its tangent linear property and validity of

the respective Lagrangian identities for debugging the transposition procedure of the system matrix in (A18-A24).630

Appendix B: On the stability of TL models with VP rheology

The VP system of equations is obtained by eliminating the time derivative in eq. (2), resolving the remainder with respect to �

� =
1

e2


P� I

1� e2

2
trP

�
, (B1)

and substituting (B1) into the momentum equation:635

⇢̃hA(@t + fk⇥)u = div�+ ⌧ b + ⌧ a + ⌧w (B2)

@th= div(hu) (B3)

@tA= div(Au) (B4)

where we used the notation P for the tensor in the rhs of (B1):

P = Pp


(1+ kT )✏̇�

�

2
(1� kT ) I

�
/�⇤ (B5)640

The non-linear system of VP equations (B1-B4) is solved in two stages. First, equation (B2) is stepped forward using a

semi-implicit scheme, which takes the fields of P and �⇤ from the previous time step, treating only ✏̇ semi-implicitly. On the

second stage, equations (B3-B4) are explicitly stepped forward in time using the velocity fields from the first stage (Hibler,

1979; Lemieux et al., 2008).

In application to TLA modeling, such procedure would not provide the exact derivative of the non-linear scheme with respect645

to u because equation (B2) is not linearized with respect to the variations of �(u) and will therefore exhibit behavior similar

to the behavior of the regularized code (Fig. 1). Moreover, exact TLA code of the VP rheology, is intrinsically unstable in

the regions of ice divergence (e.g., Gray and Killworth, 1995), especially in the areas, where tensile stresses associated with

arching effects are important.

However, one may expect reasonable performace of the above mentioned "incomplete linearization" of the VP model in the650

4dVar applications, as soon as the stability criterion of the non-linear model (B1-B4) is satisfied. We performed an additional

experiment with 1d VP forward and TL models using the modified procedure featuring ten applications of the GMRES solver

and ten � updates on every time step (Lemieux et al., 2008) and did not observe any instabilities in the TL model. In this

respect we may conclude that VP rheology is less susceptible to the TLA instabilities than EVP, which requires introduction

of the additional stabilization terms in the TLA code of the stress tensor evolution equation.655
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