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seasonal leakage error." 
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their residuals are estimated to have a seasonal variation of up to 11% of the modelled glacier 
mass change (refer to section 3.2 in the supporting materials), which is used to calculate the 
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Abstract. High Asia glaciers have been observed to be retreating the fastest in the southeastern Tibet Plateau 

(SETP), where vast amounts of glacier and snow (GS) feed the streamflow of the Brahmaputra, a transboundary 

river linking the world's two most populous countries China and India. However, the low temporal resolutions in 

previous observations of GS mass balance obscured the seasonal accumulation/ablation variations, and their 

modelling estimates were divergent. Here we use monthly satellite gravimetry observations from August 2002 to 

June 2017 to estimate GS mass variation in the SETP. We find that the “spring-accumulation type” glaciers and 

snow in the SETP reach their maximum in May. This is in stark contrast to seasonal variations in terrestrial water 

storage, which is controlled by summer precipitation and reaches the maximum in August. These two seasonal 

variations are mutually orthogonal and can be easily separated in time-variable gravity observations. Our GS mass 

balance results show a long-term trend of -6.5 ± 0.8 Gt yr-1 (or 0.67 ± 0.08 w.e. m/yr) and annual mass decreases 

ranging from -49.3 Gt to -78.3 Gt with an average of -64.5 ± 8.9 Gt in the SETP between August 2002 and June 

2017. The contribution of summer meltwater to the Brahmaputra streamflow is estimated to be 51 ± 9 Gt. This 

result could help to resolve previous divergent modelling estimates and underlines the importance of meltwater 

to the Brahmaputra streamflow. The high sensitivity between GS melting and temperature on both annual and 

monthly scales suggests that the Brahmaputra will suffer from not only changes in total annual discharge, but also 

an earlier runoff peak due to the ongoing global warming. 

1 Introduction 

The Tibetan Plateau, considered as the Asian water tower, is the source of several major river systems. Their 

upper streams are fed by rainfall, base flow and widespread glaciers and snow (GS) melt (Barnett et al., 2005; 

Immerzeel et al., 2010; Jansson et al., 2003; Lutz et al., 2014). The GS melt is susceptible to climate change, 

whereas its sustainable supply is critical to the local freshwater security, flood prevention and control, and 

hydroelectric development (Bolch et al., 2012; Kaser et al., 2010; Yao et al., 2012). The southeastern Tibet Plateau 

(SETP), including the Nyenchen Tonglha Mountains (NTM) and eastern Himalayas, holds 10,439 glaciers with 

a total area of 9,679 km2 (RGI Consortium, 2017) and widespread seasonal snow coverage of up to 100,000 km2. 

These maritime glaciers are characterized by low equilibrium-line altitudes with large topographic gradients (Yao 



et al., 2012) and the most severe mass loss in High Mountain Asia (HMA) (Brun et al., 2017; Kääb et al., 2015). 

The GS melt serves as an essential water supplier for the Brahmaputra river system (e.g., Immerzeel et al., 2010; 

Lutz et al., 2014), which runs through three densely populated countries, China, India and Bangladesh (Figure 1). 

The revealed vulnerability of glaciers in the Brahmaputra Basin to global warming and emerging controversies 

over water allocation (e.g., dam building (Tanck and Fazani, 2010)) are increasingly attracting scientific and 

public concerns. 

Due to the lack of observational data, most of the previous estimates on the contribution of seasonal 

meltwater to the upstream flow of the Brahmaputra River were based on modelling approaches that were only 

calibrated by employing streamflow data. As a result, the previous estimates disagree widely from 19% to 35% 

(Table 1) due to different forcing data and approaches without direct constraints on GS mass balance (Bookhagen 

and Burbank, 2010; Chen et al., 2017; Huss et al., 2017; Immerzeel et al., 2010; Lutz et al., 2014; Zhang et al., 

2013). The amount of meltwater could be even more divergent. For example, Huss et al. (2017) estimated that the 

amount of annual GS melt to the Brahmaputra River was 138 w.e. (water equivalent) km3 yr-1, which is however 

triple the estimate of 43 w.e. km3 yr-1 by Lutz et al. (2014). Although these two studies covered different ranges, 

the glacierized zone in the basin was both well enclosed so the estimates should not be so different. Such huge 

discrepancies in previous estimates make it imperative to incorporate the calibration from GS mass balance 

observations into future modelling experiments. Recently, the concept of assimilating more GS observations has 

begun to be implemented in the state-of-the-art models (Wijngaard et al., 2017; Biemans et al., 2019), but their 

glacier results suffered from coarse temporal resolution (two observations over 5 years) and the snow mass 

changes were partially constrained by area changes. 

Spaceborne sensors can be helpful in this desolate mountain region. Remote sensing techniques for region-

wide GS mass balance measurements can be divided into three categories: laser altimetry (e.g., Ice, Cloud and 

land Elevation Satellite (ICESat) (Kääb et al., 2012)), multi-temporal digital elevation models (e.g., SPOT 

(Gardelle et al., 2013), ASTER (Brun et al., 2017)), and space gravimetry (Gravity Recovery and Climate 

Experiment (GRACE) (Matsuo and Heki, 2010; Yi and Sun, 2014)). The first two geodetic approaches require 

the average ice density to convert volume changes into mass changes. The ICESat observation suffers from short 

operation period (2003–2009) and sparse spatial sampling, both of which can be overcome by the stereo-imagery 

approach, which is becoming popular for the whole HMA study recently (Brun et al., 2017; Dehecq et al., 2018). 

Brun et al. (2017) provided an estimate of the detailed glacier mass balance trends over HMA between 2000 and 

2016 and highlighted the regional dissimilarity. Despite recent improvements in spatial resolution in HMA glacier 

mass change studies, there has been little advance in their temporal resolution.  

Observations at a monthly temporal resolution are necessary to separately quantify summer and winter mass 

balances, two processes dominating the annual glacier mass balance (Cogley et al., 2011), and thus crucial for the 

calibration and validation of glaciological models. The amplitude of seasonal variation of the glaciers in the SETP 

is up to ~3 m w.e. (Wang et al., 2017), far exceeding their net annual change of ~ 0.6 m w.e. (Brun et al., 2017). 

Hence, the long-term trend of GS mass changes only reflects a small net imbalance of their ablation and 

accumulation. Monthly observations by GRACE since its launch in 2002 (Tapley et al., 2004) are promising in 

identifying these two processes. Up to now, the application of GRACE in HMA glaciers has been focusing on 

their secular changes with little attention to the seasonal variations (Gardner et al., 2013; Matsuo and Heki, 2010; 

Yi and Sun, 2014). This is mostly due to the poor spatial resolution of GRACE (> 300 km) and the dominance of 



terrestrial hydrological signals in the seasonal gravity signals, which is difficult to eliminate from glacial signals. 

The latter is particularly severe in the SETP with intense monsoon precipitations. The GS and hydrological mass 

changes (mainly including mass changes in rivers, soil moisture and groundwater) dominate the seasonal gravity 

signals in the SETP observed by GRACE. Despite the general difficulty in separating them in the spatial domain, 

we find it possible to separate the two signals in the time domain, owing to their contrasting seasonal behaviours. 

Precipitation in the SETP is controlled by various atmospheric circulation systems in different seasons, with 

westerly winds and Bay of Bengal vortex in winter/spring and Indian monsoon in summer (Wu et al., 2011; Yang 

et al., 2013; Yao et al., 2012). The former two systems were found to drive the spring precipitation in the SETP 

along the Brahmaputra River, thus forming a ‘spring-accumulation’ type of glaciers (Yang et al., 2013). The 

Indian monsoon prevails from June to September and brings intense precipitation on the southern side of the 

Himalayas, where terrestrial water storage shows tremendous seasonal changes and peaks in late summer. 

Therefore, according to the climate stations near NTM, we can observe bimodal precipitation variations 

throughout the year (Yang et al., 2013).  

In this work, we will first introduce the precipitation characteristics in this region by both meteorological 

stations and global precipitation products. We will then use the empirical orthogonal function (EOF) analysis to 

decompose hydrological and GS signals in our study region, which does not exactly coincide with the range of 

glacierized zone in the Brahmaputra Basin. Our study region covers only 83% of the basin glaciers (the 17% 

undetected ones are in the western part) and 15% of non-Brahmaputra glaciers. We will scale our results by a ratio 

of 1 × #.%&
#.%'

= 1.02 to get the total meltwater in the Brahmaputra, assuming that our observations can represent the 

basin-wide average. The hydrological and GS signals are further compared to the results of other datasets to 

validate their physical meanings. Such high time-resolution observations also allow us to compare GS mass 

variations with temperature records during the ablation season, and to study the sensitivity of GS mass change in 

response to the temperature change. Finally, we will compare our results to previous estimates at monthly, annual, 

and interannual scales.  

2 Data 

2.1 GRACE data and preprocessing 

We adopt the monthly GRACE spherical harmonics Release 06 products from August 2002 to June 2017. 

The three datasets are solved respectively by three organizations: Center for Space Research (CSR) at the 

University of Texas, GeoForschungsZentrum (GFZ) in Potsdam, and the Jet Propulsion Laboratory (JPL). These 

datasets are available at ftp://podaac.jpl.nasa.gov/allData/grace/L2/. The degree 1 terms, which are absent in 

original GRACE releases, have been added based on the technique proposed by Swenson et al. (2008). The C20 

terms have been replaced by those from satellite laser ranging (Cheng et al., 2011), which are considered to be 

more reliable. A widely used Glacial Isostatic Adjustment (GIA) model by A et al. (2013) is adopted to correct 

the GIA effect caused by historical polar ice sheet changes. 

Two different filtering strategies, a combination of P4M6 decorrelation (Swenson and Wahr, 2006) and 

300km Gaussian filter (hereafter short for G300+P4M6) and a DDK4 filter (Kusche et al., 2009), are applied 

separately. Therefore, there are six combinations and their average values (with uniform weights) are used in the 

following figures.  



2.2 GRACE error estimation 

We adopt different uncertainty estimation strategies for the seasonal variation and the trend due to their 

intrinsically different error sources. The error of seasonal variation consists of the standard deviations among 

these six datasets (i.e., errors from the data solution and smoothing methods) and the leakage error, while that of 

the long-term trend also includes other potentially uncorrected signals. We assume that the majority of the 

hydrological signal is captured by the first EOF mode. The leakage error is then determined by how effectively 

the hydrological and GS signals are separated by the EOF technique. Based on the modelled and recovered glacier 

mass changes, their residuals are estimated to have a seasonal variation of up to 11% of the modelled glacier mass 

change (refer to section 3.2 in the supporting materials), which is used to calculate the seasonal leakage error. We 

do not quantify or account for potential hydrological (non-GS) signals in EOF mode 2. 

For the long-term trend error, the three different solutions and two smoothing techniques have a total effect 

of 0.44 Gt/yr. There are potential errors from other signal sources, like glacial isostatic adjustment (GIA), Little 

Ice Age (LIA) and weather denudation. The GIA effect which originates from the polar regions has been corrected 

by A’s GIA model (A et al., 2013), although its influence on the trend is as small as 0.02 Gt/yr. The main reason 

is that the spatial pattern of GIA is quite smooth, so it mainly influences the first mode and rarely leaks into the 

second one. This feature is also applicable for other signal sources: unless they exactly locate in the glacierized 

area, their influence will be reduced by the EOF decomposition. In the southern and southeastern Tibetan Plateau 

(over 500,000 km2), the effects of LIA and denudation are estimated to be -1 ± 1 Gt/yr (Jacob et al., 2012) and 

1.6 Gt/yr (assuming the sediment has a density of 2 Gt/km3) (Sun et al., 2009), respectively. Our glacierized zone 

and surroundings have an area of about 100,000 km2, accounting for one-fifth of the whole region, so we suppose 

their contribution to the GS mass estimate is also proportionally 1/5. However, as we explain above, we could not 

precisely quantify their contribution without knowing their spatial distribution, and they are more likely to be 

absorbed by the first mode, so we only include their contribution in the error estimation rather than correcting 

them in the trend. Table 2 summarizes the sum of GRACE error estimates in the secular trend.  

 

2.3 ICESat altimetry  

Version 34 of the ICESat Global Land Surface Altimetry Data is used to derive glacier height changes. The 

data span is from 2003 to 2009, with two or three observation campaigns per year (Figure S1). The processing of 

ICESat data includes the following steps. (1) Orthometric heights are obtained from original elevation data based 

on the Earth’s gravity model 2008. (2) Footprints on glaciers are identified based on RGI 6.0 glacier outlines. (3) 

For each ICESat footprint, SRTM (Farr et al., 2007) elevations and slopes are extracted by bilinear interpolation 

of the DEM grid cells. Glacier height variation is defined as the elevation differences between the footprints and 

the SRTM data. (4) We exclude footprints over SRTM voids, footprints with slopes higher than 30°, and footprints 

with height change larger than 100 m (which are attributed to biases caused by cloud cover during the ICESat 

acquisition). (5) We also discard the calibration campaign L1AB (March 2003) and the incomplete campaign L2F 

(October 2009). (6) Glacier height variations are averaged and interpolated along the altitude to alleviate the 

uneven sampling problem in space, and an uncertainty of 0.06 m/yr (Kääb et al., 2012) is chosen to account for 

the uneven sampling bias in time. The steps have been used in previous work (Wang et al., 2017) and have also 



been described in earlier studies (Gardner et al., 2013; Kääb et al., 2012). The footprint information is given in 

Figure S2. 

ICESat has shown good ability to solve snow variation in flat regions (Treichler and Kääb, 2017), but 

applying the same technique in mountainous areas with high terrain heterogeneity is cumbersome. Therefore, here 

ICESat is only used to estimate changes in glacier mass. Although our GRACE estimate includes both glaciers 

and snow, the estimates by GRACE and ICESat are comparable in the late ablation season (i.e., the 

October/November campaign of ICESat), when the contribution of seasonal snow meltwater is negligible (Section 

5.1). To convert the glacier thickness changes into mass changes, two parameters are required, i.e., glacier density 

and total glacier areas. We assume an average glacier density of 850 ± 60 kg m-3 (Huss, 2013). According to the 

glacier inventory RGI 6.0 (RGI Consortium, 2017), the area has a glacierized area of 9,679 km2.  

2.4 Other auxiliary data 

To analyse the impact of temperature and precipitation on GS and water mass balance here, we adopt two 

types of datasets, the gridded reanalysis products and in-situ measurements from four meteorological stations 

(their locations are labelled in Figure 1, and coordinates are listed in Table S1). Precipitation and temperature 

records for each site from 2003 to 2016 (Figure S4) are available from the China Meteorological Data Service 

Center (http://data.cma.cn/data/weatherBk.html). Only four in-situ temperature records may not represent the 

overall condition of the glacierized zone, so we adopt the gridded temperature product from the ERA5 reanalysis 

data processed by the European Centre for Medium-Range Weather Forecasts (ECMWF). The data is available 

at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The gridded data is compared with 

station observations and the correlation index ranges from 0.69 to 0.82 in the interannual variation (Figure S6), 

indicating a good consistency. The average values in the glacierized zone from the ERA5 temperature product 

will be used to represent the temperature condition here. 

Global gridded precipitation data Tropical Rainfall Measuring Mission (TRMM) (Huffman et al., 2014) is 

used to examine the influence of precipitation on water storage. The data is available at 

https://pmm.nasa.gov/data-access/downloads/trmm. Although such a global product is unable to capture the 

localized spring precipitation in our study area (Section 3), it can be used for the investigation of large-scale 

monsoon precipitation.  

Moderate-resolution imaging spectroradiometer (MODIS) data MOD10 (Hall et al., 2006) is used to investigate 

snow coverage here. The MOD10CM product has a temporal resolution of 1 month and spatial resolution of 0.05-

degree. The land surface model Global Land Data Assimilation System (GLDAS)-NOAH (Rodell et al., 2004) is 

adopted to inspect soil moisture changes, which can be compared to changes in total terrestrial water storage 

estimated by GRACE. Here, the version 2.1 monthly product with 1.0-degree spatial resolution is used (available 

at https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH10_M.2.1/). The total water storage in 

this region also contains contributions from rivers and groundwater, which are however difficult to obtain, so only 

the soil moisture component is investigated here.  



3 Spring precipitation and mass increase 

The method of this study is based on the fact that the change in GS mass driven by spring precipitation 

precedes the change in hydrological signals. Therefore, before introducing the method, we want to demonstrate 

that GRACE can detect mass changes caused by spring precipitation. At two out of four stations (Bomi and 

Chayu), spring precipitation is noticeable, even surpassing the summer/autumn precipitation brought by the Indian 

monsoon (Figure S4). Yang et al. (2013) provided precipitation records at 22 sites in a broader area and outlined 

the boundary of the impact zone of the spring precipitation, which roughly covers the glacierized area studied 

here. Summer precipitation and its associated hydrological mass change are enormous and well recognized, while 

the spring one is not. Therefore, here we only use the TRMM and ERA5 results from January to March in Figure 

2 to show the initiation of spring precipitation. The precipitation begins to spread south and west starting April, 

when the monsoon gradually increases (not shown here). The TRMM results show a boundary along the latitude 

29° N, where the precipitation suddenly decreases to the north. This boundary of change is irrelevant to the terrain 

and seems to be artificial. This phenomenon cannot be found in the ERA5 result, which shows abundant 

precipitation in the glacierized zone in these months. The bottom plots give the GRACE monthly mass anomalies 

from March to May (two months later than the precipitation), as GRACE observes the cumulative mass change 

resulting from precipitation. An earlier mass increase from April can be identified in the southeastern part of the 

Tibetan Plateau. 

The performance of TRMM and ERA5 is compared with our station measurements in Figure S5. According 

to the in-situ records, the spring precipitation, as a part of the bimodal variation, is obvious at the Bomi and Chayu 

stations. TRMM is capable of revealing the condition at Chaya at 28.65° N, but performs poorly in regions north 

of 29° N. The ERA5 data demonstrates a higher precipitation in winter and spring at Bomi and Linzhi than the 

other two datasets. 

These results show that spring precipitation can be captured to a limited extent by various reanalysis products 

and the ‘spring-accumulation’ pattern of GS mass change in the SETP is recognizable in GRACE observations. 

The amplitude and phase of the seasonal mass variation from the equivalent water height (EWH) of GRACE are 

compared in the background of Figure 1. The seasonal amplitude has a spatial distribution similar to that of the 

Indian monsoon affected area. This pattern reflects the predominance of the monsoon-controlled hydrological 

process and the weaker glacial signals in this region. However, the peak month of seasonal changes (the contours 

in Figure 1) divergently appears earliest in June in the NTM and gradually delays to August in the southern 

Himalayas, where the annual amplitude reaches its maximum. The shift in peak months reflects the 

increasing/decreasing contribution from the sinusoid of the hydrological/GS seasonal variation. A key point to 

point out is that their peaks have a three-month time window offset (Section 4.4), which is a quarter of the annual 

oscillation cycle and means that the two signals are mathematically orthogonal. 

4 Decomposition of GRACE signals 

4.1 EOF analysis of GRACE 

GS and hydrological mass changes dominate the seasonal gravity signals observed by GRACE in this region 

and they are mathematically orthogonal due to different phases. Therefore, we employ the EOF technique (see 

the supporting material for mathematic expressions) (Björnsson and Venegas, 1997) to decompose hydrological 



and glacial signals in the GRACE datasets (Figure 3). We thus extract two modes with significantly higher 

explained variances than the other modes (i.e., two significant modes are obtained). Results of different datasets 

and filters show good consistency, indicating that the first two modes are robust.  

Each mode consists of one EOF (the spatial pattern) and one PC (the temporal evolution). Only the first two 

modes, respectively accounting for 79 ± 5% and 12 ± 4% of the total variance explanation, are shown. Although 

the first mode is much stronger than the second mode (because the second one is more localized), their signal 

strength in the glacierized region is comparable on both seasonal and secular temporal scales. Furthermore, after 

removing the first mode representing the hydrological signal, mass changes in the glacierized zone estimated 

using the second mode of GRACE are much more consistent with the glacier mass changes using ICESat in terms 

of seasonal and long-term changes (Figure S7). Modes above 2 are weak and irregularly show much noise, so 

they are discarded here.  

The trends of the GRACE observation and its decomposed modes are shown in Figure 4. The GRACE 

observation shows a significant mass loss, which is divided into the first two modes. In the glacierized zone, ~ 

2/3 of the negative trend comes from the 2nd mode and ~1/3 comes from the 1st mode. The trend of higher modes 

(> 2) is quite weak (Figure 4d).  

According to the spatial coverages (EOF1 and EOF2) and their temporal variations (PC1 and PC2), the first 

mode covering the low altitude areas on the south of the plateau with a peak month in August/September 

seemingly represents hydrologic signals and the second mode concentrating in the glacierized region with a peak 

month in May (the peak month of June in Figure 1 is the mixed result of the first two modes) seemingly represents 

glaciers. We will verify these hypotheses below. 

4.2 GS mass estimation from mode 2 

GRACE results only show smooth mass patterns and we need some strategy to recover the original amount 

of mass changes. If we adopt the second mode to estimate GS mass change, this step is necessary. Therefore, a 

forward modelling method (Yi et al., 2016) is chosen to recover the mass in a pre-defined region iteratively. This 

method has been widely used (Chen et al., 2015; Wouters et al., 2008), especially in the study of polar ice sheets. 

In the first step, we divide the glacier mask based on the glacier distribution recorded in RGI 6.0 (RGI Consortium, 

2017) (Figure 4e). The lattices have a resolution of 0.5° by 0.5° and are located in glacierized area (by this way 

we assume the snow signal also comes from the glacierized area, but it does not influence the total mass estimates). 

In the second step, the mass in each lattice is iteratively adjusted until its smoothing signal (Figure 4f) matches 

the GRACE observation (Figure 4c) and becomes stable. The details of each combination of datasets and filters 

are presented in Figure S87 and S98. Therefore, we solve the mass in each combination (Figure S98). The mass 

is multiplied by the PC2 series to derive the glacier mass series, and their average is taken as the mass estimate, 

which will be compared with ICESat observations to test our hypothesis on its physical meaning. 

4.3 Validation of mode 1 by soil moisture and precipitation datasets 

To validate the hypothesis that the first mode represents hydrological signals, we compare it with EOF 

decomposition results of two other datasets, soil moisture from GLDAS/NOAH and precipitation data from 

TRMM (Figure 5). To make them comparable to GRACE in terms of spatial resolution, they are expanded into 

spherical harmonics, truncated at degree 60, and smoothed by the same filter. Their results are shown in Figure 5. 



Different from GRACE that has two significant modes, they only have one due to the lack of a glacial signal. The 

EOF1 of GLDAS/NOAH and TRMM is consistent with that of GRACE. The PCs are compared at interannual 

and seasonal scales as well. Note that precipitation is an instantaneous amount, while water storage is a state value, 

so the former should be integrated in time to make it comparable to the latter. Here, we integrate precipitation in 

successive six months by an empirical weight function of (1, 2, 3, 4, 5, 6), which will be normalized, and the value 

is attributed to the sixth month. Different integration methods are tested in the supporting materials. 

Of note, mass contributions from the Brahmaputra River and groundwater are absent (and they are 

troublesome to obtain) and precipitation is assumed as the dominant driver of water storage change without 

considering the influence of runoff and evaporation (Humphrey et al., 2016), so we do not expect that we can 

reach a thorough agreement between different datasets. This is acceptable if their temporal consistency is targeted. 

However, long-term trends in runoff, evaporation and groundwater cannot be ignored and they are differently 

reflected in these three products, so their trends have been removed before the comparison. The exclusion of 

unavailable surface water and groundwater in the GLDAS result also causes a weaker strength of its EOF1 

compared to that of GRACE. We conclude that these datasets should be comparable in terms of seasonal and 

interannual variations and the pattern of spatial distribution, but not in the long-term trend and the amplitude of 

the spatial distribution. The good resemblance in both the EOF1 (spatial pattern) and PC1 (seasonal and interannual 

temporal evolution) between GRACE, GLDAS/NOAH and TRMM indicates that they reflect similar geophysical 

processes, i.e., hydrological variations. 

4.4 Method feasibility and reliability 

The phase difference of 3 months is a prerequisite for this method and can be verified retrospectively. We 

tested different phase differences between hydrological and GS signals and decomposed them by the EOF method 

(refer to section 3.1 in the supporting material). Two conclusions are obtained: oOnly when the GS mass change 

peaks in May (3 months before the peak month of the hydrological signal), can our simulated result shows 

similarities to agree with the GRACE observation; the EOF decomposition can well restore both seasonal variation 

and the trend of the GS signal if the orthogonality is satisfied. 

Only hydrological and GS signals can explain the first two modes considering their spatial and temporal 

patterns. Atmosphere contribution has already been removed in GRACE observations (Dobslaw et al., 2017) and 

mass transports of solid earth are unlikely to have such strong seasonal variations. We cannot quantify the 

contribution of groundwater in the second mode, but groundwater is apt to be modulated by stronger rainfalls in 

summer (Andermann et al., 2012), rather than snowfalls in winter-spring, and groundwater activity will be reduced 

in winter-spring when the ground is frozen. Therefore, the groundwater component is inclined to be captured by 

the first mode. We attribute the negative trend in the first mode to decreasing precipitation in recent years (Figure 

S109) and intense groundwater pumping (Shamsudduha et al., 2012). The negative trend in the second mode is 

supposed to represent GS melting and can be used for estimating GS mass balance.  



5. Results and discussion 

5.1 Glacier and snow mass balance 

The glacier surface elevation changes measured by the ICESat are compared with the result estimated from 

the second mode of GRACE. We interpolate the series of GRACE estimates (2002–2017) into the observation 

epochs of ICESat (2003–2009) and plot mass changes by GRACE as a function of elevation changes by ICESat 

(Figure 6a). After dividing by the glacier density, the slope of the elevation-mass regression line represents the 

inventorial glacierized area by RGI 6.0. The observations in October/November (blue squares) approximate with 

the line, indicating the good consistency between ICESat and GRACE in the late ablation season between 2003 

and 2009. The MODIS result indicates that the snow coverage increases rapidly since September (Figure 6b), 

while the GRACE PC2 series show a moderate increase after October. We speculate that the snow height does not 

increase much in the first few months so the contribution of snow mass is not significant. The observations in 

March and June, as expected, are well above the line, implying an extra snow mass contribution, which can be 

inferred from the point-to-line vertical distance. The snow contribution relative to the total mass anomalies varies 

drastically between 0% and 62% with a mean value of 38% within our observation time windows.  

The difference between GRACE and ICESat-based estimates of mass change indicates that the snowpack 

outside the glaciers is a non-negligible contributor to the seasonal mass variation. This is quite different from 

previous glacier trend estimates, where non-glacier snow was neglected. Based on MODIS observations, the snow 

coverage area in this region varies from approximately 80,000 km2 in winter to 30,000 km2 in summer, both of 

which are much larger than the inventoried glacier area (Figure 6b). However, heterogeneous snow depths (Das 

and Sarwade, 2008) and densities across the vast and rugged area make it difficult to measure their mass change 

by a non-gravimetric way.  

Figure 6c compares the time series of glacial mass in the SETP from GRACE (August 2002–June 2017) and 

ICESat (2003–2009). The times series from two sensors are consistent in seasonal and interannual variations, 

despite the absence of the snow component in the ICESat result. Monthly mass change shows that the ablation 

season is generally between June and October with slightly varied initiation and duration from year to year. The 

maximum mass increase (10–20 Gt) usually occurs in April, when the spring precipitation peaks, and the severest 

mass loss (-15 – -30 Gt) usually occurs in July when the temperature peaks. As the temperature rises from April 

to July, the monthly mass change curve drops steeply from the peak down to the trough, but the ascending process 

with mass accumulation is relatively moderate and continuous. 

We calculate annual mass increase and decrease by the difference of mass anomalies between November 

and May and between June and October, respectively. From 2002 to 2017, the annual mass decrease ranged from 

-49.3 Gt to -78.3 Gt with an average of -64.5 ± 8.9 Gt, and the annual mass increase ranged from 41.8 Gt to 79.9 

Gt with an average of 58.6 ± 11.0 Gt. The seasonal GS mass changes postpone the runoff of ~60 Gt of winter-

spring solid precipitation for several months. This amount plays a vital role in the annual streamflow (130.7 Gt 

on average) of the upper Brahmaputra (Lutz et al., 2014) and is almost ten times the annual net meltwater. Without 

the buffering effect of the seasonal variation, there will be a tremendous reduction in the streamflow in summer 

and autumn, when the water demand is high, and adaptive management on the dams in the Brahmaputra will be 

required to reduce seasonal irregularities in the streamflow (Barnett et al., 2005).  



5.2 Quantifying the sensitivity of glacier and snow melt to temperature  

Temperature is a dominant factor influencing the melting of glaciers (Cogley et al., 2011). Here, the monthly 

temperature records from the ERA5 product are compared with month-to-month mass changes by GRACE to 

investigate the sensitivity of the GS mass balance in response to temperature change (Figure 7). Mass changes are 

negatively correlated with the temperature anomalies by a factor of -1.9 ± 0.2 Gt degree-1 during the ablation 

season (from May to October) but no correlation is found during the accumulation season (from November to 

April). The mass peaks around May, when either glacier accumulation or ablation could happen. The temperature 

averaged in this transitional month is taken as the reference for the temperature anomalies used in the figure and 

their mass changes are annotated. The highest sensitivity of monthly mass changes in response to temperature is 

observed in July (3.1 ± 2.5 Gt degree-1), when the largest monthly mass loss occurs.  

To investigate the impact of climatic variables on the interannual variations of GS mass, we compare annual 

mass losses (from May to October) with summer temperatures (from June to August) (Figure 7b). The annual 

mass loss is significantly correlated with the summer temperature, with a slope of -10.7 ± 4.2 Gt degree-1 (P-value: 

0.025, R2-value: 0.35), indicating that the annual GS mass balance is sensitive to summer temperature. The small 

value of R2 is partly due to the relatively large uncertainties of our mass estimate (10 Gt) in this modest range of 

variation (30 Gt) and the neglect of other factors influencing GS mass balance. The sensitivity index was provided 

by a previous study (Sakai and Fujita, 2017), where the whole HMA was examined and the SETP shows a 

widespread high sensitivity with an average value of -1.23 m w.e. degree-1. Based on the glacierized area of 9,679 

km2, our estimation is -1.10 ± 0.43 m w.e. degree-1, which is comparable with the earlier study of Sakai and Fujita 

(2017). It should be pointed out that annual net mass balance was used in Sakai and Fujita (2017) in comparison 

with the annual mass loss used in this study, although annual net mass balance is mainly driven by summer melt 

(Ohmura, 2011). 

We could not find a significant relationship between the mass and precipitation changes, probably because 

our data fail to reflect the strong orographic effect in precipitation, and/or the GS mass gain process is too complex 

to be attributed to precipitation alone. 

5.3 Comparison with previous estimations on glacier and snow meltwater 

The trend of glacier elevation change by ICESat in this study is -0.65 ± 0.20 m w.e. yr-1 during 2003–2009, 

which lies between the values of -0.30 ± 0.07 m w.e. yr-1 (Gardner et al., 2013) and -1.34 ± 0.29 m w.e. yr-1 (Kääb 

et al., 2015) in eastern NTM by using alike ICESat dataset (but of an older version), and is close to the trend of -

0.62 ± 0.23 m w.e. yr-1 during 2000–2016 by using ASTER (Brun et al., 2017). The trend of GS mass change in 

this study by using GRACE is -6.5 ± 0.8 Gt yr-1 between August 2002 and June 2017. The mass contribution from 

snow is considerable at the seasonal scale but negligible over 15 years, so the secular trend by using GRACE 

mainly represents the glacier mass change. Our GRACE trend consists well with the derived glacier mass change 

of -5.5 ± 2.2 Gt yr-1 by using ASTER (the area-averaged rate in NTM and Bhutan multiplied by the glacierized 

area of 9,679 km2). In conclusion, both of our ICESat and GRACE estimates agree well with the previous ASTER 

result in terms of secular trend. The GS mass trend from the second mode is reduced by 25% compared to the 

original GRACE signal in the glacierized zone (Figure 4). 

A recent result on changes in interannual glacier flow in this region (Dehecq et al., 2018) indicates a strong 

correlation between ice flow rate and changes in glacial thickness. The interannual variation of GRACE-based 



mass changes (the 1-year smoothed sequence in Figure 6c) notably shows equilibrium during periods of 2003-

2005 and 2011-2014. According to the aforementioned study (Dehecq et al., 2018), thinning glaciers reduce their 

flow rate by weakening gravitational driving stress; therefore, this balanced mass state may slow down the 

decreasing flow rate. Coincidentally, we can identify such decelerating phase in the decline of glacier flow rate 

during 2004-2006 and 2012-2015 (Figure 1 in Dehecq et al., 2018). 

GS mass loss is caused by flow, melting, and evaporation processes, while the last one does not contribute 

to the river flow. Evaporation is important for continental-type glaciers where the climate is usually cold and dry. 

E.g., it accounts for 12% of the glacier ablation in Tianshan (Ohno et al., 1992). However, the importance of 

evaporation is greatly reduced in our maritime glaciers due to the extremely humid air and rapid melting. 

Therefore, we assume that the mass loss is completely turned into meltwater and can be compared with analogous 

outputs from models. In our study region, 85% of its meltwater (estimated according to the area proportion) runs 

into the Brahmaputra and this area accounts for 83% of total glaciers in this basin (9,912 km2). Assuming that the 

unobserved 17% of glaciers hold the similar rate of GS mass change, our estimate of mass change is scaled by a 

ratio of 1 × 0.85/0.83 = 1.02 to represent the GS mass change of the entire Brahmaputra Basin. Monthly 

changes of meltwater estimated by month-to-month difference in GRACE results are compared with model results 

of Lutz et al. (2014), which showed that GS melt constitutes 33% of the total discharge in the Brahmaputra and 

that 50% of the annual melt occurs in the summer (Figure 8). GRACE only detects the net change in GS and 

cannot separate mass ablation and accumulation (see the inset in Figure 8). Because these two processes concur 

simultaneously in transitional seasons and offset to some extent, the annual mass decrease (total mass loss in a 

year; here, ranges from 49.3 km3 to 78.3 km3 with an average of 64.5 km3) is smaller than the real GS melt. As a 

result, the annual mass decrease provides a lower bound on annual GS melt each year, rather than an accurate 

estimate. Instead, the amount of GS melt can be better determined during the summer (from June to August), 

when the accumulation is supposed to be small. This value can be used to validate the model output. Our result 

shows that the summer melt ranges from 37.3 km3 to 62.9 km3 with an average of 51.6 km3, which is over 100% 

larger than the 23 km3 GS mass change given in the model of Lutz et al. (2014) (Figure 8). Although extrapolated 

mass changes for the undetected 17% of glaciers and the neglected summer evaporation may reduce our estimates 

of summer meltwater, they definitely cannot explain the difference of more than 100%. Among all model 

estimates, the model of Lutz et al. (2014) reported one of the largest proportions of GS melt contribution (33%), 

but still largely underestimated the amount of summer meltwater, according to our estimate from satellite 

observations. 

Our annual mass decrease (average 49.0 Gt) is still much smaller than the 137 Gt annual meltwater given by 

Huss et al. (2017). However, this larger value even exceeds the annual streamflow of 130.7 km3 in the upper 

Brahmaputra where all GS meltwater is included (Lutz et al., 2014). The upper streamflow at the Nuxia station 

(ahead of the main glacier supply area) is ~ 60 km3. Therefore, the difference in streamflow between the main 

glacier supply area is ~ 70 km3, and the annual meltwater is unlikely to exceed this value, considering the 

additional contribution of precipitation. These values generally represent decadal averages at the beginning of this 

century (Table 1) and they are therefore comparable. 



6 Conclusion 

In this study, we use GRACE gravimetry to estimate the GS mass balance in the SETP from August 2002 to 

June 2017. The second EOF mode of GRACE observations is attributed to changes in GS mass, which can be 

validated in the following three steps. First, a simulation experiment shows that two signals with peaks in August 

and May can be decomposed unbiasedly by EOF. Second, the first decomposed mode shows consistent spatio-

temporal patterns with the soil moisture and precipitation variations from the GLDAS and TRMM data and thus 

can be reasonably attributed to hydrological processes. Thirdly, the second mode of GRACE signal with a peak 

in May temporally corresponds to the glacier/snow accumulation and ablation processes and spatially coincides 

with the glacier distribution, which is also supported by the spring precipitation pattern observed by 

meteorological stations. Glacier mass change measured by ICESat is further adopted to compare with our 

GRACE-based GS estimates, and good agreement is reached in the ablation season when the snow contribution 

is negligible. The ICESat measurements also show that the seasonal glacier mass variation is large, which is 

consistent with our finding that GS mass change in this region peaks in May. 

The GRACE-based GS mass balance not only shows a long-term decreasing trend of -6.5 ± 0.8 Gt yr-1, 

generally comparable with previous studies on glacier mass balance in the SETP, but also newly reveals a strong 

seasonal variation which postpones water supply of about 60 Gt from winter and spring to summer and autumn. 

The high sensitivity of glacier mass changes responding to temperature shows that warming climate will exert 

strong impacts on the glacier and snow mass balance from two aspects. On the one hand, under the current glacier 

condition, the increase in summer temperature will enhance the annual meltwater by a factor of -10.7 ± 4.2 Gt ℃-

1; On the other hand, the seasonal meltwater will shift earlier and reduce its supply in summer and autumn, which 

is potentially ten times the amount of annual glacier melting. Our estimates of monthly GS meltwater can also 

give an elaborate calibration on the glacier accumulation and ablation processes in hydrological and glaciological 

models of the Brahmaputra Basin, which were barely calibrated by GS mass observations and diverged largely 

on the proportion of seasonal meltwater contribution. Given the high vulnerability to warming temperature, the 

greater contribution of meltwater to the Brahmaputra streamflow than most model estimates indicates that its 

water resource allocation will face ominous tension in the future. 
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Figure 1. Geographic environment of the upper Brahmaputra Basin. The boundary of the basin is outlined by the 
black dashed line. The violet areas in the plateau represent mountain glaciers, but only the darker ones (9,679 
km2 in total) are studied here. The background color shows the amplitudes of annual variation in terms of 
equivalent water height from GRACE, and their peak months (the month with the peak value in a year) are 
indicated using contours (e.g. 9 means September). The red triangles mark the location of four meteorological 
stations. The colored arrows illustrate major climatic factors influencing this region (M: Indian Monsoon; W: 
Westerly winds; V: Bay of Bengal Vortex). The red box in the inset map marks the location of the study area. 

 
Figure 2. Monthly precipitation from January to March by TRMM and ERA5 and mass anomalies from March to 
May by GRACE. The Brahmaputra and its basin boundary are marked. The white shaded areas in the bottom plots 
represent glacier distribution. 

 



 
Figure 3. EOF decomposition of GRACE observations in the form of EWH in the study region. Six combinations are 
averaged to generate these plots and uncertainties are estimated based on the dispersions. (a) Weight of the first 10 
components. (b) Spatial distribution (EOF) and temporal variation (PC) of the first two components. The white shaded 
areas represent glacier distribution. 

 

 



 
Figure 4. Trend of GRACE signals and the GS mass estimation. The CSR product with DDK4 filter is used here. (a) 
the trend of GRACE EWH observations between Aug 2002 and June 2017, is decomposed into (b), (c) and (d). Using 
the mass changes shown in (e), we obtained (f) by the forward modelling method to reproduce (c). The white shaded 
areas represent glacier distribution. The black solid curve marks the basin boundary and the dashed curve marks the 
plateau boundary. 

 



 
Figure 5. EOF analysis of soil moisture using GLDAS/NOAH (a, c) and of precipitation using TRMM (b, d). The 
weights of the first 10 modes are shown in the upper panels. The first EOFs and PCs are shown in the middle and 
bottom panels. The PCs are separated into detrended interannual (e) and annual (f) for better comparison. 

 



 
Figure 6. GS mass balance in the SETP. (a) GS mass change by GRACE as a function of elevation change from ICESat. 
The values are anomalies relative to the minimum in October 2007. (b) Seasonal snow coverage changes. The error 
bars are calculated by the dispersions in the same month among years from 2003 to 2016. The coverage in March is 
given in the inset. The red dashed circle marks the region used for the calculation of snow area. (c) Time series of GS 
mass change estimated by GRACE and glacier mas change by ICESat. The glacierized area of 9,679 km2 is used to 
convert thickness change into mass change. (d) Annual mass increase/decrease from 2003 to 2016 by GRACE.  

 

 



 
 
Figure 7. Regression between mass change and temperature. (a) Monthly mass changes as a function of monthly 
temperature anomalies. (b) Linear regression between annual mass decreases and summer temperatures. The number 
in the circle represents the year of the data (e.g. “15” shows 2015).  

 

 
Figure 8. Monthly mass change from GS in the upper Brahmaputra Basin estimated by GRACE and by the model of 
Lutz et al. (2014). Negative values mean a net increase of meltwater (i.e., more glacier and snow melt than 
accumulation). Note that Lutz’s model only estimated the melt component, while GRACE detects the net change 
including both melt and accumulation. The estimates of summer melt are annotated. A schematic diagram of seasonal 
mass balance is shown in the inset (Blue text represents mass accumulation, red represents ablation, and the black 
curve represents the net change). Note 85% of the meltwater in our study region runs into the Brahmaputra and this 
amount comes from 83% of glacierized area in this basin, we scale our result by 1×0.85/0.83 to be comparable with 
the model estimate.  

 

Table 1. Previous model-based estimates of meltwater contribution to the Brahmaputra discharge. 



Study 
literature 

Time span Drainage 
area (km2) 

Amount of 
meltwater 
(w.e. km3 yr-1) 

Total 
discharge 
(km3 yr-1) 

Meltwater/total 
discharge (%) 

Immerzeel et 
al. 2010 

2000–2007 525,797 62 230 27 

Bookhagen 
and Burbank, 
2010 

1998–2007 255,929 55 161 34 

Zhang et al., 
2013 

1961–1999 201,200* 20 58 35 

Lutz et al., 
2014 

1998–2007 360,000 43 131 33 

Huss et al., 
2017 

2002–
2011** 

533,000 138 732 19 

Chen et al., 
2017 

2003–2014 240,000* 12 60 21 

*: Exclude large parts of the NTM region. 

**: The time spans vary a bit in different datasets. 

 

Table 2. GRACE error sources for the long-term trend. (Unit: Gt/yr) 

Source Error Remark 

Linear Fit 0.14 Calculated from fitting residuals of a linear and trigonometric model 

Data solution and smoothing 

errors 

0.44 Estimated from the dispersion among CSR, GFZ and JPL with 

DDK4/G300+P4M6  

Leakage error 0.51 The average peak date may vary from May 6th to May 16th 

GIA 0.02 Difference between results with and without A’s GIA model (A et al., 

2013) 

LIA  0.20 The total LIA effect in the whole Himalaya range and southeastern 

Tibet is -1±1 Gt/yr 

Denudation 0.32 The total denudation effect in the eastern and southeastern Tibetan 

Plateau is 0.8 km3/yr 

Total 0.78  

 

 

 


