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Abstract.

The Maxwell Elasto-Brittle (MEB) rheology is implemented in the Eulerian, Finite Difference (FD) modeling framework

commonly used in classical Viscous-Plastic models. The role of the damage parameterization, the cornerstone of the MEB rhe-

ology, in the formation and collapse of ice arches and ice bridges in a narrow channel is investigated. Ice bridge simulations are

compared with observations to derive constraints on the mechanical properties of landfast sea ice. Results show that the overall5

dynamical behavior documented in previous MEB models is reproduced in the FD implementation, such as the localization of

the damage in space and time, and the propagation of ice fractures in space at very short time-scales. In the simulations, an ice

arch is easily formed downstream of the channel, sustaining an ice bridge upstream. The ice bridge collapses under a critical

surface forcing that depends on the material cohesion. Typical ice arch conditions observed in the Arctic are best simulated

using a material cohesion in the range of 5-10 kN m−1. Upstream of the channel, fracture lines along which convergence10

(ridging) takes place are oriented in an angle that depends on the angle of internal friction. Their orientation however deviates

from the Mohr-Coulomb theory. The damage parameterization is found to cause instabilities at large compressive stresses,

which prevents the production of longer term simulations required for the formation of stable ice arches upstream of the chan-

nel, between these lines of fracture. Based on these results, we propose that the stress correction scheme used in the damage

parameterization be modified to remove numerical instabilities.15

Copyright statement.

1 Introduction

The term landfast ice designates sea ice that is attached to the coastlines, acting as an immobile and seasonal extension of the

land. It starts to form in shallow water in the early stages of the Arctic freeze up (Barry et al., 1979; Reimnitz et al., 1978)

and grows throughout the Arctic winter, usually reaching its maximum extent in early spring (Yu et al., 2014). Typically, large20

landfast ice areas can form and remain stable due to the presence of islands or by the grounding of ice keels on the ocean floor
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(Reimnitz et al., 1978; Mahoney et al., 2007; Selyuzhenok et al., 2017). Where the water is too deep for grounding, landfast

ice can also form where ice floes are jammed in narrow passages between islands or pieces of grounded ice. In the Canadian

Arctic Archipelago (CAA), this type of ice is referred to as land-locked. The resulting ice bridges, also called ice arches for their

characteristic arching edges (Fig. 1), can have a profound influence on sea ice circulation by the closure of gateways (Melling,25

2002; Kwok, 2005), and on regional hydrography by the formation of winter polynyas downstream of the arches (Barber and

Massom, 2007; Dumont et al., 2010; Shroyer et al., 2015). Most studies about ice arches focused on the Nares Strait (Fig. 1)

and Lincoln Sea ice bridges (Kozo, 1991; Dumont et al., 2008; Dansereau et al., 2017; Moore and McNeil, 2018; Vincent,

2019), which affect the export of thick multi-year ice into the Baffin Bay (Kwok and Cunningham, 2010; Ryan and Münchow,

2017). Ice arches however are a seasonal feature in several locations of the Canadian Arctic Archipelago (Marko and Thomson,30

1977; Sodhi, 1997; Melling, 2002) and are also present in the Kara and Laptev seas (Divine et al., 2004; Selyuzhenok et al.,

2015; Olason, 2016) where they play a role in the formation of extensive landfast ice covers.

Despite decades of observations (Melling, 2002; Kwok, 2005; Moore and McNeil, 2018; Ryan and Münchow, 2017), the

formation, persistence and break up of ice arches remain difficult to predict. It is however clear from modeling studies that

the ability of sea ice to form arches relates to the material properties of sea ice. A number of studies showed that ice arches35

are produced if the rheology includes sufficient material cohesion (Ip, 1993; Hibler et al., 2006; Dumont et al., 2008). Using

the ellipse yield curve of Hibler (1979), this can be achieved either by decreasing the yield curve ellipse aspect ratio (Kubat

et al., 2006; Dumont et al., 2008) and/or by extending the ellipse towards larger isotropic tensile strength (Beatty and Holland,

2010; Olason, 2016; Lemieux et al., 2016). The range of parameter values that are appropriate for the production of ice bridges

varies between different numerical studies, suggesting that different forcing or model implementations may influence the ice40

arch formation (Olason, 2016; Lemieux et al., 2016, 2018).

In recent years, new rheologies were proposed to reproduce the observed characteristics of ice failure, such as the preferred

orientation of the lines of fracture (Wilchinsky and Feltham, 2004; Schreyer et al., 2006), or the brittle behavior of sea ice at

small scales (Girard et al., 2011; Dansereau et al., 2016). Among this effort, a brittle damage parameterization (Amitrano et al.,

1999) was implemented in the neXtSIM model (Rampal et al., 2016), as part of the Elasto-Brittle (Girard et al., 2011, EB)45

and Maxwell Elasto-Brittle (Dansereau et al., 2016, MEB) rheologies. The MEB rheology was shown to produce ice arches in

the Nares Strait region that remain stable for several days, and arch fractures that are part of the landfast ice break up process

(Dansereau et al., 2017). The simulated stable ice arches in Dansereau et al. (2017) are located downstream of either Smith

Sound or Kennedy channel (see orange curve in Fig 1). These locations differ from the observed ice arch positions in Nares

Strait upstream of these channels (e.g., see Fig 1) or in the Lincoln Sea (Vincent, 2019), which are well reproduced by standard50

VP or EVP models (e.g., Dumont et al., 2008; Rasmussen et al., 2010)). Whether this difference in behavior stems from the

different physics of MEB and VP rheologies or whether it is just due to the different numerical framework used in both models

remains an open question.

The EB/MEB models so far have been implemented using Lagrangian advection schemes and/or finite element methods

(e.g. Rampal et al. 2016; Dansereau et al. 2017). These numerical features, however, make it difficult to compare the different55

MEB/EB physics with that of the standard VP or EVP rheologies of the modeling community, as these are usually implemented
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on Eulerian Finite Difference (FD) numerical frameworks. In this paper, we present our implementation of the MEB rheology

on the FD numerical framework of the McGill VP sea ice model (Tremblay and Mysak, 1997; Lemieux et al., 2008, 2014).

To our knowledge, it is the first time the MEB rheology is implemented on the numerical platform of a VP model such that its

different physics can be assessed independently from the numerical implementation. With this model, we investigate the role60

of the damage parameterization and the material strength parameters in the formation of ice arches, using an idealized model

domain capturing the basic features of real-life geometries where ice arches are observed. We also identify a numerical issue

associated with the damage parameterization, which significantly impacts long simulations.

The paper is organised as follows. In section 2, we present the implementation of the Maxwell Elasto-Brittle rheology in our

FD numerical framework. A detailed analysis of the break up of the ice bridge simulated by the MEB rheology is presented in65

section 3, along with a sensitivity analysis of the results with respect to the material parameters. The MEB model performance

in simulating compressive fractures is discussed in section 4, with summarized conclusions in section 5.

2 Maxwell Elasto-Brittle Model

2.1 Momentum and continuity equations

The 2D momentum equation describing the motion of sea ice is written as:70

ρih
∂u

∂t
=∇ ·σ+ τ, (1)

where ρi is the ice density, h is the mean ice thickness, u (= ûi + v̂j) is the ice velocity vector, σ is the vertically integrated

internal stress tensor and τ (= τa+τw) is the total external surface forcings from winds and ocean currents. Note that we write

the momentum equation in terms of the vertically integrated internal sea ice stresses (i.e., ∇ ·σ) as standard in VP models

(e.g., Hibler, 1979; Hunke and Dukowicz, 1997; Wilchinsky and Feltham, 2004), as opposed to the mean internal sea ice75

stresses (i.e., ∇ · (hσ)) used in previous implementations of the MEB rheology (Dansereau et al., 2016; Rampal et al., 2016).

We assume no grounding of ice on the ocean floor and neglect the Coriolis term. This omission is appropriate for landfast ice,

but can result in small errors in drifting ice (Turnbull et al., 2017). The advection of momentum (which scales as ρiH[U ]2/L,

where H , [U ] and L are the characteristic ice thickness, velocity, and length scales) is three orders of magnitude smaller than

a characteristic air or ocean surface stresses (Zhang and Hibler, 1997; Hunke and Dukowicz, 1997). At the edge of an ice arch80

where a discontinuity in sea ice drift is present at the grid scale (2 km in our case), it remains two orders of magnitude smaller

than other terms in the momentum equation.

The total surface stress is defined in terms of an effective stress (τLFI ) that represents the combined wind and ocean forces

acting on the landfast ice, and an additional water drag term that only acts on the drifting ice. That is, using the standard bulk
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formula (with air and water turning angles set to zero, McPhee, 1979), we have:85

τ = ρaCda|ua|ua + ρwCdw|uw −u|(uw −u), (2)

≈ ρaCda|ua|ua− ρwCdw|uw|uw − ρwCdw|u|u, (3)

≈ τLFI − ρwCdw|u|u, (4)

where ρa and ρw are the air and water densities, Cda and Cdw are the air and water drag coefficients (see values in Table

2), and ua and uw are the surface air and water velocities. Note that the cross terms uwu have been neglected. This equation90

is therefore exact for landfast ice, the focus of this study, and constitutes an approximation only for ice drifting over an

ocean current. Below, we specify τLFI and give the characteristic wind speed and ocean current equivalent to this forcing for

reference.

The continuity equations used for the temporal evolution of the mean ice thickness h (volume per grid cell area) and con-

centration A (0<A< 1) are written as:95

∂h

∂t
+∇ · (hu) = Sh, (5)

∂A

∂t
+∇ · (Au) = SA, (6)

where Sh and SA are thermodynamic sink and source terms for ice thickness and compactness respectively. As we are only

interested in the dynamical behavior of the sea ice model, all thermodynamics are turned off so that Sh = 0 and SA = 0.

Mechanical redistribution (i.e. ridging) is taken into account by capping the ice concentration at 1 (or 100%) in convergence.100

As the mean ice thickness h is allowed to grow, the capping increases the actual ice thickness (Schulkes, 1995).

2.2 Rheology

2.2.1 Visco-elastic regime

Following Dansereau et al. (2016), we consider the ice as a visco-elastic-brittle material behaving like a stiff spring and strong

dash-pot in series if the stresses are relatively small. The corresponding stress-strain relation is that of a Maxwell visco-elastic105

material:

∂σ

∂t
+

1

λ
σ = EC : ε̇, (7)

where λ is the viscous time relaxation (λ= η
E , η being the vertically integrated viscosity), E is the vertically integrated Elastic

Stiffness, C is the elastic modulus tensor and “:” denotes the double dot product of tensors. In generalized matrix form, the

tensors C and ε̇ are written as:110

C =
1

1− ν2


1 ν 0

ν 1 0

0 0 1− ν

=


C1 C2 0

C2 C1 0

0 0 C3

 (8)
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ε̇11

ε̇22

ε̇12

=


∂u
∂x

∂v
∂y

1
2

(
∂u
∂y + ∂v

∂x

)
.

 (9)

where ν ( = 0.33) is the Poisson ratio. The components of the elastic modulus tensor C are derived using the plane stress

approximation (i.e., following the original assumption that the vertical stress components are negligible, see for instance Rice115

2010). Note that we neglect the advection of stress in the time derivative of Eq. 7 as we focus on landfast ice.

The visco-elastic regime of the MEB model (before fracture) is dominated by a fast and reversible elastic response (first

term on the left hand side of Eq. 7), with a slow viscous dissipation acting over longer time scales (second term on the left

hand side). The reversibility of the elastic deformations implies that the elastic strains return to zero if all loads are removed.

This results from a memory of the previous elastic stress and strain states given by the time-derivative in Eq. 7. The Maxwell120

viscosity term, although orders of magnitude lower than the other terms in the visco-elastic regime, leads to a slow viscous

dissipation of this elastic stress memory over long timescales determined by λ (days in our case).

While Eq. 7 is similar in form to the stress-strain relationship of the Elastic Viscous Plastic (EVP) model (Hunke, 2001),

the elastic component in the EVP model was introduced to improve the computational efficiency of the VP model by allowing

for an explicit numerical scheme and efficient parallelization (Hunke and Dukowicz, 1997). In the MEB model, the elastic125

component represents the elastic behavior of sea ice while the viscous relaxation component is introduced to dissipate the

elastic strains into permanent deformations. The use of a viscous component is consistent with the observation of viscous creep

(Tabata, 1955; Weeks and Assur, 1967) and viscous relaxation in field experiments (Tucker and Perovich, 1992; Sukhorukov,

1996; Hata and Tremblay, 2015b). The viscous relaxation term is also analogous to the viscous term in the thermal stress

models of Lewis (1993) and Hata and Tremblay (2015a).130

2.2.2 Damage parameterization

In the MEB model, the brittle fracture is simulated using a damage parameterization, which is based on progressive damage

models originally developed in the field of rock mechanics to reproduce the non-linear (brittle) behavior in rock deformation

and seismicity (Cowie et al., 1993; Tang, 1997; Amitrano and Helmstetter, 2006). In these models, the material damage

associated with microcracking is simulated by altering the material properties (e.g. the Young Modulus or the material strength)135

at the model element (or local) scale. If heterogeneity is present in the material, the damage parameterization simulates the

self-organisation of the microcracks in a macroscopic line of fracture, as observed in laboratory experiments. It was first used

for large scale sea ice modeling by Girard et al. (2011) and is now implemented in the Lagrangian dynamic-thermodynamic

sea ice model neXtSIM (Rampal et al., 2019).

The sea ice deformations associated with the brittle fractures are parameterized by a gradual decrease in the elastic stiffness140

E and viscosity η at the local scale, and consequently as a local increase in the magnitude of the deformation associated with

a given stress state. The local increase in deformations results in the concentration of internal stresses in adjacent grid cells,

leading to the propagation of the fractures in space. The decrease in elastic stiffness and viscosity is set by a damage parameter
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d representing the weakening of the ice upon fracturing (Bouillon and Rampal, 2015). The damage parameter has a value of 0

for undamaged sea ice and 1 for fully damaged ice.145

The damage increases when the stress state exceeds a critical stress, defined by the Mohr-Coulomb criterion. This yield

criterion is standard for granular materials and in agreement with laboratory experiments (Schulson et al., 2006) and field

observations (Weiss et al., 2007). We also investigate the use of a compressive cut-off to limit the uniaxial compression (σ2 =

σI −σII , see Fig. 2). In terms of the stress invariants σI and σII , this can be written as:

F (σ) =

 σII +µσI − c < 0 Mohr Coulomb

σI −σII > σche
−C(1−A) Compression cut-off

(10)150

where

c= c0he
−a(1−A), (11)

σc = σc0he
−a(1−A), (12)

σI is the isotropic normal stress (defined as negative in compression), σII is the maximum shear stress, c is the vertically-

integrated cohesion, µ (= sinφ) is the coefficient of internal friction of ice, φ is the angle of internal friction and σc is the155

vertically-integrated uniaxial compressive strength. The parameterization of c and σc follows the form of the internal sea

ice pressure in the standard VP model with the ice concentration parameter a set to 20 (Hibler, 1979). The cohesion c0 and

compressive strength σc0 are the material properties derived from in-situ observations (see Table 1 for values and references)

and laboratory experiments (Timco and Weeks, 2010). Model parameters used in this and other studies are listed in Tables 2

and 3.160

Following Rampal et al. (2016), the introduction of damage upon failure is proportional to the local stress in excess of the

yield criterion. A damage factor Ψ (0<Ψ< 1) is used to scale the stress back on the yield curve. It is defined as (see appendix

A for the derivation Ψ) :

σf = Ψσ′ with Ψ = min
(
1,

c

σ′II +µσ′I
,

σc
σ′I −σ′II

)
, (13)

where σf is the corrected stress lying on the yield curve and σ′ is the prior stress state that exceeds the yield criterion. Note that165

the stress components are all scaled by the same damage factor, such that the path of the stress correction in stress invariant

space follows a line from the uncorrected stress state to the origin (see Fig. 2). The stress correction path does not correspond

to a flow rule: the magnitude of the excess stress is only used to increase the damage parameter. It determines the magnitude

of the strain associated with a stress state, but otherwise does not change the visco-elastic relationship in Eq. 7.

The temporal evolution of the damage parameter follows a simple relaxation with a damage time scale Td (Dansereau et al.,170

2016):

∂d

∂t
=

(1−Ψ)(1− d)

Td
, (14)

where Td is set to the advective time scale associated with the propagation of elastic waves in undamaged ice (i.e., Td = ∆x/ce,

∆x being the spatial resolution of the model and ce the elastic wave speed). Consequently, the damage at any given time is
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a function of the previously accumulated damage. No damage healing process was included in this study as we focus on the175

break up of ice bridges at small time scales. For the same reason, the advection of damage is neglected. The relaxation time

scale (Td/(Ψ− 1)) in Eq. (14) is time-step dependent via its dependency on the damage factor Ψ. That is, a larger time step

yields larger stress increments and larger excess stresses at each time-level, decreasing the time scale for the damage relaxation.

The sensitivity of the damage parameterization on the model time step led Dansereau et al. (2016) to suggest that the model

time step be set to exactly Td, otherwise the damage could travel faster than the elastic waves. We argue that while this point is180

true when using a fixed damage reduction parameter (as in Amitrano et al. 1999; Girard et al. 2011), the use of a damage factor

Ψ relates the damage parameter to the rate of changes in the stress state, which is associated with the propagation of elastic

waves. The propagation of damage in space is thus bounded by the elastic wave speed, and a smaller time-step (0.5 s in this

study) should be used to respect the CFL criterion associated to the elastic waves.

The Elastic stiffness E and Maxwell viscosity η are written as a non-linear function of d, with a dependency on the ice185

thickness and sea ice concentration inspired by the ice strength parameterization of Hibler (1979):

E = Y he−a(1−A)(1− d), (15)

η = η0h(1− d)α, (16)

where Y (= 1 GN m−2, smaller than in Bouillon and Rampal 2015 and similar to Dansereau et al. 2016, see Table 3) is the

Young Modulus of undeformed sea ice, η0 is the viscosity of undeformed sea ice and α is an integer set to 4 that determines the190

smoothness of the transition from visco-elastic behavior to the post-fracture viscous behavior (Dansereau et al., 2016). Note

that E and η are defined as in previous implementations except for the linear dependence in ice thickness required because of

the use of vertically integrated stress σ.

The relaxation time constant λ in Eq. 7 is then written as:

λ=
η

E
=
λ0(1− d)α−1

e−a(1−A)
, (17)195

where λ0 (= η0/Y = 105 s, smaller than in Dansereau et al., 2016, but in agreement with observations, see Table 1) is a

parameter that corresponds to the viscous relaxation time scale in undamaged sea ice. In the limit when λ0 tends to infinity, the

MEB rheology tends to the Elasto-Brittle rheology (Girard et al., 2011).

Note that when a fracture is developing, the stress state is constantly brought back to the yield curve while the damage and

the deformation increase. This is comparable to the plastic regime of the standard VP model of Hibler (1979): in the VP model,200

the non-linear bulk and shear viscous coefficients reduce with increasing strain rates, such that the stress state (the product of

the two) remains on the yield curve while the deformation increases. However, the plastic deformations in the VP model are

defined by a normal flow rule, which also determines the orientation of the strain rate tensor (Bouchat and Tremblay, 2017;

Ringeisen et al., 2019). In the MEB model, the large deformation associated to the damage is governed by the visco-elastic

relationship of Eq. 7 and the yield curve does not directly determine the orientation of the strain rate tensor. The two models205

also differ post fracturing: the VP model does not have a memory of past deformations other than via the continuity equation

7



and its impact on the ice thickness and concentration. In the MEB rheology, the damage corresponds to a material memory of

past deformations even if the thickness and concentration remain unchanged.

The non-linear relationship of the viscous relaxation time scale on d and A ensures that the viscous term is very small

in undamaged ice, and dominant in heavily damaged ice (see Eq. 7, where λ appears in the denominator). In this case, the210

deformations are large, irreversible and viscous. This is different from the standard VP and EVP models in which there is no

change in the constitutive equation before or after the ice fracture. The dependency of λ on the ice concentration also ensures

that the total stress tends toward zero for low concentration (i.e. in free drift), but not in a continuous (A∼ 1) but heavily

damaged ice.

2.3 Numerical approaches215

This model was coded using an Eulerian, FD, implicit numerical scheme, and is the first implementation of the MEB model

on the same numerical framework as the standard VP model. This implementation was motivated by the need for a direct

comparison between the VP and the MEB rheologies independently from the different numerical approaches. It presents a

significant change from previous implementations that use Finite Element methods with a triangular mesh (Rampal et al., 2016;

Dansereau et al., 2016) and/or Lagrangian advection scheme (Rampal et al., 2016). In the standard VP numerical framework,220

the stress components do not appear explicitly in the momentum equation. Instead they are written in terms of the non-linear

viscous coefficients and strain-rates. For the MEB model, this is accomplished by treating the stress memory term from the

time derivation of Eq. 7 as an additional forcing term. The damage parameterization is therefore the only new module to be

coded.

2.3.1 Time discretization225

The model equations are discretized in time using a semi-implicit backward Euler scheme. The uncorrected stress at time level

n can then be written using Eq. 7, as:

σ
′n =

1

1 + ∆t/λn
[
En∆tC : ε̇n +σn−1

]
= ξnC : ε̇n + γnσn−1, (18)

where n− 1 is the previous time level and where:230

ξn = γnEn∆t ; γn = (1 + ∆t/λn)−1. (19)

Note that σ′n is a function of σn−1, which we refer to as the stress memory. Equation 18 is then substituted in the stress

divergence term of Eq. 1, so that the x and y components of the momentum equation can be expanded as :

ρih
nu

n−un−1

∆t
=

∂

∂x

(
ξnC1ε

n
xx

)
+

∂

∂x

(
ξnC2ε

n
yy

)
+

∂

∂y

(
ξnC3ε

n
xy

)
+ τnx , (20)

ρih
n v

n− vn−1

∆t
=

∂

∂y

(
ξnC1ε

n
yy

)
+

∂

∂y

(
ξnC2ε

n
xx

)
+

∂

∂x

(
ξnC3ε

n
xy

)
+ τny , (21)235
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where C1, C2, and C3 are the components of the tensor C (Eq. 8) and where the stress memory terms have been included in

the forcing, that is :

τnx =
∂
(
γnσn−1

xx

)
∂x

+
∂
(
γnσn−1

xy

)
∂y

+ τnax + τnwx, (22)

τny =
∂
(
γnσn−1

yy

)
∂y

+
∂
(
γnσn−1

xy

)
∂x

+ τnay + τnwy. (23)

The MEB rheology equations can then be implemented in a VP model by setting the VP bulk and shear viscosity to ζV P =240

ξC1+C2
2 and ηV P = ξC3 respectively, setting the pressure term P = 0 and adding the stress memory terms.

The variable En and λn in Eq. 18 to 21 are discretized explicitely, as:

En = E0h
ndne−c(1−A

n), (24)

λn =
λ0(dn)α−1

hne−C(1−An)
, (25)

using245

hn = hn−1 +∇ · (vnhn−1∆t), (26)

An =An−1 +∇ · (vnAn−1∆t), (27)

dn = dn−1 +
dn−1∆t

Td
(Ψn− 1), (28)

Ψn = min
(
1,

cn

σ′nII +µσ′nI
,

σnc
σ′nI −σ′nII

)
, (29)

cn = c0h
ne−C(1−An), (30)250

σnc = σc0h
ne−C(1−An), (31)

2.3.2 Space discretization

The model equations are discretized in space using a centered finite different scheme on an Arakawa C-grid. In this grid, the

diagonal terms of the σ and ε̇ tensors are naturally computed at the cell centers and the off-diagonal terms at the grid nodes.

The x-component of the momentum equation are written as :255

ρih
n−1
i,j

un
i,j−u

n−1
i,j

∆t = C1

(
ξn−1εnxx

)
i,j
−
(
ξn−1εnxx

)
i−1,j

∆x +C2

(
ξn−1εnyy

)
i,j
−
(
ξn−1εnyy

)
i−1,j

∆x

+C3

(
ξn−1
z εnxy

)
i,j+1

−
(
ξn−1
z εnxy

)
i,j

∆y + τnx i,j

(32)
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where :

(ε̇nxx)i,j =
uni+1,j −uni,j

∆x
, (33)

(ε̇nyy)i,j =
vni,j+1− vni,j

∆y
, (34)

(ε̇nxy)i,j =
uni,j −uni,j−1

2∆y
+
vni,j − vni−1,j

2∆x
, (35)260

τnx i,j =

(
γn−1σn−1

xx

)
i,j
−
(
γn−1σn−1

xx

)
i−1,j

∆x
+

(
γn−1
z σn−1

xy

)
i,j+1

−
(
γn−1
z σn−1

xy

)
i,j

∆y
+ τnax i,j + τnwx i,j . (36)

The shear terms in Eq. 32 and 36 (ε̇xy , ξz and γz) are thus defined at the lower-left grid node rather than at the grid center.

The staggering of the stress components is unavoidable when using the C-grid, and requires node approximations for the scalar

values h, A and d (Losch et al., 2010). This is treated on our Cartesian grid with square cells by approximating the scalar

prognostic variables at the nodes (hz , Az and dz) using a simple average of the neighbouring cell centres, i.e. :265

hz = hi,j =
hi,j +hi−1,j +hi,j−1 +hi−1,j−1

4
, (37)

and similarly for Az and dz . The stress-strain coefficients ξz and γz are then computed using (hz , Az and dz) in Eq. 15, 17 and

19.

The shear stress at the cell centre must also be approximated when computing the stress invariants in the stress correction

scheme (Eq. 13). Averaging the shear stress components from the neighboring nodes (as in Eq. 37 for the scalars) causes a270

checker board instability in the solution, because of the staggered shear stress corrections and memories. To avoid this, the

mean shear stress at the cell center is defined using an average of the neighboring shear stress increments (ξnz ε̇
n
xy), which are

integrated in another shear stress memory term, defined at the grid center. That is:

σ
′n
xy i,j |C =

(
ξnz ε̇

n
xy

)
i,j

+ γn−1σn−1
xy i,j |C , (38)

where σ
′n
xy i,j |C is the uncorrected shear stress at the grid center,

(
ξnz ε̇

n
xy

)
i,j

is the shear stress increment averaged as in Eq. 37275

and σn−1
xy i,j |C is the corrected shear stress at the grid center from the previous time step. Note that the approximations in Eqs.

37 and 38 are required due to the use of a FD scheme, a notable difference with the other MEB implementations using Finite

Element Methods (Dansereau et al., 2016; Rampal et al., 2019).

2.3.3 Numerical solution

With nx tracer points in the x-direction and ny in the y-direction, the spatial discretization on our C-grid leads to a system of280

N = (ny(nx+1)+nx(ny+1)) non-linear equations for the velocity components. By stacking all the u components followed by

the v ones, we form the vector u of size N . The non-linear system of equations (momentum) for un and the other discretized

equations (Eqs. 24-31) are solved simultaneously using an IMplicit-EXplicit (IMEX) approach (Lemieux et al., 2014). As

described in the algorithm below, this procedure is based on a Picard solver (Lemieux et al., 2008) which involves an Outer

Loop (OL) iteration. At each OL iteration k, the non-linear system of equations is linearized and solved using a preconditioned285
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Flexible General Minimum RESidual method (FGMRES). The latest iterate uk is used to solve explicitly the damage and

continuity equations. This iterative process is conducted until the L2-norm of the solution residual falls below a set tolerance

of εres = 10−10 N m−2. The uncorrected stresses σ
′n is then scaled by the damage factor Ψn and stored as the stress memory

σn for the following time step. This numerical scheme differs from that of Dansereau et al. (2017) who solve the equations

using tracers (h,A,d) from the previous time level.290

1. Start with initial iterate u0

do k = 1, kmax

2. Linearize the non-linear system of equations by using un,k−1, hn,k−1, An,k−1 and dn,k−1

3. Calculate un,k by solving the linear system of equations with FGMRES

4. Calculate Ψn,k = f(σ
′n,k)295

5. Calculate hk,n = f(hn,k−1,un,k), An,k = f(An,k−1,un,k), dn,k = f(dn,k−1,un,k,Ψn,k)

6. Calculate Ek,n = f(dn,k,hn,k,An,k), λn,k = f(dn,k,hn,k,An,k)

7. If the Picard solver converged to a residual < εres, stop.

enddo

8. Update the stress memory σn = Ψnσ
′n300

where a simple upstream advection scheme is used for hk,n and Ak,n in step 5. Note that steps 4, 5, 6 and 8 are performed for

all the grid points.

3 Results

In the following, we present a series of idealized simulations to document the formation and break-up of ice arches with305

the MEB rheology, and their sensitivity to the choice of mechanical strength parameters. Results from these simulations and

observations are used to constrain the material parameters used in sea ice models. Here, we define an ice arch as the location

of the discontinuity in the sea ice velocity (and later in the ice thickness and concentration fields) and the ice bridge as the

landfast ice upstream of the ice arch.

Our model domain is 800 x 200 km with a spatial resolution of 2 km (Fig. 3). The boundary conditions are periodic on the310

left and right, closed on the top and open on the bottom. Two islands, separated by a narrow channel 200 km long and 60 km

wide, are located 300 km away from the top and bottom boundaries. The initial conditions for sea ice are zero ice velocity,

uniform 1m ice thickness, 100 % concentration and zero damage. A southward forcing τLFI (see Eq. 4) is imposed on the ice

surface, ramped up from 0 to 0.625 N m−2 (corresponding to 20 m s−1 winds or 0.33 m s−1 surface currents) in a 10h period,

a rate well below the adjustment time scale associated with elastic waves. The solution can therefore be considered as steady315

state at all time, which allows us to determine the critical forcing associated with a fracture event.
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3.1 Control run

The break up of landfast ice in our simulation proceeds through a series of fracture events that are highly localized in time

(see Fig. 4) and space (see Fig. 5 and 6), separated by periods of elastic stress build up (low brittle failure activity). Two major

fracture events are seen in the simulation (stage B and D in Fig. 4). The first corresponds to the failure of ice in tension with320

the development of an ice arch on the downstream side of the channel (Fig. 5). The damage occurs on very short time scales

(within minutes), and preconditions the formation of an arching flaw lead downstream of the ice bridge over longer time scales

(Fig. 5b), in accord with results from Dansereau et al. (2017). The second event corresponds to the collapse of the landfast

ice bridge with the break up of ice within and upstream of the channel (Fig. 6). As for the downstream ice arch, the lines of

fractures are formed on short time scales and precondition the location of ridging on the advection time scale (Fig. 6b). The325

three remaining periods during which few new brittle fractures occur correspond to an elastic landfast ice regime (stage A), a

stable downstream ice arch regime (stage C), and a drift ice regime when ice flows within, downstream and upstream of the

channel (stage E).

In the first stage of the simulation, elastic stress builds up but remains inside the yield curve in the entire domain such that

there is no brittle failure activity (Fig. 4, stage A). The sea ice in the elastic regime behaves as an elastic plate and deformations330

are linearly related to the internal stresses. The elastic stresses are determined by the orientation of the surface forcing with

respect to the coastlines: there are large tensile stresses on the downstream coastlines, compressive stresses on the upstream

coastlines and shear stresses on the four corners of the channel (Fig. 7). At the vertical line of symmetry (away from channel

openings, Fig. 7a, dashed blue line), the simulated stress field is in good agreement with the analytical solutions from a 1D

version of the momentum equation, giving us confidence in the numerical implementation of the model (see Appendix B and335

Figure 8). Upstream and downstream of the channel, both stress invariants are important, reaching a maximum in magnitude at

the channel corners and decreasing to a local minimum at the center of the channel. In this configuration, the second principal

stress alignment (Fig. 7c) is along the x-direction downstream of the coastlines (where the ice is in uniaxial tension), and

along the y-direction upstream of the coastlines (where the ice is in uniaxial compression). In the downstream end of channel,

the second principal stress alignment follows the shape of an arch, transitioning to a vertical alignment towards the upstream340

channel entrance.

3.1.1 Downstream ice arch

The formation of the downstream ice arch is initiated at a surface forcing of ∼ 0.02 N m−2. The initial fractures are located

at the downstream corners of the channel where the stress state reaches the critical shear strength for positive (tensile) normal

stresses. The fractures then propagate from these locations and form an arch (see Fig. 5a). The progression of the fracture into345

an ice arch is helped by the concentration of stresses at the channel corners and around the subsequent damage. That is, the

damage permanently decreases the elastic stiffness, which leads to locally larger elastic deformations and increases the load

in the surrounding areas, leading to the propagation of the fractures in space through regions where the internal stress state

was originally sub-critical. To first order, the arching progression of the fracture from the channel corners follows the second
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principal stress direction (i.e. a failure in uniaxial tension on the plane perpendicular to the maximum tensile stress, see Fig.350

7c). This differs from the expected angle of fracture in a coulombic material of θ =±(π/4−φ/2) from the second principal

stress orientation (Ringeisen et al., 2019), as reported in Dansereau et al. (2019).

A second period of low brittle fracture activity follows the formation of the ice arch (period C in Fig. 4). In this stage, the

ice downstream of the ice arch is detached from the land boundaries and starts to drift. The non-zero brittle fracture activity in

this stage is due to the increased damage in regions of already damaged ice; since the local stress state lies on the yield curve,355

the increasing forcing constantly increases the stress states beyond the yield criterion, leading to further damage. Upstream of

the ice arch, the elastic stresses show little changes from stage A, except for their increase in magnitude due to higher forcing

(Fig. 9). As the yield parameters (c, σc) are not function of the damage, tensile fracturing does not reduce the critical stress.

This results in large tensile and shear stresses persisting along and north of the ice arch after its formation. The formation of a

stress-free surface could be obtained by modifying the formulations of c and σc0 such that they depend on the damage.360

3.1.2 Ice bridge collapse

The second break-up event (Stage D in Fig. 4) corresponds to the fracture of ice upstream of the channel and the collapse of

the ice bridge. The fractures are initiated at a surface forcing of 0.13 N m−2 on the upstream corners of the islands where the

internal stress reaches the critical shear strength for negative (compressive) normal stresses. The propagation of damage from

these locations is composed of two separate fractures (see Fig. 6a). First, a shear fracture progresses downstream along the365

channel walls, resulting in the decohesion of the landfast ice in the channel from the channel walls. The decohesion of the ice

bridge increases the load on the downstream ice arch and on the landfast ice upstream of the channel. Second, a shear fracture

propagates upstream from the channel corners at an angle 58◦ from the coastline. The shear fracture orientation corresponds

to an angle θ = 32◦ from the second principal stress orientation (Fig. 7c), which also deviates from the theoretical 22.5◦ in a

granular material with φ= 45◦ (Ringeisen et al., 2019).370

Once the lines of fracture are completed, the ice bridge collapses and the ice in the channel starts to drift (stage E). In this

stage, landfast ice only remains in two wedges of undeformed ice upstream from the islands in which high compressive stress

remains present (see Fig. 10a). The remaining continuous areas of undamaged ice drift downward into the funnel as a solid

body with uniform velocity, with ridges building at the fracture lines. The ridge building is highly localised (see Fig. 6b), but

slowly expands in the direction perpendicular to the lines of fracture. This follows from the increase in material strength with375

ice thickness, resulting in larger compressive stresses along the ridge such that the ice fracture occurs in the neighboring thinner

ice, in a succession of fracture events that are localised in time (see peaks in stage E, in Fig. 4).

3.2 Sensitivity to mechanical strength parameters

The Mohr-Coulomb yield criterion defines the shear strength of sea ice as a linear function of the normal stress on the fracture

plane. In stress invariant coordinates (σI ,σII ), this can be written in terms of two material parameters: the cohesion c and the380

coefficient of internal friction µ= sinφ (Fig. 2). The isotropic tensile strength (i.e. the tip of the yield curve) is then a linear
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function of the two (σt = c/µ). In this section, we investigate the influence of these material parameters and of the use of a

uniaxial compressive strength criterion on the simulated ice bridge.

3.2.1 Cohesion

Changing only the cohesion c0 (with a fixed internal angle of friction φ) moves the entire yield curve along the first stress385

invariant (σI ) axis. For example, a higher cohesion increases the isotropic tensile strength σt0 = c0/sinφ and also increases

the shear strength uniformly for all normal stress conditions. In the ice bridge simulations, the choice of cohesion influences the

critical surface forcing associated with the different stages of the simulations but does not change the series of events described

in section 3.1 or the orientation of the ice fractures. This is in agreement with results from Dansereau et al. (2017).

The critical surface forcing associated with the ice bridge break up can be related to the cohesion using the 1D steady state390

momentum equation (see Appendix B for details). Assuming an infinite channel running in the y-direction, the shear stress

along the channel walls (σxy) is given by:

|σxy|= σII =
τLFIW

2
, (39)

where W is the channel width (see Fig. 3). Using the yield criterion (Eq. 10) with σI = 0 (i.e. σII = c), the maximum sustain-

able surface forcing τLFIc can be related to the cohesion as:395

τac =
2c

W
. (40)

In the simulations, the critical forcing for the complete decohesion of ice bridges (point 5 in Fig. 4 and 6) with different

widths follows the simple 1D model (Fig. 11). This indicates that although the fracture is initiated at a weaker forcing due

to the concentration of stress at the channel corners, the ice arch sustains the increasing load such that the ice bridge remains

stable.400

Given that ice bridges and arches with a width of ∼ 60 km are frequent in the CAA (e.g. Nares Strait, Lancaster Sound, or

Prince Regent Inlet), and that the surface stresses regularly exceeds 0.15 N m−2 (e.g. corresponding to a wind speed of 10 m

s−1 or a tidal current of∼ 0.15 m s−1), this suggests a lower bound on the cohesion of sea ice of at least 5 kN m−1 (see yellow

curve in Fig. 11). Similarly, the fact that the ice bridges are rarely larger than 100 km (some are seen intermittently in the Kara

Sea, Divine et al. 2004) indicates that the cohesion of sea ice should be smaller than 10 kN m−1 (see red curve in Fig. 11). This405

range (5-10 kN m−1) is lower than records from ice stress buoys measurements, which measure both thermal and mechanical

internal stresses at smaller scales (40kN m−2, Weiss et al., 2007), but agree with estimates from ice arch observations (Sodhi,

1997). Note that higher forcing may be frequent in areas associated with strong tides, although these locations correspond to

unstable landfast ice areas and recurrent polynyas (Hannah et al., 2009). Our estimates therefore provide a meaningful bound

to be used in sea ice models.410
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3.2.2 Angle of internal friction

The angle of internal friction φ, analogous to the static friction between two solids, determines the constant of proportionality

between the shear strength and the normal stress (µ= sinφ, see Eq. 10 and Fig. 2). Varying the angle of internal friction

changes in opposite ways the shear strength of ice under tensile and compressive stresses: when increasing the angle of internal

friction, the shear strength of ice in tension is reduced while that of ice in compression is increased (and vice versa). This415

affects the critical forcing associated with the downstream and upstream ice fractures. When decreasing φ, the downstream ice

arch (stage B) forms under a stronger forcing, and a weaker forcing is required for the development of the upstream lines of

fracture. As such, while the cohesion determines the stability of the landfast ice in the channel, the collapse of the ice bridge

also requires the uniaxial fracture of ice upstream of the channel, which is sensitive to the angle of internal friction. The angle

of internal friction also determines the shape of the ice fractures: decreasing φ leads to an increase in the curvature of the420

downstream ice arch and intensifies the departure of the upstream lines of fracture from the y-axis (see Fig .12). The simulated

orientations of the fracture lines (32◦ and 45◦ for φ= 20◦ and 45◦) differ from the orientations of 35◦ and 22.5◦ predicted by

the Mohr-Coulomb theory, and do not vary linearly with the internal angle of friction.

3.2.3 Tensile strength

The yield curve modifications discussed above (varying c0 and φ) also change the tensile strength (both uniaxial and isotropic)425

of ice. The tensile strength determines the magnitude of the critical surface forcing necessary for the formation of the down-

stream ice arch (stage B). The tensile stresses downstream from the islands can be approximated using the 1D version of the

momentum equation as a function of the fetch distance Fdown (see Fig. 3) from the islands to the bottom boundary of the

domain (derivation in Appendix B):

σyy = τLFIFdown. (41)430

This can be written as a function of the material parameters using a simplified Mohr Coulomb criterion (Eq. 10) for the 1D

case (Appendix B):

σII +µσI =
1 + 2µ

3
σyy < c, (42)

where ν = 1/3 was used. Substituting σyy from Eq. 41 into Eq. 42, the yield criterion can be written in terms of the surface

forcing and the material parameters:435

τLFI <
3c

Fdown(2µ+ 1)
, (43)

Using our cohesion estimates (5< c < 10 kN m−1), angles of internal friction in the range of observations (30 and 45◦)

and a typical surface forcing of 0.15 N m−2 this would suggest stable bands of landfast ice of extent Fdown ∼ 6-13 km to be

sustainable. This is similar to observations in the Arctic, where bands of landfast ice rarely exceed a tens of kilometers unless

anchor points are provided by stamukhi (Mahoney et al., 2014).440
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3.2.4 Compressive strength criterion

Not used in other MEB implementations (Dansereau et al., 2016, 2017), the compressive cut-off offers a limit on the simulated

uniaxial compression, which can reach unrealistically large values and cause numerical instabilities (see section 4). Including a

compressive strength criterion (σI−σII > σc) can modify the upstream fracture event (stage D) by the development of uniaxial

compression fractures along the upstream coast of the islands, if the uniaxial compressive stress upstream of the islands exceeds445

the ice strength typically observed in the field (∼ 40 kN m−2, see Table 1). The critical surface forcing for the development of

a compressive fracture can be approximated using the 1D version of the momentum equation. The maximum normal stress at

the upstream coast of the islands is:

σyy = τLFIFup. (44)

where Fup is the distance between the top boundary of the domain and the upstream coasts of the islands (see Fig. 3). In the450

ideal case, the compression strength criterion is:

σI −σII = νσyy > σc. (45)

The compression criterion can thus be written as a function of the surface forcing, as:

τLFI >
σc
νFup

. (46)

Whether the ice will fail in shear (Mohr-Coulomb criterion) or in compression can be evaluated by substituting τLFI from Eq.455

(39) into Eq. 46, yielding the criterion:

2νFupc

W
> σc. (47)

If this condition is met, the compression strength criterion does not influence the simulation, and the upstream shear fracture

lines develop as in the control simulation (Fig. 13a). If the left hand side of Eq. 47 is much smaller that σc, compression

fracture occurs before the ice bridge break up and a ridge forms along the upstream coastlines, propagating in the channel460

entrance while the ice in the channel remains landfast (Fig. 13b). If the terms are of similar order, the decohesion of the ice

bridge and the compression fractures are initiated simultaneously, such that the compression fracture occurs along the upstream

coastlines but not in the channel entrance, as the ice starts to drift in and upstream of the channel (Fig. 13c).

4 Discussion

In the Arctic, ice arches are commonly observed upstream of narrow channels, where granular floes jam when forced into the465

narrowing passage. This requires the ice not to be landfast in the channel itself (Vincent, 2019), as opposed to the simulations

presented above where the ice is initially landfast in the model domain. Contrary to results presented in Dansereau et al. (2017)

where the presence of floes is simulated by a random seeding of weaknesses in the initial ice field, unstable ice arches upstream
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of the channel are not present in our simulations. Instead, our experiment simulates the propagation of ice fractures through

the landfast ice upstream of a channel, which are akin to a failure in uniaxial compression (Dansereau et al., 2016; Ringeisen470

et al., 2019).

In theory, the angle of internal friction governs the intersection angle between lines of fracture (Marko and Thomson, 1977;

Pritchard, 1988; Wang, 2007; Ringeisen et al., 2019). That is, the lines of fracture are oriented at an angle θ(= π/2−φ/4)

with the second principal stress direction, where the ratio of shear to normal stress is largest. In our simulations, the angles

of fracture, although sensitive to the angle of internal friction, do not follow this theory. The fact that different angles of475

internal friction yield the same fracture orientation (e.g., for φ= 20◦ and φ= 30◦, see Fig. 12) indicates that the orientation is

not directly associated to the yield criterion in the MEB rheology (there is no flow rule in the MEB rheology). However, the

orientation of the lines of fracture do have a sensitivity to the angle of internal friction, which suggests that the deformations are

at least indirectly influenced by the yield criterion. This is in accord with previous results showing that the fracture orientation

is determined by the concentration of stress along lines damage instability (Dansereau et al., 2019). This raises the question480

whether the lines of fracture may be influenced by the stress correction path used in the damage parameterization, which

determines the stress state associated to the fractures. These questions are left for future work and will be addressed using a

simple uniaxial loading numerical experiments (e.g. Ringeisen et al., 2019).

We speculate that in a longer simulation, ice would eventually jam between the upstream lines of fracture, resulting in the

formation of a stable ice arch upstream of the channel. This is suggested by the orientation of the second principal stress485

component upstream of the channel (Fig. 10c). Longer term simulations, however, are prevented by the presence of numerical

instabilities associated with the current damage parameterization. As the integration progresses, the simulated fields loose their

longitudinal symmetry about the center line of the domain. This loss of symmetry occurs more rapidly as the residual norm

increases (Fig. 14), and is not due to a difficulty in solving the equations: the non-linear solver converges rapidly, within 6

iterations, given the small time step required by the CFL criterion to resolve the elastic waves. The errors are rather related490

to the integration of the residual norms in the model memory terms in the constitutive equation. The integrated error is only

dissipated over a large number of time-step, such that the error in the solution is orders of magnitude larger than the set residual

norm tolerance. This limits the current analysis to short-term simulations in which this issue remains negligible.

An error propagation analysis shows that the instabilities are largely attributed to the stress correction scheme and the

computation of the damage factor Ψ (Eq. 13). Assuming that the model is iterated to convergence such that the uncorrected495

stress state has a relative error ε, the error on the corrected stress is (see derivation in Appendix C):

εM = ε
√

1 +R, (48)

where

R=
σ′2II +µ2σ′2I
(σ′II +µσ′I)

2
. (49)

If σ′I > 0 (tensile stress state), 0<R< 1 (triangle inequality) and the error on the memory terms (εM ) is of the same order500

as that of the uncorrected stress state (ε≤ εM ≤
√

2ε). If σ′I < 0 (compressive stress state), we have R≥ 1, and the error on
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the stress memory can become orders of magnitude larger than that of the uncorrected stress state, and the model accuracy

and convergence properties are greatly reduced. These errors are stored in the memory terms, and accumulate at each fracture

event. Note that as the elastic stress memory is dissipated over the viscous relaxation time scale, and this issue could be

mitigated by decreasing the viscous coefficients η0. Using a compressive strength cut-off capping also offers a limit to the505

uniaxial compression and reduces this instability. Another solution could be using a non-linear yield curve which converges to

the Tresca criterion (σII = const) for large compressive stresses (e.g. the yield criterion of Schreyer et al. 2006). We however

argue that this issue in the damage parameterization should be treated by bringing the stress back onto the yield curve along

a different path (e.g. following a line perpendicular to the curve). It might also be possible to use a different stress correction

path to constrain the orientation of the lines of fractures to the yield criterion. This will be assessed in future work.510

5 Conclusions

The MEB rheology is implemented in the Eulerian, FD numerical framework of the McGill sea ice model. We show that the

discretized Maxwell stress-strain relationship can be written in a form that resembles that of the VP model, with an additional

memory term. The MEB rheology is then simply implemented by redefining the VP viscous coefficients in terms of the MEB

parameters and by adding the damage parameterization in a separate module. To our knowledge, it is the first time the MEB515

rheology is implemented in the same framework of a VP or EVP model. This will allow direct comparison of these models

using the same numerical platform in future work.

In idealized ice bridge simulations, we show that the damage parameterization allows the ice fractures in the MEB model

to propagate over large distances at short time scales. This process relies on the memory of the past deformations included in

the model which causes a concentration of stresses close to the preexisting damage. We also show that while the choice of520

yield curve influences the localisation and orientation of the ice fractures, the angles of fracture propagation differ from those

expected from the Mohr-Coulomb theory. This is consistent with results from (Dansereau et al., 2019) showing that the fracture

orientation is determined by the planes of damage instability. Preliminary results suggests that the orientation of the fracture

lines are influenced by the stress correction scheme. This will be the subject of future work.

The stress correction scheme in the damage parameterization (Rampal et al., 2016) is also found to cause a problematic525

increase in the numerical errors in the stress memory terms. The growth of errors depends on the magnitude of the compressive

stress associated with the ice failure. These errors accumulate in the memory term at each fracture event, creating numerical

artifacts that dominate the solutions over time. We argue that this weakness of the damage parameterization should be treated

as a numerical issue. In previous MEB implementations, asymmetries are expected due to either the asymmetric coastlines and

forcing (Rampal et al., 2016) or to the material heterogeneity used to initialise the model (Dansereau et al., 2016), such that530

this instability difficult to detect. A possible solution to this problem would be to use a non-linear yield curve which converges

to the Tresca criterion for large compressive stresses (e.g. the yield criterion of Schreyer et al. 2006). It may also be possible to

eliminate this numerical noise by using a different stress correction scheme that does not follow a path to the origin. This will

be assessed in future work.
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The simulated break up of the landfast ice bridge occurs with two main fracture events. First, an ice arch develops at the535

downstream end of the channel, shaping the edge of the ice bridge in the channel. This ice arch forms in all simulations and

is stable in shape as long as the ice bridge remains in place, with a curvature that increases for smaller angles of internal

friction. Second, shear fractures are formed at the upstream end of the channel, resulting in the decohesion of the channel ice

bridge and in the formation of landfast wedges upstream of the islands. Based on the simulation results, we determined that

the parameterized cohesion most consistent to the observed ice bridges in the Arctic are in the range of 5-10 kN m−2, lower540

than stress buoys which measure both dynamical and thermal stresses at smaller scales but in the range of values previously

associated to ice arch observations.

Code availability. Our sea-ice model code and outputs are available upon request.

Appendix A: Damage factor Ψ

Let σ′I and σ′II be the stress invariant at time level n before the correction is applied, and σIf and σIIf the corrected stress545

invariant lying on the yield curve. Following Bouillon and Rampal (2015) we use a damage factor Ψ (0<Ψ< 1) to reduce the

elastic stiffness and bring the stress state onto the yield curve. I.e. :

σIf = Ψσ′I ; σIIf = Ψσ′II . (A1)

Substituting these relations into the Morh Coulomb criterion (σIIf +µσIf = c) we solve for Ψ:

Ψ =
c

σ′II +µσ′I
. (A2)550

Note that this relation implies that the stress correction is done following a line from the stress state (σ′I ,σ′II ) to the origin

(see Fig. 2). This scheme stems from applying the damage factor to each individual stress components. Other paths could be

used for the correction (e.g. following a vertical or horizontal line), but would require the use of a different stress factor for the

different components of the stress tensor. This could be used to cure the error propagation problem when large compressive

stresses are present (see Appendix C).555

Appendix B: Analytical solutions of the 1D momentum equation

Considering an infinite channel of landfast ice (u = 0) along the y-direction with forcing τLFY = τy , we write the 1D steady

state momentum equation as:

∂σxy
∂x

+ τy = 0, (B1)
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where we have neglected the ∂/∂y terms. In this case, the normal stress is zero in the entire channel and the stress invariants560

are σI = 0, σII = σxy . The shear stress at any arbitrary point x across the channel can be determined by integrating Eq. B1

from the channel center (x= 0) to x :

σxy =−τyx. (B2)

By symmetry, the maximum shear stresses in the channel are located at the channel walls, at x=±W2 where W is the width

of the channel. The maximum shear stress invariant on the channel walls is then:565

σII =
Wτy

2
. (B3)

Similarly, we find the analytical solution for the normal stresses in a band of landfast ice with width Ly along an infinite

coastline running in the x direction with a surface forcing τLFI = τy , by integrating the 1D momemtum equation in which the

∂/∂x terms are neglected. That is:

∂σyy
∂y

+ τy = 0, (B4)570

σyy =−τyy. (B5)

Placing the landfast ice edge (where σyy = 0) at y = 0, the largest compressive stresses will be located along the coast, at

y =−Ly . Note that in this case, shear stress is zero in the entire land-fast ice and the stress invariants are function of both σxx

and σyy:

σyy = EC1εyy, (B6)575

σxx = EC2εyy = νσyy, (B7)

σI =
σxx +σyy

2
=

(1 + ν)σyy
2

, (B8)

σII =

√
(
σyy −σxx

2
)2 =

(1− ν)σyy
2

. (B9)

This allows to write the Mohr-Coulomb criterion in terms of σyy:

σII + sinφσI =
1 + 2sinφ

3
σyy < c, (B10)580

Appendix C: Error propagation analysis

The error δF associated with a function F (X,Y,Z, ...) with uncertainties (δx,δy,δz, ...) is given by:

δF =

√( ∂F
∂X

)2
δx2 +

(∂F
∂Y

)2
δy2 +

(∂F
∂Z

)2
δz2 + .... (C1)

In the damage parameterization, the components of the corrected stress tensor used as the memory terms (σijM ) can be written

in terms of the uncorrected stress tensor (σ′ij) and the damage factor Ψ (Eq. 13):585

σijM = Ψσ′ij . (C2)
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Using Eq. A2, this can be rewritten in terms of the uncorrected stress invariants (σ′I , σ′II ):

σijM (σ′ij ,σ
′
I ,σ
′
II) =

c σ′ij
σ′II +µσ′I

(C3)

Assuming that the model has converged to a solution within an error on the stresses δσ′ij = εσ′ij , δσ
′
I = εσ′I , δσ′II = εσ′II ,

where ε is a small number, the model convergence error propagates on the stress memory with an error of :590

δσijM =

√(∂σijM
∂σ′ij

)2
δσ′2ij +

(∂σijM
∂σ′I

)2
δσ′2I +

(∂σijM
∂σ′II

)2
δσ′2II . (C4)

Substituting (δσ′ij , δσ
′
I , δσ′II ) for ε and using Eq. C3, we obtain:

δσijM =

√
c2

(σ′II +µσ′I)
2
ε2σ′2ij +

c2σ′2µ2

(σ′II +µσ′I)
4
ε2σ′2I +

c2σ′2

(σ′II +µσ′I)
4
ε2σ′2II , (C5)

or:

δσijM = εσijM

√
1 +

σ′2II +µ2σ′2I
(σ′II +µσ′I)

2
. (C6)595

Assuming that the error on the stress memory components (εM ) has the form δσijM = εMσijM , we can express the relative

error of the stress memory components as a function of of the stress invariants as :

εM = ε
√

1 +R (C7)

where

R=
σ′2II +µ2σ′2I
(σ′II +µσ′I)

2
(C8)600
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Table 1. Material strength parameters from observations

Parameter Reference Parameter Value

Young Modulus Langleben (1962) Y 6.5-10 GN m−2

Weeks and Assur (1967) 1 - 9 GN m−2

Tabata (1955) 7-18 GN m−2

Poisson ratio Weeks and Assur (1967) ν 0.33 - 0.4

Viscosity Tabata (1955) η0 0.6− 2.4× 1012 kg m−1 s−1

Viscous relaxation time Tabata (1955) a λ0 14− 40 min

Weeks and Assur (1967)a 28− 32 min

Sukhorukov (1996)a 66 h

Hata and Tremblay (2015b) 105 s

Angle of internal friction Schulson et al. (2006) φ ∼ 42◦

Weiss et al. (2007) ∼ 44◦

Compressive strength Weiss et al. (2007) σc0 50 kN m−2

Tremblay and Hakakian (2006)b 30 - 100 kN m−2

Tucker and Perovich (1992)c 30 kN m−2

Richter-Menge et al. (2002)c 30-50 kN m−2

Richter-Menge and Elder (1998)c 100-200 kN m−2

Tensile strength Weiss et al. (2007) σt0 50 kN m−2

Tremblay and Hakakian (2006)b 25-30 kN m−2

Tucker and Perovich (1992)c 30 kN m−2

Richter-Menge and Elder (1998)c 50 kN m−2

Cohesion Sodhi (1997)b c0 1.99 N m−1

Weiss et al. (2007) 40 kN m−2

a From small scale measurements in the field.

b Estimate from satellite observations.

c Observed peak stresses.
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Table 2. Default Model Parameters

Parameter Definition Value

∆x Spatial resolution 2 km

∆t Time step 0.5 s

Td Damage time scale 2 s

Y Young Modulus 1 GN m−2

ν Poisson ratio 0.3

λ0 Viscous relaxation time 105 s

φ Angle of internal friction 45◦

c0 Cohesion 10 kN m−2

σc0 Isotropic compressive strength 50 kN m−2

ρa Air density 1.3 kg m−3

ρi Sea ice density 9.0× 102 kg m−3

ρw Sea water density 1.026× 103 kg m−3

Cda Air drag coefficient 1.2× 10−3

Cdw Water drag coefficient 5.5× 10−3

30



Table 3. Material properties used in sea ice models (VP,EVP and MEB)

Parameter Reference Parameter Value

Young Modulus Hunke (2001) E = ζ/T 1060 GN m−2

Bouillon and Rampal (2015) Y 9 GN m−2

Dansereau et al. (2016) E0 0.585 GN m−2

Sulsky and Peterson (2011) E 1 MN m−2

Tran et al. (2015) E 1 MN m−2

Maximum Viscosity Olason (2016) ζmax 378× 1015 kg s−1

Dansereau et al. (2016)a η0 = 107E0 5.85× 1015 kg m−1 s−1

Hunke (2001) ζmax 1375× 1012 kg s−1

Tremblay and Mysak (1997) ηmax 1× 1012 kg s−1

Hibler (1979) ζmax 125× 109 kg s−1

Dumont et al. (2008) ζmax 4× 108 kg s−1

Compressive strength Tran et al. (2015) f ′c 125 kN m−2

Sulsky and Peterson (2011) f ′c 125 kN m−2

Lemieux et al. (2016)a Pp 100 kN m−2

Olason (2016) p∗ 40 kN m−2

Dansereau et al. (2016) σc 48 - 96 kN m−2

Hunke (2001)a P 27.5× 104 kN m−2

Dumont et al. (2008) P ∗ 27.5 kN m−2

Bouillon and Rampal (2015) σNmin = − 5
2
c 1.25− 20 kN m−2

Tremblay and Mysak (1997) Pmax 7 kN m−2

Hibler (1979) P ∗ 5.0 kN m−2
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Table 3. Table 3 continued

Parameter Reference Parameter Value

Shear strength : Hibler (1979) e 2

Hunke (2001) e 2

Dumont et al. (2008) e 1.2− 1.6

Lemieux et al. (2016) e 1.4− 1.6

Olason (2016) e 1.3− 2.1

Dansereau et al. (2016) C 25 - 50 kN m−2

Olason (2016)** σuc 16− 22 kN m−2

Tran et al. (2015) τsf 15− 75 kN m−2

Sulsky and Peterson (2011) τsf 15 kN m−2

Bouillon and Rampal (2015) c 0.5− 8 kN m−2

Tensile strength Olason (2016)b Pkt 3.4− 5 kN m−2

Lemieux et al. (2016) ktPp 10− 20 kN m−2

Beatty and Holland (2010) kt 27.5 kN m−2

Dansereau et al. (2016) σt = 0.27σc 12.96− 25.92 kN m−2

Tran et al. (2015) τnf 25 kN m−2

Sulsky and Peterson (2011) τnf 25 kN m−2

Bouillon and Rampal (2015) σNmax = 5
4
c 0.6− 10 kN m−2

afor 1m thick ice

bUsing the Mohr-Coulomb curve with φ= 45◦
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Figure 1. NASA Worldview image of a stable landfast ice arch in Nares Strait, from Moderate Resolution Imaging Spectroradiometer

(MODIS) Corrected Reflectance imagery (True Color), on May 1st 2018. The orange curve indicates the position of the stable ice in

(Dansereau et al., 2017)
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Figure 2. Yield criterion (Mohr-Coulomb and compressive cut-off) in stress invariant space (σI ,σII ) with the mechanical strength param-

eters: compressive strength (σc), cohesion (c), coefficient of internal friction (µ= sinφ, φ being the angle of internal friction), isotropic

tensile strength (σt) and uniaxial tensile strength (σ∗I , where the second principal stress invariant σ2 is zero, or σI = σII = σ∗I ). The stress

before and after the correction (see Eq. 13) is denoted by σ′, and σf respectively. The correction from σ′ to σf is done following a line going

through the origin.
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Figure 3. Idealized domain with a solid wall to the north, open boundary to the south and periodic boundaries to the East and West. The

channel in the control simulation has a width W = 60 km, length L = 200 km and fetch Fup and Fdown = 300 km in the upstream and

downstream basins respectively.
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Figure 4. Time series of the domain integrated brittle fracture activity (∂d/∂t) for the control run simulation. Dashed lines indicate the

beginning and end of the simulation phases (A,B,C,D,E), and numbers indicate the location of the damage field in Fig. 5 and 6.
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Figure 5. a) Damage field at the surface forcing indicated by points 1, 2 and 3 in Fig. 4, during the formation of the downstream ice arch. b)

Sea ice thickness and drift following the formation of the downstream ice arch, while the ice bridge remains stable (Phase C)
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Figure 6. a) Damage field at the surface forcing indicated by points 4, 5 and 6 in Fig. 4, during the formation of the upstream lines of fracture.

b) Sea ice thickness and drift following the ice bridge collapse (Phase E).

38



Figure 7. Stress fields in landfast ice during Phase A. a) Normal stress invariant (σI ), with colored dashed lines to indicate the vertical

transects used in Fig. 8, b) shear stress invariant (σII ), with colored lines to indicate the horizontal transects used in Fig. 8, c) orientation of

the second principal stress component.
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Figure 8. Stress invariants (σI , σII ) along the transects of corresponding colors in Fig. 7: a) transects running along the y-direction and b)

transects running along the x-direction. Black solid lines indicate the analytic solutions. Grey area indicate the position of the islands.
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Figure 9. Stress fields during Phase C. a) Normal stress invariant (σI ), b) shear stress invariant (σI ), c) orientation of the second principal

stress component.
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Figure 10. Stress fields during Phase E. a) Normal stress invariant (σI ), b) shear stress invariant (σI ), c) orientation of the second principal

stress component.
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Figure 11. Critical surface forcing associated with the second fracture event (stage D) as a function of cohesion and channel width (dots).

Dashed lines indicate the analytic solution from the 1D equations.
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Figure 12. Shape of the lines of fracture using different angles of internal friction: a) for the downstream ice arches and b) for the upstream

lines of fracture (the yellow and purple lines are superposed).
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Figure 13. Spatial distribution of the damage field at the end of stage D (left) and the sea ice thickness and velocity fields at the end of the

simulation (right). For different compressive strength criterion: a) σc0 = 100.0 kN m−1, b) σc0 = 5.0 kN m−1 and c) σc0 = 25.0 kN m−1.
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Figure 14. a) Asymmetries dominating the damage fields after the ice bridge collapse (Stage E) in Fig. 4). b) Evolution of normalized,

domain-integrated asymmetries in the σI field when using different residual tolerance εres on the solution. Dashed lines indicate the begin-

ning and end of the simulation phases (A,B,C,D,E).
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