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Abstract. Arctic sea ice is a key component of the Arctic climate system, which in turn impacts global climate. Ice 

concentration, thickness, and volume are among the most important Arctic sea ice parameters. This study presents a new 10 

record of Arctic sea ice thickness and volume from 1984 to 2018 based on an existing satellite-derived ice age product. The 

relationship between ice age and ice thickness is first established for every month based on collocated ice age and ice 

thickness from submarine sonar data (1984-2000), the Ice, Cloud, and land Elevation Satellite (ICESat, 2003-2008), and an 

empirical ice growth model. Based on this relationship, ice thickness is derived for the entire time period from the weekly ice 

age product, and the Arctic monthly sea ice volume is then calculated. The ice age-based thickness and volume show good 15 

agreement in terms of bias and root mean square error with submarine, ICESat, and CryoSat-2 ice thickness, as well as 

ICESat and CryoSat-2 ice volume, in February/March and October/November. Sea ice volume exhibits a decreasing trend of 

-411 km3/year from 1984 to 2018, stronger than the trends from other datasets. Of the factors affecting volume, changes in 

sea ice thickness from November to May contribute at least 80%, decreasing to around 50% in August and September. 

Changes in sea ice area contribute less than 30% in all months. 20 

1 Introduction 

Sea ice plays a key role in regulating the energy and mass exchange between the atmosphere and the underlying ocean in the 

polar regions. Over the last few decades Arctic sea ice extent, area, thickness, and volume have declines significantly 

(Stroeve et al. 2012, Kwok 2019). The accompanying surface albedo decreases and cloud property changes lead to additional 

surface radiation absorption, which results in further sea ice reduction (Letterly et al. 2018, Perovich et al. 2007, Pistone et 25 

al. 2014). The anomalous sea ice export out of the Arctic Ocean affects the strength of the Atlantic Meridional Overturning 

Circulation, and thus global climate (Sévellec et al. 2017). Arctic sea ice volume is likely a more sensitive climate change 

index than ice extent and area in that the reduction in Arctic sea ice volume is as much as two times that of sea ice extent on 

a percentage basis in global climate model simulations (Gregory et al. 2002). Thus, monitoring Arctic sea ice extent, area, 
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thickness, and volume is becoming increasingly important in understanding the Arctic and global climate systems and their 30 

changes, and improving climate forecasting.  

Using satellites to estimate sea ice properties is advantageous because of the much higher spatial and temporal coverage in 

the polar regions compared to in situ observations. Uncertainty in satellite-derived Arctic sea ice extent and area is low 

overall due to the relatively high quality of sea ice concentration retrievals from satellite passive microwave data. Available 

since the late 1970s, multiple passive microwave sea ice concentration products have provided valuable information in 35 

studying trends for sea ice extent and area in the polar regions (Ivanova et al. 2015). Sea ice concentrations from satellite 

sensors in the visible and infrared spectrum have the potential to provide additional information owing to their higher spatial 

resolution (Liu et al. 2016).  

Sea ice thickness products have been generated with space-based lidar and radar altimeters onboard the Ice, Cloud, and land 

Elevation Satellite (ICESat) and CryoSat-2 respectively (Kwok et al. 2009, Laxon et al. 2013), from passive visible and 40 

infrared radiometers using the One-dimensional Thermodynamic Ice Model (OTIM) (Wang et al. 2010), from the Soil 

Moisture and Ocean Salinity (SMOS) satellite, and from other passive microwave radiometers (Tian-Kunze et al. 2014). Sea 

ice thickness products will also be available from ICESat-2 in the near future (Kwok et al. 2016, Markus et al. 2017). The 

lidar and radar altimeter and SMOS sea ice thickness products cover from the early and late 2000s respectively, while OTIM 

ice thickness products cover 1982 to the present using the Advanced Very High Resolution Radiometer (AVHRR) on 45 

NOAA polar-orbiting satellites.  

Sea ice thickness is not a physical parameter that satellite visible and infrared sensors can observe directly. Statistical models 

or physically based thermodynamic models with numerical parameterizations are needed to retrieve ice thickness with 

satellite observations (Wang et al. 2010, Kwok et al. 2016, Tian-Kunze et al. 2014). The underlying physical processes 

controlling ice growth and melting are so complex that uncertainties in the parameterizations in those models lead to large 50 

uncertainties in the ice thickness products. For example, the depth of snow on sea ice is a critical parameter for all the ice 

thickness retrieval methods, and yet, currently, there is no way to accurately measure it from space (e.g. Wang et al. 2010).  

In addition to these satellite ice thickness products, sea ice thickness is also available from regional and global numerical 

models, e.g. the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) (Zhang and Rothrock 2003, Schweiger 

et al. 2011, 2019, Lindsay et al., 2012, Laxon et al. 2013), and global climate models. Although the global climate models 55 

tend to underestimate the rate of ice volume loss and represent the thickness spatial patterns poorly, multi-model ensemble 

means provide realistic trends (Stroeve et al. 2014).  

Sea ice thickness can also be derived from sea ice age. An Arctic sea ice age product covering the period from 1984 to the 

present has been generated based on Lagrangian tracking of individual sea ice (Tschudi et al. 2019a). Studies have shown 

that a generally linear relationship exists between the ice age and the ICESat sea ice thickness from 2003 to 2008 (Maslanik 60 

et al. 2007, Tschudi et al. 2016), and such a relationship has been applied to estimate the sea ice thickness in March 

extending back to the early 1980s (Maslanik et al. 2007). However, the way in which the relationship between age and 

thickness varies over the course of the year and over the multi-decadal time series was not considered in that work. If sea ice 
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thickness and sea ice age relationships are available for all months of the ice age dataset, a more robust ice thickness dataset 

can be created. To establish the relationship between age and thickness in the earlier years, we use Arctic sea ice draft data 65 

that have been collected by naval submarines since 1958, with data from 1975 to 2000 publicly available (Rothrock et al. 

2008, NSIDC 1998). Furthermore, ice thickness can be combined with ice concentration data to produce a new ice volume 

product.   

This paper presents Arctic Ocean sea ice thickness and volume from 1984 to 2018 based on an existing sea ice age product. 

Relationships between ice age and ice thickness are established for all months 1984-2018. Weekly ice thickness is then 70 

produced based on the weekly ice age product, followed by the calculation of monthly ice volume. Spatial distributions and 

temporal trends of the derived sea ice thickness and volume are presented. The ice age-based thickness and volume data set 

from 1984 to 2018 is also compared to existing data sets.  

2 Data and Methods 

2.1 Data 75 

A weekly sea ice age product from 1984 to 2018 has been generated (Tschudi et al. 2019a) and is available from the 

National Snow and Ice Data Center (NSIDC, Boulder, Colorado, USA). The ice age category represents how long in years 

the sea ice has existed since its first appearance, which is estimated through Lagrangian tracking of the ice from week to 

week using gridded ice motion vectors (Masnalik et al. 2007, Maslanik et al. 2011, Tschudi et al. 2019a). The weekly ice 

motion vectors are generated by merging the ice motion vectors from passive visible/infrared and microwave sensors, 80 

International Arctic Buoy Program (IABP) buoys, and NCEP/NCAR Reanalysis. Since late 1978, ice age has been estimated 

by tracking each grid cell with ice as a discrete, independent Lagrangian parcel advected by the weekly ice motions. The 

oldest age of a single grid cell of parcels with different ages is assigned to this parcel (Maslanik et al. 2011, Tschudi et al. 

2019a). A parcel’s age gains a year if it survives the summer minimum sea ice extent, which means that the ice concentration 

of a grid cell remains at or above 15% throughout the melt season. With each weekly file, an ice age value ranging from 1 up 85 

to 16 (years since its first appearance) is assigned to each of 722 by 722 grid cells corresponding to the 12.5 km Equal-Area 

Scalable Earth Grid (EASE-Grid) covering the Arctic. We used the weekly ice age products from 1984 to 2018 in this study 

(Tschudi et al., 2019b). Any ice age older than four years is classified as one ice age group in this scheme.  

Monthly sea ice concentration from 1984 to 2017 and daily data in 2018 that were produced with the NASA Team algorithm 

at 25 km polar stereographic grid were obtained from NASA’s Distributed Active Archive Center (DAAC) at NSIDC 90 

(Cavalieri et al. 1996). Monthly sea ice concentrations for 2018 are calculated from the daily data. Monthly mean sea ice 

thickness and volume data 1984-2018 from PIOMAS version 2.1 (Zhang and Rothrock, 2003, Schweiger et al. 2011) are 

used. PIOMAS couples the Parallel Ocean Program with a 12-category thickness and enthalpy distribution sea ice model in a 

generalized orthogonal curvilinear coordinate (GOCC) system; PIOMAS also has the capability of capturing the basic upper-

ocean circulation features in the polar regions and of assimilating some observations. Boundary inputs at 45 degrees North 95 
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come from a global ocean model. Sea ice concentration from passive microwave measurements and sea surface temperature 

from the NCEP/NCAR Reanalysis are assimilated in the system, with atmospheric drivers from the NCEP/NCAR Reanalysis 

including wind, surface air temperature, and cloud cover (Schweiger et al. 2011). Monthly mean ice thickness data from 

1978 are available in a generalized curvilinear coordinate system covering 45 degrees North poleward with a grid size of 360 

by 120.  100 

U.S. Navy submarines have collected upward looking sonar (ULS) sea ice draft data in the Arctic Ocean since 1958. 

Originally classified, the data have been declassified and released according to set guidelines, which include restrictions that 

positions of the data must be rounded to the nearest 5 minutes of latitude and longitude, the date is to be rounded to the 

nearest third of a month, and the data are within an irregular polygon in the Arctic Ocean (NSIDC 1998). Submarine data 

were also collected in the SCience ICe EXercise (SCICEX) program. The SCICEX data are not classified so that the precise 105 

location and date are available. All the data are processed to provide ice draft profiles in segments and derived statistics of 

each segment, including ice draft characteristics (e.g., mean draft thickness), leads, etc. The submarine data from 1984 to 

2000 are used here, including data from SCICEX93, SCICEX96, SCICEX97, SCICEX98, and SCICEX99 (Figure 1). The 

irregular polygon outlining the data release area (DRA) is shown in Figure 1.  

Rothrock et al. (2008, hereinafter RPW08) analyzed these submarine data, and studied the annual cycle of the ice thickness 110 

and interannual change in the mean ice thickness. The ice draft, which is the thickness of the ice below the waterline, is 

converted to total ice thickness using the equation: 

𝑇 = 1.107𝐷 − 𝑓(𝜏)           (1) 

where T and D are ice and ice draft thickness respectively, and ƒ(τ) is the snow ice equivalent as a function of decimal 

fraction of the year τ. This conversion approach is the same as equation 3 in RPW08. The monthly mean ƒ(τ) can be found in 115 

Table 4 in RPW08 and is also listed in Table A1 of the Appendix here.  

The interannual change with the annual cycle superimposed in averaged ice thickness over the SCICEX box is derived using: 

𝑇 = 1.107[𝐷. + 𝐼(𝑡 − 1988) − 𝐼̅ + 𝐴(𝜏)] − 𝑓̅         (2) 

where D̅ is 2.97 m, t is the year, and ƒ̅ (0.076) is the annual mean of ƒ(τ), and I̅ (−0.12 m) is the mean of I. 

𝐼(𝑡 − 1988) = 𝐼7(𝑡 − 1988) + 𝐼8(𝑡 − 1988)8 + 𝐼9(𝑡 − 1988)9       (3) 120 

where I1=-0.0748, I2=-0.00219, and I3=0.000246. 

𝐴(𝜏) = 𝐴:; sin(2𝜋𝜏) + 𝐴A;cos	(2𝜋𝜏)          (4) 

where As0=0.465, Ac0=−0.250. Taken from RPW08, these equations will be used in the results section. Rothrock and 

Wensnahan (2007) determined a positive bias of 0.29 m in the ice thickness derived from submarine ULS data, and 

suggested a bias correction. In this study, we therefore reduce individual ice thickness observations and area mean ice 125 

thickness by 0.29 m.  

Ice thickness and volume values from Kwok (2018, hereinafter RK18) are used in this study. In particular, we used the 

average Arctic sea ice volume and ice thickness from ICESat in February and March 2004 to 2008, and in October and 
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November 2003 to 2007, as well as CryoSat-2 Arctic sea ice volume and thickness in February and March, and in October 

and November from 2011 to 2018 (Figure 2 and 3 in RK18).   130 

Sea ice thickness data generated by OTIM with AVHRR data covers 1982 to the present, and is included in the AVHRR 

Polar Pathfinder-extended (APP-x) dataset (Key, et al., 2016). The OTIM ice thickness data are for both poles at a 25 

EASE2 Grid on a twice daily basis. Initially based on the surface energy balance at thermal-equilibrium at the interface 

between the atmosphere and the ice, which may or may not be covered by snow (Wang et al. 2010), the OTIM has gradually 

evolved into a physical-statistical hybrid model that contains all components of the surface energy budget to estimate 135 

sea/lake/river ice thickness. Two parameterization schemes of ice thermal-dynamic and physical-dynamic processes have 

recently been added to account for ice growing/melting and ice rafting/hummocking processes. It should be noted that the 

OTIM ice thickness estimates are not available when the solar zenith angle is greater than 85 degrees and less than 91 

degrees due to large uncertainties in the input surface albedo, cloud mask, and surface shortwave radiation, or when the ice 

surface temperature is greater than the freezing point. The accuracy of the input parameters – including snow depth, surface 140 

humidity, temperature, and wind – can significantly impact the accuracy of ice thickness calculations. Validation studies of 

OTIM ice thickness were performed with sea ice thickness measurements from ULS on submarines and moorings, as well as 

ground measurements. The overall accuracy (mean absolute bias) and uncertainty (root-mean-square difference, RMS) of the 

OTIM estimated ice thickness is approximately 0.20 m (less than 20%) and 0.54 m, respectively, over all types of sea ice 

(Wang et al., 2010, 2016).   145 

2.2 Method  

The first step is to establish the relationship between ice age and thickness for the times between 1984 and 2018 when the ice 

age thickness data are available. The relationships are derived first in two months of a year, April and September from 1984 

to 2000 using submarine ice thickness data, and March and October from 2004 to 2008 using ICESat ice thickness data. Ice 

draft thickness of each segment is converted to ice thickness using Eq. 1, and the middle point of each segment is remapped 150 

to the 12.5 km EASE-Grid to match the ice age data. Each ice draft profile segment is collocated with its surrounding nine 

ice age values in the corresponding weekly ice age product. For ice draft profiles not from SCICEX, because of the 

restrictions on revealing the exact date, their observational dates are assigned to day 5, 15, or 25 when they are in the first, 

second, and third ten days of a month, respectively; we collocate each ice draft profile segment with its surrounding nine ice 

age values from its corresponding weekly ice age product, as well as the week before and after, for a total of 27 ice age 155 

values. The final ice age is determined as the age at the center of the nine points if it has the same ice age as the majority 

(>60%) of the nine (27) ice age samples for SCICEX. Otherwise, no ice age is determined. All matched ice thickness and 

age samples for individual months are recorded. Matched ice thickness and age samples in a month within a 10-year moving 

window (to increase the number of samples) are used to derive the relationship of ice age and ice thickness in each month at 

the fifth of the ten years. Only ice draft profile segments longer than 15 km are included; changing the threshold to 10 km, 160 

however, does not change the overall relationship. For each ice age category, a relationship is derived if the number of 
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samples in a month is greater than 40. For example, we started with data in April/September from 1984 to 1993 to obtain the 

relationship in April (September) for 1988, and ended with data in April (September) from 1991 to 2000 to obtain the 

relationship in April (September) for 1995. Because the submarine measurements are concentrated in the spring and autumn, 

meaningful relationships are determined only in April and September.  165 

Using the collocated ice age and thickness from ICESat over the period 2004 to 2008, Tschudi et al. (2016) derived the 

relationship between the two for February through April over the Arctic Ocean. We assign this relationship to the month of 

March. According to Figure 2 in RK18, the mean ice thickness in October and November is approximately 0.7 m less than 

the mean in February and March. Therefore, in October we assign the relationship of ice age and ice thickness the same as 

that in March except that ice thickness in each age category is 0.70 m less. 170 

Figure 2 shows the relationship between ice age and ice thickness in April and September from 1988 to 1995 using 

submarine measurements, and in March and October from 2004 to 2008 using ICESat data from Tschudi et al. (2016). Older 

sea ice is generally thicker than younger ice, except that ice more than four years old is slightly thinner than four year old ice 

based on submarine measurements before 2000. This phenomenon was observed in one (2008) of five years (2004-2008) 

using ICESat data (Tschudi et al. 2016), but it is persistent in most years from 1988 to 1995 in the submarine data.  Since 175 

1984, for every ice age category, sea ice thickness has been generally decreasing. As in Tschudi et al. (2016), we use linear 

regression to derive the relationship between ice age and thickness for ice ages from one to four years, while keeping the 

relationship for ice older than four years. Then linear regression on ice thickness from 1988 to 1996 is used to smooth the ice 

thickness in each age category.  

Relationships between ice age and thickness for every month are needed to convert the weekly ice age data into ice 180 

thickness. Though we have such relationships in two months of every year from 1988 to 1995, and from 2004 to 2008, 

relationships for all other months are needed. For this purpose, we apply an empirical model to the annual cycle of ice 

thickness. In this model, ice thickness increases linearly from September to the following May and decreases linearly from 

May to September in each sea ice category (Figure 3). The selection of September and May is consistent with the fact that 

the surface has a flux gain from the atmosphere from May to September, and a flux loss to the atmosphere from September 185 

to the following May (Serreze et al. 2007). From May to September the increase/decrease in sea ice thickness can be 

approximated by 

𝑇 = 𝐺 ×𝑀 +𝐻7             (5) 

where T is monthly mean ice thickness, G is the growth rate with units of m/month, M is month index from May to 

September, and H1 is a constant (m). From September to the following May,  190 

𝑇 = 𝐷 ×𝑀 +𝐻8            

 (6) 

where T is monthly mean ice thickness, D is growth/declining rate with unit of m/month, M is month index from September 

to the following May, and H2 is a constant (m). Given that both equations provide the same results for both September and 

May, and the known relationship of ice age and thickness in April and September from 1988 to 1996, as well as in March 195 
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and October from 2004 to 2008, we derive G, D, H1, and H2, thereby determining the relationship between ice age and 

thickness for every month in those years following Eqs. 5 and 6. For the years before 1988 and after 2008, we use the 

relationship for 1988 and 2008; for years from 1996 to 2003, we derive the relationship using linear interpolation of the 

relationship for 1995 and 2004.  

Figures 2b and 2d show the derived relationships of ice age and thickness for April and September from 1984 to 2018. After 200 

the annual cycle of the relationship between ice age and thickness is linearly interpolated to the weekly scale, we convert 

weekly ice age to weekly ice thickness and determine the daily ice thickness using linear interpolation and thus calculate the 

monthly mean ice thickness. An example of such conversion is shown in Figure 4. 

Monthly mean ice thickness in the 12.5 km EASE-Grid is then remapped to 25 km polar stereographic projection to match 

the spatial resolution of sea ice concentration. The PIOMAS and OTIM monthly mean ice thickness are also remapped to the 205 

same polar projection. Monthly mean Arctic sea ice volume is calculated as the product of sea ice thickness, ice 

concentration, and grid cell area of all grid cells over an area defined in RK18. Bounded by the gateways into the Pacific 

(Bering Strait), the Canadian Arctic Archipelago, and the Greenland (Fram Strait) and Barents Seas, the area covers 

approximately 7.23 × 106 km2. We will refer to this area as the Arctic Ocean, as in RK18. Monthly mean sea ice thickness is 

also calculated over the DRA, as defined in RPW08. Hereinafter, we call the sea ice thickness and sea ice volume derived 210 

from the ice age product as “IceAgeDerived.” 

3 Results 

3.1 Evaluation of ice thickness and Arctic ice volume 

Based on submarine sonar data, RPW08 derived an equation – Eq. 9 in their paper and Eq. 2 here – to calculate the inter-

annually averaged ice thickness over the DRA with the annual cycle superimposed. Mean sea ice thickness over the DRA in 215 

February and March, as well as in October and November, from 1984 to 2000 are calculated here using this equation. RK18 

reported the mean sea ice thickness over the DRA from ICESat in February and March 2004-2008, and in October and 

November 2003-2007, and from CryoSat-2 in February and March and in October and November 2011-2018. RK18 also 

reported monthly mean Arctic ice volume over the Arctic Ocean from ICESat in February and March 2004-2008 and in 

October and November 2003-2007, and from CryoSat-2 in February and March and in October and November 2011-2018. 220 

These data are used to evaluate the quality of sea ice thickness and volume of the IceAgeDerived.  

IceAgeDerived sea ice thickness over the DRA is close to the one-to-one line in comparison to ice thickness from submarine 

in February/March, with a bias of 0.03 m, RMSE of 0.074 m, and R-squared value of 0.96 (Figure 5 and Table 1). In 

October/November the bias is -0.035 m, the RMSE is 0.14 m, and the R-squared is 0.97. Compared to ICESat, sea ice 

thickness over the DRA gives a slightly larger bias and RMSE and slightly smaller R-squared, with a bias of -0.014 m, 225 

RMSE of 0.096 m, and R-squared of 0.75 in February/March (Figure 5, Table 1). In October/November, the bias is 0.20 m, 

the RMSE is 0.16 m, and the R-squared is 0.93. The bias and RMSE values are well within the uncertainty of ICESat ice 
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thickness estimates of 0.37 m (Kwok and Rothrock, 2009). Comparison to CryoSat-2 sea ice thickness over DRA shows a 

bias of -0.21 m and RMSE of 0.079 m for February/March, and a bias of -0.04 m and RMSE of 0.14 m for 

October/November. These are comparable in magnitude to those from ICESat, and within the uncertainty of CryoSat-2 ice 230 

thickness (Kwok 2018). The R-squared in October/November is close to 0, which indicates the IceAgeDerived sea ice 

thickness has similar values, but does not follow the changes in CryoSat-2 sea ice thickness in October/November from 2011 

to 2018 (Figure 5 and Table 1). Comparing the results of PIOMAS to submarine and ICESat thickness in Table 1 show 

similar bias and RMSE results as those in Schweiger et al. (2011). 

Measurements of IceAgeDerived sea ice volume over the Arctic Ocean agree with those from ICESat in February/March, 235 

with a bias of -0.72×103 km3, RMSE of 0.74×103 km3, and R-squared of 0.87 (Figure 6 and Table 2). In October/November, 

IceAgeDerived sea ice volume is largely underestimated compared to ICESat, with a bias of -3.95×103 km3, even though 

IceAgeDerived sea ice thickness measurements agree well with those from ICESat over DRA. Similar underestimations in 

October/November are found for PIOMAS and OTIM when compared to ICESat. Comparison to CryoSat-2 sea ice volume 

shows low bias and low RMSE, where the bias is 0.29×103 km3 (-0.66×103 km3) and the RMSE is 0.75×103 km3 (0.98×103 240 

km3) in February/March (October/November).  

Comparisons of sea ice thickness over DRA and sea ice volume over the Arctic Ocean from PIOMAS and OTIM to 

submarine ULS, ICESat and CryoSat-2 are also shown in Figures 5 and 6, and in Tables 1 and 2. IceAgeDerived products 

show comparable or slightly better results in terms of bias, RMSE, and R-squared. The better agreement with submarine 

ULS can be attributed to the fact that the IceAgeDerived product is developed based on matched ice age and submarine ULS 245 

ice thickness data. However, it should be noted that while submarine data in April and September are used in the algorithm 

development, the comparisons are in February/March and October/November. 

3.2 Sea ice thickness and volume climatology and trend 

The spatial distributions of the ice thickness over the Arctic from 1984 to 2018 show similar spatial patterns, but different 

magnitudes in the four seasons (Figure 7). Sea ice is thickest along the northern portion of the Canadian Archipelago and 250 

Greenland, decreasing radially, with the thinnest ice over the Arctic’s peripheral seas on the Eurasia side. The thickest sea 

ice appears in the spring, around 3 m in the Canada Basin and North Pole areas. The thinnest sea ice is in early fall, around 

or less than 1 m over the coastal areas of the Kara, Laptev, and Chukchi Seas. The spatial distributions of PIOMAS and 

OTIM (Figures A1 and A2 in the Appendix) show similar patterns, while the ice thickness north of the Canadian 

Archipelago and Greenland is thinner, especially when compared to PIOMAS.   255 

The annual cycle of monthly mean sea ice volume over the Arctic Ocean shows a minimum value in September at around 

6770 km3, then increasing to the maximum value in the following May at around 21737 km3, followed by a decrease. This 

annual cycle is certainly affected by the theoretical model used to depict the ice growth/melt as shown in Figure 3. The 

annual cycle closely follows the sea ice volume annual cycle of the PIOMAS (Figure 8), which uses a different approach to 

derive ice thickness and ice volume. The IceAgeDerived exhibits its largest sea ice volume difference of 2004 km3 in May. 260 
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This difference can be attributed to the relatively thicker sea ice from the IceAgeDerived in the years before 2000, which is 

discussed further below. Ice volume over the Arctic Ocean from OTIM has a similar annual cycle but with a larger 

magnitude, with the maximum in April and the minimum in September.  

The time series of sea ice thickness over DRA in February and March from 1984 to 2018 shows a decreasing trend from 

1984 to 2000 and close agreement with the time series from submarine ULS, a generally decreasing trend from 2004 to 2008 265 

as also shown in time series from ICESat, and a relatively unchanging state from 2011 to 2018 as also depicted in time series 

from CryoSat-2 (Figure 9a). A similar conclusion can be drawn for the time series in October and November (Figure 9b). 

The overall decreasing trends are consistent with observations of the replacement of multiyear sea ice with first year ice in 

the Arctic Ocean, and partial recovery of multiyear sea ice after the summer of 2008 (Maslanik et al. 2007, Maslanik et al. 

2011). Compared to the PIOMAS ice thickness, in February/March the sea ice thickness in the 1980s is mostly greater, and 270 

remains close to or smaller than that of PIOMAS from 2004 to 2008, and is smaller from 2011 to 2018. In 

October/November the sea ice thickness is greater in the 1980s, comparable from 1990 to 2010, and then larger afterwards. 

OTIM shows smaller ice thicknesses than both IceAgeDerived and PIOMAS in October/November, and mostly larger ice 

thickness in February/March except in the 1980s.   

The similarities and differences found here are consistent with the results shown in Figure 5 and Table 1, and partly explain 275 

the differences in the sea ice volume annual cycles shown in Figure 8. The time series of PIOMAS, and their comparisons 

with ICESat shown here, are similar to those in Schweiger et al. (2011). As a result of the differences in ice thickness from 

1984 to 2018, the overall trends of ice thickness over the DRA from 1984 to 2018 are -0.054, -0.035, and -0.036 m/year in 

February/March, and -0.040, -0.042, and -0.026 m/year in October/November for IceAgeDerived, PIOMAS, and OTIM 

respectively, with significance levels all higher than 95%.    280 

Time series of sea ice volume over the Arctic Ocean show generally decreasing trends from 1984 to around 2008, and 

relatively stable conditions from 2011 to 2018 both in February/March and October/November, similar to the time series 

from PIOMAS and OTIM (Figure 10). This overall decrease agrees well with the dramatic decrease in sea ice extent and 

disappearance of multiyear sea ice reported in the literature (Stroeve et al. 2012, Maslanik et al. 2007, Maslanik et al. 2011). 

In February/March, PIOMAS shows smaller ice volume from 1984 to 2000 and similar values after 2000; OTIM shows 285 

higher ice volume after the 1990s. In October/November, PIOMAS shows smaller values in the 1980s and similar values 

afterwards, while OTIM shows consistently smaller ice volume before 2000. All three sea ice volumes are much lower than 

those from ICESat for 2003 to 2007 with comparable sea ice thickness over the DRA in those years; all three sea ice 

volumes are comparable to that from CryoSat-2, with similar results for sea ice thickness over the DRA. All these findings 

are consistent with what is shown in Figure 6 and Table 2. As with the results of the differences in ice volumes from 1984 to 290 

2018, the overall trends in ice volume over the Arctic Ocean from 1984 to 2018 are -474, -258, and -311 km3/year in 

February/March, and -342, -305, and -230 km3/year in October/November for IceAgeDerived, PIOMAS, and OTIM 

respectively, with significance levels all higher than 95%. IceAgeDerived shows stronger ice volume reduction over the 

Arctic Ocean in February/March and in October/November when compared to PIOMAS and OTIM. 
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Arctic sea ice volume over the Arctic Ocean from 1984 to 2018 has been decreasing in every month of the year (Figure 11). 295 

The most volume reductions from December to June occur from the 1990s to the 2000s and from the 2000s to 2010s. From 

July to November, the volume reductions from the 1980s to 1990s are comparable to those from the 1990s to 2000s. The 

volume reductions in all months are the least from the 2000s to the 2010s. It should be noted that the data in the 1980s starts 

in 1984, and the data for the 2010s ends in 2018. Though the decadal mean annual cycles of sea ice volume are similar in 

shape, the magnitudes of the cycles - in terms of the difference between April and September - have been decreasing, with 300 

around 18871 km3 in the 1980s and 12169 km3 in the 2010s. 

Time series of the monthly mean sea ice volume over the Arctic Ocean for all months from 1984 to 2018 have similar 

features to those in February/March and October/November, with higher values in the 1980s than those of PIOMAS and 

OTIM, a generally decreasing trend from 1984 to 2008 as with PIOMAS and OTIM, and relatively stable conditions from 

2011 to 2018, similar to PIOMAS and OTIM (Figure 12). As a result, the sea ice volume trends from the IceAgeDerived in 305 

every month are higher than those from PIOMAS and OTIM, except being comparable to PIOMAS from August to October 

(Figure 13). The monthly trends exhibit an annual cycle, with the maximum magnitude in May at -537 km3/year and 

minimum magnitude in September of -251 km3/year, which is the opposite of the annual cycle trend of mean sea ice 

thickness. OTIM also exhibits this feature, while the annual cycle of volume trends from PIOMAS shows no apparent 

monthly differences. The mean monthly trend of all months over the Arctic Ocean from 1984 to 2018 is -411 km3/year, 310 

which is higher in magnitude compared to -282 km3/year from PIOMAS and -269 km3/year from OTIM, with significance 

levels all higher than 95%. The PIOMAS mean monthly trend is similar to that derived from PIOMAS sea ice volume data 

for 1979 to 2012, -2.8×103 km3/decade with an uncertainty of 1.0×103 km3/decade as shown in Schweiger et al. (2011). The 

IceAgeDerived ice volume shows a stronger reduction in ice volume over the Arctic Ocean from 1984 to 2018.  

Causes for the changes in the Arctic sea ice volume can be partitioned roughly into two categories: changes from sea ice 315 

thickness and changes from sea ice area. In a manner similar to that used by Liu et al. (2009), this partitioning can be 

estimated by: 
IJ
IK
= I(∑MNON)

IK
≅ I(M̅O.)

IK
= 𝐴̅ IO.

IK
+ 𝐻. IM̅

IK
           (7) 

where V is the sea ice volume over the Arctic Ocean, Ai and Hi are the sea ice area and thickness in individual grid cells over 

the Arctic Ocean, and A̅ and H̅ are the mean sea ice area and thickness over the Arctic Ocean. The term A̅(dH̅/dt) represents 320 

the contribution of sea ice thickness changes to the overall trend, and the term H̅(dA̅/dt) represents the contribution of the sea 

ice area changes. For the Arctic sea ice volume from 1984 to 2018, the changes in sea ice thickness contribute to 

approximately 80% or more of the total trends from November to May; these contributions decrease to around 50% in 

August and September. The changes in sea ice area contribute to less than 30% of total trends in all months, with even lower 

contributions from December to May, which are less than 10%. PIOMAS shows similar trends, while OTIM shows a greater 325 

contribution from the sea ice area changes and less contribution of sea ice thickness changes from June to October. It should 
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be noted that the sum of these two contributions is not 100% because of the use of the production of area means of thickness 

and ice area to approximately represent the total ice volume.   

4 Discussion and Conclusions 

In this study, a multi-decadal Arctic sea ice thickness dataset covering the period 1984 to 2018 is created from an existing 330 

satellite-derived ice age product. The relationship between ice age and ice thickness is first established based on submarine 

upward-looking sonar ice draft observations from 1984 to 2000, and ICESat ice thickness from 2003 to 2008. Both are 

available for only two calendar months. Therefore, an empirical model of the annual cycle of sea ice thickness growth is 

used to derive the ice age and ice thickness relationship for every month from 1984 to 2018. Sea ice volume over the Arctic 

Ocean is then calculated from ice thickness and concentration. Comparisons of the time series of derived ice thickness and 335 

ice volume with those from the literature and other data sets using different approaches show general similarities but with 

some notable differences. The agreement proves the soundness of the ice aged-based ice thickness and ice volume dataset, 

while the differences indicate there is room for further improvement in all the ice thickness data sets.    

The major findings of this study include: 

● Sea ice thickness derived from ice age (“IceAgeDerived”) over the DRA (the submarine data release area) 340 

shows good agreement with ice thickness from submarine ULS, ICESat, and CryoSat-2 in both 

February/March and October/November, with low bias and RMSE and a high R-squared, except for a 

near-zero R-squared with CryoSat-2 in October/November. IceAgeDerived sea ice volume over the Arctic 

Ocean shows good agreement with that from ICESat and CryoSat-2. Compared to ICESat, it has a low bias 

and RMSE and a high R-squared in February/March. In October/November it has a high negative bias, low 345 

RMSE, and high R-squared. Compared to CryoSat-2, it has low bias, RMSE, and R-squared values in both 

February/March and  October/November. 

● Sea ice is thickest north of the Canadian Archipelago and Greenland, decreasing radially, with the thinnest 

ice over the Arctic’s peripheral seas on the Eurasia side of the Arctic Ocean. Sea ice volume over the 

Arctic Ocean has its minimum value in September, increasing to a maximum value in the following May.  350 

● In both February/March and October/November, the time series of sea ice thickness over DRA from the 

IceAgeDerived shows a decreasing trend from 1984 to 2000, as does the submarine ULS data, a generally 

decreasing trend from 2003 to 2008 similar to that of ICESat, and a relatively stable state from 2011 to 

2018 like the CryoSat-2 ice thickness. 

● Sea ice volume over the Arctic Ocean shows a generally decreasing trend from 1984 to around 2008, and 355 

relatively stable conditions afterwards in almost every month. The mean monthly trend of all months from 

1984 to 2018 is -411 km3/year, which shows a stronger ice volume reduction than PIOMAS (-282 
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km3/year) and OTIM (-269 km3/year). This difference can be attributed to the higher sea ice volume over 

the Arctic Ocean from the IceAgeDerived in the 1980s.  

● Changes in sea ice thickness contribute 80% or more to the sea ice volume trend from 1984 to 2018 from 360 

November to May, decreasing to a contribution of about 50% in August and September. The changes in 

sea ice area contribute less than 30% to the trends in all months, with even lower contributions from 

November to May. 

Although the ice thickness and volume dataset presented here is a consistent and accurate multidecadal product, there are 

some areas for potential improvement.  First, a linear relationship between ice age and ice thickness is assumed, which may 365 

not be strictly valid. Of particular interest is the observation that submarine data shows a slightly thinner ice thickness for ice 

more than four years old than that for four-year old ice, though ICESat shows the same in only one year. To determine 

whether this relationship is valid, other collocated ice age and ice thickness data, e.g. from the recently launched ICESat-2 

(Markus et al. 2017) should be analyzed. Second, the annual cycle of ice thickness growth/decline is assumed to be linear 

from September to the following May and from May to September, which also may not be valid. RPW08 conceptualized sea 370 

ice growth and decline as a sine function. A more sophisticated model of the annual cycle of sea ice growth/decline may be 

needed in deriving the ice age and ice thickness relationship. The annual cycle of trends in ice volume over the Arctic Ocean 

appears to be opposite to the annual cycle of ice growth. This requires further investigation. Third, in deriving the relation of 

ice age to ice thickness in the years before 2000, only ice draft measurements from submarine ULS over the DRA, e.g. over 

or near the central Arctic Ocean, are available. The derived relationship may be skewed to higher ice thicknesses. Thus, 375 

Arctic ice volume derived in this study before 2004 might be overestimated. Correcting this relationship requires more 

spatially representative ice thickness measurements, or a well-designed parameterization scheme.  

Future improvements in ice thickness estimation may require work on 1) improving our understanding and parameterization 

of the forcing and physical processes controlling the ice growth and melt, 2) reducing uncertainties in the ancillary data 

required for ice thickness estimation, 3) collecting extensive temporally and spatially representative ice thickness 380 

measurements for better evaluation, 4) designing new models or approaches to estimate ice thickness.  

Snow depth over the sea ice is one of the key parameters in the sea ice thickness retrieval for all existing satellite data sets. 

Though progress has been made in reducing the uncertainties in estimating snow depth from space, its uncertainty remains 

high (Lawrence et al. 2018, Shalina et al. 2018). One major challenge for improving sea ice thickness retrievals is the lack of 

“truth” validation data sets. Because of the severe environmental conditions in the polar regions, in situ ice thickness 385 

measurements are scarce, which limits our ability to identify the issues in current data sets and to make further improvement. 

Ice thickness products using new approaches may provide additional evaluation of existing products. A better overall 

product benefits from all the above-mentioned efforts, and may come as an ensemble of multiple ice thickness products if we 

know the limitations and strengths of each data set. 
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5 Code availability 390 
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 495 
Table 1: Statistics of comparison of ice thickness over the SCIEX box from IceAgeDerived, PIOMAS, and OTIM and from 
submarine up-looking sonar 1984-2000, ICESat 2004-2008, and Cryosat-2 2011-2018 in February/March (top row), and 
October/November (bottom row).  

Ice thickness  

Submarine up-

looking sonar 

1984-2000 

Feb/Mar 

(Oct/Nov) 

ICESat  

2004-2008 

Feb/Mar 

(Oct/Nov) 

Cryosat-2  

2011-2018 

Feb/Mar 

(Oct/Nov) 

IceAgeDerived 

Bias (m) 
0.03 

-0.035 

-0.014 

0.20 

-0.21 

-0.04 

RMSE 

(m) 

0.074 

0.14 

0.096 

0.16 

0.079 

0.14 

PIOMAS 

Bias (m) 
-0.16 

-0.055 

0.12 

0.14 

-0.10 

-0.24 

RMSE 

(m) 

0.31 

0.30 

0.16 

0.097 

0.13 

0.16 

OTIM 

Bias (m) 
0.16 

-0.60 

0.49 

-0.13 

0.21 

-0.37 

RMSE 

(m) 

0.26 

0.28 

0.16 

0.22 

0.21 

0.22 
 

  500 
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Table 2: Statistics of comparison of Arctic ice volume from IceAgeDerived, PIOMAS, and OTIM and from ICESat 2004-2008, and 
Cryosat-2 2011-2018 in February/March (top row), and October/November (bottom row).  

Ice thickness  

ICESat  

2004-2008 

Feb/Mar 

(Oct/Nov) 

Cryosat-2  

2011-2018 

Feb/Mar 

(Oct/Nov) 

IceAgeDerived 

Bias (103 km3) 
-0.72 

-3.95 

0.29 

-0.66 

RMSE (103 

km3) 

0.74 

0.76 

0.75 

0.98 

PIOMAS 

Bias (103 km3) 
0.44 

-4.21 

0.90 

-1.70 

RMSE (103 

km3) 

0.98 

0.68 

0.96 

0.98 

OTIM 

Bias (103 km3) 
4.20 

-4.86 

3.87 

-1.63 

RMSE (103 

km3) 

1.20 

0.96 

1.48 

1.23 
 

  505 

https://doi.org/10.5194/tc-2019-192
Preprint. Discussion started: 26 August 2019
c© Author(s) 2019. CC BY 4.0 License.



19 
 

 
 
Figure 1: U.S. submarine sea ice draft observations in April (a) and September (b) over the Arctic Ocean from 1984 to 2000. 
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 510 

 
Figure 2: Observed relationship of ice age and ice thickness from 1988 to1995 from submarine data in April (a) and September (c), 
and from 2004 to 2008 from ICESat in March (a) and October (c), and derived relationship of ice age and ice thickness from 1984 
to 2018 in April (b) and September (d). 
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Figure 3: Annual cycle of sea ice thickness.  
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 520 
Figure 4: Ice age and ice thickness derived from ice age from January 1 to 7, 2000. 
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Figure 5: Comparison of ice thickness over the SCIEX box from IceAgeDerived, PIOMAS, and OTIM and from submarine up-
looking sonar 1984-2000, ICESat 2004-2008, and Cryosat-2 2011-2018. 525 
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Figure 6: Comparison of ice thickness over the SCIEX box from IceAgeDerived, PIOMAS, and OTIM and from ICESat 2004-
2008, and Cryosat-2 2011-2018. 
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Figure 7: Derived climatological mean sea ice thickness distribution 1984 to 2018 from ice age in the Arctic in January, April, July, 
and October. 
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 535 
Figure 8: Derived climatological mean annual cycle of ice volume 1984-2018 in the Arctic. 

  

https://doi.org/10.5194/tc-2019-192
Preprint. Discussion started: 26 August 2019
c© Author(s) 2019. CC BY 4.0 License.



27 
 

 

 
 540 
Figure 9: Mean ice thickness in GORE box in February and March from 1984 to 2018 derived from ice age, from PIOMAS, from 
OTIM, and from ICESat (2004-2008) and CryoSat (2011-2018), and submarine data (1984-2000). 
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 545 

 
Figure 10: Mean Arctic ice volume in February and March (a) and from October and November (b) from 1984 to 2018 derived 
from ice age, from PIOMAS, from OTIM, and ICESat (2003-2007) and CryoSat (2011-2018). 
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Figure 11: Derived climatological mean annual cycle of ice volume in 1980s, 1990s, 200s, 2010s, and in all years. 

  

https://doi.org/10.5194/tc-2019-192
Preprint. Discussion started: 26 August 2019
c© Author(s) 2019. CC BY 4.0 License.



30 
 

 
Figure 12: Mean monthly Arctic ice volume from 1984 to 2018 derived from ice age, from PIOMAS, and from OTIM. 555 
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Figure 13: Trend of Arctic ice volume in each month and in annual mean from 1984 to 2018 derived from ice age, from PIOMAS, 
and from OTIM. 
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Figure 14: Partition of trend of Arctic ice volume in each month and in annual mean from 1984 to 2018 to changes in ice thickness 
derived from ice age, from PIOMAS, and from OTIM and ice area. 
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Appendix 565 

 

Table A1. Monthly mean values of the correction term 𝔣(τ) in Eq.1, from Table 4 in Rothrock et al. (2008). 

 

Month 𝔣(τ),m 

January 0.087 

February 0.098 

March 0.110 

April 0.118 

May 0.122 

June 0.113 

July 0.026 

August 0.004 

September 0.025 

October 0.054 

November 0.070 

December 0.081 
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Figure A1: Derived climatological mean sea ice thickness distribution in the Arctic from PIOMAS 1984 t0 2018. 
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Figure A2: Derived climatological mean sea ice thickness distribution in the Arctic from OTIM 1984 to 2018. 575 
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