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Abstract. Global Positioning System Interferometric Reflectometry (GPS-IR) is a relatively new technique which uses 

reflected GPS signals to measure surface elevation changes to study frozen ground dynamics. At present, more than 200 GPS 

stations are operating continuously in the Northern Hemisphere permafrost areas, which were originally designed and 

maintained for tectonic and ionospheric studies. However, only one site in Barrow, Alaska was assessed to be usable for 10 

studying permafrost by GPS-IR. Moreover, GPS-IR has high requirements on ground surface condition, which needs to be 

open, flat, and homogeneous. In this study, we screen 3 major GPS networks in Canada and identify 12 out of 38 stations 

located in permafrost areas as useful ones where reliable GPS-IR measurements can be obtained. We focus on the 5 

Canadian Active Control System stations and obtain their daily GPS-IR surface elevation changes. We find that the ground 

surface subsided in Alert, Resolute Bay, and Repulse Bay respectively by 0.61 ± 0.04 cm yr-1 (2012–2018), 0.70 ± 0.02 cm 15 

yr-1 (2003–2014), and 0.26 ± 0.05 cm yr-1 (2014–2019). At the other two sites of Baker Lake and Iqaluit, the trends are not 

statistically significant. The linear trends of deformation were negatively correlated with those of thaw indices in Alert, 

Resolute Bay, and Repulse Bay. Furthermore, in Resolute Bay, we also find that the end-of-thaw elevations during 2003–

2012 were highly negatively correlated with the square root of thaw indices. This study is the first one using multiple GPS 

stations to study permafrost by GPS-IR. It highlights the multiple useful GPS stations in northern Canada, providing multi-20 

year, continuous, and daily GPS-IR surface deformation, which provide new insights into frozen ground dynamics at various 

temporal scales and across a broad region.  

1 Introduction 

Since the International Polar Year (2007–2009), permafrost has undergone a warming trend globally, with an average 

increase of ground temperature at or near the depth of zero annual amplitude by 0.29 ± 0.12 °C during 2007–2016 25 

(Biskaborn et al., 2019; Romanovsky et al., 2010; Smith et al., 2010). Warming permafrost causes ground ice melting, active 

layer thickening, and the release of previously sequestered carbon (Brown et al., 2000; Trucco et al., 2012). It affects 

hydrological, geomorphological, and biogeochemical processes (Mackey, 1966; Shur and Jorgenson, 2007; Lantuit and 

Pollard, 2008; Kokelj and Jorgenson, 2013). Measuring and quantifying permafrost changes are crucial for understanding the 
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dynamics of the active layer and near-surface permafrost (collectively called as frozen ground in this paper), studying the 30 

response of permafrost environments to climate change, and assessing the risk of permafrost changes to infrastructures.  

 

Surface elevation changes can serve as an indicator of frozen ground changes. The freeze/thaw of frozen ground is associated 

with the phase transition of soil moisture, leading to ~9% change of ice volume, due to the density difference between water 

and ice. Such volume change in freeze/thaw cycle causes the ground surface to uplift or subside seasonally. Surface 35 

deformation can be measured by either traditional benchmark-based methods or modern geodetic and remote sensing ones. 

The traditional methods use vertical tubes or pipes, anchored deep into the permafrost, as datum references of ground surface 

for repeat leveling surveys (Mackey, 1983). Modern methods include Interferometric Synthetic Aperture Radar (InSAR), 

Light Detection and Ranging (LiDAR), and Global Navigation Satellite System (GNSS) positioning. InSAR has been used 

to measure and quantify surface subsidence in various permafrost landforms (Liu et al., 2010, 2014, and 2015; Chen et al., 40 

2018). However, InSAR suffers from coarse temporal resolutions and interferometric coherence loss. Furthermore, InSAR 

measurements need reference points where the surface deformation is known or assumed to be zero. LiDAR has been used to 

construct differential elevation models to investigate surface deformation (Jones et al., 2015). However, LiDAR surveys are 

usually conducted at annual or multi-annual intervals. GNSS positioning has also been used to measure and quantify surface 

subsidence and uplift (Little et al., 2003; Shiklomanov et al., 2013; Streletskiy et al., 2017). However, those GNSS surveys 45 

are usually conducted at the beginning or end of thaw seasons. 

 

Global Positioning System Interferometric Reflectometry (GPS-IR) is a technique which uses reflected GPS signals to 

measure ground surface changes, such as elevation, soil moisture content, and vegetation growth condition (Larson, 2016, 

2019). GPS-IR has been successfully used to study frozen ground dynamics by measuring surface deformation at one station 50 

in Barrow, Alaska (Liu and Larson, 2018; Hu et al., 2018). Compared with the aforementioned modern methods, GPS-IR 

measurements of surface elevation changes have higher temporal resolutions, usually at daily intervals. Their accuracies are 

on the order of a few centimeters (typically ~2 cm). Their spatial coverage is antenna-height dependent, e.g., 1000 m2 for a 

2-m-high antenna. Such spatial coverage fills a gap between regional-scale satellite observations and in situ point 

measurements. Furthermore, GPS-IR measurements are free of solid earth movement, such as glacier isostatic adjustment 55 

and plate movement (Liu and Larson, 2018). GPS-IR measurements are converted from the vertical distances between the 

antenna and the reflecting surface. As both the antenna and the surface are equally affected by solid earth movement, GPS-

IR measurements can directly reflect frozen ground dynamics.  

 

However, some limitations exist when using GPS-IR. This technique can only be usable in certain surface conditions. It 60 

needs the reflecting surface to be open, nearly flat, and relatively homogeneous (Larson, 2016). More than 200 GPS stations 

are continuously operating in permafrost areas in Northern Hemisphere (Fig. 1). However, only one station, located in 

Barrow, Alaska has been examined and proved for the use of GPS-IR (Liu and Larson, 2018). The underutilization of the 
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GPS-IR technique to a large number of existing stations motivates us to assess the usability of all of these sites. We choose 

Canada as our study area due to the public accessibility of GPS data, abundant weather records, and detailed geological 65 

surveys. We first design a three-step framework to identify useful stations under the same protocols and to ensure the 

reliability of measurements. We then screen all of the major public GPS networks in Canada to identify the usable stations. 

We then estimate surface deformation by GPS-IR and use them in turn to study frozen ground dynamics.  

 

The significance of this study relies on that it first can provide usable GPS sites in permafrost areas for GPS-IR studies, 70 

which are complementary to the existing permafrost monitoring programs such as Circumpolar Active Layer Monitoring 

(CALM) and Global Terrestrial Network for Permafrost (GTN-P). Permafrost changes have large spatial heterogeneity, due 

to location, topography, precipitation, and vegetation. Despite the significant increase in the number of in situ sites in the 

past decades, the CALM and GTN-P sites are still sparse and unevenly distributed. The identified suitable GPS stations can 

fill in the spatial gaps of the CALM and GTN-P sites. Moreover, GPS-IR measurements are typically continuous and span 75 

multiple years. They can be used to study permafrost in a detailed manner and provide new insights into frozen ground 

dynamics. 

 

In Sect. 2, we describe the mechanism of GPS-IR to measure surface elevation changes, our proposed framework to identify 

useful GPS stations, and the datasets we used in this study. In Sect. 3, we present basic information of the identified useful 80 

GPS stations (e.g., monument material, foundation depth, and antenna height above ground) and environment conditions of 

the study sites such as biome and surficial material. We then show the results of surface elevation changes in thaw seasons at 

the study sites in Sect. 4. In Sect. 5, we interpret the GPS-IR results in revealing frozen ground dynamics in various temporal 

scales, discuss the possible error sources of the results and their limitations in permafrost studies, and present their potential 

for validating and calibrating space-borne InSAR measurements. We conclude by summarizing the results and findings. 85 

2 Methodology 

2.1 GPS Interferometric Reflectometry (GPS-IR) 

Larson (2016 and 2019) presented the principle of GPS-IR and its applications in measuring snow depth, surface soil 

moisture, vegetation growth condition, and water level. However, the use of GPS-IR for studying permafrost was not 

explicitly presented. So, here, we describe how GPS-IR retrieves surface elevation changes and their link to ground 90 

deformation in permafrost areas.  

 

The input of GPS-IR is signal-to-noise ratio (SNR) data of GPS signals, one of the observables recorded by GPS receivers. It  

represents the strength of the received signal. SNR series at low satellite elevation angles (e.g., 5°–20° used in this study) 

oscillate with respect to the elevation angle, due to the interference between direct and reflected signals. The oscillating 95 
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frequency mainly depends on the vertical distance between the antenna and the reflecting surface (called reflector height and 

denoted as 𝐻). If a GPS station is located above a smooth horizontal surface (e.g., Fig. 2), SNR can be expressed by a 

sinusoidal function of elevation angle 𝑒 (Larson, 2016):  

𝑆𝑁𝑅 = 𝐴(𝑒) sin -./0
1
sin 𝑒 + 𝜙4 ,          (1) 

where 𝐴(𝑒) is the oscillation amplitude, also varying with 𝑒; 𝜆 is the wavelength of the carrier wave of GPS signal; and 𝜙 is 100 

the phase. When taking sin 𝑒 as an independent variable, the oscillating frequency is: 

𝑓 = 70
8

 ,             (2) 

If 𝑓 is determined, 𝐻 can be obtained numerically as 

𝐻 = 98
7

 ,             (3) 

 105 

In practice, we divide the SNR series into individual segments corresponding to rising/setting satellite tracks. Then we 

remove their 2-order polynomial fits and use the residual ones, which are mainly contributed from the reflected signals. For 

simplicity, we use SNR series hereafter to denote the residual SNR series. We conduct the Lomb-Scargle Periodogram (LSP) 

analysis on any given SNR series to obtain its frequency spectrum. Then we use the peak value of the spectrum to represent 

the frequency 𝑓 and obtain 𝐻 by using equation (3). The oversampling parameter of LSP can be determined based on the 110 

expected resolution (e.g., 1 mm in this study) of the estimated reflector height. The programs for data processing are 

available in the software tools of GNSS Interferometric Reflectometry (Roesler and Larson, 2018).  

 

If the monument is deep anchored (e.g., Fig. 2), the GPS antenna is stable with respect to the permafrost. The variation of the 

distance 𝐻 only depends on the change in surface elevation. The change of 𝐻 is opposite to that of surface elevation, i.e., 115 

surface uplift (subsidence) leads to decreasing (increasing) 𝐻  (Liu and Larson, 2018). For the daily measurements of 

reflector height, we first assign minus signs to them and then remove the average to represent surface elevation changes. 

2.2 A framework for identifying useful GPS stations for studying permafrost by GPS-IR 

GPS-IR requires the ground surface to be open and relatively flat and smooth. To identify suitable ones from the existing 

GPS stations under the same protocols and to ensure the reliability of GPS-IR measurements, we have designed a three-step 120 

framework, which is described in detail as follows. 

 

Step 1: Selecting GPS stations in permafrost areas 
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We first check whether permafrost is present where the GPS station is located. This step aims to identify the GPS stations in 

permafrost areas. We use the International Permafrost Association map compiled by Brown et al. (1997), which shows the 125 

spatial distribution of permafrost in the Northern Hemisphere. 

 

Step 2: Estimating an azimuth range with an open, flat, and homogeneous ground surface 

In this step, we aim to estimate an azimuth range, where the surface is open, nearly flat, and relatively homogeneous at each 

selected station in step 1. Normally, ground photos of a GPS station are taken as a part of metadata. In practice, we use 130 

ground photos and Google Earth images of a GPS site to check its surrounding environment, then estimate an azimuth range 

free of obstructions. We also use these images to recognize whether the selected surface is nearly planar and smooth. In Fig. 

S1, we present ground photos of two GPS stations as typical positive and negative examples, respectively. 

 

Step 3: Ensuring high reliability of GPS-IR measurements 135 

At present, 32 operational GPS satellites orbit around the Earth twice daily. Therefore, multiple SNR series are available 

within a day. In practice, for any given day, we first process all SNR series within the determined azimuth range and 

elevation angle range to obtain their 𝐻 using the standard method summarized in Sect. 2.1. Then, we calculate their median 

and discard the ones deviating from the median by 0.25 m or more. Then we compute the mean value and the standard 

deviation (𝜎) of the remaining 𝐻, and remove those 𝐻 deviating from the mean value by larger than 3𝜎 as outliers. The final 140 

retained 𝐻 and their corresponding SNR series are regarded as reliable. We average the final retained 𝐻 (denote the average 

as  𝐻<) to represent the vertical distance between the antenna and the reflecting surface on that day. The uncertainty of 𝐻< is 

represented by its standard deviation, i.e., the standard deviation of 𝐻 divided by the square root of the sample size. To 

further ensure the reliability of 𝐻<, a minimal number of 10 pieces of reliable SNR series are required.  

2.3 Dataset and information 145 

We use SNR data of L1 C/A signals of the identified GPS sites. L1 C/A is the legacy civilian code broadcasted by all the 

GPS satellites. By using them, we can obtain GPS-IR measurements spanning over from several years to more than a decade, 

which enable us to study permafrost in various temporal scales and reveal its response to the changing climate. 

 

To understand and interpret GPS-IR results, we use air temperature and snow depth at the study sites. These measurements 150 

are recorded by the nearest weather stations of GPS sites, and can be downloaded from Environment Canada 

(http://climate.weather.gc.ca/historical_data/search_historic_data_e.html). We also use borehole ground temperatures at the 

study sites, which are provided by GTN-P (http://gtnpdatabase.org/boreholes). 

 

We also summarize the climate and environment information of the study sites, such as mean annual air/ground temperature 155 

(Ednie and Smith, 2015; Environment Canada, http://climate.weather.gc.ca/climate_normals/index_e.html), surficial 
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material (Cruishank, 1971; Dredge, 1994; Taylor, 1982; Throop et al., 2010), and ground ice content of near-surface 

permafrost (O’Neill et al., 2019), to provide background information for reference. 

3 Identified GPS stations and study sites 

We have screened all of the three major GPS networks in Canada, namely Canadian Active Control System (CACS), 160 

Canadian High Arctic Ionospheric Network (CHAIN), and Portable Observatories for Lithospheric Analysis and Research 

Investigating Seismicity (POLARIS) (Fig. 3). CACS is a nationwide network and is maintained by the Geodetic Survey 

Division in conjunction with the Geological Survey of Canada (Lahaye et al., 2001). It serves to build and maintain the 

Canadian Spatial Reference System, which is fundamental for mapping, navigation, studying crustal deformation. CHAIN 

was designed to investigate the impact of solar output on planetary environment (Jayachandran et al., 2009). The network is 165 

operated by the University of New Brunswick. It consists of 25 GPS stations, of which three (KUGC, REPC, and QIKC) are 

shared with CACS. It is important to note that most of the receiver antennas of CHAIN stations are anchored onto the roofs 

of buildings. Consequently, the monuments may move due to the foundation instability and thermal expansion/contraction of 

buildings. When using these stations for GPS-IR studies, corrections for such instability should be conducted. POLARIS, 

operated by the University of Western Ontario, was initiated for mapping solid Earth’s structure and assessing earthquake 170 

hazards (Eaton et al., 2005). It includes seven geodetic-quality GPS stations. 

 

Following the framework in Sect. 2.2, we identified 12 GPS stations out of 38 ones located in permafrost areas as suitable 

ones for GPS-IR studies. Table 1 gives their basic information, including locations, monument types, foundation conditions, 

data time spans, and spatial coverages of GPS-IR measurements. The receiver and antenna types are listed in Table S1. Five 175 

of them are from CACS, and the rest are from CHAIN. None of the POLARIS stations was identified as suitable.  

 

Given that the GPS-IR measurements of the CHAIN stations might be affected by the unstable buildings, in this study we 

present and interpret the measured elevation changes at the 5 identified CACS stations. Their monuments are all anchored 

into bedrocks (Table 1). Figure 4 shows their ground photos and Fig. S2 shows examples of their SNR series and 180 

corresponding LSP spectrum analysis. 

 

These 5 sites are all located in the Canadian Arctic. The climate in this region is dominantly Polar climate due to high 

latitude. The biomes are mainly tundra and Arctic desert. Permafrost is continuous in this area, and normally its thickness 

increases with latitude. In the far north latitude of 75°, permafrost can be thicker than 500 m (Sladen, 2011). Ground 185 

temperatures at or near the depth of zero annual amplitude ranged from colder than -15 °C to warmer than -2 °C, and they 

decreased northward in concert with climate (Smith et al., 2013). During 2008–2014, ground temperatures at the depth of 15 

m increased at an average rate of ~0.17 °C yr-1 at ten extensively distributed sites in the Canadian Arctic (Ednie and Smith, 
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2015). Thawing ice-rich permafrost has initiated wide-spread development of thermokarst landforms in this region, such as 

retrogressive thaw slump (Lantuit and Pollard, 2008; Kokelj et al., 2015) and active layer detachment (Lewkowicz and 190 

Harris, 2005; Lewkowicz and Way, 2019). 

 

We summarize the basic regional information of the five sites respectively in Table 2, including biome, land cover, ground 

ice content of near-surface permafrost, mean annual air temperature (MAAT), and mean annual ground temperature 

(MAGT). In Alert and Resolute Bay, the biomes are both Arctic Desert due to the high latitude, and the land surfaces are 195 

dominantly bare soil. The biomes at the other three sites are all tundra. But, due to their specific locations, the ground surface 

is mainly bare soil in Repulse Bay, but is covered by a peat layer in Baker Lake, and is sparsely vegetated in Iqaluit. 

4 Results: surface elevation changes measured by GPS-IR 

We obtain multi-year and seasonal time series of surface elevation changes at the 5 CACS sites. In this study, we only 

present the measurements in thaw seasons, when air temperature is above 0 °C and ground is not covered by snow. The 200 

measurements can be found in Zhang et al. (2019, https://doi.pangaea.de/10.1594/PANGAEA.904347). 

 

We build best linear fit to the thaw-season measurements and obtain the trends at the five sites (Fig. 5). We find that in Alert, 

Resolute Bay, and Repulse Bay, the ground surface subsided at a rate of 0.61 ± 0.04 cm yr-1 (2012–2018) and 0.70 ± 0.02 cm 

yr-1 (2003–2014), and 0.26 ± 0.05 cm yr-1 (2014–2019), respectively. However, at the other two sites, the displacements of 205 

ground surface were 0.04 ± 0.02 cm yr-1 in Baker Lake during 2010–2017 and -0.05 ± 0.02 cm yr-1 in Iqaluit during 2010–

2019. These last two trends were not statistically significant (t-test, α = 0.05). 

 

In Fig. 6, we present the seasonal surface elevation changes in Resolute Bay. The seasonal results of the other sites can be 

found in Zhang et al. (2019). During a thaw season, the ground surface typically subsides progressively and reaches its 210 

lowest position at the end of season. However, at the Resolute Bay site, the surface elevation changes in the thaw seasons 

were irregular. The surface uplifted abnormally and significantly within the thaw seasons, for instance in 2003 and 2007. A 

similar phenomenon was also observed at a site near Yellowknife in Canada by Gruber (2019) using an inclinometer. This 

phenomenon could be due to the refreezing of soil moisture which migrated from the thawed active layer, or the swelling of 

soil when it became wet. However, we lack measurements of soil moisture and ice content to investigate the cause of the 215 

observed uplift. In addition to such abnormal changes, the elevation changes among the thaw seasons were inconsistent. 

Given the complexity of these seasonal elevation changes, we turn to investigate the interannual variability and linear trends 

of surface deformation in Resolute Bay. 
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5 Discussion  

In this section, we first interpret GPS-IR measured surface elevation changes in Resolute Bay, as they are the longest among 220 

the five sites. We then qualitatively study the linear trends of surface deformation at the five sites. We also discuss the 

possible error sources of these GPS-IR measurements, the limitations of using GPS-IR measurements in permafrost studies, 

and their capability in validating and calibrating space-borne InSAR observations. 

5.1 Interannual variability of end-of-thaw elevations in Resolute Bay 

Net seasonal subsidence is an effective indicator of the response of frozen ground to the atmosphere, as it mainly depends on 225 

the soil moisture content within the active layer and the heat from the atmosphere. But, as shown in Sect. 4 and Fig. 6, it is 

challenging to reliably obtain seasonal subsidence in Resolute Bay due to the irregularity and inconsistency of surface 

elevation changes in thaw seasons. As an alternative, we use the end-of-thaw-season surface elevations to investigate the 

frozen ground dynamics.  

 230 

The end-of-thaw elevation is determined as the mean value of the elevations at the last seven days of a thaw season, since the 

thawing front moves slowly at the end of thaw and the further surface deformation is limited. According to the Stefan 

equation, active layer thickness is approximately proportional to the square root of thaw index (Brown et al., 2000; Smith et 

al., 2009; French, 2017). Thaw index is represented by the degree days of thawing (DDT) derived by the accumulation of 

daily air temperatures above 0 °C till the end of thaw season. As surface subsidence is mainly caused by ice-melting within 235 

the active layer, we compare the end-of-thaw elevations to the square root of the annual thaw indices (Fig. 7). 

 

In Fig 7a, the end-of-thaw-season elevations and √𝐷𝐷𝑇 were highly negatively correlated between 2003 and 2012, whereas 

the end-of-thaw elevations were low with cool summers in 2013 and 2014. To further investigate their correlation, we draw a 

scatter plot of end-of-thaw-season elevations versus √𝐷𝐷𝑇  (Fig. 7b), but find that the linear line fitted poorly. After 240 

removing the measurements in 2013 and 2014, the 𝑅7 and Root Mean Square Error (RMSE) of the best linear fit improves 

significantly, from 0.24 to 0.83 and 2.57 cm to 1.19 cm, respectively (Fig. 7c).  

 

We postulate that the highly negative correlation between the end-of-thaw elevations and √𝐷𝐷𝑇 during 2003–2012 was due 

to thickening active layer. A larger DDT	indicates that more heat is available to penetrate into the deeper part of the frozen 245 

ground, leading to active layer thickening, more ice melting within the frozen ground, and thus larger subsidence and lower 

surface elevation. This assumption of thickening active layer during 2003–2012 is consistent with the borehole ground 

temperatures during 2008–2012 (Fig. 8). The ground temperatures showed that the thawing front (i.e., the 0 °C isotherm) 

deepened and exceeded 1 m depth in 2011. 

 250 
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However, in 2013 and 2014, the end-of-thaw elevations were low, even in the relatively cool summers (corresponding to low 

DDT). This is possibly due to the Markovian behavior of the active layer. Markovian behavior describes the reset of the 

active layer’s response to air temperature after an extremely warm or cold summer, and this new response regime will last 

till the next extreme thaw season (Nelson et al., 1998). In Resolute Bay, the year 2011 had the warmest summer with the 

DDT of 542.9 °C·day, more than 4 times larger than that in 2004 (132.3 °C·day). After 2011, the response of the active layer 255 

to the atmospheric forcing may have changed due to the changes in thermal properties of the active layer and ice content at 

the permafrost table. So, even with low DDT, the maximal thaw depths were still larger than expected, resulting in low end-

of-thaw-season surface elevations. Yet, ancillary data such as thermal properties, ice content, soil moisture, and thaw depth 

are needed to test these postulated changes in the active layer. 

5.2 Linear trends of surface deformation at the CACS sites 260 

The ground surface deformed differently among the five sites. In this subsection, we study the possible links between linear 

trends of surface deformation and air temperature, landcover, as well as ground ice near the permafrost table.  

 

We make basic statistics of the annual thaw indices during the study periods at the sites of Alert, Resolute Bay, and Repulse 

Bay (Table 3). All of these sites had warming thaw seasons, with trends of 9.35 °C·day yr-1 in Alert during 2012–2018 and 265 

8.17 °C·day yr-1 in Resolute Bay during 2003–2014, and 66.41 °C·day yr-1 in Repulse Bay during 2014–2019, respectively.  

 

The ground surface underwent subsidence with increasing DDT in Alert, Resolute Bay, and Repulse Bay. At these three 

sites, the surficial materials are sandy soil and barely vegetated (Table 2). Due to the lack of an insulating organic layer, bare 

soil facilitates the heat transfer between the atmosphere and the ground. When the climate was warming, the transient layer 270 

(i.e., the layer between the active layer and long-term permafrost table and subjected to freeze and thaw seasonally to 

centennially (Shur et al., 2005)) started to thaw with ground ice melting and surface subsidence, such as that seen in Alert, 

Resolute Bay, and Repulse Bay, even though they have low ice content in near-surface permafrost (Table 2).  

 

Liu and Larson (2018) obtained surface elevation changes during 2004–2015 at Barrow, Alaska by using GPS-IR, and found 275 

a subsidence trend of 0.26 ± 0.02 cm yr-1. During the same time span, the thaw season in Barrow also had a warming trend 

with 4.79 °C·day yr-1. The results of Liu and Larson (2018) are consistent with ours: warming thaw seasons lead to surface 

subsidence. These findings in Barrow and our sites indicate that permafrost in high latitudes were degrading and air 

temperature is the dominant driver.  
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5.3 Possible error sources of GPS-IR-measured surface deformation 280 

GPS-IR measurements of surface elevation changes might be affected by the surrounding environment (e.g., troposphere, 

vegetation, and soil moisture) and instruments (including antenna and monument). In this section, we discuss the impact of 

these variables on GPS-IR measurements and their magnitudes. 

 

GPS signals refract when they propagate through the troposphere, leading to changes of propagating velocity and direction. 285 

Such refraction effects change the geometry among the direct and reflected signals and the receiver antenna, then introduce 

bias to reflector height retrievals. Tropospheric bias mainly depends on the antenna height and atmospheric conditions at a 

given elevation angle (Williams and Nievinski, 2017). In our study, because (1) all sites are located in the Canadian Arctic 

characterized by a dry and cold climate, and (2) their antenna heights are ~ 2 m (Table 1), the tropospheric biases at these 

sites are expected to be limited. More quantitatively, we calculate the tropospheric biases at RESO in the thaw season in 290 

2014 by using the astronomical refraction model of Bennett (1982), and present them in Fig. S3. The magnitudes of 

tropospheric biases are ~1.6 cm and keep relatively steady during the thaw season. As the magnitudes of biases are 

comparable to the uncertainties of GPS-IR measurements and we focus on the temporal variations of reflector heights, it is 

not necessary to correct for them.  

 295 

Soil moisture also affects GPS-IR measurements of surface elevation changes through impacting phases of SNR series.  For 

any given SNR series, soil moisture has slightly different influence on the phase of each point, i.e., 𝜙 in equation (1) is also a 

function of elevation angle. Taking 𝜙 as a constant in practice introduces bias. Such bias is called compositional reflector 

height, as it manifests itself by a part of reflector height (Nievinski, 2013). Liu and Larson (2018) simulated the 

compositional height and found that they are less than 2 cm and their variation range is less than 1 cm, given a variation 300 

range of soil moisture between 15% and 40%.  In this study, the compositional heights and their variation range are expected 

to be limited, as the precipitation is light and limited due to the cold and dry polar climate. Moreover, as we focus on the 

temporal variations of reflector heights at interannual and multi-annual time scales, we expect negligible impact of 

compositional heights on our results and interpretation.  

 305 

Regarding the vegetation, at the study sites, the biomes are Arctic desert or tundra. The ground is barely or sparsely 

vegetated, and the vegetation is short enough, i.e., less than the wavelength of L-band GPS signals. The vegetation is 

approximately transparent for GPS signals. The impact of vegetation on GPS-IR measurements is therefore negligible.  

 

Antenna gain pattern also impacts GPS-IR measurements. As the GPS stations used in this study were installed originally for 310 

geodetic or ionospheric studies, the receiver antennas were designed to favor direct signals with high elevation angles and 

suppressing signals with low and negative elevation angles, by using asymmetric antenna gain patterns. During the data time 
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span, the antennas are not replaced. The impacts of antenna gain patterns can be regarded as system biases, and barely 

impact the GPS-IR results. 

 315 

As for the monuments of the identified CACS stations, their material is galvanized or stainless steel and aluminum. The 

coefficients of linear thermal expansion measured at 20 °C of steel and aluminum are 11~13 × 10-6 m·(m·K)-1 and 23.1 × 

10-6 m·(m·K)-1, respectively. Given a temperature variation range of 20 °C in thaw season, for a 2-m-high aluminum/steel 

monument, the magnitude of thermal expansion is less than 1 mm, at least one order of magnitude smaller than the elevation 

changes. The thermal expansion/contraction impact is ignorable for GPS-IR measurements. 320 

5.4 Limitations of GPS-IR measurements of surface deformation in permafrost studies 

GPS-IR measured surface deformation has relatively large uncertainties, whose magnitudes are on the order of a few 

centimeters (i.e., ~2 cm in Resolute Bay). The uncertainties are mainly caused by the rugged surface, presence of vegetation, 

and other unexpected disturbances. Such uncertainties make it difficult to study the daily changes of surface elevation based 

on GPS-IR measurements, and even the seasonal changes if their magnitudes are comparable to those of seasonal 325 

subsidence. Resolute Bay is such a case, where daily and seasonal elevation changes cannot be obtained reliably. However, 

12-years long measurements enable the interannual variability of end-of-thaw elevations and decadal linear trend to be 

obtained with high confidence.  

 

Data gaps exist in GPS observations due to instrumental problems. GPS-IR measurements before and after the gaps are 330 

contaminated by the bias introduced by the replacement of instruments. The data gaps and bias hinder the study of 

permafrost with long-term, continuous, and consistent GPS-IR measurements. 

 

The interpretation of GPS-IR measurements in permafrost areas needs ground observations, such as soil temperatures and 

moistures. However, these data are usually not available at GPS sites, as they were installed initially for tectonic and 335 

ionospheric research. Moreover, surface condition records are often brief or absent. This being the case, we usually only 

have GPS-IR measurements, and lack ancillary data such as ground temperature or soil moisture to help interpret the GPS-IR 

results.  

 

These limitations indicate that, in the future, better location choices and maintenance of GPS stations and other ground 340 

measurement sensors are needed to exploit the full potential of GPS-IR observations in permafrost studies. 

5.5 Potential of linking GPS-IR measurements to large-scale mapping from InSAR 

Both GPS-IR and InSAR can measure surface elevation changes. In Table 4, we summarize their typical temporal and spatial 

samplings rates, advantages, and limitations. As we mentioned in Sect. 1, GPS-IR measurements are at daily intervals and 
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local scales. In contrast, space-borne InSAR observations have much coarser temporal resolutions (the shortest to date being 345 

6 days) and larger spatial scales (covering tens of kilometers), and also require a reference point with known surface 

deformation or assumed stable. These characteristics make GPS-IR and InSAR measurements complementary to each other. 

GPS-IR measurements could be used to overcome the limitations of InSAR observations. In particular, as GPS-IR 

measurements are continuously and at daily intervals over a few years to decades, they can provide baseline information for 

reference and can validate InSAR observations. 350 

 

Several major research programs such as Arctic-Boreal Vulnerability Experiment (ABoVE), Next-Generation Ecosystem 

Experiments (NGEE), and European Space Agency Permafrost Climate Change Initiative (CCI) use remote sensing 

elevation changes (e.g., InSAR) to investigate permafrost dynamics. GPS-IR measurements can be used to calibrate and 

validate them and provide baseline information for historical, current, and future remote sensing measurements from air and 355 

space.  

6 Conclusions 

In this study, for the first time, we implement a framework for assessing useful GPS stations for GPS-IR studies in 

permafrost areas, and identify 12 useful GPS stations extensively distributed across the Canadian permafrost areas. Our 

framework can be applied to GPS networks in other regions and nations to identify more usable GPS stations. Our identified 360 

useful stations and the potential ones are also complementary to existing monitoring networks such as the CALM and GTN-

P programs.  

 

This study is also the first one using multiple GPS stations to study permafrost by GPS-IR. At the 5 identified CACS sites, 

we obtain their time series of elevation changes. The ground surface subsided in Alert by 0.61 ± 0.04 cm yr-1 during 2012–365 

2018, in Resolute Bay by 0.70 ± 0.02 cm yr-1 during 2003–2014, and in Repulse Bay by 0.26 ± 0.05 cm yr-1 during 2014–

2019. At the other two sites of Baker Lake and Iqaluit, the linear trends are not statistically significant. The trends at Alert, 

Resolute Bay, and Repulse Bay are negatively correlated to those of annual thaw indices, i.e., warming thaw seasons lead to 

surface subsidence. This finding indicates that frozen ground at the study sites is sensitive to air temperature changes. 

 370 

In Resolute Bay, we also find a highly negative correlation between the end-of-thaw elevations and the square-root of thaw 

indices during 2003–2012 and suspect that it was possibly due to active layer thickening under the warming thaw seasons. 

And we also find that the end-of-thaw elevations were low even with cool summers in 2013 and 2014. Continuous and daily 

measurements reveal the complexity of frozen ground dynamics, i.e., the irregularity and inconsistency of seasonal surface 

elevation changes and the summer heave in Resolute Bay. To further investigate the dynamics and mechanisms of frozen 375 

ground changes, it is important to measure other variables such as ground temperature, soil moisture, and ground ice content. 
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Our discussion on error sources and limits of GPS-IR measurements recommends that better location choice and 

maintenance of GPS stations should be conducted to fully use the potential of those stations in frozen ground. The multi-

year, continuous, daily GPS-IR measurements with intermediate spatial coverages can validate or calibrate remote sensing 380 

observations of elevation changes in permafrost areas. 
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Table 1. Basic information of the identified GPS stations 

ID Site name 
GPS 

network 
Lat & Lon (°) 

Permafrost 

zonation 

GPS 

antenna 

Monument  

Monument 

foundation 

type and 

depth 

Data time 

span 

Azimuth 

range 

used by 

GPS-IR 

Antenna 

height 

(m) 

Footprint 

radius 

(m) 

ALRT Alert 

CACS 

82.49, -62.34 Continuous 
Galvanized 

steel pipe 

Bedrock,  

6 m 

2012–

2018 

270°–

360° 
1.9 61 

RESO 
Resolute 

Bay 
74.69, -94.89 Continuous Steel pipe 

Bedrock,  

3 m 

2003–

2014 
0°–90° 2.3 67 

REPL 
Repulse 

Bay 
66.52, -86.23 Continuous 

Aluminum 

pillar 

Bedrock,  

1.5 m 

2014–

2019 

150°–

250° 
2.0 61 

BAKE Baker Lake 64.32, -96.00 Continuous 
Stainless 

steel pillar 

Bedrock,  

N.A. 

2010–

2017 
0°–90° 1.2 49 

IQAL Iqaluit 63.76, -68.51 Continuous 
Aluminum 

cylinder 

Bedrock,  

1 m 

2010–

2019 

30°–

120° 
1.7 57 

PONC Pond Inlet 

CHAIN 

72.69, -77.96 Continuous 

Mounted 

on 

buildings 

N.A. 

2008–

2018  

150°–

240° 
4.5 102 

HALC Hall Beach 68.77, -81.26 Continuous 
2008– 

2018  

180°–

360° 
3.7 90 

IQAC Iqaluit 63.74, -68.54 Continuous 
2008–

2018  

200°–

320° 
4.0  94 

RANC 
Rankin 

Inlet 
62.82, -92.11 Continuous 

2014–

2018  

300°–

150° 
3.8  91 

FSIC 
Fort 

Simpson 
61.76, -121.23 

Discontinu

ous 

2014–

2018  

150°–

330° 
3.9  93 

FSMC Fort Smith 60.03, -111.93 Sporadic 
2014–

2018  

30°–

120° 
3.9  93 

SANC Sanikiluaq 56.54, -79.23 
Discontinu

ous 

2008–

2018  

135°–

225° 
3.4  85 
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Table 2. Regional background of the study sites 515 
 

Canadian Forces 

Station Alert 

Resolute Bay Repulse Bay Baker Lake Iqaluit 

Biome Polar Desert Polar Desert Tundra Tundra Tundra 

Landcovera  Mainly silts, 

sands, and 

shattered rocks 

filled with ice, 

ranging from 2.4 

to 4 m thick 

(Taylor, 1982) 

Rounded or sub-

angular gravels 

and shelly and 

fine-grained sands 

(Cruishank, 1983) 

Sands and silts 

ranging from 1 to 

10 m thick 

(Dredge, 1994) 

Coarse gravels 

and sands with 

low ice contents 

underneath a peat 

layer (Throop et 

al., 2010) 

A thin till veneer 

with fairly well-

developed soil, 

with sparse 

vegetation 

(Throop et al., 

2010) 

Ground ice 

content of near-

surface 

permafrostb 

Nonee Negligible wedge 

ice and low 

segregated ice 

None Negligible wedge 

and segregated ice 

Low wedge, 

segregated, and 

relict ice 

MAATc (°C) -18.0 -15.7 -12.1 -11.8 -9.8 

MAGTd (°C) -11.1 – -14.4 

(2007–2011) 

-11.9 

(2008–2012) 

-8.2 

(2009–2013) 

-7.9 

(2006–2007) 

-5.6 – -7.1 

(2003–2004 & 

2011–2012) 

a. The landcover information is for the areas around the boreholes, which are close to the identified GPS stations. 

b. The ground ice contents are surficial material unit-based, which are simulated with surficial geology, deglaciation, 

paleo-vegetation, glacial lake and marine limits, and modern permafrost distribution (O’Neill et al., 2019). 

c. MAAT refers to Mean Annual Air Temperature during 1981–2010 (Environment Canada, 

http://climate.weather.gc.ca/climate_normals/index_e.html). 520 

d. MAGT refers to Mean Annual Ground Temperature at or near the depth of zero annual amplitude, except Repulse 

Bay (Smith et al., 2013). MAGT at Repulse Bay was at the depth of 15 m (Ednie and Smith, 2015). 

e. Note that it is contrary to the field observations (Taylor, 1982) that found ground ice exists in the active layer and 

near-surface permafrost in Alert. 
 525 
 

 

 

 

 530 
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Table 3. Basic statistics of annual DDT at Alert, Resolute Bay, and Repulse Bay 

Site  Data time span  Mean (°C·day) Trend (°C·day yr-1) Trend of surface 

deformationa (cm yr-1) 

Alert 2012–2018 255.85 9.35 -0.61 ± 0.04 

Resolute Bay 2003–2014 319.03 8.17 -0.70 ± 0.02 

Repulse Bay 2014–2019 518.63 66.41 -0.26 ± 0.05 

a. Negative means subsidence, vice versa. 

 

 
Table 4. Comparing GPS-IR and space-borne InSAR for measuring surface elevation changes in permafrost areas 535 

 GPS-IR Space-borne InSAR 

Temporal sampling daily 6 days to months 

Spatial coverage Local, site-specific (about 1000 m2) Large scale (typically tens to hundreds 

of kilometers) 

Need reference of known deformation No Yes 

Advantages  Daily and continuous; 

Free of reference; 

Free of solid earth movement 

High accuracy (The magnitude of 

uncertainty is on the order of a few 

millimeters) 

Limitations  Surface should be relatively flat and 

smooth. 

Coarse temporal resolution; 

Loss of coherence; 

Requiring a reference point. 
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Figure 1: Locations of continuously operating and open-data GPS stations in the permafrost areas north of 50°N. The permafrost 

zonation, represented by various colors, is based on Brown et al. (1997).  540 
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Figure 2: Schematic diagram showing the geometry of the GPS antenna, GPS signals, and the ground surface in permafrost area. 

𝑯, or reflector height, is the vertical distance between the GPS antenna and the surface, and 𝒆 is the satellite elevation angle. 
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Figure 3: Locations of GPS stations in the Canadian permafrost areas. The identified stations are labeled by their four-character 545 
IDs. 
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Figure 4: Ground photos of the identified CACS GPS stations. Source: https://webapp.geod.nrcan.gc.ca/geod/data-donnees/cacs-

scca.php?locale=en 550 
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Figure 5: Time series and the best linear fit dashed lines of surface elevation changes in thaw seasons at the five CACS sites. For 

clarity, we do not show the error bars. For the y-axis, ‘relative’ means that the presented elevation changes are referenced to the 

mean value of the entire records at each site. 555 
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Figure 6: Surface elevation changes in each thaw season in Resolute Bay during 2003–2014. Red dots denote the measurements in 

the thaw seasons. Grey error bars denote the uncertainties. The mean value of the measurements has been removed. The shorter 

thaw season in 2013 was due to the late thawing onset on DOY 181 and early freezing onset on DOY 227, estimated from air 

temperature and snow depth records. 560 
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Figure 7: (a) Time series of the end-of-thaw-season elevations and √𝑫𝑫𝑻 during 2003–2014. The right vertical axis for √𝑫𝑫𝑻 has 

been reversed to show the correlation between √𝑫𝑫𝑻  and the end-of-thaw elevations. (b) Scatter plots of the end-of-thaw 

elevations versus √𝑫𝑫𝑻. The red dashed line is the best linear fit line. (c) Scatter plot and the best linear fit line of the end-of-

thaw-season elevations vs √𝑫𝑫𝑻 after removing the measurements of 2013 and 2014. 565 
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Figure 8: Time series of monthly ground temperatures at depths of 0.5 m, 1.0 m, and 1.5 m from June 2008 to September 2012 

(Ednie and Smith, 2015). In August 2011, the ground temperature at 1.0 m depth was above 0 °C. 
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