
“Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals” by 
Nick Rutter et al.  

We would like to thank the editor and the two anonymous referees for taking their time to read and 
comment on our original manuscript. We now provide a response to each of these comments. To 
help differentiate our responses, the text of the reviewer’s comments are in black font and our 
responses are in blue. 

Anonymous Referee #1  

General comments: The authors present a well-written and well-reasoned study into the effects of 
snow microstructure on Ku-band SWE retrieval in sub-Arctic and Arctic landscapes.  

Thank you for your overall positive judgement on this manuscript.  

Please define the acronyms SWE and SSA at their first use in the Introduction.  

Done. 

Detailed comments  

Figure 5: What are the “histograms of individual land surface types (red)”? Please clarify. These seem 
not to be discussed in the text either.  

Figure 5 caption was previously: “Figure 5: Snow depths (limited to 2m) in TVC from airborne lidar: a) 
to c) histograms of individual land surface types (red) overlaid on the histogram of all snow depths 
(blue); d) distributions of snow depth by land surface type: blue box (inter-quartile range), red line 
(median), whiskers (dashed lines) extend from the end of each box to 1.5 times the interquartile 
range, outliers beyond this range are omitted.” 

Changed to: “Figure 5: Snow depths (limited to 2m) in TVC from airborne lidar: a) to c) histograms of 
three topographically delimited subdomains of the TVC catchment (red) overlaid on the histogram of 
all snow depths (blue); d) distributions of snow depth by land surface type: blue box (inter-quartile 
range), red line (median), whiskers (dashed lines) extend from the end of each box to 1.5 times the 
interquartile range, outliers beyond this range are omitted.” 

As topography (i.e. slope angle) has strong control on snow depth in tundra environments, linking 
the location of the trenches and pits to the distribution of different topographically delimited 
subdomains is important to illustrate the representative nature of the measurements across the 
whole TVC catchment, as well as the wider Arctic tundra environment. These are already discussed 
in the results section: “Figure 5 compares statistical distributions of snow depths from lidar in three 
topographically delimited subdomains (Figure 1: flat upper plateau, slope, flat valley bottom) of the 
TVC catchment. Median snow depths were very similar (0.60-0.65 m) across all subdomains. The 
inter-quartile range of snow depths on slopes was largest, reflecting enhanced drift processes that 
preferentially redistributed SWE to wind-sheltered areas of sloping terrain. However, similarity in 
frequencies of snow depths greater than 0.9 m between flat upper plateau and sloped subdomains 
suggested preferential SWE deposition also occurred over relatively flat (<5°) terrain, in addition to 
drifts in leeward slopes aligned perpendicular to prevailing north-westerly winds (King et al., 2018). 
This is of importance as flat upland plateau, where the majority of trenches and pits were located, 
was the areally dominant subdomain (66% of the total TVC lidar coverage in contrast to 19% slopes 
and 8% flat valley bottom). Consequently, field measurements well represented both the range and 
frequency of the total TVC lidar snow distribution. This type of exposed, flat, largely unforested 



terrain is representative of pan-Arctic tundra environments, allowing potential for implications to be 
drawn beyond TVC.” 

P7, L11: What is a layer “entity”? Please define/describe. Their number is indicated in Table 1, 
suggesting that they are a significant element; however, they do not seem to be discussed in the 
text.  

Layer entities are currently defined in the text as follows: “Thickness of tundra snowpack layers was 
spatially variable and frequently laterally discontinuous. Layers expand and contract horizontally, 
often creating several different discrete entities of the same layer across a trench face (Figure 6).” 

The use of new expression (‘entities’) defined here allows the discontinuous nature of the layering in 
tundra snowpack to be expressed. For example, the 50 m trench (trench 4) will not have 36 layers as 
traditionally conceptualised in a 1-D snow pit profile. However, the horizontally discontinuous 
nature of the layers can be expressed by the number of coherent entities (36) of a smaller number of 
layers present in the tundra snowpack.  

P9, L3: Reference to Figures 9x should be 10x. P9, L11: Should this be “. . .Figure 10 d and f). . .”? 
Also, should Figure 10b have a white line?  

Figure cross-references have been corrected. There is no white line in Fig 10b as the retrievals are 
uniformly perfect for the range shown. 

P11, L23: Although the use of single median values for density is reasonable, and density is not the 
focus of the paper, please comment on the relative effects that density may have on SWE retrieval 
error. That is, what would Figures 10b,d,f look like if density were to be perturbed within their 
interquartile ranges?  

As long as the density is known the results are not materially different, hence this isn’t included in 
the manuscript. However, the two figures below show mean density +/- one standard deviation. For 
the mean density plus one standard deviation, the SS / WS / DH densities are 195, 367, 303 kg m-3 
respectively, whereas for the mean density minus one standard deviation the densities are 53, 259, 
209 kg m-3. 



Mean density +1 standard deviation. 



 
Mean density -1 standard deviation. 

In the Discussion, please also comment on the likely influence that ice lenses (such as the one 
mentioned on Page 6, Line 24 for 2017/18) may have on SWE retrieval error. 

While there is plenty in the literature on the influence of ice lenses on passive microwave emission, 
there are very few published studies that include the impact of ice lenses on active microwave 
backscatter (e.g. Drinkwater et al., 2001: https://doi.org/10.1029/2001JD900107; Rott et al., 1993: 
https://doi.org/10.3189/S0260305500013070), and no data sets that we are aware of contain 
sufficient microstructural data to be able to evaluate the simulation of ice lenses in SMRT. Any 
impact of ice lenses on SWE retrieval will depend on the retrieval mitigation strategy and the focus 
of this paper is to demonstrate how the new dataset may be used rather than define a retrieval 
framework so it would be too speculative to comment on a likely influence on SWE retrieval. 
However, there is a clear need for field observations to test this and we have amended the following 
text in the methods section to reflect this: “While ice lenses were occasionally present in the 2018 
snowpack and volumetric field samples of snow density and SSA contained sections of ice lenses, 
their impact on backscatter was not explicitly modelled by SMRT. There is a need for detailed field 



measurement of ice lenses coincident with radar measurements as a priority for future SMRT 
evaluation. Ice lenses may be simulated in SMRT in terms of dielectric discontinuities, although 
coherent effects as a result of ice lens thickness are yet to be included.  

 

Anonymous Referee #2 

The authors present a really nice study of the effects of horizontal spatial variability of snow 
microstructure on retrieval errors. The study is in two parts: first a detailed description of snowpack 
properties measured in Trail Valley Creek, and second a synthetic retrieval experiment, where 
synthetic radar observations are generated using a radiative transfer model forced by realistic snow 
stratigraphy, and then those synthetic observations are processed with a retrieval algorithm. They 
show that SSA needs to be known quite precisely a priori in order to hit the target accuracy 
requirement.  

The first part is wonderful: it shows in depth the spatial variability of observed properties, and 
occupies nearly all of the figures and tables. The second part I found hard to understand, so am 
asking for clarifications. To the extent I understand it, I think it is a critical contribution to this field!  

In such studies, the details of the synthetic experiment design can make a lot of difference. After 
multiple re-reads, I had some trouble piecing together what exactly was done. All of my minor 
comments below are requests for clarification.  

Thank you for your very positive judgement on the quality and scientific value of this manuscript.  

My understanding is that this study performs a set of idealized depth retrieval experiments in order 
to isolate the impact of a single phenomenon (spatial variability of SSA in a single layer) on retrieval 
accuracy. It assumes (in my understanding) 1) perfect radar observations; 2) perfect knowledge of 
snow density; 3) perfect knowledge of background (i.e. soil and other substrate properties) 4) 
perfect ability to transform SSA into exponential autocorrelation length, and 5) perfect knowledge of 
SSA in two of the three layers in the snowpack. My understanding is that only depth is estimated by 
the retrieval, then transformed to SWE; SSA is assumed to be given. The study then systematically 
varies a spatially homogenous SSA value provided as a constant to the retrieval, and estimates 
depth, transforms to SWE, in order to compute the error metrics shown in Figure 10.  

The reviewer is correct in their interpretation, and the following paragraph has been added to the 
end of the methodology section: 

“In summary, the methodology was used to isolate the impact of the spatial variability of SSA in a 
single layer on retrieval accuracy from all other sources of retrieval error. Therefore, the following 
was assumed: 1) perfect radar observations; 2) perfect knowledge of snow layer densities; 3) perfect 
knowledge of the soil; 4) correct transformation of SSA into exponential autocorrelation length, and 
5) perfect knowledge of SSA in all but one layer in the snowpack. Single (homogenous) values were 
used to represent the unknown SSA of the remaining layer. Only depth is estimated by the retrieval, 
which is then transformed to SWE via the known densities to compute the SWE retrieval error.” 

Anyway please clarify these minor points! I look forward to reading a revised version. Minor 
Comments  

1. Page 5, line 11. Please clarify somewhere that density is assumed to be known, i.e. it is not being 
estimated by the retrieval algorithm, and you are giving the radar simulations for the “retrieval 
scene” the true density.  



We have now added the sentence: “Median observed layer densities used for the truth simulations 
were also used for the retrieval backscatter and SWE calculations.” 

2. Page 5, line 11. Please clarify somewhere that SSA is treated as a specified input in the retrieval, if 
that is the case. I’m assuming that it is treated as “fixed” in the retrieval, in other words, you 
systematically specify a range of values, but the retrieval algorithm is not actually trying to estimate 
it. I’m also assuming that for each “layer” experiment, SSA in one layer is treated as spatially variable 
in the truth (using eqn 1), and is varied systematically in the retrieval scene (as shown in Figure 10), 
but that the other two layers are not only treated as spatially homogenous in the truth, but are also 
the “retrieval” simulations are given the true value of SSA. Please clarify this! I’ve read through a 
number of times but cannot find that information.  

We have now added the sentences: “For the spatially constant layers, the same SSA was used in 
both truth and retrieval simulations. For the layer with spatially varying SSA, a range of values were 
used to represent an unknown homogeneous SSA. As such, the retrieval does not attempt to 
retrieve SSA directly, but comparisons of the SWE retrieval errors for a given true snow depth allows 
selection of the SSA that best represents the spatially variable truth.” 

3. Page 5, line 13-14. “Up to three layers were assumed within the snowpack”. Can you reword this? 
I found it really confusing.  

This is really a function of the observed snow properties presented in the Results, but the following 
clarification has been added: “Three layers were assumed within the snowpack for snow up to 0.7m 
in depth: depth hoar (DH), wind slab (WS) and surface snow (SS), with layer thickness dependent on 
total snow depth based on relationships derived from snow trenches. For deeper snow, generally 
only wind slab and depth hoar layers were found (see section 3.1), so only two layers were simulated 
for snow depths greater than 0.7m.”  

4. Page 5, line 16. “Horizontally homogenous snow was assumed for the retrieval”. Please just clarify 
more explicitly here that you consider horizontal spatial variability in the truth, but horizontal spatial 
homogeneity in the retrieval.  

We have re-worded this as: “Whilst spatial variation in SSA was represented in one layer in the truth 
simulations, horizontally homogeneous snow was assumed for all layers in the retrieval, with snow 
depth retrieved as a function of the estimated snow microstructure.” 

5. Page 5, line 20-21. Please say why you chose 5 intervals? Readers may assume this maps to 
“landforms” described in page 4, lines 27-29. I assume 5 is more or less arbitrary, or minimum 
needed to capture spatial observed distributions, which is fine, but please clarify. Also, this is a great 
chance to explicitly say that the set of 5 simulations represent spatial variability in that the 
frequency and weights represent the proportion of a scene that might take each SSA value.  

We have added the following sentence to improve clarity: “Five intervals were chosen to describe 
the SSA distribution adequately whilst maintaining simplicity.” 

and 

“Aggregated together, the set of 5 simulations represent spatial variability in that the frequency and 
weights represent the proportion of a scene that might take each SSA value.” 

6. Page 5, line 21. “across the observed range”. This is referring to the in situ datasets of SSA, 
correct? But readers could easily get confused as this is how you are computing the synthetic radar 
observation. Please clarify the language?  



Changed to: “across the observed SSA range”. 

7. Page 5, line 30-32. I read this section a number of times before I understood that there were a 
series of retrieval experiments performed, in which the SSA in one of the three snowpack layers was 
allowed to be spatially variable in the truth. You might say that Figure 3 represents an example of 
the windslab layer being spatially variable in the truth, and that a-e represent the five histogram 
classes.  

The following sentence has been added: “A set of three experiments were performed that 
considered spatial variability in SSA in each of the DH, WS and SS layers in turn.” 

8. Page 5, line 30-31. I don’t understand what this means. Please clarify exactly how the retrieval is 
performed. Is it essentially an iterative, Newton-Raphson type approach, that requires a first guess? 
And please clarify what “first guess” on line 31 means in this context. This sentence makes me think 
that for identical experiment parameters (i.e. for the same layer to be studied and same depth) you 
repeatedly changed the arbitrary first guess to the iterative algorithm, to see whether it is more or 
less independent from the first guess. I don’t think this is what was done, however, based on the 
rest of the paper, so please clarify!  

The reviewer has perfectly captured our internal discussion of use of jargon ‘a priori’ vs potentially 
misleading ‘first guess’! Please see response to reviewer #2 question 2. This has been rewritten as 
‘unknown homogeneous SSA’, and now referred to as ‘unknown snow microstructural 
characteristics’ elsewhere in the document. 

9. Page 6, line 8. “A perfect retrieval was assumed possible (negligible noise)”. This may be confusing 
for readers, since the paper is based on diagnosing imperfect retrievals, and because there are many 
sources of noise. Do you just mean that you assume perfect measurement of radar backscatter is 
possible, and thus you do not perturb the synthetic observations with white noise?  

We have changed this to be more explicit: “observations were assumed (i.e. no noise added to truth 
backscatter)”. 

10. Page 6, line 14. Writing “CF(SWE)” implies that the cost function has one independent variable: 
snow water equivalent. At a mechanistic level, I don’t think that squares with the paper. It seems to 
me that there are two inputs that are varied in the cost function in this study: depth, and SSA. I’m 
assuming that density is treated as known.  

Equation 3 has been rewritten to use CF(d, SSA) 

11. Page 6 line 16 “the estimated microstructure is a function of the SSA”. So, a specified SSA value is 
passed to a function f(SSA), and then that is used to estimate exponential autocorrelation length? If 
that’s correct, please state it. However, to keep this simple, I think you could note somewhere 
exactly how SSA is transformed to correlation length, and then when you write the cost function just 
have the input be SSA.  

The following sentence has been added: “For these simulations the exponential autocorrelation 
length used in the SMRT simulations (both truth and retrieval) is calculated with equations 5 and 10 
of Mätzler (2002).” 

12. Page 8, line 30. “Notable differences . . . in different layers”. Can you be more specific than 
“different layers”? I assume you’re referring to the three layers assumed in the snowpack: depth 
hoar, wind slab, and surface snow.  



Previously: “Notable differences between distributions of SSA and density in different snowpack 
layers allowed parametrisation of snowpack microstructure in the SMRT model” 

Changed to: “Notable differences between distributions of SSA and density in surface snow, wind 
slab and depth hoar layers allowed parametrisation of snowpack microstructure in the SMRT model” 

13. I don’t understand the equation in Table 1. If you plug in a depth of anything greater than ∼0.7 
cm, you get a negative number and the surface snow percentage comes out as zero. Is depth 
intended to be in meters there? Additionally, can I recommend laying out the equation in the paper, 
and referencing it in the table? It’s a little confusing with the way it’s formatted in the table. 

Thank you for spotting this. The equation in the table has been reformatted to: 

∆𝑧𝑧𝑆𝑆𝑆𝑆 = �−44.7269 𝑑𝑑 + 30.1551, 𝑑𝑑 < 0.7
0, 𝑑𝑑 ≥ 0.7 
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Abstract 

Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water 15 

equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer 

thickness (9000 vertical profiles across 9 trenches) collected over two winters at Trail Valley Creek, NWT, Canada, were 

applied in synthetic radiative transfer experiments. This allowed robust assessment of the impact of estimation accuracy of 

unknown snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the 

shortest horizontal distances, controlled by subnivean vegetation and topography, while variability of total snowpack thickness 20 

approximated that of wind slab layers. Mean horizontal correlation lengths of layer thickness were sub-metre for all layers. 

Depth hoar was consistently ~30% of total depth, and with increasing total depth the proportion of wind slab increased at the 

expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a 

single median value represented density and specific surface area (SSA) of each layer well. Spatial variability in microstructure 

of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7% under the median value was 25 

needed to accurately retrieve SWE. In shallow snowpacks <0.6m, depth hoar SSA estimates of ±5-10% around the optimal 

retrieval SSA allowed SWE retrievals within a tolerance of ±30 mm. Where snowpacks were deeper than ~30cm, accurate 

values of representative SSA for depth hoar became critical as retrieval errors were exceeded if the median depth hoar SSA 

was applied. 

 30 
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1 Introduction 

Seasonally snow covered, non-glaciated, Arctic terrestrial environments north of tree line cover approximately 5.05 x 106 km2 

(Walker et al., 2005). Layering of snow, where distinct differences in snow properties exists between vertically adjacent strata 

(Fierz et al., 2009), is spatially heterogeneous in Arctic regions with a dense wind slab layer overlaying less dense depth hoar 

(Benson and Sturm, 1993- see Fig.1; Derksen et al., 2009). As depth hoar and wind slab have strongly diverging microwave 5 

scattering properties (Hall et al., 1991), the relative proportion of each strongly influences Ku-band radar backscatter (Yueh et 

al., 2009; King et al., 2015; King et al., 2018). Knowledge of how layers vary within Arctic snowpacks is therefore critical to 

the assessment of uncertainty in radar-based retrievals of snow water equivalent and forward models of snow radiative transfer. 

Subnivean topography, wind redistribution and vertical thermal gradients dominate the formation of layers in Arctic snowpacks 

(Benson and Sturm, 1993; Sturm and Benson, 2004). Grassy tussocks are common in tundra environments, allowing early 10 

winter snowfall to collect in wind-protected hollows between tussock mounds. Strong thermal gradients in shallow early season 

snowpacks cause extreme thermal metamorphism required to initiate growth of large depth hoar crystals and chains (Sturm et 

al., 1997). Growth of depth hoar in this lowest layer of the snowpack then continues throughout the winter, usually more so 

than in any other snowpack layer as it is subject to strong thermal gradients for the longest period of time. Subsequent snowfall 

events throughout the winter contribute to the development of high density layers of wind-compacted snow crystals through 15 

aeolian-driven redistribution (Derksen et al., 2014). These wind-compacted layers become prominent when the total snow 

depth exceeds the height of the tussocks and the snow surface is fully exposed to winds. Tundra shrubs have a similar influence 

on snow catchment and metamorphism; reducing local wind velocities, providing shelter for early season snow deposition 

which favours development of depth hoar (Sturm et al., 2001). 

Highly heterogeneous microstructural properties of snowpacks are problematic for retrieval of snow water equivalent (SWE) 20 

via remote sensing. While passive microwave remote sensing historically has provided estimates of global SWE distributions 

(Kelly, 2009) much uncertainty exists, largely due to the impact of seasonal snow microstructural evolution on microwave 

scattering in SWE retrieval models (e.g. Derksen et al., 2014). However, recent experimental work using Ku-band radar 

suggests using two frequencies, each with different sensitivities to wind slab and depth hoar, may mitigate this primary source 

of uncertainty (King et al., 2018; Lemmetyinen et al., 2018). In order to apply this two-frequency approach in a distributed 25 

manner, we need an understanding of layer length scales; horizontal distances over which the physical properties of each layer 

decouple and become statistically uncorrelated to each other. The spatial scales of interest depend on the application. For SWE 

distribution within tundra catchments, it is critical to understand layer variability at the landscape scale (10-1000 m), where 

different topographic units (e.g. plateau, slope and valley) are subject to different snowdrift, scour and sublimation processes. 

Understanding this resolution of landscape scale variability in snow properties (layers, density and microstructure) is 30 

particularly relevant to future active microwave satellite mission concepts, as well as distributed hydrological modelling which 

use meteorological inputs from high-resolution numerical weather prediction models. While the range of spatial variability in 

snowpack layering and snowpack properties can be estimated from multiple one-dimensional profiles distributed throughout 
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a catchment, this alone will not adequately describe variability in horizontal correlation length scales of snowpack properties. 

Knowing how these correlation length scales change between different landscape topographic units can help upscale centimetre 

scale field measurements of snow properties characterising spatial uncertainty in the statistical distributions of parameters with 

strongly different microwave scattering capabilities. Such statistical distributions could then be used in a radiative transfer 

model, such as the recently developed Snow Microwave Radiative Transfer model (SMRT) (Picard et al., 2018), to address 5 

how accurately the information on snowpack properties needs to be known to inform a viable SWE retrieval. Consequently, 

for the first time, this opens up the potential to explore how variability in snow layers might impact radar backscatter and 

retrievals of SWE from backscatter; to do so this study will: 

1. Quantify the spatial variability of snow depth and layer thickness for surface snow, wind slab and depth hoar within 

the Trail Valley Creek catchment. 10 

2. Determine representative snow microstructural parameters, specifically specific surface area (SSA) and density, 

and their associated variability for individual tundra snowpack layers. 

3. Use these relationships to construct a series of synthetic snowpacks with a realistic range of parameters to quantify 

the impact of spatial uncertainty in snow microstructural parameters on SWE retrieval accuracy from radar backscatter 

at two frequencies (13.4 and 17.2 GHz) with SMRT. 15 

2 Methods 

2.1 Field data 

Field data presented in this study were collected between 4-9 April 2013 and 14-22 March 2018 within the research basin of 

Trail Valley Creek (TVC), NWT, Canada (68°44'N, 133°33'W) located at the southern edge of the Arctic tundra. 

Measurements of snow microstructure were made mainly on graminoid tundra, which dominates the land cover, as well as in 20 

patches of taller shrubs (willow or alder) found on south facing slopes and in proximity to drainage channels and water features 

(Marsh et al., 2010). Snow pit and snow trench locations (Figure 1) were focussed on gently undulating (<5° slope angle) 

upper tundra areas that were exposed to high winds, while also incorporating some slope and valley bottom areas, 

representative of more sheltered areas in the catchment. Hourly air temperatures were measured throughout both winters to 

provide temporal context of freeze-up, mid-winter melt events and snow melt onset. 25 

2.1.1 Snowpack properties 

To investigate the spatial variability of snowpack layering within the snowpack at TVC, nine snow trenches each ranging in 

length from 5 m to 50 m were excavated in 2013. Of the 9 snow trenches, one 50 m (trench 4) and six 5 m trenches were 

located in gently undulating upper tundra plateau areas, while two 5 m trenches (trench 6 and 7) were located within valley 

bottoms (Figure 1). Following the methods of Tape et al. (2010), at each trench, near infrared (NIR) photography was used to 30 

quantify two-dimensional changes in snowpack layering. The positions of all layer boundaries were subsequently geolocated 
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at 1 cm resolution throughout the length of each trench (Watts, 2015); a 5m trench therefore provides 500 vertical profiles of 

snowpack layering. Within each 5 m trench section (including ten 5 m sections of the 50 m trench), measurements of density 

and specific surface area (SSA) were made in a single vertical profile and subsequently assigned to individual layers, which 

were assessed through visual inspection and hardness. SSA was measured using both an InfraRed Integrating Sphere (IRIS) 

(Montpetit et al., 2012) for the trenches and pits in 2013 and 2018, and an A2Photonics IceCube measurement system for the 5 

pits in 2018; both measurement systems followed principles presented in Gallet et al. (2009). Layers were often discontinuous 

due to the spatial variability of subnivean topography and aeolian processes. One-dimensional vertical profiles of snow 

properties, in combination with inspection of two-dimensional NIR imagery, allowed individual layers to be manually 

classified into one of three microstructure types: surface snow (SS), wind slab (WS), or depth hoar (DH) (Figure 2). While the 

surface snow layer is often of low density (<100 kg m-3) and dominated by decomposing and fragmented precipitation particles, 10 

surface snow may have been subject to metamorphism or melt, creating rounded grains and melt forms which can increase the 

layer density (100 – 300 kg m-3). Depth hoar and wind slab layer properties followed the classifications of Fierz et al. (2009). 

Spatial variability of layer thicknesses was assessed using uni-directional semi-variogram to estimate correlation length scales 

of layer thicknesses; horizontal distances over which the thickness of a layer along a trench becomes statistically uncorrelated. 

The range to sill of a semi-variogram, using a stable bounded fitting model, was used to quantify this distance for each layer 15 

(SS, WS, DH) in all trenches. 

In addition to trenches, measurements of the same snow properties were made in 85 snow pits at 54 locations throughout TVC, 

where each in situ snow measurement was attributed to one of three layers. Whilst only trench data were used in the semi-

variogram analysis, data from the trenches and pits in 2013 and the pits in 2018 were combined to determine layer thickness 

as a function of snow depth and the microstructural properties of the snow within those layers. 20 

 

2.1.2 Land Surface Slope Classification 

To classify the surface topography of TVC by slope position and landform category (Figure 1) a Topographic Position Index 

(TPI) was calculated following the methods of Weiss (2001). A 1 m resolution digital elevation model (DEM) was used, 

created during snow-free conditions in August 2008 (Hopkinson et al., 2011), with an Optech ALTM 3100 lidar. The absolute 25 

vertical accuracy of the 1 m DEM was at best ± 25 cm, and the horizontal positional accuracy was ± 50 cm. The TPI values 

were combined with slope information to classify the study domain into the following landforms: flat upland plateau (<5 

degrees), flat valley bottom (< 5 degrees), slopes (>5 degrees), lakes (lake extent was extracted from 1:50,000 Canadian 

topographic maps). 

2.1.3 Airborne Lidar Snow Depths 30 

A spatially continuous surface of snow heights in TVC was measured in April 2013 using an airborne laser scanning Riegl 

LMS-Q240in lidar (Johnson et al., 2013). The lidar, flown at 500 m above ground level, had a laser shot footprint diameter of 
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~20 cm which was aggregated to a 1 x 1 m surface height product across a swath width of 500 m. Typical measurement errors 

associated with this system were up to ±20 cm (Johnson et al., 2013). Airborne lidar snow depth was then estimated based on 

elevation differences between these snow surface heights and the snow-free summer 2008 DEM data (Hopkinson et al., 2011), 

see section 2.1.2. The 1 x 1 m airborne lidar snow depth raster, was then re-sampled to 10 x 10 m resolution using a cubic 

interpolation. 5 

In a subset of all lidar snow depths, King et al. (2018) demonstrated that lidar and in-situ measured snow depths closely agreed 

in relatively flat, open environments. Lidar and in situ measured mean snow depths in upland tundra areas of TVC were shown 

to have a RMSE of 8.5 cm (King et al., 2018), while additional unpublished analysis showed a ~14 cm positive bias of lidar 

snow depths over the whole TVC domain.  

 10 

2.2 SWE retrieval errors using SMRT 

The Snow Microwave Radiative Transfer (SMRT) backscatter and emission model (Picard et al., 2018) was used to illustrate 

potential retrieval error from a dual-Ku band radar system (c.f. King et al., 2018; Lemmetyinen et al., 2018). Three layers were 

assumed within the snowpack for snow up to 0.7m in depth: depth hoar (DH), wind slab (WS) and surface snow (SS), with 

layer thickness dependent on total snow depth based on relationships derived from snow trenches. For deeper snow, generally 15 

only wind slab and depth hoar layers were found (see section 3.1), so only two layers were simulated for snow depths greater 

than 0.7m. While ice lenses were occasionally present in the 2018 snowpack and volumetric field samples of snow density and 

SSA contained sections of ice lenses, their impact on backscatter was not explicitly modelled by SMRT. There is a need for 

detailed field measurement of ice lenses coincident with radar measurements as a priority for future SMRT evaluation. Ice 

lenses may be simulated in SMRT in terms of dielectric discontinuities, although coherent effects as a result of ice lens 20 

thickness are yet to be included. 

A set of three experiments were performed that considered spatial variability in SSA in each of the DH, WS and SS layers in 

turn. Synthetic scenarios were used to simulate ‘truth’ backscatter of the scene, with information from observed spatial 

variability in microstructural properties. Whilst spatial variation in SSA was represented in one layer in the truth simulations, 

horizontally homogeneous snow was assumed for all layers in the retrieval, with snow depth retrieved as a function of the 25 

estimated snow microstructure. Davenport et al. (2008) used a similar synthetic scene methodology to quantify soil moisture 

error from passive microwave observations. 

For simulation of the truth backscatter, density was held constant for each layer. SSA observations were classified by five 

equally sized intervals across the observed SSA range. Five intervals were chosen to describe the SSA distribution adequately 

whilst maintaining simplicity. Truth scenes were constructed from five backscatter simulations, aggregated with weights taken 30 

from the histogram frequency: 

𝜑𝜑𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡  =  ∑ 𝑤𝑤𝑛𝑛5
𝑛𝑛=1 𝜑𝜑𝑛𝑛,𝑘𝑘      (1) 
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where 𝜑𝜑𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 is the aggregated truth backscatter at frequency k, 𝜑𝜑𝑛𝑛,𝑘𝑘 is the backscatter simulated for a three-layer snowpack 

with nth SSA value. To isolate the impact of individual layers, SSA in two layers were kept spatially constant whilst allowed 

to vary in the third layer, as illustrated in Figure 3. The weights, 𝑤𝑤𝑛𝑛, derived from the histogram frequencies 𝑓𝑓𝑛𝑛 for each SSA 

interval (1 ≤ n ≤ 5): 

𝑤𝑤𝑛𝑛  =  𝑓𝑓𝑛𝑛
𝛴𝛴𝑓𝑓𝑛𝑛

       (2) 5 

Aggregated together, the set of 5 simulations represent spatial variability in that the frequency and weights represent the 

proportion of a scene that might take each SSA value. 

In retrieval snowpack scenes, SSA was assumed constant within layers, as shown by Figure 3. For the spatially constant layers, 

the same SSA was used in both truth and retrieval simulations. For the layer with spatially varying SSA, a range of values 

were used to represent an unknown homogeneous SSA. As such, the retrieval does not attempt to retrieve SSA directly, but 10 

comparisons of the SWE retrieval errors for a given true snow depth allows selection of the SSA that best represents the 

spatially variable truth. Simulations with a range of estimates of unknown SSA were used to determine the backscatter of 

homogeneous scenes and retrieved depth (subsequently converted to SWE) identified as the minimum of a cost function. 

Median observed layer densities used for the truth simulations were also used for the retrieval backscatter and SWE 

calculations. For these simulations, a simplified version of the cost function given in Lemmetyinen et al. (2018) was used 15 

(Equation 3). From the optimal dual-frequency approach to SWE retrieval determined by Lemmetyinen et al. (2018), the 

retrieval algorithm in this study was based on the backscatter difference at two frequencies (13.4 GHz and 17.2 GHz at VV 

polarization) and a fixed incidence angle of 35 degrees. Retrievals followed an equivalent SMRT model configuration to the 

forward modelling of Lemmetyinen et al. (2018) and King et al. (2018), i.e. an exponential snow microstructure model and 

the Improved Born Approximation electromagnetic theory. The model approaches differ in the solution of the radiative transfer 20 

equations: a multi-flux solver (Picard et al., 2004; Picard et al., 2014) was used in the SMRT simulations whereas a six-flux 

solver was used in King et al. (2018). 

Perfect radar observations were assumed (i.e. no noise added to truth backscatter), and an isothermal temperature of 265K and 

constant soil backscatter contribution of -13dB was assumed in both truth and retrieval simulations. The assumed soil 

properties are for illustration purposes only, given the lack of bare frozen soil backscatter observations at this frequency. This 25 

appears to be a plausible value from the snow to snow-free transition period shown in Scipal et al. (2002) and an alternative 

soil backscatter of -10dB was used to test the robustness of conclusions from the -13dB simulations; however, a full error 

budget study should consider a range of values. The simplified cost function was: 

𝐶𝐶𝐶𝐶(𝑑𝑑, 𝑆𝑆𝑆𝑆𝑆𝑆)  = �𝜑𝜑𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑠𝑠𝑑𝑑𝑠𝑠 (𝑑𝑑, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑥𝑥1, . . . ,  𝑥𝑥𝑠𝑠)  −  𝜑𝜑𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 �2    (3) 

where 𝜑𝜑𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓 is the backscatter difference 𝜑𝜑17.2𝑉𝑉𝑉𝑉 −  𝜑𝜑13.4𝑉𝑉𝑉𝑉, d is snow depth, the estimated microstructure is determined from 30 

the SSA, and 𝑥𝑥𝑠𝑠  are other parameters assumed to be known exactly i.e. the same as used in the truth simulations. For these 

simulations the exponential autocorrelation length used in the SMRT simulations (both truth and retrieval) is calculated with 

equations 5 and 10 of Mätzler (2002). 
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In summary, the methodology was used to isolate the impact of the spatial variability of SSA in a single layer on retrieval 

accuracy from all other sources of retrieval error. Therefore, the following was assumed: 1) perfect radar observations; 2) 

perfect knowledge of snow layer densities; 3) perfect knowledge of the soil; 4) correct transformation of SSA into exponential 

autocorrelation length, and 5) perfect knowledge of SSA in all but one layer in the snowpack. Single (homogenous) values 

were used to represent the unknown SSA of the remaining layer. Only depth is estimated by the retrieval, which is then 5 

transformed to SWE via the known densities to compute the SWE retrieval error. 

3. Results 

3.1 Snowpack Properties 

The winter of 2017-18 was warmer than 2012-13 (Figure 4). Similar air temperatures were observed in both winters from 

October through November, but December through March in 2017-18 was on average 9°C warmer. Importantly, during 2017-10 

18 there were three short (<1 day) periods where mid-winter air temperatures increased above -5°C and approached melting 

point. The warm period on 15 January 2018 coincided with reports of light freezing rain at Inuvik airport, the nearest weather 

observing station 49 km away. Therefore, while similar meteorological conditions influenced early season winter snowpack 

accumulation and depth hoar metamorphism, a spatially extensive ice lens (>1 mm thick) was formed in the 2017-18 snowpack 

because of the January warm event. Ice lenses provide potential to restrict vertical vapour diffusion, although such impacts 15 

may be limited due to the additional presence of a dense wind slab layer of already tightly-packed snow grains. Ice lens 

formation can also restrict the flux of blowing snow, reducing potential for subsequent drifting. Consequently, through the 

aggregation of snowpack measurements over two winters with strongly differing meteorological conditions, the resulting data 

set provides a highly valuable description of tundra snowpack properties in a warming Arctic. 

Figure 5 compares statistical distributions of snow depths from lidar in three topographically delimited subdomains (Figure 1: 20 

flat upper plateau, slope, flat valley bottom) of the TVC catchment. Median snow depths were very similar (0.60-0.65 m) 

across all subdomains. The inter-quartile range of snow depths on slopes was largest, reflecting enhanced drift processes that 

preferentially redistributed SWE to wind-sheltered areas of sloping terrain. However, similarity in frequencies of snow depths 

greater than 0.9 m between flat upper plateau and sloped subdomains suggested preferential SWE deposition also occurred 

over relatively flat (<5°) terrain, in addition to drifts in leeward slopes aligned perpendicular to prevailing north-westerly winds 25 

(King et al., 2018). This is of importance as flat upland plateau, where the majority of trenches and pits were located, was the 

areally dominant subdomain (66% of the total TVC lidar coverage in contrast to 19% slopes and 8% flat valley bottom). 

Consequently, field measurements well represented both the range and frequency of the total TVC lidar snow distribution. 

This type of exposed, flat, largely unforested terrain is representative of pan-Arctic tundra environments, allowing potential 

for implications to be drawn beyond TVC.  30 

Thickness of tundra snowpack layers was spatially variable and frequently laterally discontinuous. Layers expand and contract 

horizontally, often creating several different discrete entities of the same layer across a trench face (Figure 6). The number of 
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layer entities in snow trenches ranged from 5 to 14 in the 5 m trenches and up to 36 layer entities in the 50 m trench (Table 1). 

Mean snow depth of trenches ranged between 26 cm and 53 cm for all but trench 6 (79 cm) located in a valley bottom. 

Consequently, even when considering a positive lidar measurement bias of ~14 cm, trenches were generally located between 

the median and lower quartile of the total TVC lidar snow depth distribution (Figure 5). A coherent layer of surface snow was 

evident in four trenches (Table 1), consisting of up to 26% of the mean layer thickness. The proportions of wind slab layers 5 

(35 to 80%) and depth hoar layers (20 to 46%) exhibited a larger range. Figure 7 shows the mean proportion of depth hoar was 

consistently just under 30% of total snow depth. The mean proportion of wind slab was consistently greater than 50% and 

showed an increasing trend with increasing total snow depth, indicating that (other factors being equal) where wind slab 

thickness was greater, so was the total depth of the snowpack. A decreasing trend in the mean proportion of surface snow 

(approximately 25% to 0%) with increasing total depth was most likely a result of greater wind erosion and re-distribution 10 

from the surface where the snowpack was deeper and more wind affected. While interquartile ranges around these trendlines 

express the natural variability in measured proportional thickness, where total snow depth is known, trendlines made it possible 

to estimate the percentage of wind slab and depth hoar in a snowpack of unknown microstructure, thereby allowing potential 

for application of these relationships over larger spatial scales. 

Centimetre-scale variability in tundra snowpack layer thickness was quantified from trench measurements in a spatially 15 

distributed manner throughout a catchment for the first time. The range to sill (i.e. horizontal correlation length) of semi-

variograms (Figure 8) was used to quantify spatial variability, which varied for all layer thicknesses between 16 cm and 158 

cm (Table 2). While the semi-variance of layer thickness in trenches (Figure 8) changed as a function of absolute layer 

thickness (Table 1), the mean range to sill of layer thickness increased from depth hoar (45 cm), to wind slab (59 cm), to 

surface snow (81 cm). The mean range to sill of total snow depths (61 cm) was only slightly greater than that of wind slab, 20 

suggesting horizontal variability in wind slab thickness has a strong control over total snowpack thickness. Subnivean 

roughness, the boundary between snow and the underlying substrate, is likely to have a strong influence on depth hoar 

thickness. To estimate the importance of this influence, roughness was quantified as twice the value of the root mean square 

of residuals between the snow-substrate boundary and a linear best fit line to that boundary (Table 1). This provides an estimate 

of the peak to trough amplitude between adjacent subnivean topographic features, often controlled in tundra environments by 25 

tussock grasses (e.g. Figure 6). The roughness metric was calculated across 2 m moving windows. The starting position of 

each window moved in 1 cm horizontal increments along each trench and then the roughness of all moving windows were 

averaged per trench. The 2 m distance was chosen to exceed the maximum measured horizontal correlation length of layer 

thicknesses, while also being broadly representative from visual field inspection of the spacing between tussocks. Across all 

trenches, roughness of the subnivean boundary ranged from 9-32% of total trench depth, with a mean of 18% for all trenches. 30 

This is consistent with the premise that depth hoar layer thickness (~30% of total snowpack depth) is strongly influenced, but 

not exclusively controlled, by subnivean roughness.  

Figure 9 demonstrates relationships between mean percentage thickness of different layers, density and SSA from a 

combination of snow microstructural profiles from trenches and pits. Layers were primarily delimited in the field by vertical 
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profiling (visual inspection and hardness). Figure 9a and b show median densities of 104 kg m-3 (surface snow), 253 kg m-3 

(depth hoar), and 316 kg m-3 (wind slab); differences in median densities between layers were greater than the 5-9% sampling 

error associated with gravimetric cutters (Proksch et al., 2016). The inter-quartile ranges of each layer density did not overlap 

indicating clear differences between layer densities, even though there was overlap between full measurement ranges. The 

upper quartile of surface snow densities overlapped densities of both wind slab and depth hoar, as although it is structurally 5 

distinct from the lower wind slab layer, surface snow may have been subject to decomposition, melt or some wind-packing 

effects. Additionally, overlap between the lower quartile of wind slab densities and the upper quartile of depth hoar densities, 

resulted from densities in lower sections of wind slab which exhibited the hardness of wind slab yet also microstructural 

similarity to depth hoar. This is often reported in Arctic tundra snowpacks that undergo strong temperature gradient 

metamorphism, and has previously been classified as a unique layer type such as indurated hoar (Sturm et al., 1997; Fierz et 10 

al., 2009; Derksen et al., 2014; Domine et al., 2016). Differences between SSA of different layers were more distinct than for 

densities (Figure 9c and d); inter-quartile ranges did not overlap as median SSA increased from depth hoar (11 m2 kg-1), to 

wind slab (24 m2 kg-1), to surface snow (45 m2 kg-1). Differences in median SSA between layers were much greater than the 

10% measurement uncertainties of SSA (for snow <60 m2 kg-1) from IR hemispherical reflectance techniques at 1310 nm 

(Gallet et al., 2009). Consequently, as the density and SSA values of each layer are nicely separate from each other, it is 15 

reasonable to expect that with respect to radar backscatter, it is the relative proportions of these snow components, and their 

attributes, which will drive the radar results. In the next section we explore this using a three-layer radiative transfer model. 

3.2 SWE retrieval accuracy from radar backscatter 

Notable differences between distributions of SSA and density in surface snow, wind slab and depth hoar layers allowed 

parametrisation of snowpack microstructure in the SMRT model (Table 3). Coupled with fitted relationships between total 20 

snow depth and layer thickness as a proportion of total depth (Table 3 and dotted trendlines in Figure 7) SWE retrieval errors 

from SMRT simulations were calculated as a function of measured variability in SSA in different layers. SSA measurements 

of snowpack layers show positively skewed distributions (Figure 10 a, c and e); surface snow, wind slab and depth hoar 

distributions comprised 64, 77 and 85 averaged layer measurements respectively. SWE retrieval errors were calculated as truth 

SWE minus retrieved SWE. SWE retrieval error due to heterogeneity in SSA for SS, WS and DH layers is presented in Figures 25 

10b, 10d and 10f for snowpacks of depths between 0.2 and 1m, and for estimates of layer SSA within 20% of the known 

median value. 

Spatial variability in surface snow SSA has negligible effect on the retrieval error (Figure 10b). Instead, the retrieval is most 

sensitive to spatial variability in depth hoar (Figure 10f) despite only a small range in measured SSA values. A 20% 

underestimation in SSA leads to an underestimation in retrieved SWE by as much as 100 mm SWE in 0.8 m deep snowpacks; 30 

an underestimation of between one- and two-thirds of total SWE assuming typical tundra snow densities. Overestimation of 

SSA leads to nearly as large an error in the other direction. Errors in assigning SSA values to wind slab also affect the SWE 

retrieval, but to a much lesser extent. While a perfect retrieval is possible at all depths (shown by the white contour line in 
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Figure 10f) an estimated SSA lower than the median is required. For depth hoar, approximately 7% less than the median is 

required. For wind slab, closer to 10% under the median is required. 

A radar SWE retrieval algorithm will have constraints on the allowable accuracy. Here, we have set a limit of ±30 mm SWE, 

indicated as black contour lines in Figure 10 as the acceptable limit on SWE. This error constrains the setting of SSA values 

(black contour lines in Figure 10f), which become increasingly stringent for deeper snow. The constraints in SSA are 5 

considerably more liberal for wind slab (Figure 10d) than for depth hoar as the retrievals are less sensitive to the spatial 

variability in SSA. Figure 10f (DH) shows that as snow depth exceeds 0.6 m, the need for accurate values of SSA for depth 

hoar become critical. If the median SSA is used for depth hoar, the maximum SWE error is 40% of the truth SWE. For depth 

hoar SSA 20% above the median, the SWE retrieval error can exceed the actual SWE, particularly for shallow snowpacks. A 

higher soil backscatter contribution of -10dB does not change the optimal SSA estimates, but does result in more stringent 10 

retrieval requirements. For example, at 60 cm snow depth the SSA should be between 89 and 97% of the median value to 

remain within error budget for soil backscatter of -13dB. For a soil backscatter of -10dB this range is reduced to between 90 

and 96%. This highlights the need for field observations of backscatter from bare frozen soil to better constrain this value. 

Estimates of the single SSA of layers in retrieval scenes will always be lower than the median because of non-linearity between 

scattering and SSA. Snow layers with smaller SSA will have a disproportionately larger effect in the truth scene as these 15 

microstructure elements will scatter more (optical grain diameter is inversely proportional to SSA). SMRT simulations can 

compensate for the heterogeneity by assuming slightly smaller SSA in the homogeneous scene. The amount of compensation 

required could differ as a function of ground contributions, but the representative SSA will always be smaller. 

4. Discussion and Conclusions 

Comparison between the mean snow depth of all trenches (40 cm) and distributions of lidar-derived snow depths demonstrated 20 

that trenches were highly representative of snow depths across the whole TVC catchment, incorporating a range of different 

topographic landscape units. Snow depths in trenches were also consistent with snowpacks found over much wider spatial 

scales; mean snow depths of 39 cm and 23 cm for sub-Arctic and Arctic snowpacks respectively were reported by Derksen et 

al. (2014). In addition, trenches at TVC were highly representative of the previously documented complex and often 

discontinuous layering of tundra and sub-Arctic snowpacks (Benson and Sturm, 1993; Sturm and Benson, 2004; Domine et 25 

al., 2012; Rutter et al., 2014; Rutter et al., 2016). Consequently, through the coincident combination of spatially distributed 

measurements of snow microstructure (94 profiles at 36 sites across two winters) and snow layer thickness (9000 vertical 

profiles across 9 trenches during one winter) we present a unique and robust data set that is likely to be representative of tundra 

snowpacks in general. The application of these data in a snow microwave radiative transfer model (Figure 10) therefore is of 

high potential relevance to remote sensing of seasonal snow in the Northern Hemisphere. 30 

Horizontal correlation lengths of layer thicknesses (i.e. distances over which variability in the thickness of individual layers 

decouples and becomes independent) have not previously been reported. High resolution layer boundary identification using 
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stitched and georeferenced NIR imagery (Tape et al., 2010; Watts, 2015) now allows spatial variability of layer thickness to 

be quantified using semi-variograms in analytical approaches similar to assessment of snow depth distributions (e.g. Deems, 

2008; Trujillo 2015). Horizontal correlation lengths (i.e. range to sill of semi-variograms) and variance of major layer 

thicknesses at TVC suggests depth hoar layers vary the most over the shortest distances, because of the subnivean vegetation 

and topography. In tundra environments, especially on topographically exposed plateaus, undulating subnivean topography 5 

traps early winter snowfall in troughs between tussocks. Discontinuities in snowpack layering occur between adjacent ridges 

and troughs (often caused by tussock grasses) and trapped snow is then subject to strong temperature gradient metamorphism 

(Colbeck, 1983; Colbeck, 1987), creating large depth hoar crystals. The decreasing spatial variability (increasing distance in 

horizontal correlation length) of wind slab and surface snow layer thickness reflects the decreasing influence of topography 

once snow has filled local hollows and the increasing predominance of spatially smoother wind-driven processes such as snow 10 

redistribution and compaction. For comparison, the horizontal correlation length of total snowpack thickness, a consequence 

of variability in all three layers, approximates that of wind slab. Quantification of layer thickness variability using trench 

measurements suggests a relative hierarchy of variability in commonly occurring tundra snowpacks layer types, which all vary 

significantly at the sub-metre scale.  

Correlation lengths highlight minimum measurement distances over which sampling of snowpack properties should take place. 15 

While the intensity of such sampling may have practical limitations, targeted sub-metre sampling as part of wider ground-

based, catchment-scale snow measurement campaigns is highly relevant for evaluation of current and future satellite sensors 

that operate over resolutions on the scale of metres to tens of metres (e.g. Cline et al., 2009; Yueh et al., 2009; King et al., 

2018). Rapid acquisition of vertical profiles of snowpack properties using snow micropenetrometers (Schneebeli et al., 1999; 

Proksch et al., 2015) may increasingly provide the enhanced field measurement capacity required to achieve this required 20 

spatial sampling resolution. 

Correlation lengths can be applied in distributed modelling of snowpack properties using kriging techniques to enable spatial 

interpolation. Application of the length scales of major snowpack layers, as well as variability of properties within each layer, 

has potential for use in catchment scale models along with knowledge of other landscape elements such as snow drifts. While 

accurate snowpack modelling at the tens of metres scale in tundra environments is challenging (Essery et al., 1999; Clark et 25 

al., 2011), snowpack layer correlation lengths could be used to parametrise models so variability of snowpack properties are 

reliably accounted for when modelling at coarser resolutions. This will become an important parameterisation for future 

linkages between physical snowpack models and one-dimensional radiative transfer models (Sandells et al., 2017), to better 

model surface and volume scattering in snow (Zhu et al., 2018), and in observing system simulation experiments (e.g. Garnaud 

et al., 2019) to assess the performance of future Ku-band radar satellite sensor configurations. 30 

Relationships between layer thicknesses and total snow depth are presented for purposes of simplifying snowpack layer 

complexity for applications over large scales. Linear trendlines provide a guide to changes in layer proportions for snowpacks 

up to 1 m deep. Interestingly, the proportion of depth hoar is consistently ~30% irrespective of total depth, a trend which 

continued in the few snow pits in 2018 that were deeper than 1 m. This is somewhat surprising, due to the previously described 
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strong controls of ground surface roughness over depth hoar creation and the potential for large wind slabs to then dominate 

as the total snow depth increases above the top of ridges. However, the proportion of wind slab layer instead increases at the 

expense of the decreasing surface snow layer. Consequently, this proportional approach to layer partitioning of snowpacks 

provides an alternative to applying a maximum depth hoar thickness of 25 cm (King et al., 2018), and therefore may be more 

appropriate for wider applications across pan-Arctic tundra over multiple winter seasons. 5 

Although rates of compaction, and hence density, of a dry snow layer under its own mass will have a proportional relationship 

to its thickness (Colbeck, 1972; Anderson, 1976) the weak relationship for fresh surface tundra snow is expected due to other 

influential aeolian and metamorphic processes. In addition, there was unlikely to be a direct relationship between density and 

proportional layer thickness for either wind slab or depth hoar, due to wind and thermal gradients dominating processes which 

control the density of these respective layers. Such processes are currently very challenging to simulate accurately in Arctic 10 

snowpacks (Barrere et al., 2017; Domine et al., 2019). So, as distinct differences are evident between distributions of layer 

properties, using a single median value to represent the density for each layer is appropriate. Differences are even more 

profound between distributions of SSA in different layers which exhibit low inter-quartile ranges, especially for depth hoar 

layers which dominate Ku-band microwave scattering (King et al., 2015). This is particularly important for depth hoar as non-

linear microwave scattering with respect to SSA (SSA is inversely proportional to exponential correlation length or optical 15 

grain diameter) means that the smaller SSA will have a disproportionate scattering effect compared with larger SSA. This is 

demonstrated by synthetic experiments that evaluate the impact of spatial uncertainty in snow microstructural parameters on 

SWE retrievals, where a single SSA describing a homogeneous scene must be smaller than the median of a heterogeneous 

scene to compensate for the non-linear scattering response. Small SSA corresponds to high scattering so it follows that an 

underestimation in the SSA estimate (too much scattering) results in less scattering material needed (an underestimation in the 20 

retrieved SWE). Whilst the effects of spatial variability in SSA can be countered, the value of representative SSA is critical. 

Although the SWE retrieval accuracy requirements for depth hoar are more stringent than for wind slab, it is known more 

precisely than wind slab SSA for the TVC data (Figure 9). The insensitivity of the retrieval to the spatial variability of surface 

snow SSA suggests that a median value of SSA will suffice for SWE retrievals. Future work will consider whether a two layer 

retrieval system could be used to represent the scattering of a three-layer snowpack. 25 

By applying a comprehensive data set of snow microstructural properties collected over two winters at TVC in synthetic 

radiative transfer experiments, the impact of estimation of  unknown snow microstructural characteristics on the viability of 

SWE retrieval strategies relevant for satellite mission design have been robustly assessed. Spatial variability in microstructure 

of depth hoar layers dominates SWE retrieval errors. A depth hoar SSA estimate of around 7% under the median value is 

needed to accurately retrieve SWE for this snow. In shallow snowpacks <0.6m, depth hoar SSA estimates of ±5-10% around 30 

this value allow retrievals within a tolerance of ±30 mm SWE. Where snowpacks are deeper than around 30cm, accurate values 

of representative SSA for depth hoar become critical as the retrieval error will be exceeded if the median depth hoar SSA is 

applied. Importantly, these experimental results allow potential for uncertainty in SSA in Arctic tundra snow to be used to 

produce future SWE retrieval quality flags in remotely sensed products, and also provide benchmark accuracies for physical 
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snowpack models to deliver SSA estimates. As modelling microwave scattering in large scale applications has currently been 

limited to single layer snowpacks (Takala et al., 2011), the potential for using multilayer information is exciting and 

progressive. Especially when considering the strongly different scattering properties of wind slab and depth hoar (King et al., 

2018), the combined influence of which dominates control over microwave scattering in Arctic tundra snowpacks. 

 5 
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Figure 1: Locations of snow trenches excavated in April 2013 are indicated by the pink squares. Locations of snow pits excavated in 
April 2013 and March 2018 are indicated by the blue crosses. Brown, yellow, green and blue colours on the map denote the different 
terrain types identified by the topographic position index. In 2018 five additional pits were located on Husky Lakes (not on map) 5 
approximately 5km to the east of the presented domain. 
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Figure 2: a) Stitched NIR images of the trench face (Trench 10), b) Layer boundaries derived from NIR imagery, blue lines highlight 
boundaries between snow and air , surface snow and wind slab, as well as wind slab and depth hoar. The brown area is subnivean 5 
soil or vegetation. Symbols describe snow type following the classification of Fierz et al. (2009). 
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Figure 3: Illustration of three-layer (SS: Surface Snow; WS: Wind Slab; DH: Depth Hoar) truth scene with spatial variability in 
Specific Surface Area of WS (SSAWSa to SSAWSe) and the retrieval scene with horizontally uniform SSA. Spatial distribution in truth 5 
SSA given by observed spatial distribution at TVC over two winters (2013 and 2018). 
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Figure 4: Air temperature at Trail Valley Creek during winter 2012-13 and 2017-18. 
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Figure 5: Snow depths (limited to 2m) in TVC from airborne lidar: a) to c) histograms of three topographically delimited subdomains 
of the TVC catchment (red) overlaid on the histogram of all snow depths (blue); d) distributions of snow depth by land surface type: 5 
blue box (inter-quartile range), red line (median), whiskers (dashed lines) extend from the end of each box to 1.5 times the 
interquartile range, outliers beyond this range are omitted. 
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Figure 6: Cross-section with vertical exaggeration of layer boundaries of individual stratigraphic layers in trench 4 (50 m). Blue 5 
lines highlight boundaries between snow and air, surface snow and wind slab, as well as wind slab and depth hoar. The brown area 
is subnivean soil or vegetation (two tussocks are labelled). Black lines show boundaries of individual layers aggregated within the 
wind slab and depth hoar layers. 
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Figure 7: Relative change in thickness of snowpack layers with total depth: median (solid) and interquartile range (shaded) of 
Surface Snow (red), Wind Slab (blue) and Depth Hoar (black) layers. Dotted line describes the dependence of layer thickness on 
depth based on linear trendline fits. Layer thickness data from 2013 trenches only. 5 
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Figure 8: Semi-variograms in individual trenches for a) total snow depth, and layer thickness for b) Surface Snow, c) Wind Slab, 
and d) Depth Hoar. 
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Figure 9: Change in snow layer a) density and c) SSA with relative thickness of snowpack layers: Surface Snow (red circle), Wind 
Slab (blue cross) and Depth Hoar (black star). Distributions of snow layer b) density and d) SSA: blue box (inter-quartile range), 
red line (median), whiskers (dashed lines) extend from the end of each box to 1.5 times the interquartile range, outliers beyond this 
range are omitted. 5 
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Figure 10: Left: Histogram of SSA within each layer. Right: Synthetic error budget study for a range of snow depths assuming 
homogeneity in the retrieval. Contour lines show acceptable SSA error as a function of snow depth to remain within a ±30 mm SWE 
retrieval accuracy limit. White contour line shows perfect retrieval.  
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        Mean layer thickness (and % of total thickness) 

  

Mean layer 

density (kg m-3) 

  

Mean layer SSA 

(m2 kg-1) 

  

Local  topographic 

gradient  

Trench Length 

(m) 

Number 

of layer 

entities 

Mean 

snow 

depth (cm) 

Subnivean 

roughness 

(cm) 

SS 

(cm) 

SS 

(%) 

WS 

(cm) 

WS 

(%) 

DH 

(cm) 

DH 

(%) 

SS WS DH SS WS DH  

trench4 50 36 31 6 5 16 17 55 9 29 240 300 230 52 25 10 Flat Upland Tundra 

trench5 5 6 32 3 - - 17 54 15 46 - 310 220 - 39 8 Flat Upland Tundra 

trench6 5 14 79 7 - - 58 73 21 27 - 280 300 - 21 10 Flat Valley Bottom 

trench7 5 7 29 9 8 26 14 48 7 26 250 320 180 40 28 9 Flat Valley Bottom 

trench8 5 5 30 6 - - 23 78 6 22 - 370 280 - 22 8 Flat Upland Tundra 

trench9 5 10 34 10 1 2 22 64 11 33 - 230 180 35 22 14 Flat Upland Tundra 

trench10 5 5 26 4 6 22 9 35 11 44 - - 200 40 - 10 Flat Upland Tundra 

trench11 5 8 43 4 - - 29 67 14 33 - 260 190 - 23 12 Flat Upland Tundraa 

trench12 5 7 53 7 - - 42 80 11 20 - 270 260 - 27 11 Flat Upland Tundra 

 
Table 1: Descriptive statistics of snow trenches excavated in April 2013. See text for explanation of subnivean roughness metric. For thickness statistics, 
individual layers were aggregated into three common types: SS = Surface Snow, WS = Wind Slab, DH = Depth Hoar (n.b. trenches 1-3 were discarded 
from analysis due to measurement error). 
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  DH WS SS Total depth 

trench4 37 79 77 42 

trench5 44 29 - 64 

trench6 62 137 - 138 

trench7 16 53 44 31 

trench8 18 19 - 20 

trench9 26 100 158 41 

trench10 117 46 44 122 

trench11 56 35 - 70 

trench12 29 30 - 24 

mean 45 59 81 61 

 
Table 2: Mean range to sill (in cm) for thicknesses of each layer (Surface Snow, Wind Slab, Depth Hoar) and total snow depth using 
the Stable variogram model. 
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 Snowpack Truth Scene 

 Surface Snow Wind Slab Depth Hoar 

Thickness Δz (% depth in m) ∆𝑧𝑧𝑆𝑆𝑆𝑆 =  �−44.7269 𝑑𝑑 + 30.1551, 𝑑𝑑 < 0.7
0, 𝑑𝑑 ≥ 0.7 

 
ΔzWS = 1 - ΔzSS - ΔzDH ΔzDH = 29.6 

Density(kg m-2) 103.7 315.5 253.1 

Fixed SSA (m2 kg-1) 44.7 23.8 11.5 

Assumed Temperature (K) 265 265 265 

 
Table 3: SMRT parameters derived from TVC data. Thickness relationship derived from NIR-derived stratigraphy observed in 
2013. Density and fixed SSA taken from median of all observations for that layer type in 2013 and 2018. Fixed SSA were used in 
place of the SSA distribution when assessing the impact of spatial variability in other layers. 5 
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