
 

1 

 

Snow Depth Estimation and Historical Data Reconstruction Over 1 

China Based on a Random Forest Machine Learning Approach 2 

Jianwei Yang1, Lingmei Jiang1, Kari Luojus2, Jinmei Pan3, Juha Lemmetyinen2, Matias Takala2, Shengli 3 

Wu4 4 

1State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and the Institute of Remote 5 

Sensing and Digital Earth of Chinese Academy of Sciences, Beijing Engineering Research Center for Global Land Remote 6 

Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 7 

2Finnish Meteorological Institute, Helsinki Fi00101, Finland 8 

3State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of 9 

Sciences, Beijing 100101, China 10 

4National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China 11 

Corresponding Author: Lingmei Jiang (jiang@bnu.edu.cn) 12 

Abstract. We studied whether the random forest (RF) machine learning (ML) model could be used to retrieve snow depth. 13 

Four combinations composed of critical predictor variables were used to train the RF model. Then, we utilized three 14 

validation datasets from out-of-bag (OOB) samples, a temporal subset and a spatiotemporal subset to verify the fitted RF 15 

algorithms. The results indicated the following: (1) the accuracy of RF model is greatly influenced by geographic location, 16 

elevation, and land cover fractions; (2) however, the redundant predictor variables (if highly correlated) slightly affect the RF 17 

model; (3) the fitted RF algorithms perform better in temporal scale than in spatial scale, with unbiased RMSEs of ~4.4 cm 18 

and ~7.3 cm, respectively. Finally, we used the fitted RF2 algorithm to retrieve a consistent 32-year daily snow depth dataset 19 

from 1987 to 2018. This product was evaluated against the independent station observations during the period 1987-2018. The 20 

mean unbiased RMSE and bias were 7.1 cm and -0.05 cm, respectively, outperforming the former snow depth dataset (8.4 cm 21 

and -1.20 cm) from the Environmental and Ecological Science Data Center for West China (WESTDC). Although the RF 22 

product was superior to the WESTDC dataset, it still underestimated deep snow cover (> 20 cm), with biases of -10.4 cm, -8.9 23 

cm and -34.1 cm in Northeast China (NE), northern Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP), respectively. 24 

Additionally, the long-term snow depth datasets (station observations, RF estimates and WESTDC product) were analyzed in 25 

terms of temporal and spatial variations over China. On a temporal scale, the ground truth snow depth presented a significant 26 

increasing trend from 1987 to 2018, especially in NE. However, the RF and WESTDC products displayed no significant 27 

changing trends except in QTP. The WESTDC product presented a significant decreasing trend in QTP, with a correlation 28 

coefficient of -0.55, whereas there were no significant trends for ground truth observations and the RF product. For the spatial 29 

characteristics, similar trend patterns were observed for RF and WESTDC products over China. These characteristics 30 

presented significant decreasing trends in most areas and a significant increasing trend in central NE. 31 
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1 Introduction 1 

Seasonal snow covers a considerable portion of the land surface in the Northern Hemisphere during winter and has a 2 

significant effect on the Earth’s radiation balance and surface-atmosphere interaction due to its high albedo and low thermal 3 

conductivity (Fernandes et al., 2009; Derksen et al., 2012; Kevin et al., 2017; Dorji et al., 2018; Bormann et al., 2018). Snow 4 

depth is a crucial parameter for climate studies, hydrological applications and weather forecasts (Foster et al., 2011; Takala et 5 

al., 2017; Tedesco et al., 2016; Safavi et al., 2017). For these applications, long time series are needed to conduct meaningful 6 

statistics on trends and variability. Fortunately, passive microwave (PMW) signals can penetrate snow cover and provide snow 7 

depth estimates through volume scattering of snow particles in dry snow conditions. PMW remote sensing also has the 8 

advantage of sensing without depending on solar illumination and weather conditions (Chang et al., 1987; Foster et al., 2011). 9 

In addition, there exists a long historical record of spaceborne PMW data dating back to 1978, allowing us to study seasonal 10 

snow climatological changes (Takala et al., 2011; Santi et al., 2012). These advantages make snow depth estimation from 11 

satellite PMW remote sensing an attractive option. 12 

Diverse methods have been proposed to retrieve snow depth from PMW observations. The most widely used inversion 13 

algorithms were based on empirical relationships between satellite brightness temperature (TB) gradient and snow depth 14 

(Chang et al., 1987; Foster et al., 1997; Derksen et al., 2005; Che et al., 2008; Kelly et al., 2003; Kelly et al., 2009; Jiang et al., 15 

2014). However, these algorithms are not always reliable in all regions due to the fixed empirical constants (Derksen et al., 16 

2010; Davenport et al., 2012; Che et al., 2016; Yang et al., 2019). Subsequently, more advanced algorithms that use 17 

theoretical or semi-empirical radiative transfer models were developed (Jiang et al., 2007; Takala et al., 2011; Picard et al., 18 

2012; Lemmetyinen et al., 2015; Metsämäki et al., 2015; Tedesco et al., 2016; Pan et al., 2017; Saberi et al., 2017); however, 19 

these complicated algorithms are computationally expensive and require complex ancillary data to provide accurate 20 

predictions. These factors restrict the applications of these algorithms on a global scale. Improving the performance of PMW 21 

retrieval algorithms through data assimilation has also been investigated (Durand et al., 2006; Tedesco et al., 2010; Che et al., 22 

2014; Huang et al., 2017). The widely used and operational assimilation system combines synoptic weather station data with 23 

satellite PMW radiometer measurements through the snow forward model (Helsinki University of Technology snow emission 24 

model, HUT), and it provides long-term snow water equivalent data from 1979 to the present in the Northern Hemisphere (> 25 

35º N) (Pulliainen et al., 1999; Pulliainen., 2006; Takala et al., 2011). However, the coverage of this product does not include 26 

the Qinghai-Tibetan Plateau (QTP), which is one of three stable snow cover areas in China. 27 

Machine learning (ML) has attained outstanding results in the regression estimation of land surface parameters from 28 

remotely sensed observations at local and global scales over the past decade (Reichstein et al., 2019). The random forest (RF) 29 

is an ensemble method whereby multiple trees are grown from random subsets of predictors, producing a weighted ensemble 30 
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of trees (Breiman, 2001). RF is also robust against overfitting in the presence of large datasets and increases predictive 1 

accuracies over single decision trees (Biau and Scornet, 2016; Tyralis et al., 2019b). Over the last two decades, RF has been 2 

one of the most successful ML algorithms for practical applications due to its proven accuracy, stability, speed of processing 3 

and ease of use (Rodriguez-Galiano et al., 2012; Belgiu et al., 2016; Maxwell et al., 2018; Bair et al., 2018; Qu et al., 2019; 4 

Reichstein et al., 2019; Tyralis et al., 2019a). Although the RF model can present good results in many research areas, studies 5 

on the spatio-temporal prediction of snow depth are few and the potential utility of RF in such studies is unknown.  6 

The primary objectives of this study are to assess the feasibility of the RF model in estimating snow depth, to determine 7 

whether the inclusion of auxiliary information (geolocation, elevation and land cover fraction) contributes to the improvement 8 

of RF, and eventually to develop a time series (1987 to 2018) of snow depth data in China and analyze the trends in annual 9 

mean snow depth. To complete the feasibility study of the RF model, we designed four RF algorithms trained with different 10 

combinations of predictor variables and validated them using temporally and spatially independent reference data. To our 11 

knowledge, this type of assessment of RF algorithm performance has not been made to date for China. The data and 12 

methodology are described in Section 2. Section 3 presents the results regarding the feasibility study of the RF model, the 13 

validation of the snow depth product reconstructed with the RF algorithm and the trend analysis of snow depth. The results are 14 

discussed in Section 4, and conclusions are given in Section 5. 15 

2 Data and Methodology 16 

2.1 Data 17 

(1) Satellite passive microwave measurements 18 

The series of the Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) 19 

instruments has provided continuous TB measurements at 19.35, 23.235, 37, 85.5 and 91.655 GHz since July 1987. The data 20 

are available from the National Snow and Ice Center (https://daacdata.apps.nsidc.org/pub/DATASETS). The SSM/I and 21 

SSMIS sensors are suitable for producing a long-term consistent snow depth dataset due to their similar configurations and 22 

intersensor calibrations (Armstrong et al., 1994). To avoid the influence of wet snow, only ascending (F08) and descending 23 

(F11, F13 and F17) overpass data were used (Table 1). In this study, the difference between 19.35 (36.5) GHz and 18.7 (37) 24 

GHz was ignored (hereafter referred as 19 GHz and 37 GHz, respectively). 25 

(2) In situ measurements 26 

The weather station daily data in China from 1987 to 2018 were provided by the National Meteorological Information Centre, 27 

China Meteorology Administration (CMA, http://data.cma.cn/en). The geographical locations of the meteorological stations 28 

and the three stable snow cover areas are shown in Fig. 1. The recorded variables include the site name, observation time, 29 
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geolocation (latitude and longitude), altitude (m), near-surface soil temperature (measured at a 5-cm depth, °C), and snow 1 

depth (cm). The sites are not distributed homogeneously, and few are located in inaccessible regions with extreme climates 2 

and complex terrain conditions, e.g., the western part of QTP (Fig. 1). 3 

Quality control was conducted prior to using the data for developing and validating the retrieval algorithm. The first step 4 

was to select the records where the near-surface soil temperature was lower than 0 °C. The second step was to remove the sites 5 

if the areal fraction of the open water exceeded 30% within a satellite pixel. Finally, the 683 stations were randomly divided 6 

into two roughly equal-sized parts (Fig. 1). The snow depth observations from training stations (342 sites) together with 7 

satellite TB and other auxiliary data can be used to train the RF model. The measurements from validation stations (341 sites), 8 

as independent data spatially, can be applied to validate the fitted RF algorithm. Fig. 2 shows the histograms of snow depth 9 

observations from training and validation stations during the period 2012-2018. Ninety percent of the samples range from 1 10 

cm to 25 cm. The maximum values of the snow depth extend to approximately 50 cm. However, the number of such cases is 11 

small and is therefore not evident in Fig. 2.  12 

 (3) Land cover fraction 13 

A 1-km land use/land cover (LULC) map derived from the 30-m Thematic Mapper (TM) imagery classification was provided 14 

by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). The 15 

map was recalculated as the areal percentages of each land cover type in the 25-km grid cells. In this study, the fractions of 16 

grassland, bareland, cropland, forest, and shrubland were calculated as predictor variables of the RF model. To avoid the 17 

influence of water bodies and construction, the record was used only if the total fraction was greater than 60%.  18 

2.2 Methodology 19 

2.2.1 Random forest 20 

RF is an ensemble ML algorithm proposed by Breiman in 2001. It combines several randomized decision trees and aggregates 21 

their predictions by averaging in regression (Biau and Scornet, 2016). Generally, approximately two-thirds of the samples 22 

(in-bag samples) are used to train the trees and the remaining one-third (out-of-bag samples, OOB) are used to estimate how 23 

well the fitted RF algorithm performs. Few user-defined parameters are generally required to optimize the algorithm, such as 24 

the number of trees in the ensemble (ntree) and the number of random variables at each node (mtry). The ntree is set equal to 25 

1000 in the present study since the gain in the predictive performance of the algorithm would be small with the addition of 26 

more trees (Probst and Boulesteix, 2018). The default value of mtry is determined by the number of input prediction variables, 27 

usually 1/3 for regression tasks (Biau and Scornet, 2016). The RF regression is insensitive to the quality of training samples 28 

and to overfitting due to the large number of decision trees produced by randomly selecting a subset of training samples and a 29 

subset of variables for splitting at each tree node (Maxwell et al., 2018). In addition, RF provides an assessment of the relative 30 
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importance of predictor variables, which have proven to be useful for evaluating the relative contribution of input variables 1 

(Tyralis et al., 2019b). Furthermore, the RF model can rapidly trained and is easy to use. In this paper, a randomForest R 2 

package (Version 4.6-14) is used for regression (Liaw and Wiener 2002; Breiman et al. 2018).  3 

2.2.2 Feasibility study of the RF model 4 

(1) Selection of predictor variables 5 

The possible predictor variables used include geographic location (longitude, latitude), elevation, land cover fractions 6 

(grassland, cropland, bareland, shrubland and forest) and multi-channel brightness temperatures. All available channels on the 7 

SSM/I and SSMIS are listed in Table 1. The 23 GHz channel is sensitive to water vapor and not surface scattering, which 8 

introduces uncertainty to the estimation process (Ji et al., 2017). The 85 (91) GHz channel is seriously influenced by the 9 

atmosphere (Kelly et al., 2009; Xue et al., 2017). Typically, the lower frequency (19 GHz) is used to provide a background TB 10 

against which the higher frequency (37 GHz) scattering-sensitive channels are used to retrieve snow depth. The mixed-pixel 11 

problem is the dominant limitation on snow depth estimation accuracy (Derksen et al., 2005; Jiang et al., 2014; Roy et al., 12 

2014; Cai et al., 2017; Li et al., 2017). The satellite pixel usually covers several land cover types due to a coarse footprint. 13 

Thus, the land cover fractions were included as possible predictor variables. Previous studies have shown that geographic 14 

location and elevation indeed contribute to improving ML model performance (Bair et al., 2018; Qu et al., 2019). 15 

To determine a suitable selection rule for training samples, we selected four combinations of predictor variables from 16 

training stations (Fig. 1) during the period 2012-2014 to train the RF algorithms. Table 2 presents a detailed description of the 17 

four selection rules of training samples. The correlations between the predictor variables and the variable importance metrics 18 

are shown in Fig. 3. The TB measurements at horizontal polarization (H-pol) are highly correlated (correlations higher than 0.9) 19 

with observations at vertical polarization (V-pol). Moreover, according to their ranking of the predictor variables, the channels 20 

of V-pol are more relevant to the independent variable (snow depth) than are the H-pol channels. Therefore, the RF1 algorithm 21 

was trained with only two channels' TB measurements at V-pol. The ranking of variables' importance in Fig. 3 indicates that 22 

the geographic location is more important than elevation to snow depth. Thus, the geographic location and elevation were 23 

included in the predictor variables of RF2 and RF3, respectively. Fig. 3 also shows that the correlations between TB and land 24 

cover fraction are relatively low. Thus, we will validate whether the inclusion of land cover fraction would increase the 25 

performance of the fitted RF4 algorithm.  26 

(2) Training sample size 27 

One of the advantages of the RF model is that it can effectively handle small sample sizes (Biau and Scornet et al., 2016). A 28 

test was conducted to demonstrate the insensitivity of the RF model to the training sample size. The input predictor variables 29 

include geographic location and TB (Table 2, RF2). The flowchart of the test process is shown in Fig. 4. To ensure a sufficient 30 
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number of samples, all station records (approximately 100,000 samples) from 1987 to 2006 were used to analyze the 1 

sensitivity of the RF model to the training sample size. A total of 5,000 to 80,000 (with a step of 5,000) samples selected 2 

randomly from data during the period 1987-2004 were used to respectively train the RF models, and a two-year stand-alone 3 

dataset from 2005 to 2006 was applied to assess the performance of the trained models. We consider three evaluating 4 

indicators (the unbiased root mean square error (RMSE), bias and correlation coefficient) to illustrate the sensitivity of the RF 5 

model to the training sample size. 6 

(3) Validation datasets of the fitted RF algorithms 7 

We conducted three tests to verify the fitted RF algorithms (Table 3). The same training samples (same algorithms) were used 8 

for the three tests but with different validation datasets. In Test1, the validation data were from OOB samples. This 9 

preliminary assessment generally offers a simple way to adjust the parameters of the RF model. However, the OOB errors 10 

should be used with caution because its samples are not independent at temporal and spatial scales. In Test2, we applied 11 

independent reference data during the period 2015-2018 to assess the accuracy of the temporal prediction of fitted algorithms. 12 

Although this dataset is composed of observations from training stations in Fig. 1, it is temporally independent of the training 13 

samples (2012-2014). Generally, the RF model cannot extrapolate outside the training range (Hengl et al., 2018). Thus, in 14 

Test3, a spatially independent dataset from validation stations during the period 2015-2018 was used to assess the accuracy of 15 

spatio-temporal prediction. The unbiased RMSE, bias and correlation coefficient are used for the assessment of the predictive 16 

performance of the fitted algorithms. 17 

2.2.3 Validation of reconstructed snow depth product and trend analysis 18 

The reconstructed long-term snow depth dataset was evaluated by the stand-alone ground truth measurements over the period 19 

1987-2018 from the validation stations (Fig. 1). The reconstructed product was also compared with the static linear-fitting 20 

algorithm developed by fitting 19 and 37 GHz with the snow depth measurements with a constant empirical coefficient over 21 

China (Che et al., 2008). The daily snow depth data were obtained from the Environmental and Ecological Science Data 22 

Center for West China (http://westdc.westgis.ac.cn) (hereafter, WESTDC product). Then, the spatiotemporal patterns of snow 23 

depth were analyzed in Northeast China (NE), northern Xinjiang (XJ), and the QTP. The slope method (regression) was 24 

employed to analyze the snow depth variation trend at the temporal scale (Huang et al., 2019). To show the spatial distribution 25 

of snow depth variation, the Mann-Kendall test (significance levels of α=0.05) was used to analyze the trends of changes in 26 

China (Mann., 1945; Kendall et al., 1975; Milan, 2013). To ensure the presence of dry snow cover, the reconstruction periods 27 

are the main snow winter season (January, February, March, November, and December). 28 

3 Results 29 

3.1 Sensitivity to training sample size 30 
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The sensitivity of the RF model toward the training sample size was evaluated to confirm the appropriate number of training 1 

samples. Fig. 5 displays the accuracy according to unbiased RMSE, bias, and correlation coefficient. These accuracy indexes 2 

show slight fluctuations when the number of training sample increases from 5000 to 80,000. Fig. 5a shows that the unbiased 3 

RMSE ranges from 5.1 cm to 5.5 cm with increasing training samples. Fig. 5c shows that the correlation coefficient is as high 4 

as 0.79 and becomes stable when the samples are up to 30,000. According to the sensitivity analysis, the number of training 5 

samples has less influence on the prediction accuracy of the RF model. This test is very helpful for us to determine the number 6 

of training samples because of the limited number of training samples over the period 2012-2014. We selected all available 7 

samples (28,602) from training stations (Fig. 1) during the period 2012-2014 to train the RF models in Table 2. 8 

3.2 Validation of the fitted RF algorithms 9 

The fitted RF algorithms were evaluated by three validation datasets as shown in Table 3. The color-density scatterplots of the 10 

measured snow depth versus the retrieved snow depth are presented in Fig. 6. For all fitted RF algorithms (RF1, RF2, RF3 and 11 

RF4), notable differences in accuracy were revealed through the validation of three datasets (Table 4). Generally, the 12 

validation with OOB samples presented higher overall accuracy than the other two datasets. This result, however, does not 13 

demonstrate that the fitted RF algorithm performs well in snow depth estimation. The assessments in Test2 (temporal subset) 14 

and Test3 (spatio-temporal subset) demonstrate that the temporal prediction of the RF model outperforms the spatio-temporal 15 

prediction, with unbiased RMSEs of 4.4-5.4 cm and 7.2-7.9 cm, respectively. 16 

   Comparing the validation results of RF1, RF2, RF3 and RF4, we find that the inclusion of auxiliary information indeed 17 

improved the performance of the fitted RF algorithms (Fig. 6). For Test1(OOB), the unbiased RMSE decreased from 6.4 cm to 18 

3.9 cm with increasing predictor variables of auxiliary information, while the correlation coefficient increased from 0.72 to 19 

0.90 (Table 4). For Test2(temporal subset), the unbiased RMSE decreased from 5.4 cm to 4.4 cm and the correlation 20 

coefficient increased from 0.77 to 0.85 (Table 4). There was a slight improvement in spatio-temporal prediction when 21 

including the auxiliary information, with the unbiased RMSE ranging from 7.9 cm to 7.3 cm (Table 4).  22 

3.3 Validation of the reconstructed snow depth product 23 

According to the results in Fig. 6 and Table 4, there are no notable differences in accuracy among the RF2, RF3, RF4 24 

algorithms. In this study, we selected the RF2 algorithm to reconstruct a long-term snow depth dataset (1987 to 2018). We 25 

used the independent in situ measurements over the period 1987-2018 from validation stations (Fig. 1) to evaluate this product 26 

(hereafter, RF product). Fig. 7 shows the scatter diagrams of estimated vs. measured values for RF and WESTDC products. 27 

The overall accuracy of the RF product is higher than that of the WESTDC estimates, with unbiased RMSEs of 7.1 cm and 8.5 28 

cm, respectively (Fig. 7a and 7b). The correlation coefficient is 0.65, which is larger than the WESTDC’s coefficient of 0.49. 29 
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Both products particularly underestimate snow depth when snowpack is thicker than 20 cm. The error bar shows that the 1 

WESTDC product tends to more seriously underestimate snow depth than do the RF estimates. 2 

To determine the interannual variability in the uncertainty, the time series of assessment indexes, including the unbiased 3 

RMSE, bias and correlation coefficient, are shown in Fig. 8. The results show that the RF estimates outperform the WESTDC 4 

product with respect to unbiased RMSE and correlation coefficient from season to season. The bias also fluctuates from 5 

season to season, ranging from -8 cm to 3 cm (Fig. 8c). There is a slight overestimation during the period 1987-2000, whereas 6 

it presents a notable underestimation since 2006. Snow depth estimates with PMW data are usually challenged by the snow 7 

metamorphism (e.g., snow grain size). In particular, the large diurnal temperature range in the late snow season leads to a 8 

rapid snow grain growth (Dai et al., 2012). Fig. 9 presents the monthly performances of both RF and WESTDC products. The 9 

RF estimates outperform the WESTDC product in terms of correlation, overall bias and unbiased RMSE. WESTDC estimates 10 

tend to be underestimated in November, December and March, while the RF product is superior to the WESTDC data. Due to 11 

the influence of the seasonal evolution of snowpack, the unbiased RMSEs of both products present increasing trends from 12 

November to March during the snow seasons. The correlation coefficient in January is the highest among snow season months, 13 

which is attributed to stable snow cover. 14 

The assessment of snow depth product was performed in three snow cover areas of China. As shown in Fig. 10a, the RF 15 

data are superior to the WESTDC estimates, with the unbiased RMSEs of 8.3 cm, 6.8 cm and 8.8 cm in QTP, NE and northern 16 

XJ for the RF product, respectively. Fig. 10b shows a notable underestimation and overestimation for the WESTDC product in 17 

northern XJ and the QTP, respectively. For the RF product, the bias is close to zero and fluctuates across a relatively narrow 18 

range in the three snow cover areas.  19 

Based on the results in Fig. 7, we selected 20 cm as a threshold to assess the performances in deep (> 20 cm) and shallow 20 

(≤20 cm) snow cover. The percentage of shallow snow conditions to total samples was approximately 90%. Table 5 displays 21 

the comparison between RF estimates and the WESTDC product in the three snow cover areas. The ‘Samples’ row in Table 5 22 

shows the number of samples and the corresponding percentage in each region. Both products present notable underestimation 23 

of deep snow cover, with the biases of -34.1 cm and -33.8 cm in QTP for the RF and WESTDC products, respectively. The 24 

biases are -10.4 cm and -8.9 cm for the RF product in NE and northern XJ, respectively, whereas the same biases are -11.8 cm 25 

and -13.2 cm for the WESTDC data. Moreover, the correlation is very poor in deep snow cover, even negative (-0.18) in QTP 26 

for the WESTDC product. For shallow snow cover, the RF product is superior to the WESTDC estimates in QTP, with 27 

unbiased RMSEs of 3.4 cm (RF) and 5.6 cm (WESTDC). Furthermore, the WESTDC product presents overestimation in QTP, 28 

with a bias of 4.0 cm that is much higher than the RF’s bias of 0.6 cm. The unbiased RMSEs of the RF product are 5.4 cm and 29 

6.1 cm in NE and northern XJ for shallow snow cover, respectively, lower than the WESTDC’s values of 6.5 cm and 7.4 cm. 30 
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However, the RF product tends to overestimate snow depth relative to WESTDC estimates, with higher biases of 1.8 cm and 1 

2.5 cm than WESTDC’s 0.5 cm and -0.4 cm in NE and northern XJ, respectively. 2 

3.4 Spatial-temporal analysis of snow depth in three snow cover areas 3 

The trend analysis of snow depth was conducted based on ground truth observations, the RF dataset and the WESTDC product 4 

during the period 1987-2018. The time series of yearly mean snow depth in different regions over China is shown in Fig. 11. 5 

The red, green and blue solid lines represent yearly mean snow depth in northern XJ, NE and QTP, respectively. The black 6 

solid line displays the overall mean snow depth in China. Fig. 11a shows that the ground truth snow depth in China presents a 7 

significant increasing trend from 1987 to 2018, with a correlation coefficient of 0.57. The trend in NE is highly consistent with 8 

the overall trend over China, with a correlation coefficient of 0.64 (Fig. 11a). Although there are increasing trends in northern 9 

XJ and QTP, the correlation coefficients are lower than 0.40, not significant (Fig. 11a). Fig. 11b and 11c show the time series 10 

of yearly mean snow depth from the RF and WESTDC products, respectively. Neither of these values present significant 11 

trends. In the QTP, the WESTDC product presents a significant decreasing trend, with a correlation coefficient of -0.55 (Fig. 12 

11c). Snow depth in northern XJ is the greatest among three snow cover areas, and snow cover in the QTP is very shallow, 13 

approximately 5 cm (Fig. 11a and 11b). With respect to magnitude and change trends, the ground truth observations and RF 14 

estimates in this study are consistent. 15 

Fig. 12 shows the spatial patterns of snow depth variation based on the RF and WESTDC products. Only the area with 16 

continuous snow depth measurements from 1987 to 2018 is shown in Fig. 12. The two products show similar patterns in the 17 

most areas over China. There are notable trend differences between RF and WESTDC products in the northeast of QTP and 18 

western NE. The RF product presents an increasing trend in the northeast of QTP, whereas a significant decreasing trend is 19 

presented for the WESTDC product (Fig. 12a and 12b). In the western NE, there is a significant increasing for the RF product 20 

but no significant trend for WESTDC data. 21 

Based on the comparison of trends in Fig. 12 and available station observations in Fig. 1, we selected two specific areas 22 

(black and green grids in Fig. 12) to test the changing trend. Fig. 13 shows the trends of snow depth based on the station 23 

observations (black solid line), RF estimates (red solid line) and WESTDC product (blue solid line). The ground truth snow 24 

depth presents a significant increasing trend in the specific area of NE, with a high correlation coefficient of 0.75 (Fig. 13a). 25 

The RF product shows a significant increasing trend, which is consistent with the ground truth data (Fig. 12a and Fig. 13a). 26 

Fig. 13b shows that WESTDC product displays a decreasing trend in the selected area of QTP, while station observations and 27 

RF estimates present no significant trends. 28 

4 Discussion 29 
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4.1 Disadvantages of the RF model 1 

The RF technique is already used to generate temporal and spatial predictions. Generally, the RF model cannot extrapolate 2 

outside the training range (Hengl et al., 2018). Fig. 6 and Table 4 indicate that the spatial predictions of fitted RF algorithms 3 

are more biased than are the temporal predictions. Thus, the transferability of a fitted RF algorithm to other areas is in question. 4 

Several studies (Prasad, Iverson & Liaw, 2006; Hengl et al., 2017; Vaysse & Lagacherie, 2015; Nussbaum et al., 2018) have 5 

proven that RF is a promising technique for spatial prediction; however, these studies aim to obtain spatial predictions of 6 

elements of stationarity in the Earth system, e.g., soil types and soil properties.  7 

What makes the Earth system interesting is that it is non-stationary (especially concerning snow parameters). Generally, 8 

snow depth increases at the beginning of winter and then decreases in spring due to melting. Moreover, snow cover has 9 

different spatial patterns in various regions, such as generally deep snow in high-latitude and high-elevation areas. In China, 10 

there are five climatological snow classes according to the classification by Sturm et al. (1995). Each snow class is defined by 11 

an ensemble of snow stratigraphic characteristics, including snow density, grain size, and crystal morphology, which 12 

influences the snowpack’s microwave signature (Sturm et al., 2010). These dynamic properties of snow will lead to many 13 

cases in which the same satellite TB corresponds to different snow depths, while the same snow depth is associated with 14 

various TB observations, rendering the fitted RF algorithm suboptimal. Physical snow evolution models, e.g., the Snow 15 

Thermal Model (SNTHERM) (Jordan, 1991), SNOWPACK (Lehning et al., 2002a, b), and Crocus (Brun et al., 1989; Vionnet 16 

et al., 2012), can be used to simulate snow parameters (e.g., grain size, density) relatively accurately. Thus, integrating a priori 17 

knowledge of snowpack into ML techniques has the potential to overcome many limitations that have hindered a more 18 

widespread adoption of ML approaches. 19 

4.2 Influence of predictor variables on the RF model 20 

Fig. 6 and Table 4 indicate that the inclusion of correlated predictor variables has a very slight influence in the predictive 21 

performance. Geographic location contributes to improving the RF model’s temporal and spatio-temporal estimates, and the 22 

inclusion of both elevation and land cover fraction does not further improve the performance of the fitted models (Fig. 6). This 23 

is because elevation is highly correlated (correlations higher than 0.9) with geographic location (Fig. 3). Fig. 3 also indicates 24 

that the correlation between longitude or elevation and land cover type (e.g., grassland, cropland, forest and bareland) is 25 

significant. However, this correlation does not mean that the effects of elevation and land cover fraction on fitted RF model 26 

can be ignored. We tested the RF algorithms trained with TB and elevation or land cover fraction data. The results (not shown 27 

here) indicate that these auxiliary data do improve the performance of the fitted algorithms. Strongly correlated variables have 28 

a very slight influence on the predictive performance of the RF model (Boulesteix et al. 2012). Therefore, in some cases, a few 29 

representative predictor variables should be selected. 30 
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4.3 Potential errors of the reconstructed snow depth 1 

Fig. 7 indicates that the RF model does not fully solve the overestimation and underestimation problems. For deep snow (> 20 2 

cm), the biases are up to -8.9 cm and -10.4 cm in NE and northern XJ, respectively. Deep snow conditions account for roughly 3 

10% of all training samples (Fig. 2). The estimates for deep snow cover in the QTP exhibit a large bias of -34.1 cm. Fig. 6 also 4 

illustrates that the fitted RF algorithms have no predictive ability for extremely deep snow conditions, especially in QTP. We 5 

checked the training data and found that the extreme high snow depth data (> 60 cm) occurred in QTP. However, the number 6 

of such cases is very small. In addition, the station measurements are point values while the satellite grids have a spatial 7 

resolution of 25 km × 25 km. Thus, the representativeness of these data is questionable. Snow depth estimation in the 8 

mountains remains a challenge (Lettenmaier et al., 2015; Dozier et al., 2016; Dahri et al., 2018). Numerous studies have been 9 

conducted on the snow cover over the QTP and have indicated that the snow cover in the Himalayas is higher than elsewhere, 10 

ranging from 80% to 100% during the winter (Basang et al., 2017; Hao et al., 2018). Additionally, Dai et al. (2018) showed 11 

that deep snow (greater than 20 cm) was mainly distributed in the Himalayas, Pamir, and Southeastern Mountains. Thus, the 12 

RF product produced in this paper has poor performance in QTP for the deep snow cover. 13 

Table 5 indicates that there is overestimation in NE and northern XJ for shallow snow cover, which may be due to the 14 

following reasons. First, the PMW signals are insensitive to thin snow cover (< 5cm), especially for fresh snow with low snow 15 

density and snow grain size, which generally results in underestimation (Foster et al., 2005). In contrast, it tends to 16 

overestimate snow depth for shallow old snow in the late snow season due to the seasonal evolution of snowpack. For example, 17 

the large diurnal temperature range in the late snow season tends to subject the snowpack to frequent freeze-thaw cycles and 18 

leads to rapid snow grain (~2 mm) and snow density (200-350 kg/m3) growth and consequently a high TB difference 19 

(Meløysund et al., 2007; Durand et al., 2008; Yang et al., 2015; Dai et al., 2017). Thus, the overall bias and unbiased RMSE 20 

for shallow snowpacks (< 10 cm) present increasing trends from November to March in NE and northern XJ (Table 6). Second, 21 

frozen soil reduces the accuracy of estimates. Both snow and frozen ground are volume-scattering materials, and they have 22 

similar microwave radiation characteristics, making them difficult to distinguish. Third, a limiting factor in estimating snow 23 

depth for PMW remote sensing is the presence of liquid water. In this study, a snow cover detection method is used to filter 24 

out wet snow cover; however, there are still misclassification errors, especially at the end of the winter season (Grody and 25 

Basist., 1996; Liu et al., 2018). In such cases, satellite observations are mainly associated with the emissions from the wet 26 

surface of the snowpack. Therefore, in wet snow conditions, snow depth retrieval is not possible (Derksen et al., 2010; 27 

Tedesco et al., 2016). 28 

5 Conclusions 29 
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The present study analyzed the application of the RF model to snow depth estimation at temporal and spatial scales. 1 

Temporally and spatially independent datasets were applied to verify the fitted RF algorithms. The results suggested that the 2 

accuracy of fitted RF algorithms was greatly influenced by auxiliary data, especially the geographic location. However, the 3 

inclusion of strongly correlated predictor variables (elevation and land cover fraction) did not further improve the RF 4 

estimates. Therefore, in some cases, a few representative predictor variables should be selected. Due to naive extrapolation 5 

outside the training range, the transferability of a fitted RF algorithm at the temporal scale was better that that in spatial terms, 6 

e.g., with unbiased RMSEs of 4.5 cm and 7.2 cm for the RF2 algorithm, respectively. 7 

In this study, the fitted RF2 algorithm was used to retrieve a consistent 32-year daily snow depth dataset from 1987 to 8 

2018. Then, an evaluation was carried out using independent reference data from the validation stations during the period 9 

1987-2018. The overall unbiased RMSE and bias were 7.1 cm and -0.05 cm, respectively, outperforming the WESTDC 10 

product (8.4 cm and -1.20 cm). In QTP, the unbiased RMSE and bias of RF estimates for shallow (≤ 20 cm) snow cover were 11 

3.4 cm and 0.59 cm, respectively, much lower than WESTDC’s 5.6 cm and 4.02 cm. In NE and northern XJ, RF estimates 12 

were superior to the WESTDC product but still presented an underestimation for deep snow (> 20 cm), with biases of -10.4 13 

cm and -8.9 cm, respectively. 14 

Three long-term (1987-2018) datasets, including ground truth observations, RF estimates and WESTDC product, were 15 

applied to analyze the trends of snow depth variation in China. The results suggested that there existed different trends among 16 

the three datasets. The overall trend of snow depth in China presented a significant increasing based on the ground truth 17 

observations, with a correlation coefficient of 0.57. Moreover, the trend in NE was highly consistent with the overall trend in 18 

China, with a correlation coefficient of 0.64. Neither the WESTDC nor the RF product presented significant trends except in 19 

QTP. The WESTDC product showed a significant decreasing trend in QTP, with a correlation coefficient of -0.55, whereas 20 

there were no significant trends for ground truth observations and the RF product. 21 

As discussed in Section 4, our reconstructed snow depth estimates are still challenged by several problems, e.g., 22 

underestimation for deep snow. Additional prior knowledge of snow cover, such as snow cover fraction, snow density, and 23 

snow grain size, is necessary to improve the RF model. Combining the physical snow evolution model (e.g. SNOWPACK) 24 

with the ML method will be the focus of future work. Furthermore, the mass balance approaches, e.g., the Parallel Energy 25 

Balance model, will be used to improve the snow depth retrievals in high-altitude areas. In addition, although our results 26 

indicate that the RF method is a promising potential tool for snow depth estimation, there are a few pitfalls such as the risk of 27 

naive extrapolation and poor transferability in spatial terms limiting its application in spatio-temporal dynamics. It is in 28 

addressing these shortcomings that the techniques of deep learning promise breakthroughs. We are attempting to operate the 29 

Deep Neural Networks (DNN) model to overcome the limitations of traditional ML approaches. 30 

 31 
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Table 1. Summary of the main passive microwave remote sensing sensors. 11 

Sensor SSM/I   SSMIS 

Satellite DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17 

On Orbit time 1987-1991 1991-1995 1995-2008 2006-present 

Passing Time 
A: 06:20                   

D: 18:20 

A: 17:17                    

D: 05:17 

A: 17:58             

D: 05:58 

A: 17:31           

D: 05:31 

Frequency & footprint 

(GHz): (km × km) 

19.35: 45×68  

23.235: 40×60  

37: 24×36 

85.5: 11×16 

19.35: 42×70  

23.235: 42×70  

37: 28×44 

91.655: 13×15 

 12 

Table 2. A detailed description of the input predictor variables based on four selection rules of the training sample. 13 

Name Predictor Variables Target Note 

RF1 TB19V, TB37V 

snow 

depth 

land cover types: 

grassland,  

cropland,  

bareland,  

shrubland,  

forest 

RF2 TB19V, TB37V, Latitude, Longitude 

RF3 TB19V, TB37V, Latitude, Longitude, Elevation 

RF4 TB19V, TB37V, Latitude, Longitude, Elevation, Land cover fraction 

 14 

Table 3. Summary of three tests of the fitted RF algorithms in Table 2. 15 

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

training 
training stations 2012-2014 training stations 2012-2014 training stations 2012-2014 

samples 28602 samples 28602 samples 28602 

validation 
training stations 2012-2014 training stations 2015-2018 validation stations 2015-2018 

samples 14301 samples 34684 samples 25879 

 16 

Table 4. Accuracy of four snow-depth retrieval models with unbiased RMSE, bias and correlation coefficient. 17 

Name 
Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

unRMSE bias corr.coe unRMSE bias corr.coe unRMSE bias corr.coe 

RF1 6.4 -0.01  0.72  5.4 0.12  0.77  7.9 -0.76  0.57  

RF2 4.1 0.07  0.90  4.5 0.27  0.85  7.2 -0.97  0.66  

RF3 3.9 0.08  0.90  4.5 0.24  0.85  7.3 -0.83  0.66  
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RF4 3.9 0.03  0.91  4.4 0.21  0.85  7.3 -0.40  0.65  

 1 

Table 5. Comparison between RF estimates and WESTDC product in three stable snow cover areas for deep (> 20 cm) 2 

and shallow (≤ 20 cm) snow cover. 3 

RF product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.30  0.06  0.49  0.17  0.48  0.31  

bias (cm) 0.59  -34.12  1.79  -10.38  2.52  -8.85  

unRMSE (cm) 3.43  20.70  5.36  7.00  6.12  9.62  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

WESTDC product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.16  -0.18  0.37  0.03  0.34  0.16  

bias (cm) 4.02  -33.78  0.47  -11.75  -0.39  -13.22  

unRMSE (cm) 5.60  21.62  6.47  9.10  7.35  11.30  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

 4 

Table 6. Summary of monthly performances of the RF product in NE and northern XJ. 5 

NE 

Month November December January February March 

corr.coe 0.32  0.41  0.40  0.23  0.08  

bias (cm) 2.33  2.19  2.93  4.74  7.97  

unRMSE (cm) 3.66  3.69  4.16  5.24  6.16  

northern XJ 

Month November December January February March 

corr.coe 0.20  0.27  0.40  0.20  0.08  

bias (cm) 3.68  3.35  2.97  5.65  10.60  

unRMSE (cm) 4.49  4.77  4.61  6.83  7.09  

 6 
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 1 

Figure 1. Spatial distribution of the weather stations and land cover types in the study area. There are three stable snow cover 2 

areas in China: Northeast China (NE), northern Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP). 3 

 4 

 5 

Figure 2. Histograms of snow depth observations from (a) training and (b) validation stations. The average values (black 6 

dashed lines) are equal to 10.5 cm and 9.8 cm, respectively. 7 

 8 

   9 

(a) (b) 
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Figure 3. Correlations between the predictor variables (left) and the ranking of variable importance (right). The 1 

importance of variables, referred to as Mean Decrease Accuracy (MDA) in the RF model, is obtained by averaging the 2 

difference in out-of-bag error estimation before and after the permutation over all trees. The larger the MDA, the greater 3 

the importance of the variable is. 4 

 5 
Figure 4. The test process flowchart for the sensitivity of the RF model to the training sample size. 6 

 7 

Figure 5. Trends of (a) unbiased RMSE, (b) bias and (c) correlation coefficient with increasing training sample size. 8 

(a) (b) (c) 
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 1 

Figure 6. The color-density scatterplots of the estimated snow depth with four fitted RF algorithms and the ground truth 2 

snow depth. The four trained RF algorithms (RF1, RF2, RF3, RF4) were evaluated with three validation datasets (Test1, 3 

Test2, Test3). 4 

  5 

RF1-Test1 RF1-Test2 RF1-Test3 

RF2-Test1 RF2-Test2 RF2-Test3 

RF3-Test1 RF3-Test2 RF3-Test3 

RF4-Test1 RF4-Test2 RF4-Test3 
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 1 
Figure 7. Scatterplots of the estimated snow depth and the ground truth observation for (a) RF and (b) WESTDC products. 2 

 3 

 4 

Figure 8. Time series of (a) unbiased RMSE (unRMSE), (b) correlation coefficient (corr.coe) and (c) bias for RF and 5 

WESTDC products. The colorful dashed lines represent mean values of assessment indexes. 6 

 7 

(c) 

(a) 

(b) 

(a) (b) 
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 1 

Figure 9. The validation of RF and WESTDC snow depth products in three stable snow cover areas over China with respect to 2 

(a) the unbiased RMSE, (b) bias and correlation coefficient. 3 

 4 

 5 

Figure 10. Monthly performances of (a) RF, and (b) WESTDC snow depth products. Nov: November; Dec: December; Jan: 6 

January; Feb: February; Mar: March. 7 

 8 

 9 

Figure 11. Trend analysis of snow depth based on (a) station observations, (b) RF estimates, and (d) WESTDC product in 10 

three stable snow cover areas of China. The correlation is statistically significant at the 0.05 level. 11 

 12 

(a) (b) 

(a) (b) (c) 

(a) (b) 
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 1 

Figure 12. Trend analysis of snow depth during the period 1987-2018: (a) RF product; (b) WESTDC data. Light red and light 2 

blue represent no significant trend changes. 3 

 4 

 5 

Figure 13. Comparison of changing trends of snow depth between RF estimates and WESTDC product in specific areas of (a) 6 

NE and (b) QTP. 7 

(a) (b) 

(a) (b) 


