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16 Abstract. Snow depth data time series are valuable for climatological and hydrological applications. 

17 Passive microwave (PMW) sensors are advantageous for estimating spatially and tcmporally continuous 

18 snow depth. However, PMW estimate accuracy has severa! problems, which results in poor performances 

19 of traditional snow depth estimation algorithms. Machine learning (ML) is a common method used in 

20 many research fields , and its ~ application in remote sensing is promising. In this study, we propose 

21 a new and accurate approach based on the ML technique to estimate real-time snow depth and reconstruct 
-'""'- \>Me.\ 

22 historical snow depth from 1987-20llli.irst, we trained the random forest (RF) model withftidvanced 

23 /iticrowaveJ canningt diometer 2 (AMSR2) brightness temperatures (Ta) at 10.65, 18.7, 36.5 and 89 

24 GHz, land cover fraction (forest, shrub, grass, farm and barrcn), gcolocation (latitude and longitude) and 

25 station observation from 2014-2015. Then, the trained RF model was used to retrieve a reference dataset 

26 with 2012-2018 AMSR2 Ta data as the accurate snow depth. With this reference snow depth dataset, we 

27 developed the pixel-based algorithm for the Special Sensor Microwave/Imager (SSM/I) and Special 

28 Sensor Microwave Imager Sounder (SSMI/S). Finally, the pixel-based method was used to reconstrnct a 

29 consistent 31-year daily snow depth dataset for 1987-2018. We validated the trained RF model using the 

30 weather station observations and AMSR2 Ta during 2012-2013. The results showed that the RF model 

31 root mean square error (RMSE) and bias were 4.5 cm and 0.04 cm, respcctively. The pixel-based 
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algorithm's accuracywas evaluated against the field sampling experiments dataset (January-March, 2018) 

2 and station observations in 2017-2018, and the RMSEs were 2.0 cm and 5.1 cm, respectively. The pixel-

3 based method performs better than the previous regression method fitted in China (RMSEs are 4. 7 cm 

4 and 8.4 cm, respectively). The high accuracy of the pixel-based method can be attributed to the spatial 

5 dynamie retrieval coefficients and accurate snow depth estimates of the RF model. Additionally, the 

6 1987-2018 long-term snow depth dataset was analyzed in terms of tempora! and spatial variations. On 

7 the spatial scale, daily maximum snow depth tends to occur in Xinjiang and the Himalayas during 1992-

8 2018. However, the daily mean snow depth in Northeast China is the largest. For the tempora! 

9 characteristics, the February mean snow depth is the thickest during snowy winter seasons. Interestingly, 

1 O the January mean snow depth represents the annual mean snow depth, which plays an important role in 

11 snow depth prediction and hydrological management. In conclusion, through step-by-step validation 

12 using in situ observations, our pixel-based approach is available in real-time snow depth retrievals and 

13 historical data reconstruction. 

14 1 Introduction 

15 Seasonal snow cover is an important parameter in the context of the Earth's hydrological cyc le, the global 

16 radiation balance, and climate system (Femandes et al. , 2009; Hem aidez-Henr quez et al. , 2015 ; Derksen 

17 et al., 2012 ; Kevin et al., 2017; Huss et al., 2017; Dorji et al., 2018). The !atest Intergovernmental Panel 

18 on Cli mate Change (IPCC) special report of 2018 stated that the cryosphere is very sensitive to climatic 

19 changes, and extreme snow cover changes and melting caused by global warming were threatening 

20 natura! and human systems (Hoegh-Guldberg et al., 2018). Long-term snow cover rccords are crucial for 

21 climate studies, hydrological applications and weather forecasts over the Northern Hemisphere (Gong et 

22 al., 2007; Derksen et al. , 2012; Safavi et al., 2017; Tedesco et al., 2016; Huang et al., 2017; Zhong et al. , 

23 

24 

25 

26 

27 

2018). A key parameter is the snow water equivalent (SWE), which describes the amount of water stored 

in the snowpack as a product of snow depth and mean snow density (Dressler et al. , 2006; Kelly et al., 

2009; Foster et al. , 2011; Xiao et al. , 2018; Takala et al. , 2017; Tedesco et al., 2016). Fortunately, passive 

microwave (PMW) signals can penetrate snow cover and provide snow depth estimates through volume 

scattering of snow particles in dry snow conditions. PMW remote sensing also has the advantage of 

28 sensing without the dependency of solar illumination and weather conditions (Chang et al. , 1987; Foster 
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et al., 2011; Larue et al., 2017). In addition, there exists a long achieved historical spacebome PMW data 

2 dating back to 1978, allowing us to study seasonal snow climatological changes (Takala et al., 2011; 

3 Takala et al., 2017; Santi et al., 2012). These superiorities make snow depth estimation from satellite 

4 PMW remote sensing an attractive option. 

5 However, there are two challenges when generating long-term snow depth data. The first challenge 

6 is choosing the most suitable algorithm. The most widely used inversion algorithms are based on 

7 empirical relationships between spacebome satellite brightness temperature (Ta) differences (high 

8 frequency sensitive to snow volume scattering-37 GHz and low frequency insensitive to snow - 19 GHz) 

9 and snow depth (Chang et al., 1987; Foster et al. , 1997; Derksen et al. , 2005; Che et al. , 2008; Kelly et 

10 al., 2003; Kelly et al., 2009; Chang et al., 2009; Jiang et al. , 2014; Yang et al. , 20 19). However, these 

1 i algorithms are always not rcliable in all regions using the fitted empirical constants (Davenport et al., 

12 2011; Derksen et al., 2010; Che et al. , 2016; Takala et al., 201 7; Yang et al., 2019). Subsequently, more 

13 advanced algorithms that use theoretical or semiempirical radiative transfer models were developed 

14 (Durand et al., 2006; Jiang et al., 2007 ; Tedesco et al., 2010; Takala et al., 2011; Picard et al., 2012; 

15 Luojus et al., 2013; Che et al., 2014; Lemmetyinen et al., 2015 ; Metsiiniki et al., 2015; Tedesco et al. , 

16 2016; Huang et al., 2017; Larue et al., 201 7; Pan et al., 2016; Pan et al. , 2017; Saberi et al. , 2017), 

17 however, these algorithms were computationally expensive and required complex ancillary data or prior 

18 knowledge to providc accurate predictions. These factors rcstrict the applications ofthese algorithms on 

19 a global scale. Improving the performance of PMW retrieval algorithms by means of data assimilation 

20 has also been investigated (Durand et al., 2006; Tedesco et al. , 201 O; Che et al., 2014; Huang et al., 2017). 

21 Currently, the most representative operational assimilation system is the European Space Agency (ESA) 

22 Global Snow Monitoring for Climate Research (GlobSnow) SWE product, which combines synoptic 

23 weather station data with satellite PMW radiometer measurements through the snow forward model 

24 (Helsinki University of Technology snow emission model, HUT) (Pulliainen et al., 1999; Pulliainen., 

25 2006; Takala et al., 2011; Luojus et al. , 2013; Metsiiniki et al. , 2015; Takala et al. , 2017). To avoid 

26 spurious or erroneous deep snow observations, a mask is used in mountainous areas (Takala et al. , 201 1; 

27 Luojus et al., 2013). Moreover, the product is generated in the Northem Hemisphere (> 35 °N), which 

28 excludes most parts ofQinghai-Tibetan Plateau (QTP). The algorithm may not be as feasible as empirical 

29 algorithms in terms of real-time operation because of its sophisticated procedure and diverse inputs. 

30 Currently, machine learning (ML) is being utilized in many different research areas, and its ~ 
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application in remote sensing fields is promising (Liang et al., 2015; Bair et al., 2018; Xiao et al., 2018; 

Xiao et al. , 2019). ML techniques can reproduce the nonlinear effects and interactions between variables 

without assurnptions of a functional form. The widely known ML algorithrns include support vector 

rnachine (SVM), artificial neural network (ANN) and random forest (RF). Among these methods, RF is 

an ensemble method whereby multiple trees are grown from random subsets of predictors, producing a 

weighted ensemble oftrees (Breiman, 2001; Liang et al., 2015; Bair et al., 2018). RF is also robust:am- wt.all ) 
overfitting in the presence of large datasets and increases ~ edictive accuracies over single trh s. The 

~(fi'<J"' . 
method has been used in classification and pred{ction due to its proven accuracy, stability, and ease of 

use (Bair et al., 2018; Belgiu et al., 2016; Rodriguez-Galiano et al. , 2012; Qu et al., 2019). 

The second challenge is how to take full advantage of the data frorn different sensors and rebuild a 

long time series dataset. On the one hand, global snow estimates from PMW measurernents are among 

the longest satellite-derived climate records in existence, frorn the Scanning Multichannel Microwave 

Radiometer (SMMR, 1978-1987), Special Sensor Microwave/Irnager (SSM/I, 1987-2008) and Special 

Sensor Microwave Imager/Sounder (SSMI/S, 2006-present) to NASA's Advanced Microwave Scanning 

Radiometer for the Earth Observing System (AMSR-E, 2002-2011) and AMSR2 (2012-present) 

(Knowles et al., 2000; Armstrong et al., 1994; Kawanishi et al., 2003; Imaoka et al., 2012). The 

Microwave Radiation Imager (MWRI) onboard the Chinese FengYun-3 (FY-3) series ofsatellites (FY-

3A, 2008; FY-3B, 2010-the present; FY-3C, 2013-present; FY-3D, 2017-present) was designed for broad 

meteorological and environmental applications (Yang et al., 2011). Subsequent satellites, FY-3E, 3F and 

3G, are expected to be launched in the future until 2025. However, severa! consecutive generations have 

different sensor calibration and design characteristics, which lend to result in uncertainties and 

inconsistencies (Armstrong et al., 1994; Derksen et al., 2003; Cavalieri et al., 2012; Meier et al., 2011; 

Okuyama et al., 2015). For example, the footprint size of AMSR2 has been improved compared to its 

. (Z'\ \.,~i,,.o ) 
predecessors, and the grid T 8 is more representative for pixels (25 x 25 knt)I. The 10.65 GHz included 

in the AMSR2 and MWRis is more suitable for the estimation of deep snow cover (Derksen et al., 2008; 

Kelly et al., 2009; Jiang et al., 2014). This frequency has been missed since the SSM/I substituted for the 

SMMR and was not available until the Global Change Observation Mission (GCOM-W) AMSR-E was 

operational. The SSMI(S) sensors, including SSM/I and SSMI/S, on the U.S. Defense Meteorological 

Satellite Program (DMSP) satellites (FOS, Fl 1, F13, and FI 7) collect data at four frequencies (19, 22, 37, 

85 or 91 GHz) from 1987 to the present. Although there is no 10.65 GHz frequency, the satellite sensors 

4 
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and platforms possess simi lar configurations. Moreover, the !atest dataset was reprocessed to complete 

2 intersensor calibrations by Remote Sensing Systems Version (RSS V7), providing interconsistency of TB 

3 from the sensors (Armstrong et al., 1994) . Thus, balancing the data consistency (SSM/1 and SSMI/S) and 

4 the advanced PMW instruments (AMSR2 and MWRI) is stili an issue. To make use of the advantages of 

5 both aspects, we propose a pixel-based method of snow depth reconstruction and real-time estimation 

6 based on the RF model, where the RF model was trained using the 10.65-89 GHz satellite observations 

7 (AMSR2) and other ancillary data. The estimated snow depth from the RF was used to develop a pixel-

8 based algorithm using 19 .35 and 3 7 GHz for the SSMJ(S). 

9 The primary objective of this study is to test the RF model feasibility in estimating snow depth, 

I O establish a pixel-based method to retrieve real-time snow depth and reconstruct historical snow depth 

11 data (-3 I years, from 1987-2018). The paper is organized as follows. The data and methodology are 

12 presented in Section 2. In Section 3, the results are described, including the RF model test, RF model 

13 training, development of a pixel-based model and long-term snow depth reconstruction. The discussion 

14 is provided in Section 4, and in Section 5, we present aur conclusions. 

15 2 Data and Methodology 

16 2.1 Data 

17 (I) Satellite passive microwave measurements 

18 There is a relatively long time series ofremotely sensed PMW measurements (from 1978-present). Table 

19 I shows the characteristics of PMW remote sensing sensors. Among these sensors, AMSR2 has three 

20 major advantages compared with other instruments: (a) Tss from 10.65 GHz-89 GHz are available 

21 compared to the SMMR, SSM/I and SSMI/S sensors; (b) it contains a newly added 7.3 GHz channel at 

22 the C-band compared to the previous AMSR-E; and (c) the antenna is enhanced with a smaller footprint 

23 size. Thus, the overall reliability has been improved to a certain extent. Therefore, in the first step, the 

24 RF model was trained using the AMSR2 measurements to generale the reference snow depth. The 

25 AMSR2 data are provided in the EASE-Grid projection with an equidistant latitude-longitude at a quarter 

26 degree resolution since 3 July 2012 (http://gportal.jaxa.jp/gpr/). To avoid the influence of wet snow on 

27 snow depth estimation, only the T8 observations from nighttime overpasses (Descending, I :30 a.m.) were 

28 used in this paper (Chang et al. , 1987; Derksen et al. , 2010; Tedesco et al. , 2016). 
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The SSMI(S) sensors provide Te data at 19.35, 23.235, 37, 85.5 or 91.655 GHz from 1987-present. 

2 The data are available from the National Snow and Jce Center 

3 (https ://daacdata.apps.nsidc.org/pub/DATASETS). Both the vertical and horizontal polarizations are 

4 measured, except for 23.235 GHz, where only the vertical polarization is measured. The satellite sensors 

5 and platforms with similar configurations can reduce system errors, which is suitable for producing a 

6 

7 

8 

long-term consistent snow depth dataset. We used the dataset reprocessed by RSS, in which the 

intersensor calibrations were completed. To avoid the influence of wet snow, oni cold overpass ata 

were used. Notably, in this study, the difference between 19.35 (36.5) GHz and 18.7 (37) GHz was 

9 ignored. 

1 O (2) In situ measurements 

11 The weather station data were acquired from the National Meteorological Information Centre, China 
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Meteorology Administration (CMA). The snow depth measurement dataset used in this paper is from 
[I'\ 

689 stations taiot1glts.i.1,China (Fig. 1, left) from 2012-2018. The recorded variables include the site name, 
r.9-w,, <; l ! 

observation time, geolocation (latitude and longitude), elevation (m), near surface soi! temperature 

(measured at a 5-cm depth, 'C), and snow depth (cm). Notably, because of the harsh climate and co mp lex 

terrain, meteorological stations are few in the QTP, especially in the western::- ') A..,."-u/' r ~ I h Ctt' (I,,~ ..f 1 

Quality control was conducted prior to using the data for developing the retrieval algorithm. The first 

step was to select the records where the near surface soi! temperature was !ower than O 'C. The second 

step was to remove the sites ifthe areał fraction of the open water exceeded 30 % within a satellite pixel. 

Finally, only ground-measured snow depths greater than 3 cm were used because the microwave response 

to thinner snow cover at 37 GHz is basically negligible (Derksen et al., 2010; Tedesco et al., 2016). A 

small number of points with extremely high snow depth values (greater than 70 cm) were also removed. - "> hJ i ! 
The snow depth distribution in the filtered subset is from 3-70 cm. ' ) vt<o 'v ~ r 1 ~ C,,.P1,J 

In addition, the field campaign supported by the Chinese snow survey (CSS) project was conducted J--e/-- O~ f O Ó'Vl 

from January-March in 2018 to measure the snow depth transects in two satellite pixels in Xinjiang and 

Northeast China (Wang et al., 2018). Figure 1 shows the two field sampling pixels in Xinjiang and 

Northeast China. Table 2 shows the details of the snow field sampling work, including longitude, latitude, 

altitude (m) and land cover types. The lack of canopy cover makes it an ideał study area for PMW remote 

sensing. There are 26 and 21 sampling measurements within a coarse 25 km pixel in Xinjiang and 

Northeast China, respectively. There were four days of snow depth transect measurements on January 

6 
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21, 23, February I and March 9, 2018. For field sampling, measurements within each grid are averaged 

to represent the ground tmth snow depth. 

(3) Land cover fraction 

A I-km land use/land cover (LULC) map derivcd from the 30-m Thematic Mapper (TM) imagcry 

classification was provided by the Data Center for Resources and Environmental Sciences, Chinese 

Academy of Sciences (http://www.resdc.cn/). Because the I-km LULC map was derived from 30-m TM 

imagery, the map can be recalculated as the areał percentages of each land cover type in the 25-km grid 

ce l Is. In this study, the fractions of grass, barren, farm, forest, and shrub were calculated as inputs of the 

RF model. The dataset is not described here; see Jiang et al. (2014) for more details. To avoid the 

influence ofwater bodies and construction, the record was used only ifthe total fraction, including grass, 

barren, farm, forest, and shrub, was greater than 60 %. 

2.2 Methodology ? 
--- '7 . 

(I) § ili* est of RF 13 

14 

15 

16 

17 

18 

RF is an ensemble algorithm that was developed by Breiman in 2001. RF runs by constructing many / 
,,--> ,· ..i r-Arp<-vf- L, 1,,,kA-? _ ? ~ +~ 

single decision trees to improve performance, which is much more efficient than traditional ML 

techniques. frhe RF algorithm generally only requires two user-defined parameters, the number oftrees ~- ------------/ 
in the ensemble, and the number of random variables at each n~N'articular advantage of RF is that 

because of the presence of multiple trees, the individual trees need not be pruned, avoiding overfitting 

19 (Breiman, 20Q_!_)}in this paper, the RF method is trained to retrieve the reference snow depth dataset, 

20 which is necessary to build the pixel-based model. / '7 ki, 'J f ~, > 
21 

22 

In generał, the quality of the reference snow depth is determined by the RF model erfor~3 In 

this study, the number ofvariables selected at each node (split) is set to 4 (usually the square root of the 

23 number of input variables) based on the number of input varia bies (Gislason et al., 2006; Belgi u et al., 

("Pv}o,v~L-t 

,·s ~s~l7 

24 2016).fr'he number oftrees is set to 500 according to the out-of-bag (OOB) test because the errors are_ ·;:, ~ ~ 
25 stable when the number of decision trees is adequa~ This finding agrees with previous studies Sc., h- { ~ v'-<.. 

26 suggesting that a tree number of approximately 500 is generally sufficient (Belgiu et al., 2016; C movas-

27 Garc II et al., 2015; Cmovas-Garc II et al., 2017; Tsai et al., 2019).F wever, how many samples should 

28 be inputted to the RF model? Specifically, is the performance of the RF model related to the training 

7 
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samples?I Thus,. the RF's performance is tested in terms of different training datasets. The flowchart of 
~ ~~./'-~ 

2 the test proces~~~ in Fig. 2. _,, 7 1 '....(_ A{., O 00 O >~i:°i ! :;i--k-
3 There are t ~ooo pairs of samples rom 1987-2004 (including PWM Ta from SSM/I, land cover ·· 

4 fraction and in situ snow depth). Notably, the SSM/I Ta pairs here are only used to test the number of 1 - ~~ 
~ · . 5 s=ples reqwred, ""' ilie lliti=<e <rairung d,ra of tlw RF modsi. Dfilillg iliis prnress, <be o=be< of 

rv-Uy · b") !,v.~ ~domly is from 5000 to 80000 (step , 5000). A unified dataset from 2005-2006 is used 

ivW is~ ~,·~ 

P"~J~h 
(9.)oJ 7 

7 to evaluate the performance of the RF model. We consider three evaluating indicators (the root mean 

8 

9 

10 

11 

12 

square error (RMSE), bias and correlation coefficient) to illustrate the ~ii.iili§}f the RF model. 

(2) RF model training, reference snow depth and the pixel-based model "-~ Vt.<(, ·s 
The main processing steps are described in detail in Fig. 3. To build the RF model, as shown in Table 3, 

the training dataset is composed of fifteen predictors including land cover fraction (5), latitude (!), 

h · ~ : hoG<v~ 1. 
longitude (1 ), AMSR2 T 8 (8) and one target - station sno# depth (I) from 2014 to 2015 ( 45000 samples). 

13 The data were used to validate the trained model in the period from 2012 to 2013. The PMW 

14 measurements contain dual-polarized (H & V) Tss in four channels: 10.65 GHz, 18.7 GHz, 36.5 GHz 

15 and 89 GHz. All available channels on the AMSR2 are listed in Table 1. Specifically, the 6.925 GHz and 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

7 .3 GHz channels are contaminated by radio frequency interference (RFI) and are not sensitive to 

snowpack (Kelly et al. , 2009; Rodr guez-Fernmdez et al., 2015). The 23.8 GHz channel is sensitive to 

water vapor and not surfacc scattering, which introduces uncertainty to the estimation process. Typically, 

the !ower frequency (18.7 GHz) is used to provide a background Ts against which the higher frequency 

(36.5 GHz) scattering-sensitive channels are used to retrieve snow depth. However, the possibility that 

deep snow can scatter 18.7 GHz radiation suggests that a !ower frequency (10.65 GHz) is more suitable 

to provide background information (Kelly et al., 2009, Derksen et al., 2008; Tedesco et al. , 2016). The 

89 GHz channel was added because of its penetrability of shallow snow. For shallow snow or fresh snow, 

it is probably transparent for 36.5 GHz. Thus, the use of 89 GHz channels can greatly improve depth 

retrieval for barren land (Jiang et al., 2014). The mixed-pixel problem is the dominant limitation on snow 

depth estimation accuracy (Derksen et al. , 2005; Kelly et al. , 2009; Jiang et al., 2014; Roy et al., 2014; 

27 Cai et al. , 2017; Li et aL, 2017; Li et al., 2019). Satellite TB usually represents severa! land cover types 

28 due to coarse footprints (tens ofkm). Thus, we added the main land cover fraction as part of the training 

29 dataset. Some previous studies have shown that latitude and longitude contribute to improving RF model 

30 performance and present the spatial distribution of snow depth (Bair et al., 2018; Qu et al., 2019). 

8 

T ~' s i c; ~hr ~v-OL-.C 

lv~. C ~ l\\o-,L·.J. ,O " 

i-r <: ~-łeveol 617 
s VW,/v l 

,I.J tv 'tM ~C7Li) ~ 
th.-e {' M(., ,' !: {,wvi5f') 
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After the RF model was trained, it was validated with the AMSR2 T s and station snow depth of20 I 2-

2013. Then, the trained RF model was used to generale ar~ ccurate snowdepth dataset (hereafter 

referred to as the reference dataset) with AMSR2 observations from 2012 to 2018 (Fig. 3, step l).p; ,, ) +k. <;. 5' f' łll./pi f' 

hypothesize that the snow depth estimates with the RF model are the most accurate ground truth availabl:J /J.-.J- b..v/'~,.yV 
Then, the reference snow depth was used to establish a pixel-based algorithm using the Ta gradient (19.35 { he_ { V\ f-r,.q o kJ,,.,, 
GHz-37 GHz): 

SD= Slope X (T819.3sH - T837H) + Intercept 1 
/? o~~,·c. 

7 (I) 

8 where the Slope and Intercept are dynamie coefficients for each grid. TB1 9.JSH and TBJ7H are PMW 

9 brightness temperatures in Kelvin (K) at horizontal polarization. SD is snow depth in centimeters from 

10 the reference data. The development ofa pixcl-bascd rctricval mcthod makes it possible to estimatc rcal-

11 time snow depth without relying on the use of multiple sources of information. 

12 The performance of the pixel-based method was also compared with the static linear-fitting algorithm 

13 developed by fitting 19.35 and 37 GHz with the snow depth measurements with a constant empirical 

14 coefficient over China (Fig. 3, step 2). The linear-fitting method is the modified Chang equation, which 

15 was developed based on Chinese weather station observations and SSM/1 Ta for China (Che et al., 2008). 

16 The equation is as follows: 

17 SD= 0.66 X (TB19.35H - TB37H) (2) 

18 where the Ta19.3SH and TaJ7H are brightness temperatures for 19.35 GHz and 37 GHz at horizontal 

19 polarization, respectively and 0.66 is the static fitting coefficient. 

20 (3) The reconstructed snow depth product and validation 

21 The reconstructed snow depth dataset from 1987 to 2018 with the pixel-based method was evaluated by 

22 the in situ measurements from the weather stations (2017-2018) and the field snow transects from the 

23 CSS (January to March 2018). Then, the spatiotemporal distribution ofsnow depth was analyzed (Fig. 3, 
, 'To 

24 step 3~ ensure the possible dry snow cover, the reconstruction periods are the main snow winter 

25 seasoHS-(January, February, March, November, and December). 
vvi.o1-dS- ............. 

~rr 5'~'>011 (vt..d-ffwv.J) ......_ ') (~n+ 
3 Results 26 

27 3.1 RF stability test 

9 
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Although RF has many advantages over~techniques t10 erformanc is related to the number 7 ; S: ,· ·/ / 

~~-t:aining sa;;;;,~ reover, the quality of the reference snow depth is determined by the performance -2 

3 ~o conduct a complete test with enough samples, 80000 ~ ofrecords from 1987 t~ > 
2004 were used to test the required size of the training samples. The results are shown in Fig, 4 after ~ / (~h. 4 

r-,e > ,D .,,J f 
5 severa! test runs ~ igure 4a ~ the RMSEs range from 5. 1 cm to 5.4 cm it increasing samples ) ~ . 

6 Figrne 4b shows slight floc<~,i,~ of bill, bówee, -0.2 md 0.2 = Fig= 4e shows ""'<he oorrel•ioo ~ 
7 coefficient is as high as 0.79 and seems to be stable when the samples are up to 50000. ~any case, the f;l{s {:' '(_ { ; 
8 figure shows that the RF model performs robustly in terms of the training sample subsełn other words, ;~ J 

\ ~ S (. / t e number of training samples has less influence on the prediction accuracy because of the sufficient -
4 

.,1,., t ~ 
S ~ { 1, °"mbe, (500) of siog!e deei,ioo ':f'•~iue"I, 20] 6; C O>ows-G,re b ó ,1, 2015; C /no,~-GMe ; 4,., 

11 et aL , 2017; Bair et al., 2018). The test i~ very help ful for us to determine the number of training samples ( ~J ~ (. 
L 12 because oflimited training samples from AMSR2A .:> , i "') 

sfL,s <; I. ./...,of- 13 3.2 RF model.,..,,,,,"' ""''"" /Jw,/,', /1.,_ r/-t..:..I ~ L ~ S "i'.9 I-.,_ 

is: ~ c;(/\((J d __.,. ,-i o ~of 
k,':, ~4 n.l~ J:,,ł ~ ~ 14 To obtain a spatially continuous and accu~ r~}:~; ~ depth dataset, the RF model was used to J'-'<it ~J'-e., 2_A -

\ kt. ~JJNI ~ . 15 find the nonlinear relationship linking the inpttt da!&-tO the target ~ttt data me c-o-mpesed-6-f-tłls j ~ ~ 

V,",~ ~~· ~ - 16 AM~R2 Ta, land Cover frachon and geolocatiou ('fabie 3). The t11rget dataset ased to Ualn tlie Jtl! 1s from ~ / 

17 weather Statlon observauons m 2014 and 2015. The pei fo1111a11ce of t!ie trained Rf model nas e\·allffl'tcd-- ~ 

ok.ks.ds . 
18 ~ the „ eather stanon Show deptl'l m 2012 and 291-3-. Figure 5a shows that the RMSE is 4.5 cm. The U 

determination coefficient is-as hig& !!5 0.77. figure §g she ... s ta~ Sfll!lial-d~bJJtiea Qf PMSĘ~ e~e" [i_ 19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

pattem of the high RMSE is consistent with the mountains (Xinjiang: Altai Mountains and Tia~ ~ ~ o pY 
,uouuu ~ & . 

Mountains; Northeast China: Changbai Mountains and Xiao Hinggan Mountains), which means that the · f 
W,·~ S'"~ I 

accuracy is low in that location. ł::dditionally, the large uncertainties in snow depth retrieval are 

associated with forest cover in Northeast China, which agrees with the studies by (Cai et aL, 2017; Li et 

aL , 2017; Roy et aL , 2014; Liu et al., 2018f.!The RMSE in the QTP and South China is also large due :-- ) ~ :J 
(S' <Jt, ,-lA. ~ I , 

1---z.. patchy, shallow and wet snow (Dai et aL , 2017, 2018; Yang et aL , 2015). Figure 5c shows that it tends 

to overestimate snow depth over shallow snow areas, especially in the QTP and South China. In these 

areas, weather stations are sparsely distributed, and snowfall is ephemeraL The snow cover is as thin as 

1-5 cm, which challenges the ability of PMW remote sensing. Figure 5d shows the spatial distribution 

of relative errors (RMSE is divided by mean snow depth). The error in the shallow snow cover is higher 

10 
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than thai in the thick snow areas. This paltem is caused by the low mean snow depth. ~ ';/ ..) 

QCCasionally, a high RMSE daęs.Pełtrrean a poor petfo1maiie&be~~ns@ the ,elative e11or is less Hlan 2Q %, / 2 

3 

4 

5 

for 01Campłe, fm the'1lit0s i11110~ Xinjiang and the Hejlaogji~ 

Long-term snow depth datasets retrieved from the RF model and lincar-fitting model are compared 

~iirnl in Nefthettst China, Xinjiang and-fue QTP, iespecrive~ Ibe lane--oover types are mainly 

/ I łafm!and itt ~kntheast China, grnsstand !n Xinjiang and grassland 111 the QTP. T!r-sitn-mSllf;=nts-of 

~ 8 '"111earr srro\\Tdepfh-atellonrinett-;;orthe-si-!es-wi.thm...eaoh-r~i0n. The results show that the linear-fitting 

-) /L 9 method performance is§ st~b~ .-It tends to underestimate snow depth at the beginning of the snow season 

D Jrvv()'t l J I' 
1 O but overestimate the snow depth in the late winter. This is because the grain size and density of fresh 

11 h . f" . 1 1· 'b(l#Al ) <". h h ?l . h snow are very small, so t e scattenng e 1ect 1s near y neg 1g1 ,le. ong w1t t e scasona evolut10n, t e 

12 snow particle grows (-2 mm), and the snowpack becomes denser (200-400 kg m·3) , which causes 

13 stronger scattering effects. In situ measurements show that the snow cover is shallow in the QTP, even 

14 less than 5 cm, which results in patchy snow cover (Dai et al., 2017). However, the snow depth was 

15 overestimated, which may be due to the following reasons. First, the data with a depth thinner than 3 cm 

16 

17 

18 

19 

20 

21 

22 

23 

were excluded from the training datasetfse:Ond, a distinct meteorologi cal characteristic of the QTP is 

the large diurnał temperature range, which causes snow to undergo frequent freeze-thaw cycles and leads 

to rapid snow grain growth and consequently a high Ta difference (Durand et al. , 2008; Yang et al., 2015; 

Dai et al. , 2017.2[ Third, frozen soil is also a factor that reduces the accuracy of estimates in the QTP. 

Bath snow and frozen ground are volume scattering materials, and they have similar microwave radiation 

characteristics, making them difficult to distinguish (Chang et al., 1987; Grody and Basist., 1996). 

Figure 7 shows the spatial distribution of the monthly average snow depth (winter season, 2016). The 

left figure is the station observation; the middle figure is the RF estimation; and the right figure is the 

24 linear-fitting model estimation. The five rows prcsent mean snow depths in January, February, March, 

25 November and December. The patterns between the RF estimations and station measurements are similar, 

26 especially in Northeast China and Xinjiang. In November, December and January, serious 

27 

28 

29 

30 

underestimation occurs for the linear-fitting model. This is because fresh snow has little scattering effect, 

and the forest canopy attenuates the ground signals (Che et al., 2016; Li et al., 2019). Moreover, 

overestimation occurs in February and March due to strong scattering caused by snow microphysical 

properties, such as snow grain size and density (Che et al., 2016; Dai et al., 2017; Yang et al., 2019). In 

Il 
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November and December, sites recording snow cover are very sparsely distributed in Tibet, Qinghai and 

western Inner Mongolia. Thus, it is difficult to assess the performances of the two methods. Although 

the station sites show snow cover in southern China, the snowpack identification method does not classify 

snow as snow (Li et al., 2007; Liu et al., 2018). In February, there are many site records in central China, 

including Gansu, Ningxia and Shanxi. The comparison demonstrates that the RF model tends to 

overestimate snow depth in these areas. This is related to the sparse sites and ephemeral snowfall events, 

which result in poor representativeness . The snow cover is as thin as 1-5 cm in these areas, which makes 

PMW remote sensing weak for estimating snow depth. Another reason is that the sample record is 

removed if the in situ snow depth is below 3 cm. Thus, training samples of the RF model also give 

estimates higher than 3 cm. Additionally, snow depth estimation in the mountains remains a challenge 

(Lettenmaier et al. , 2015; Dozier et al. , 2016). The RF model and linear-fitting method have sharply 

u 

different performances in the Himalayan range.fumerous studies have been conducted on the snow - ') o~ rut\ 
cover over the QTP and have indicated thai the snow cover frequency in the Himalayas is higher than ·t,111,{-': 

elsewhere, ranging from 80 % to 100 % during the winter seasons (Basang et al., 2017; Hao et al., 2018). fre.Jt,J ~ 
0

,,( 

Additionally, Dai et al. (2018) showed that deep snow (greater than 20 cm) was mainly distributed in the cit :fe,.. {;f (et i,.. r 
Himalaya, Pamir, and Southeastem Mountains. The spatial distribution of snow depth in spring (March, 

April and May) and winter (December, January and February) showed that the annual mean snow depth 

is greater than 20 cm in the Himalayas (Dai et al. , 2018). The pattern based on reference Dai et al. (2018) 

is similar to the results of the RF model in this study. Obviously, the linear-fitting method does not 

capture the deep snow cover in the Himalayas. 

3.3 Pixel-based model and validation 

Based on the reference snow depth retrieved with the RF model (in Sect. 3.2) and TB gradient between 

19.35 GHz and 37 GHz at horizontal polarization (Eq. (I)), the Slope and Intercept of the pixel-based 
' ' L ""-1.,,- _,._. ~ - -- ,.._-

model are determined in Fig. 8a and 8b. The S/ope and lnterc~pt pre set to O when there are no samples 
b-,C~IA,-V'--

for some pixels where it is impossible for snow to fał.l..V!1e interpolation method (3 x3 sliding window, 

average value) is used to determine the Slope and Intercept in which the number ofsamples is between 

3 and l!_)he Slope is high in Northeast China and Northern Xinjiang. lt is also high in the Himalayas 

and the Pamir, where the snow cover is thick. The lntercept is low in unstable snow-covered areas, 

including Inner Mongolia and central and South China. The RMSE between the reference data and 

12 
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estimates is shown in Fig. 8c. The mean RMSE is approximately 3.2 cm. In most areas, the RMSE is less 

2 than 5 cm. However, the RMSE is very high in South China, where snowfall is highly unlikely to occur. 
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From 2012 to 2018, there are no more than 3 snowfall events in South China.( Thus, the Slope and 

lntercept are directly set to 0.66 and O, respectivef northem Xinjiang and Northeas~ ina, a high 

RMSE occurs over the Tianshan and Altai Mountains, Changbai Mountains and Xiao Hinggan 

Mountains. These areas not on1y have varied topography but are also covered with forest or shrub. The 

correlation between the reference snow depth and estimated snow depth with the pixel-based model is 

shown in Fig. 8d. Obviously, the pattern of correlation is in accordance with snow cover types. Stable 

snow cover areas present high correlations (Xinjiang and Northeast China) due to dry and nearly full 

coverage snow cover (Yang et al., 2019). The correlation is very low and even negative in most areas of 

South China, which are shown in white in Fig. 8d. 

f ntli~ long-term snow depth dataset!19871~~reconsnacted wita a !li,ce~ 

~ To evaluate ~ eefJ~ , we use ground-based truth snow depth 

measurements from two sources: weather station and field sampling. Weather station snow depth is 

retrieved during the winter season from 2017 to 2018, independent of training samples of the pixel-based 

model. Field measurements are taken from CSS, providing records of dense snow depth sampling within 

a coarse pixel across Xinjiang and Northeast China in 2018 (Fig. l ). As shown in Fig. 9a, there is good 

agreement between the snow depth estimated with the pixel-based model and the measured snow dcpth. 

The RMSE is 2.0 cm, and the determination coefficient reaches as high as 0.91 , which is much better 

than the linear-fitting method coefficients of 4.7 cm and 0.52 . The station data validation is shown in Fig. 

9b. The error bar shows that the linear-fitting method tends to seriously underestimate (bias is -2.6 cm) 

when the snow depth is over 10 cm. The pixel-based model overestimates the shallow snow cover (less 

than 5 cm), but the overall accuracy is higher than the linear-fitting method. - "> ~ ~ ~------------- ,'<; ,(.l,, ·J 0vrr<A 'r.y, ? 
The time series of snow depth retrievcd from the pixel-based model and linear-fitting method are 

compared with the station observations in three regions of China (Fig. 10). The results show that the 

pixel-based model performs better than the linear-fitting method in Northeast China and Xinjiang. The 

linear-fitting method tends to lltlderestimate snow depth at the beginning of the snow season (November 

and December) but overestimates the snow depth in the late winter (February and March). However, the 

snow depth was seriously overestimated for the pixel-based method in the QTP. The reasons were shown 

in Sect. 3.2. Most parts of the QTP are covered with shallow snow. Deep snow is distributed in the 

13 
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Himalaya, Pamir, and Southeastem mountainous areas. However, there are no in situ observations in 

2 these areas due to complex terrain and atmospheric conditions, resulting in validation failure. 

3 3.4 Spatial-temporal analysis of the reconstructed snow depth 

4 The spatial-temporal distribution of snow depth over China is analyzed based on a reconstructed snow 

5 dataset (1987-2018). The time series of snow depth in different regions over China is shown in Fig. 11. 

6 The black, green, blue and magenta lines represent daily mean or maximum snow depth in China, 

7 Northeast China, Xinjiang and the QTP, respectively. Figure I la shows that the daily mean snow depth 

8 in Northeast China is larger than that in Xinjiang and the QTP for most years. The mean snow depth in 

9 the QTP is the smallest (< 12 cm). Please note that the mean snow depth over the QTP is the highest in 

10 1998, which aggravated major flooding in the area of the middle and !ower reaches of the Yangtze River 

11 (Dorji et al., 2018). Figure 11 b shows the time series of daily maximum snow depth. The maximum snow 

12 depth is most likely to occur in Xinjiang and the QTP, although the mean snow depth is large in Northeast 

13 China. The maximum is usually distributed in the QTP Himalayas during these years, such as 1996, 1998, 

14 1999, 2009, 2010 and 2015. 

15 To show the monthly snow depth difference for every year, the time series of the yearly snow depth 

16 for winter seasons is shown in Fig. 12. Because there are only two months (November and December) 

17 and three months (January, February, March) ofsnow depth records in 1987 and 2018, respectively, the 

18 period is from 1988 to 2017. The results show that the mean snow depths in February and March are 

19 higher than the yearly average snow depth. The mean in November is smallest and below 1 O cm during 

20 the winter scasons. The mean snow depth in January is basically on behalf of the annual mean snow 

21 depth but for individual years, such as 1988 and 1994. This is highly important for predicting snow depth 

22 in hydrologie studies. 

23 On the spatial scale, the time series of snow depth in different subregions is analyzed. Figure 13 

24 shows that the annual mean snow depth in Xinjiang and Northeast China is above average over China. 

25 The mean in Northeast China is the largest among the three subregions. However, the maximum snow 

26 depth has a tendency not to occur in Northeast China. The yearly mean snow depth in the QTP is the 

27 smallest among the three subregions. However, the maximum sometimes occurs in the QTP (Fig. 11). 

28 Thus, the spatial pattem of snow depth in the QTP exhibits great heterogeneity (Fig. 7). 

14 
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4 Discussion 

2 4.1 Spatial correlation and bias between the RF model and pixel-based method 

3 To obtain further insight into the ability of the pixel-based method to capture the tempora! and spatial 

4 variability in snow depth, it is essential to compare the pixel-based retrievals with respect to the reference 

5 snow depth dataset retrieved with the RF model. Figure 14a shows a scatter plot of snow depth retrieved 

6 

7 

by the RF model vs. the pixel-based method. The coefficient of determination is very high (R1=0.83). 

The pixel-based product displays a very strong correlation with the reference snow depth dataset. A 

8 histogram of the bias (RF minus pixel-based method) distribution is shown in Fig. 14b and suggests that 

9 the mean bias is very small (0.47 cm), and most biases are between -2 cm and 2 cm. Figure 14c shows 

10 the time series of the spatial correlation (R) of retrieval RF with respect to the pixel-based method. The 

11 mean value of R is 0.91 , which is a strong correlation between RF and the pixel-based method. The time 

12 series of correlation show a seasonal oscillation, with slightly !ower values for months during late autumn 

13 (November) and early spring (March) This is because the snow cover is patchy and shallow in November, -14 challenging the relationship between satellite Ta and snow depth (Dai et al., 2017; Yang et al., 2019). In 

15 addition, snowfall is also ephemeral and occurs in the mountains. The results may be affected by 

16 variations in the number of samples and the station representativeness. Thus, the reference snow depth 

retrieved with RF may stili be inaccurate. p..~;ther limiting factor in estimating snow depth from PMW 17 

data is the presence of liquid water because of the relatively high air temperature in these months, 

resulting in higher absorption and poor penetration depth . Consequently, the satellite observation is 

mainly associated with the emissions from the wet surface of the snowpack. Therefore, in wet snow 

conditions, snow depth retrieval is not possible (Chang et al., 1987; Foster et al. , 1997; Derksen et al., 

~W-AJ~r 
~l'e,.,,.~lu( 

7\.llf. "-f.e./ 

o~ Vl1 ·1w +•-,f 
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2010; Tedesco et al., 2016). The time series ofmean biases in Fig. 14c shows thai bias is within ±1 cm. 

In any case, the pixel-bascd method, which uses only satellite data as input, shows the robustncss as its 

performances are comparable to the performances of RF over the training period. 

"-- '2) ~vt-1-4<; 
~sc.-/-fs 

25 4.2 Disadvantages and potentia! errors of the reconstrued snow depth 

26 There are no available in situ measurements over all of China to ensure thai the training dataset is 

27 statistically significant to perform spatial inversions once the RF is trained. Thus, the accuracy of the 

28 pixel-based algorithm is uncertain in the mountains or high-altitude areas where few stations are 

29 distributed. In addition, the problem of training the RF with in situ measurements is that the 
15 
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measurements are point measurements while the satellite grids have a spatial resolution of 25 x 25 km~ 
; .., h.ol\...'u-{ ,..1. . .-,,:,i,(.,. 

2 Moreover, only the 19.35 and 37 GHz are ~ TBs ~were used to yield the long-term 

3 reconstructed snow depth through the pixel-based method. Comparing Fig. 5 and Fig. 9b, the diminished 

4 underestimation of snow depth by the RF model for the 20-60 cm thick snow appeared again in the pixel-

5 based regression model. Therefore, some snow depth underestimation is stili possible in the reconstructed 

6 snow depth dataset. 
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RF can examine the pr dictor importance as an increased mean squared error which is calculated by 
~----- ~ ')~ 

summing changes using every split for a predictor, then dividing by the total number of splits (Brei man, U_ 
2001; Bair et al., 2018). The largerthis value, the greater the importance of the variable. Figure 15 shows ~ 

~ -J ~ 
the importance of all the ~El<,peHEl~ s in the RF model. The results indicate that T sat 36.5 PV,__ 
GHz is 1.;-fM. the most important predictor, with values of 44 % and 43 ~ _) , ~ 

/ o,,f 

~') 

polarizations, respectively, showing that the PMW snow depth retrievals have significant predictive 

power for dry snow cover. The third most imp rtant predictor is longitude, followed by latitude, which 

.e.., 4 /J .vvoV-
makes the RF model · 

Figure 16 shows the spatial pattems of the reconstructed snow depth over China for 1992-2017 at 

intervals of five years. The deep snow cover is mainly distributed in Xinjiang, Northeast China and the <") 

QTP (Himalayas) . Moreover, the distribution of snow depth is affected by topograph~ ) , tv 
-{.~<w>J,4 , elevation model, DEM). For example, the elevations of the west and south QTP are higher than that of 

P"i,;;,,--z>t. ~r'.J . / 
rt f,; T' "l.v( 

OF . 
_f, (. 
~ "'UJ V 

fl-eotrc/o,. 

the east QTP, so that snow cover is relatively thick there (Figure 16). This phenomenon could be ascribed 

to two reasons: the sparsity of the sites and the significant geolocation (latitude and longitude). Figure 1 

shows that the stations are sparsely and unevenly distributed in the QTP. Moreover, since most of the 

stations are located in inhabited valleys, the representativeness of these in situ data is questionable 

(Orsolini et al., 2019). Another reason is that inputs of the RF model include longitude and latitude, J 
which should contribute to the present spatial patterns of snow depth according to previous studies ), 

(Belgiu et al., 2016; Qu et al., 2019, Xiao et al., 2018, Wang et al., 2019). In fact, the longitude a=Jd (/ 

latitude reflect the DEM information, which greatly affects the Plateau's vegetation, precipitation and (} k 
, / >o 

snowfall(Quetal.,2019, Wangetal.,2019). v J/~( /~j. 
4.4 Influence ofland cover types on product accuracy ,r ó. 
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The evaluation of the pixel-based method performance with station observations from 2017 to 2018 

revealed that the snow depth product accuracy varies significantly between land cover classes (Table 4). 

The grids are viewed as pure pixels where the land cover fraction is greater than 85 % (Jiang et al., 2014 ). 
. . ~---------~~ 

Dcnscly forested regions tend to yield a higher RMSE (6.2 cm) and !ower detcrmination coefficient (0.43) 

J~--- 5 

6 

7 

8 

9 

when compared to grassland and farmland (Table 4) . RMSEs in open areas, such as grassland (5.5 cm), 

farmland (4.2 cm) and barren (4.6 cm), are low due to no canopy influence on the satellite observations 

(Derksen et al., 2005; Cai et al., 2017; Che et al., 2016; Li et al., 2017). The determination coefficient for 

grassland is as high as 0.74, which shows that the snow cover is homogeneous and that the station snow 

depth is representative of satellite pixels (Yang et al., 2019). The determination coefficient of barren is 

10 0.35 because ofshallow, patchy snow cover and poor station representativeness (Dai et al., 2018; Yang 

Il et al., 2019). This study demonstrates that the underlying surface condition influences the snow depth 

12 estimation with a pixel-based approach. One of the future developments to improve the product accuracy 

13 

14 

will be training the RF model separately for each land cover cla~ Ll, ,: t 
ss1on model simulations 

In this s~ h model's performance determines the accuracy of the reconstructed snow dep . he 

-~ iable describing the snow cover is only snow depth. The more prior information there is on snow 

cover, the better the performance of the RF model will be. To determine the ability of the RF model, the 

18 microwave emission model of layered snowpack (MEMLS) is applied to simulate the T 8 with varying 

19 

20 

snow parameters (M ii'.zler et al. , 1999; Lowe et al., 2015; Pan et al., 2015). Table 5 shows the ranges of 

variable parameters and constants. The snowpack is set as one layer. Then, 10000 combinations of 

21 paran1eters are randomly chosen in the range by the computer, and these combinations are inputted to 

22 MEMLS to simulate the multifrequency brightness temperatures (10, 18.7, 37 and 89 GHz at Hand V 

polarizations). The training dataset of the RF model is composed of T s, snow depth, snow density and 

correlation length. Finally, two-thirds of the samples are inputted to the RF to train the model. One-t 

of the samples are used to test the performance in estimating snow depth. 21 To 1 us te4haW!!~!: ... ~~-~-:.'.:~'.::~Illlllt' an 1mprove the accuracy of the RF model, two sets 

. 27 of samples are inputted to the RF model. One set includes the I 0-89 GHz observations, snow depth, snow 

2 density and grain correlation length. Another set consists of I 0-89 GHz brightness temperatures and 

& snow depth only. The measured snow depth is the initial input of the MEMLS. The estimated snow depth 
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is retrieved with the RF model. ( ure 17a shows that more snow parameter inputs (snow density and 

! 

snow grain size) describing snow cover characteristics can improve the accuracy of snow depth 

estimation. Otherwise, the scatter plots are dispersed, namely, there is a large RMSE between the tmth 

measurement and estimated snow depth (Figure 17b u r us, the snow parameters retrieved with snow 

models and measured in the field work are significant for improving the RF model. How to combine the 

snow forward model with the ML method will be the focus of future work. / 

Of<;a>fro I\) -.J 

Il l•A~wl+, 7. {..,~,'fi'> rv~ / 
--7 

5 Conclusions 

In this study, a novel approach called a pixel-based algorithm based on the RF model was proposed to 

reconstruct snow depth using~ PMW remote sensing satellite data. The RF model was trained using 

AMSR2 TB and other auxiliary data. The validation showed j hat the RF model performs well in snow 
fll.WN' 1_ • ___:> f"'~ .t ""' (>"r,.;+ '( ~ 

depth estimations. The RMSI@i.s cm. The determination coefficient~ 0.77. Then, a pixel-

based model was built based on the reference snow depth that was retrieved with the RF model. The aim 

was to reconstruct the long-term snow depth datasets from 1987 to 2018. Validation results with field 

sampling data (weather station observations) show that the RMSE was 2.0 cm (5.1 cm), much better than 

{'~fi' . ·1 . the lmear- 1ttmg method value of 4.7 cm (8.4 cm). Fmally, a spaha -tempora! analys1s based on a long-

term snow depth dataset was conducted. On the spatial scale, daily maximum snow depth tended to occur 

in Xinjiang and the QTP, while the mean snow depth in Northeast China was the highest. On a tempora! 

scale, the annual mean snow depth varied in February and March, and snow cover was the deepest among 

winter seasons. Interestingly, the mean snow depth in January was basically on behalf of the yearly mean 

') \\ {ki's, ~ 
~ (-Ovv du. r /l " / 

i-l . .-s 5 tw~ oo/ 

~s~·s ~/. 
snow dcpth, which is significant for predicting snow depth in hydrologie studies ~n~~, a /.( I, 

4 
/ 

. . h d . h 3 . . Ch' b . :'\ ~ """'- Jf spaliotemporally contmuous snow dept pro uct w1t a 1-year time senes over ma was o tame <;--+J4~il\, 9 oW.;. 
from the pixel-based method. As discussed in Sect. 4, our reconstructed snow depth estimates are not J.-lo"--ł ~ 

perfect. However, the reconstructed long-term product maintains high accuracy relative łg-:: ) -J-iv, > ij: 
addition to the historical data reconstruction, another merit of the presented approach is the ability to \ ~c-4- u.- u?~J L'1._,. 

provide real-time snow depth from satellite-based measurements, while the RF model that operates on a ..J_ h}~ ,} ~ 
' " l UL, 

daily basis is difficul ~nd relies on the use of multiple sources of auxiliary data. We also realize that ~ ~ 

efforts should stili be made to solve the underestimation of deep snow cover and overestimation of 

shallow snow cover areas. On the one hand, more prior knowledge of snow cover, such as snow cover 
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fraction, snow density, and snow grain size, is necessary to improve the RF model by means of the snow 

2 forward model. In terms of the pixel-based method, two different Ta differences (TsJ7GHz-Tss9Głlz and 

3 T Bl9GHz-T sJ1GHz) will be used to account for shallow and deep snow. On the other hand, a snow depletion 

4 curve based on the relationship between snow depth and snow cover fraetion will be used to improve the 

snow depth retrievals in the QTP. 5 

6 
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13 Table I. Surnmary of the main passive microwave remote sensing sensors. 

Sensor SMMR SSM/1 SSMI/S AMSR-E AMSR2 MWRI 

Satellite Nimbus-7 DMSP-FOS DMSP-Fl 1 DMSP-F13 DMSP-Fl7 EOS Aqua GCOM-W FY-3B FY-3C 

2010- 2013 -
On Orbit time 1978-1987 1987-1991 1991 -1995 1995-2008 2006-present 2002-201 l 2012-presem 

present present 

A: 12:00 A: 06:20 A: 17:17 A: 17:58 A: 17:31 A:01:30 A:01:30 A: 13:30 A: 22:00 
Passing Time 

D: 24 :00 D: 18:20 D:05:17 D: 05:58 D: 05:31 D: 13 :30 D: 13:30 D:01 :30 D: 10:00 

6.925: 35 x62 
6.925: 43 45 10.65:51 x85 

6.6:95,160 7.3: 35 x62 
19.35: 45,68 19.35 : 42x70 10.65: 29xs1 18.7: 30 X 50 

Frequcncy: 10.7: 60x 100 10.65: 24x42 
23.235: 40x60 23.235: 42x70 18.7: 16x27 23.8: 27 x45 

Footprint (GHz): 18: 35x60 18.7: 14x 22 
37: 24x36 37: 28x44 23.8: 18'32 36.5: 18 x30 

(km x km) 21:30x50 23.8: !5x26 
85 .5: 11 xI6 91.655: 13 x 15 36.5: 8xl4 89: 9 X }5 

37: 17x29 36.5: 7x12 

89: 4x6 
89: 3x5 

14 

15 Table 2. Details of the snow field sampling data (location, attitude, altitude and land cover type). 

Snow sampling pixels in Xinjiang Snow sampling pixels in Northeast China 

altitude land altitude land 
No longitude latitude No longitude latitude 

(m) cover (m) cover 

FY-3D 

2017-

present 

A: 14:00 

D: 02:00 

84.026 42.973 2400 grass 125.514 44.765 186 Qirm -'? "'--- ~(,AwS 7_ 
2 84.047 42.977 2431 grass 2 125.434 44.762 195 farm 

3 84.069 42.983 2436 grass 3 125.434 44.717 179 farm Jen,-,,_, 1'f CL ~ 1- ~Jf 
4 84.094 42.988 2444 grass 4 125.5 12 44.722 181 farm 

'l'vvl-,/. i;olr{}y 
5 84.117 42.994 2389 grass 5 125.480 44.680 154 farm 

( u,Yl~fJ<}... b"'do4'j ) 6 84.128 43.003 2408 grass 6 125.509 44.678 164 farm 

7 84.127 43.014 2415 grass 7 125.435 44.673 178 farm 

8 84.134 43.021 2412 grass 8 125.442 44.634 160 farm 

9 84.172 43.036 2415 grass 9 125.506 44.632 159 farm 

10 84.201 43.047 2432 grass 10 125.373 44.768 196 farm 

Il 84.229 43.055 2408 grass li 125.300 44.766 194 farm 

12 84.263 43 .058 2425 grass 12 125.299 44.727 207 farm 

26 
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13 84.286 43.06 1 

14 84.131 43.000 

15 84.129 42.988 

16 84.142 42 .973 

17 84.142 42 .989 

18 84.170 42.933 

19 84.189 42.9 12 

20 84.188 42.9 14 

2 1 84.217 42.887 

22 84.218 42.887 

23 84.234 42.872 

24 84.250 42 .85 1 

25 84.266 42 .858 

26 84.266 42.858 

1 

2431 grass 13 125.375 44.724 

2412 grass 14 125.365 44.681 

2430 grass 15 125.344 44.680 

2470 grass 16 125.313 44.650 

2450 grass 17 125.291 44.586 

2520 grass 18 125.361 44.588 

2510 grass 19 125.450 44.584 

2510 grass 20 125.517 44.585 

2470 grass 21 125.370 44 .625 

2500 grass 

2450 grass 

2420 grass 

2480 grass 

2440 grass 

2 Table 3. Predictor and target variab les of the RF model 

Name Description 

Predictors 

10.65 GHz 

18.7 GHz AMSR2 brightness temperature at V and H 

36.5 GHz polarizations 

89 GHz 

Grass 

1~ ~ Land cover fraction ranging from O to I 00 
Forest 

s~ Shrub 
retrieved from I-km LULC map 

~c,4. z. 
Barren 

Latitude ( ~ 
Geolocation of weather station 

Longitude ( 1 
Target 

SD (cm) Station snow depth 

The Cryosphere > 
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f: 

176 farm 

192 farm 

195 farm 

206 farm 

188 farm 

165 farm 

158 farm 

162 farm 

185 farm 

Number 

8 

5 

2 

3 ..---; ~ C {) 1/v;(. &"'1 am ./-L._ ·s 
Table 4. Summary of land cover effocts on the reconstructed product accuracy. { 4 

Land Cover 
Correlation (R2) 

Types 
RMSE (cm) Bias (cm) Samples 

Forest 6.2 -0.81 0.43 2680 

Grass 5.5 -0.18 0.74 2763 

Farm 4.2 0.51 0.58 5255 ..___ 
Barren 4.6 0.71 0.35 553 

5 

6 

7 
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3 Figure 6. Snow depth comparison during winter seasons for the 2012-2018 period. Green dot: RF model; 

4 red dot: linear-fitting model; black dot: station observations. There are sixteen pixels (Northeast China, 

5 NE), three pixels (Xinjiang, XJ) and one pixel (QTP) in the three regions. 
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Figure 7. Spatial distribution of the monthly mean snow depth for January (Jan, first row), February (Feb, 

second row), March (Mar, third row), November (Nov, fourth row), and December (Dec, fifth row), 2016. 

Left: Station observations; Middle: RF estimations; Right: linear-fitting retrievals. The color scale 

denotes snow depth in centimeters, which ranges from O to 30 cm. 
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le <p_J 

Figure 12. Time series of annual mean snow depth over China for the winter seasons. Black dashed line: 

2 yearly; Red line: January (Jan); Green line: February (Feb); Blue line: March (Mar); Magenta line: 

3 November (Nov); and Cyan line: December (Dec). 
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5 Figure 13. Long-term annual mean snow depth over different subregions. Black dashed line: China; 

6 Green line: Northeast China, NE; Blue line: Xinjiang, XJ; and Magenta line: QTP. 
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9 Figure 14. Comparison of retrievals between the RF model and pixel-based method: (a) scatter plot of 

10 snow depth; (b) histogram of bias, SDRF - SDP,,clBascd; and ( c) temporal series of spatial correlation and 

11 mean bias. The histogram bin width is I cm. 
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2 Figure 15. Predictor importance of the RF model based on increased mean square error. The variable 

3 importance is based on the concept that a variable associated with a considerable reduction in prediction 

4 accuracy is excluded. The larger the MSE, the greater the importance of the variable is. 
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Figure 16. Reconstructed annual mean snow depth for 1992-2017 at five-year intervals. 
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Figure 17. The performance of RF with two validation datasets from the MEMLS model: (a) 10-89 GHz 

brightness temperatures, snow depth, snow density and correlation length; and (b) 10-89 GHz brightness 

temperatures and snow depth. The color scale represents the data density of scattered points , which range 

from O to I. 
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