
Response to Reviewer Comments by Divyesh Varade on “Real-Time Snow Depth 

Estimation and Historical Data Reconstruction Over China Based on a Random 

Forest Machine Learning Approach” by Jianwei Yang et al. 

 

Thank you for your letter and the comments concerning our manuscript. Those comments have all 

been very helpful for revising and improving our paper as well as providing important guidance for 

our research. We have studied the comments carefully and have made corrections, which we hope 

meet with approval. The detailed corrections and the responses to your comments are listed below 

point by point:  

 

Review #1 

 

General Comments: Snow depth estimates are significant for the assessment of the 

hydrological potential of the snowpack. The application of machine learning tools provides 

us with a means to derive new depth estimates from a trained model. The methods for the 

modeling of snow depth using remote sensing data are predominantly based on passive 

microwave data with much higher repeatability and spatial coverage than InSAR data, 

rendering such analysis suitable for the monitoring of the snow accumulation. I thus, 

consider this work to be significant. 

Overall, the manuscript is organized and written neatly and represented in a well-structured 

manner. The language is mostly appropriate except for a few sentences which are not 

easily understandable. There are some claims and statements made by the authors that 

lack references or evidence. This work is appreciable in the extent of the analysis 

performed by the authors, in particular for the time series evolution of the snow depth in 

some of the major provinces in China. However, the manuscript also presents some 

weaknesses in the methodology, experiments, and particularly the validation. 

 

Specific comments: 

 

1. The authors have not clearly stated the novelty of their proposed method. In my opinion, 

the novelty of the proposed method is in the design of the regression model using the 

Random Forests i.e. the step -1 in Figure 3 and its application for the modeling of snow 

depth. The other steps are similar to the methodology proposed in – Jiang, L., Wang, P., 

Zhang, L. et al. Sci. China Earth Sci. (2014) 57: 1278. https://doi.org/10.1007/s11430-013-

4798-8. 

Response 1: Thank you for your comments, we agree on your original assessment of 

novelty, and this point was indeed weakly represented in the original manuscript. However, 

we have now redesigned the methodology in order to further increase the novelty with 

respect to previous studies. Specifically, there are now four RF algorithms trained with 

different predictive variables. Temporally and spatially independent datasets were used to 

validate the fitted RF algorithms. The aims were to 

(1) test whether certain choices of predictive variables are necessary and whether they 

improve the RF algorithm; 

(2) demonstrate the transferability in spatial and temporal scales. 



We rewrote the part of the introduction concerning novelty, and it now reads as follows: 

“The primary objectives of this study are to assess the feasibility of the RF model in 

estimating snow depth, to determine whether the inclusion of auxiliary information 

(geolocation, elevation and land cover fraction) contributes to the improvement of RF, and 

eventually to develop a time series (1987 to 2018) of snow depth data in China and analyze 

the trends in annual mean snow depth. To complete the feasibility study of the RF model, 

we designed four RF algorithms trained with different combinations of predictor variables 

and validated them using temporally and spatially independent reference data. To our 

knowledge, this type of assessment of RF algorithm performance has not been made to 

date over China” (Page 3, Line 7-11, in the revised manuscript). 

  

2. Why the Random Forest is used, in contrast to better alternatives such as deep neural 

networks? The authors claim that RF is superior to SVM and ANN, is there any 

documented evidence regarding RF to be superior to SVM or ANN in link with modelling 

of geophysical parameters similar to snow depth? Deep learning for classification and 

regression has been found very useful in recent literature. What is the reason that the 

authors use RF instead of deep neural networks? Please provide evidence for this or 

perform additional experiments to prove that RF-based estimates are superior to SVM, 

ANN, and deep NN based estimates. 

Response 2: Thank you for your comments. In our view, any machine learning model has 

both advantages and disadvantages. Over the last two decades, RF has been one of the 

most successful machine learning algorithms for practical applications due to its proven 

accuracy, stability, speed of processing and ease of use (Reichstein et al., 2019). Thus, 

we studied whether the RF model could be used to retrieve snow depth in this study. 

We also conducted a comparison between RF and ANN. The training data were from the 

training stations during the period 2012-2014 (Fig. 2). The predictor variables included 

brightness temperatures (19 GHz and 37 GHz at vertical polarization), latitude, longitude, 

elevation and land cover fraction. We used spatially independent data from validation 

stations (2015-2018) to verify the fitted ANN and RF algorithms. The results showed that 

the RF model was superior to ANN with respect to snow depth estimation in China (Fig. 1).  

   
Figure 1. Comparison between (a) ANN and (b) RF with respect to snow depth 

estimation in China. 

As you pointed out, there are a few pitfalls such as the risk of naive extrapolation and poor 

transferability in spatially limiting the applications in spatio-temporal dynamics. It is in this 

(a) (b) 



realm that the techniques of deep learning promise breakthroughs. We are attempting to 

operate the Deep Neural Networks (DNN) model to overcome the limitations of traditional 

machine learning approaches. 

[1] Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., 

Prabhat.: Deep learning and process understanding for data-driven Earth system science, 

Nature 566, 195–204, 2019. 

 

We also rewrote the sentence, and now it reads as follows: “Over the last two decades, 

RF has been one of the most successful ML algorithms for practical applications due to its 

proven accuracy, stability, speed of processing and ease of use (Rodriguez-Galiano et al., 

2012; Belgiu et al., 2016; Maxwell et al., 2018; Bair et al., 2018; Qu et al., 2019; Reichstein 

et al., 2019, Tyralis et sl., 2019a)” (Page 3, Line 2-5, in the revised manuscript). 

 

3. In both cases, steps 1 and 3, the authors use only a single year data for validation. 

This neither provides enough points for validation nor any comprehensive inferences 

from the validation results. 

Response 3: We are sorry for the confusion. The term (2012-2013) refers to two years of 

data, not single year. However, it does not matter because we have redesigned the 

methodology and added more validation data. Available stations were randomly divided 

into two roughly equal-sized parts by Matlab software (Fig. 2). The data from training 

stations (Fig. 2) during the period 2012-2014 were used to train the RF model. The dataset 

from validation stations during the period 2015-2018 was used to assess the accuracy of 

the fitted RF algorithm. 

 
Figure 2. Spatial distribution of the weather stations and land cover types in the study area. 

There are three stable snow cover areas in China: Northeast China (NE), northern Xinjiang (XJ) 

and the Qinghai-Tibetan Plateau (QTP). 

 

In this study, we used the fitted algorithm to reconstruct a long-term snow depth dataset 

(1987 to 2018) directly. Then, this product was evaluated by the independent ground truth 



measurements over the period 1987-2018 from the validation stations (Fig. 3) and was 

also compared with the former snow depth data (WESTDC) in China (Fig. 4). 

 

 
Figure 3. Scatterplots of the estimated snow depth and the ground truth observation for 

(a) RF and (b) WESTDC products. 

 

 

Figure 4. Time series of (a) unbiased RMSE (unRMSE), (b) correlation coefficient 

(corr.coe) and (c) bias for RF and WESTDC products. The colorful dashed lines 

represent mean values of assessment indexes. 

 

(c) 

(a) 

(b) 

(a) (b) 



4. The datasets used for training and testing have some issues. The authors have shown 

how the actual depth has varied through the years 1987-2019. But for training only data till 

2004 was used. The trends from Figures 10 and 11 show a marginal decrease in the mean 

snow depth. Would it not be better to use data from every two year or alternate year for 

training the RF. Similarly for testing, the authors use data from the only year 2012-13 for 

model testing and 2017-18 for testing the final results. This is not sufficient to develop a 

comprehensive interpretation of the results. 

Response 4: Thank you for your comments. We indeed have collected ground truth snow 

depth observations from 1987-2018. To determine the appropriate number of training 

samples, a test was conducted to analyze the sensitivity of the RF model to training sample 

size. To ensure there were enough samples, we selected 80,000 samples from 1987 to 

2004 as available training data, and a two-year dataset from 2005 to 2006 was applied to 

assess the performance. 

We agree with your opinion regarding the validation using much more data, and these 

comments are very constructive. Thus, we have added more data to validate the fitted RF 

algorithms and the reconstructed snow depth product. Please refer to the response to 

“Specific comment 4” above. 

 

5. In section 3.2, the correlation coefficient is 0.77. Is this satisfactory enough to be used 

to generate the reference dataset from the RF model? A majority of data are below 10 cm 

snow depth, then an error of 4.5 cm is significantly high. To have a better understanding 

of the modeled results, it is vital that we observe the accuracy for the points of higher snow 

depth also. Particularly, when there is a very high snow depth different for the regions QTP 

and the others. The validation should be carried out for these regions separately. I suggest 

the authors show a histogram of the data and also carry out a separate fit for points of 

snow depth >10cm or perform a case by case fit with respect to the study area. A significant 

concern is that in the case of shallow snow (<10cm), is the brightness temperature actually 

representative of the contributions from the shallow snowpack or the underlying ground. 

This requires further investigations. This is important since the bulk of the data is within the 

0-10 cm range. Another concern is that there are very few points with snow depth >40cm. 

In several locations in the Himalayas, the peak snow depth is usually around 1m or more. 

Thus, the applicability of the proposed method or the transferability of the proposed method 

to other areas, in these cases, is in question. 

Response 5: Thank you for your comments. Other reviewers gave similar comments. 

Since the dataset obtained by RF is an approximation of the true snow depth, the 

uncertainties are transferred to the second stage of prediction. Other reviewers suggested 

that we directly use the fitted RF algorithm to produce the long-term snow depth data in 

the period 1987-2018. 

Figure 5 shows the histograms of observations from training and validation stations during 

the period 2012-2018. Ninety percent of the samples range from 1 cm to 25 cm. The 

maximum values of the snow depth extend to approximately 50 cm. However, the number 

of such cases is small and is therefore not evident in Fig. 5. 



 

Figure 5. Histograms of snow depth observations from (a) training and (b) validation 

stations. The average values (black dashed lines) are equal to 10.5 cm and 9.8 cm, 

respectively. 

The idea to carry out a separate fit for points of snow depth > 10 cm is good, but it cannot 

be used to estimate snow depth in space and time. This is because passive microwave 

observations cannot distinguish deep and shallow snow cover so that the background of 

snow depth is unknown. Thus, for a snow cover satellite pixel, we don’t know which fitted 

RF algorithm should be used to retrieve snow depth. 

We agree with your comments about underestimations for deep snow. The validation was 

carried out for three snow cover regions in China separately (Fig. 6). 

 

Figure 6. The validation of RF and WESTDC snow depth products in three stable snow 

cover areas in China with respect to (a) the unbiased RMSE, (b) bias and correlation 

coefficient. 

We selected 20 cm as a threshold to assess the performances in deep (> 20 cm) and 

shallow (≤ 20 cm) snow cover. The percentage of shallow snow conditions to total samples 

was approximately 90%. Table 1 displays the comparison between RF estimates and 

WESTDC product in the three snow cover areas. Both products presented a notable 

underestimation for deep snow cover, with the biases of -34.1 cm and -33.8 cm in QTP for 

the RF and WESTDC products, respectively. The biases were -10.4 cm and -8.9 cm for 

the RF product in NE and northern XJ, respectively, whereas they were -11.8 cm and -13.2 

cm for the WESTDC data. For shallow snow cover, the RF product is superior to the 

WESTDC estimates in QTP, with unbiased RMSEs of 3.4 cm (RF) and 5.6 cm (WESTDC). 

(a) (b) 

(a) (b) 



Furthermore, the WESTDC product presents an overestimation in QTP, with a bias of 4.0 

cm that is much higher than the RF’s 0.6 cm.  

Table 1. Comparison between RF estimates and WESTDC product in three stable snow 

cover areas for deep (> 20 cm) and shallow (≤ 20 cm) snow cover. 

RF product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.30  0.06  0.49  0.17  0.48  0.31  

bias (cm) 0.59  -34.12  1.79  -10.38  2.52  -8.85  

unRMSE (cm) 3.43  20.70  5.36  7.00  6.12  9.62  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

WESTDC product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.16  -0.18  0.37  0.03  0.34  0.16  

bias (cm) 4.02  -33.78  0.47  -11.75  -0.39  -13.22  

unRMSE (cm) 5.60  21.62  6.47  9.10  7.35  11.30  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

 

We presented the potential errors of the reconstrued snow depth in Section 4.3 as follows:  

“Fig. 7 indicates that the RF model does not fully solve the overestimation and 

underestimation problems. For deep snow (> 20 cm), the biases are up to -8.9 cm and -

10.4 cm in NE and northern XJ, respectively. Deep snow conditions account for roughly 

10% of all training samples (Fig. 2). The estimates for deep snow cover in the QTP exhibit 

a large bias of -34.1 mm. Fig. 6 also illustrates that the fitted RF algorithms have no 

predictive ability for extremely deep snow conditions, especially in QTP. We checked the 

training data and found that the extreme high snow depth data (> 60 cm) occurred in QTP. 

However, the number of such cases is very small. In addition, the station measurements 

are point values while the satellite grids have a spatial resolution of 25 km × 25 km. Thus, 

the representativeness of these data is questionable. Snow depth estimation in the 

mountains remains a challenge (Lettenmaier et al., 2015; Dozier et al., 2016; Dahri et al., 

2018). Numerous studies have been conducted on the snow cover over the QTP and have 

indicated that the snow cover in the Himalayas is higher than elsewhere, ranging from 80% 

to 100% during the winter (Basang et al., 2017; Hao et al., 2018). Additionally, Dai et al. 

(2018) showed that deep snow (greater than 20 cm) was mainly distributed in the 

Himalayas, Pamir, and Southeastern Mountains. Thus, the RF product produced in this 

paper has poor performance in QTP for the deep snow cover. 

Table 5 indicates that there is overestimation in NE and northern XJ for shallow snow cover, 

which may be due to the following reasons. First, the PMW signals are insensitive to thin 

snow cover, especially for fresh snow with low snow density and snow grain size. Second, 

the large diurnal temperature range tends to subject the snowpack to frequent freeze-thaw 

cycles and leads to rapid snow grain (~2 mm) and snow density (200-350 kg/m3) growth 

and consequently a high TB difference (Meløysund et al., 2007; Durand et al., 2008; Yang 

et al., 2015; Dai et al., 2017). Third, frozen soil reduces the accuracy of estimates. Both 



snow and frozen ground are volume-scattering materials, and they have similar microwave 

radiation characteristics, making them difficult to distinguish. In addition, a limiting factor in 

estimating snow depth for PMW remote sensing is the presence of liquid water. In this 

study, a snow cover detection method is used to filter out wet snow cover; however, there 

are still misclassification errors, especially at the end of the winter season (Grody and 

Basist., 1996; Liu et al., 2018). In such cases, satellite observations are mainly associated 

with the emissions from the wet surface of the snowpack. Therefore, in wet snow conditions, 

snow depth retrieval is not possible (Derksen et al., 2010; Tedesco et al., 2016)" (Page 10, 

Line 19-28, Page 11, Line 1-13, in the revised manuscript). 

 

6. The authors observed higher errors for shallow snow depth, but the manuscript lacks 

any discussion on the contributions from the underlying ground layer to the passive 

microwave brightness temperature in case of shallow snow depth. The authors have simply 

added some references. A discussion is required in the manuscript on the sensitivity of 

snowpack thickness and stratigraphy towards the passive microwave brightness 

temperature. 

Response 6: We redesigned the methodology in this study. The new RF product 

presented lower errors under shallow snow cover conditions (Table 1). We have discussed 

this finding in Section 4.3. Please refer to the response to “Specific comment 5” above. 

The microwave emission model of layered snowpack (MEMLS) was applied to simulate 

the TB with varying snow parameters (Mätzler et al., 1999; Löwe et al., 2015; Pan et al., 

2015). Fig. 7 shows the sensitivity of snow depth to TB at 36 GHz for various snow density 

and snow grain size. Generally, the snow density (< 100 kg/m3) and snow grain size 

(correlation length < 0.2 mm) are small for shallow snow cover (< 5 cm). The passive 

microwave signals are insensitive to the shallow snow cover. Moreover, the snow cover is 

patchy under shallow snow conditions, challenging the relationship between satellite TB 

and snow depth. 

 

Figure 7. The sensitivity of snowpack stratigraphy to the passive microwave brightness 

temperature simulated with the MEMLS model. 

 

7. Page 12, L25-27: Does this mean 3-10 samples in (3x25)x(3x25) sq. km area? This is 

not clear to me. I think the authors are referring to measurements from field campaigns or 



weather stations as samples. In this case, the number of samples is very small per the 

averaging window. Please provide references for this. 

Response 7: Thank you for your comments. We apologize that the description of this part 

was not clear. We have redesigned the paper and removed the pixel-based method 

according to other reviewers’ comments.   

 

8. Figures 9a and 9b. There are very few samples used for validation in these figures. 

Further, these samples are discontinuous (Figure 9a) and therefore, this should not be 

used as the basis for ascertaining the performance of the proposed method, since due to 

the distribution of the points, it is expected that the fit will provide better results. 

The authors may perform other significance tests such as Nemar’s test, but the fact 

remains that the validation data is not really comprehensive. The data shown in Figure 9b 

is much better for assessment, as it is continuous. But why only 10 points? Earlier it was 

shown that several ground stations exist in the area. I suggest the authors also use data 

from other years in their validation scheme, as the results shown at present are not 

convincing. Why is the modeled snow depth showing very less sensitivity between 20-

40cm (nearly constant) and again afterward? This is an issue that requires investigation. 

Response 8: Thank you for your constructive comments. We used independent ground 

truth observations from 1987 to 2018 to validate the RF product. Fig. 3 shows the error 

bars and scatterplots. The “o” marker is the mean snow depth computed at each 

corresponding ground truth bin, while upper and lower colorful bars indicate one standard 

deviation from the mean. There are almost 280,000 samples. Please refer to the response 

to “Specific comment 3” above. 

 

9. In section 4.5, the selection of sample size for training and testing is reversed. Since the 

MEMLS requires auxiliary information, which is seldom available, the training samples 

should be much less than the validation samples. This validation strategy is not convincing. 

From the discrepancy in the training and testing samples, it is already expected that the 

model accuracy would be high. 

Response 9: We appreciate your suggestions. The aim of this part work is to demonstrate 

that more prior snow information can improve the performance of the RF model. Reviewer 

#4 suggested we should omit this part and return to the combination in a future publication. 

Thus, combining the snow forward model with the ML method will be the focus of our future 

work. 

 

Minor issues: 

 

1. Page 02, L7: “ the Himalayas during: : :.”. The Himalayan ranges are very long and are 

shared by several countries. Please specify which Himalayan ranges the authors are 

referring to here. I do not agree with the statement that mean snow depth is maximum in 

Xinjiang for the entire Himalayan range. Please provide references for this. 

Response 1: We apologize for the confusion. Three snow cover areas are shown in Fig.1 

(Please refer to the response to “Specific comment 3” above). The trend analysis of snow 

depth was conducted based on the ground truth observations, RF dataset and WESTDC 



product during the period 1987-2018. To illustrate the different changing patterns, the 

trends in northern XJ, NE and QTP were analyzed. 

 

Figure 8. The trend analysis of snow depth based on (a) station observations, (b) RF 

estimates, and (d) WESTDC product in three stable snow cover areas in China. The 

correlation is statistically significant at the 0.05 level. 

We rewrote the sentence as follows: “On a temporal scale, the ground truth snow depth 

presented a significant increasing trend from 1987 to 2018, especially in NE. However, the 

RF and WESTDC products displayed no significant changing trends except in QTP. The 

WESTDC product presented a significant decreasing trend in QTP, with a correlation 

coefficient of -0.55, whereas there were no significant trends for ground truth observations 

and the RF product” (Page 1, Line 26-29 in the revised manuscript). 

 

2. Page 02: L8-11: These are documented facts in literature for several other locations, 

however. Thus, the authors should strictly restrict their inferences to their own findings and 

not speculate. Thus, here the sentence should be specific to the study area in the 

manuscript. 

Response 2: We appreciate your suggestions. Three snow cover areas in China are 

shown Fig. 1. The time series of mean snow depth in three stable snow cover areas over 

China is shown in Fig. 8. Fig. 8a shows that the mean snow depth in northern XJ is the 

largest among the three regions, and the pattern in NE is highly consistent with the overall 

trend in China. Comparing the ground truth data and RF product (Fig. 8a vs. 8b) shows 

that there are similar patterns in terms of the magnitude of snow depth in the three snow 

cover areas. 

 

3. Page 02, L11-13: The sentence “In conclusion: : :.” is not clear. Please rephrase. 

Response 3: We consider this sentence to be unnecessary and have removed it. 

 

4. Page 02, L24: “mean snow density”. I believe the authors are here referring to mean 

stratigraphic snow density”. Please correct this. 

Response 4: Thank you for your comments. Reviewer #4 thought this paper should focus 

on snow depth and not snow water equivalent. Thus, we removed this description and 

rewrote the sentence as follows: “Snow depth is a crucial parameter for climate studies, 

hydrological applications and weather forecasts (Foster et al., 2011; Takala et al., 2017; 

Tedesco et al., 2016; Safavi et al., 2017)” (Page 2, Line 4-6, in the revised manuscript). 

 

5. Page 03, L17-18: “however, these: : :”. Is there any evidence that the RTM based 

(a) (b) (c) 



methods are computationally more expensive than machine learning-based methods. 

In my opinion, both depend on the selection of the parameters. For example, an RF 

with substantial input and a high number of trees may be as expensive computationally. If 

there is no documented evidence on this, please remove this statement. 

Response 5: We deleted the sentence in the revised manuscript. 

 

6. Page 11, L 11-13: Please correct the range as 200-350 kg/m3 and provide a reference, 

for example- Meløysund, Vivian, Bernt Leira, Karl V. Høiseth, and Kim R. Lisø. 2007. 

“Predicting snow density using meteorological data.” Meteorological Applications14 (4): 

413–23. doi:10.1002/met.40. 

Response 6: We appreciate the reviewer’s help and suggestions. We read the reference 

carefully. It is a good paper and very useful for us. We corrected the range and cited the 

reference in the revised manuscript (Page 11, Page 5-7). 

 

7. Page 17, L20: “The snowpack is set ..”. This should be the snowpack is assumed to 

comprise a single layer indicating a semi-infinite medium. This is a common assumption in 

electromagnetic modeling of the snowpack. Please add references to this. 

Response 7: We removed this part. Please refer to the response to “Specific comment 9” 

above. 

 

8. Figure 1: This needs to be revised. Firstly, the authors use 3 areas for their study which 

have not been shown on the large map. Secondly, the two pixels mentioned previously 

should be shown at a higher resolution. Third, write in captions what the color bar 

represents, is it elevation? Finally, the pixels shown should also have a lat-long grid and 

scale bar. 

Response 8: We appreciate the reviewer’s comments and suggestions. We redesigned 

the map (Fig. 1). Because of the paucity of samples from the field sampling campaign, we 

omitted these data and added more station observations (1987 to 2018) as a new 

validation dataset. 

 

9. Figure 7: Why is the number of points and their locations changing in the maps showing 

stations. I believe this should remain fixed irrespective of the month. If there is no snow at 

some of the stations which have been omitted, these should be shown with either a 

different symbol or a color. 

Response 9: As you pointed out, the number of available station observations is not fixed 

during the snow winter season. In the revised manuscript, we have deleted this statement. 

 

10. Figure 8: The images are distorted. It appears as if they were stretched manually to fit 

some size. 

Response 10: Thank you for your comments. The pixel-based algorithm was omitted in 

the revised manuscript. Please refer to the response to “Specific comment 5” above. 

 

11. Figure 9/Table 4 and several other instances: The R2 and R, i.e. the determination 

coefficient and the correlation coefficient, respectively, are two different parameters 



and have been used interchangeably with similar symbols in the manuscript, which 

makes it difficult to judge the accuracy of the results. 

Response 11: We apologize that we did not describe this consistently. We corrected it in 

the revised manuscript. 

 



Response to Reviewer Comments by Review #2 on “Real-Time Snow Depth 

Estimation and Historical Data Reconstruction Over China Based on a Random 

Forest Machine Learning Approach” by Jianwei Yang et al. 

 

Thank you for your letter and the comments concerning our manuscript. Those comments have been 

very helpful for revising and improving our paper as well as providing guidance for our research. 

We have studied the comments carefully and have made corrections, which we hope meet with 

approval. We provide responses in blue below. 

 

Review #2  

 

Aim of the manuscript 

[1] The aim of the manuscript is (a) to test random forests in estimating snow depth in a 

remote sensing application and (b) to reconstruct historical snow depth in China in the 

period 1987–2018 (see page 5, lines 10–14). 

[2] The procedure of the manuscript is presented in Figure 3. 

 

Recommendation: Major revisions are needed 

 

General evaluation 

1. The procedure followed in the manuscript is complicated, while I think that some steps 

are unnecessary and a more straightforward approach to the problem would achieve 

comparable (or even better results). 

Response 1: Other reviewers (Reviewers #3 and #4) gave similar comments. Thus, we 

redesigned the methodology in this study to improve this manuscript. The results 

demonstrate that certain predictor variables are unnecessary. There are four major 

revisions in the new manuscript. 

1) Revision 1: scientific validation dataset 

One of the major issues of the original manuscript was that the validation data are not 

independent temporally and spatially. Thus, in the revised manuscript, available stations 

were randomly divided into two roughly equal-sized parts by Matlab software (Fig. 1). The 

snow depth observations from training stations (342 sites) together with satellite TB and 

other auxiliary data can be used to train the RF model. The measurements from validation 

stations (341 sites), as spatially independent data, can be applied to validate the fitted RF 

algorithm and the reconstructed snow depth product. Fig. 2 shows the histograms of snow 

depth observations from training and validation stations during the period 2012-2018. 

Ninety percent of the samples range from 1 cm to 25 cm. The maximum values of the snow 

depth extend to approximately 50 cm. However, the number of such cases is small and is 

therefore not evident in Fig. 2. 



 

Figure 1. Spatial distribution of the weather stations and land cover types in the study 

area. There are three stable snow cover areas in China: Northeast China (NE), northern 

Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP). 

 

Figure 2. Histograms of snow depth observations from (a) training and (b) validation 

stations. The average values (black dashed lines) are equal to 10.5 cm and 9.8 cm, 

respectively. 

2) Revision 2: four selection rules of predictor variables 

The procedure described in the original manuscript is complicated. Based on the 

correlations between the predictor variables and the variable importance metrics (Fig. 3), 

we designed four schemes of predictor variables to train the RF model in the revised 

manuscript. The scheme one was the simplest and its predictor variables included satellite 

observations at 19 GHz and 37 GHz only (Table 1). The scheme four was the most 

complicated. We first demonstrated whether certain predictor variables are necessary and 

whether their inclusion affects the RF model. 

(a) (b) 



   
Figure 3. Correlations between the predictor variables (left) and the ranking of variable 

importance (right). The importance of variables, referred to as Mean Decrease Accuracy 

(MDA) in the RF model, is obtained by averaging the difference in out-of-bag error 

estimation before and after the permutation over all trees. The larger the MDA, the greater 

the importance of the variable is. 

Table 1. A detailed description of the input predictor variables based on four selection 

rules of the training sample. 

Name Predictor Variables Target Note 

RF1 TB19V, TB37V 

snow 

depth 

land cover 

types: 

grassland,  

cropland,  

bareland,  

shurbland,  

forest 

RF2 TB19V, TB37V, Latitude, Longitude 

RF3 TB19V, TB37V, Latitude, Longitude, Elevation 

RF4 TB19V, TB37V, Latitude, Longitude, Elevation, Land cover fraction 

 

3) Revision 3: validation of the fitted RF algorithms 

We conducted three tests to verify the fitted RF algorithms (Table 2). The same training 

samples (same algorithms) were used for the three tests but with different validation 

datasets. In Test1, the validation data were from out-of-bag (OOB) samples. Generally, 

approximately two-thirds of the samples (in-bag samples) were used to train the trees and 

the remaining one-third (OOB samples) were used to estimate how well the fitted RF 

algorithm performed. This preliminary assessment generally provides a simple way to 

adjust the parameters of the RF model. However, we should use the OOB errors with 

caution because its samples are not independent at temporal and spatial scales. In Test2, 

we applied temporally independent reference data during the period 2015-2018 to assess 

the accuracy of the temporal prediction of fitted algorithms. In Test3, a spatially 

independent dataset from validation stations during the period 2015-2018 was used to 

assess the accuracy of spatio-temporal prediction. 

Fig. 4 indicates that the accuracy of RF model is greatly influenced by geographic location, 

elevation, and land cover fractions. However, the redundant predictor variables (if highly 

correlated) slightly affect the RF model. The fitted RF algorithms perform better at the 



temporal scale than that at the spatial scale, with unbiased RMSEs of ~4.4 cm and ~7.3 

cm, respectively. 

Table 2. Summary of three tests of the fitted RF algorithms in Table 1. 

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

training 

training stations 2012-2014 training stations 2012-2014 training stations 2012-2014 

samples 28602 samples 28602 samples 28602 

validation 

training stations 2012-2014 training stations 2015-2018 validation stations 2015-2018 

samples 14301 samples 34684 samples 25879 

 

 

Figure 4. The color-density scatterplots of the estimated snow depth with four fitted RF 

algorithms and the ground truth snow depth. The four trained RF algorithms (RF1, RF2, 

RF3, RF4) were evaluated with three validation datasets (Test1, Test2, Test3). 

4) Revision 4: validation of the reconstructed snow depth product 

RF1-Test1 RF1-Test2 RF1-Test3 

RF2-Test1 RF2-Test2 RF2-Test3 

RF3-Test1 RF3-Test2 RF3-Test3 

RF4-Test1 RF4-Test2 RF4-Test3 



Finally, we directly used the fitted RF2 algorithm to retrieve a consistent 32-year daily snow 

depth dataset from 1987 to 2018. This product was evaluated against the independent 

station observations during the period 1987-2018. The mean unbiased RMSE and bias 

were 7.1 cm and -0.05 cm, respectively, outperforming the former snow depth dataset (8.4 

cm and -1.20 cm) from the Environmental and Ecological Science Data Center for West 

China (WESTDC). 

 

Figure 5. Scatterplots of the estimated snow depth and the ground truth observation for 

(a) RF and (b) WESTDC products. 

To determine the interannual variability in the uncertainty, the time series of assessment 

indexes, including the unbiased RMSE, bias and correlation coefficient, are shown in Fig. 

6. The results show that the RF estimates outperform the WESTDC product with respect 

to unbiased RMSE and correlation coefficient from season to season. 

(a) (b) 



 
Figure 6. Time series of (a) unbiased RMSE (unRMSE), (b) correlation coefficient 

(corr.coe) and (c) bias for RF and WESTDC products. The colorful dashed lines 

represent mean values of assessment indexes. 

2. Regarding the algorithmic part of the manuscript, I have some recommendations to 

justify certain choices of the manuscript and highlight some advantages and drawbacks of 

random forests (regarding most minor comments on the algorithmic part, e.g. parameters 

of random forests, variable importance, number of predictor variables and more, as well as 

why one should use random forests instead of another algorithm, please consider reading 

the random forests review by Tyralis et al. 2019a for more details).. 

Response 2: We appreciate the reviewer’s help and suggestions. We conducted a test to 

justify whether certain steps are necessary. Please refer to the response to “General 

evaluation 1” above. 

We read the reference carefully. It is a good paper and was very useful for us. We have 

rewritten the introduction to the RF model in Section 2.2.1.  

“RF is an ensemble ML algorithm proposed by Breiman in 2001. It combines several 

randomized decision trees and aggregates their predictions by averaging in regression 

(Biau and Scornet, 2016). Generally, approximately two-thirds of the samples (in-bag 

samples) are used to train the trees and the remaining one-third (out-of-bag samples, OOB) 

are used to estimate how well the fitted RF algorithm performs. Few user-defined 

parameters are generally required to optimize the algorithm, such as the number of trees 

in the ensemble (ntree) and the number of random variables at each node (mtry). The ntree 

is set equal to 1000 in the present study since the gain in the predictive performance of the 

(c) 

(a) 

(b) 



algorithm would be small with the addition of more trees (Probst and Boulesteix, 2018). 

The default value of mtry is determined by the number of input prediction variables, usually 

1/3 for regression tasks (Biau and Scornet, 2016). The RF regression is insensitive to the 

quality of training samples and to overfitting due to the large number of decision trees 

produced by randomly selecting a subset of training samples and a subset of variables for 

splitting at each tree node (Maxwell et al., 2018). In addition, RF provides an assessment 

of the relative importance of predictor variables, which have proven to be useful for 

evaluating the relative contribution of input variables (Tyralis et al., 2019b). Furthermore, 

the RF model can rapidly trained and is easy to use. In this paper, a randomForest R 

package (Version 4.6-14) is used for regression (Liaw and Wiener 2002; Breiman et al. 

2018)" (Page 4, Line 20-30 in the revised manuscript). 

 

We also highlignted the drawbacks of RF model in Senction 4.1. 

“The RF technique is already used to generate temporal and spatial predictions. Generally, 

the RF model cannot extrapolate outside the training range (Hengl et al., 2018). Fig. 6 and 

Table 4 indicate that the spatial predictions of fitted RF algorithms are more biased than 

are the temporal predictions. Thus, the transferability of a fitted RF algorithm to other areas 

is in question. Several studies (Prasad, Iverson & Liaw, 2006; Hengl et al., 2017; Vaysse 

& Lagacherie, 2015; Nussbaum et al., 2018) have proven that RF is a promising technique 

for spatial prediction; however, these studies aim at spatial prediction of properties that are 

relatively static over the observational period, e.g., soil types and soil properties.  

What makes the Earth system interesting is that it is not static but dynamic (especially 

concerning snow parameters). Generally, snow depth increases at the beginning of winter 

and then decreases in spring due to melting. Moreover, snow cover has different spatial 

patterns in various regions, such as generally deep snow in high-latitude and high-

elevation areas. In China, there are five climatological snow classes following the 

classification by Sturm et al. (1995). Each snow class is defined by an ensemble of snow 

stratigraphic characteristics, including snow density, grain size, and crystal morphology, 

which influences the snowpack’s microwave signature (Sturm et al., 2010). These dynamic 

properties of snow will lead to many cases in which the same satellite TB corresponds to 

different snow depths, while the same snow depth is associated with various TB 

observations, rendering the fitted RF algorithm suboptimal. Using ML techniques in 

combination with snow forward models (physical modeling) has the potential to overcome 

many limitations that have hindered a more widespread adoption of ML approaches” (Page 

9, Line 20-30 in the revised manuscript). 

 

3. Furthermore, I think that the manuscript is wordy at some Sections, for instance 

explanation of Figures. 

Response 3: We agree with the reviewer’s opinion. We revised all the sections thoroughly 

to make it more precise. 

 

4. Perhaps the reconstructed dataset could be made available online increasing the value 

of the manuscript. 



Response 4: We agree with the reviewer’s opinion. The reconstructed dataset from 1987 

to 2018 is now available and we will upload the data later. 

 

Major comments: 

 

1. Page 8, line 10 – page 9, line 25: In general, I think that the procedure described here 

is complicated, while some steps may be unnecessary. In particular: 

a. Random forests are fitted using 15 predictor variables in the period 2014–2015 (page 8, 

lines 11, 12) and then they are validated in the period 2012–2013. I do not understand the 

scope of this validation, considering that parameters of the algorithm have been defined 

earlier. 

Response 1: Thank you for your comments. We have revised the manuscript. Please refer 

to the response to “General evaluation 1” above. 

 

2. Random forests are used to predict snow depth in the period 2012–2018. Then a linear 

model is trained in the predictions of the period 2012-2018 using two predictor variables. 

The trained linear model is used to predict snow depth in the period 1987-2018. 

In my opinion it would be more straightforward to train random forests in the period 2014-

2015 using two predictor variables and then predict in the period 1987-2018. Another 

straightforward option would be to train a linear model in the period 2014-2015 and then 

predict in the period 1987-2018. 

Response 2: Thank you for your constructive comments. In the revised manuscript, we 

directly used the fitted RF algorithm to retrieve a consistent 32-year daily snow depth 

dataset from 1987 to 2018. Please refer to the response to “General evaluation 1” above. 

 

3. Instead, following the two-stage procedure of the manuscript, a dataset, obtained by 

some predictions, is used to train a new model. In these procedures uncertainties are 

introduced (since the dataset obtained by random forests is an approximation of the true 

snow depth) which are transferred to the second stage prediction. I understand that this 

approach gives a rich dataset to do the second stage training, however I think that the 

induced uncertainties are not compensated by the bigger dataset. Perhaps the manuscript 

could justify this approach by performing some comparisons between the one and the two-

stage approaches in the period 2012-2018 or just completely use the straightforward 

approach. 

Response 3: Other reviewers gave similar useful and constructive comments. Thus, we 

directly used the fitted RF algorithm to retrieve a consistent 32-year daily snow depth 

dataset from 1987 to 2018 in the revised manuscript and omitted the pixel-based algorithm. 

 

4. Perhaps the approximation of equation (2) is suboptimal because it is based on data 

before 2008, while it does not include the intercept parameter. Given the big magnitude of 

the dataset, it is surprising that a one-parameter linear model (equation 2) would be 

preferable to the two-parameter model of equation (1). 



Response 4: According to reviewers’ suggestions, we directly used the trained RF model 

to retrieve long-term snow depth product, leaving out the pixel-based algorithm. Please 

refer to the response to “General evaluation 1” above. 

 

Minor comments 

1. Page 2, lines 15 – 20: A proper assumption for applying random forests is stationarity. 

Furthermore, random forests do not predict outside the range of the training sample. 

Therefore, the assumption of global warming is not compatible with random forests. 

Response 1: We agree with the reviewer’s opinion. We deleted this sentence.  

 

2. Page 6, line 1: SSMIS provides data in the period 2006-present according to Table 1. 

Response 2: Yes, SSMIS provides data from 2006 to the present and SSM/I from 1987 to 

2008 (Table 3). We changed the sentence to the following: “The series of the Special 

Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder 

(SSMIS) instruments has provided continuous TB measurements at 19.35, 23.235, 37, 85.5 

and 91.655 GHz since July 1987” (Page 3, Line 18-20, in the revised manuscript). 

Table 3. Summary of the main passive microwave remote sensing sensors. 

Sensor SSM/I   SSMIS 

Satellite DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17 

On Orbit time 1987-1991 1991-1995 1995-2008 2006-present 

Passing Time 
A: 06:20                   

D: 18:20 

A: 17:17                    

D: 05:17 

A: 17:58             

D: 05:58 

A: 17:31           

D: 05:31 

Frequency & 

footprint (GHz) : 

(km × km) 

19.35: 45×68  

23.235: 40×60  

37: 24×36    

85.5: 11×16 

19.35: 42×70  

23.235: 42×70  

37: 28×44    

91.655: 13×15 

 

3. Page 7, lines 16 – 17: Random forests parameters are more than two. 

Response 3: Thank you for your comments. We changed the sentence to the following: 

“Few user-defined parameters are generally required to optimize the algorithm, such as 

the number of trees in the ensemble (ntree) and the number of random variables at each 

node (mtry)” (Page 4, Line 23-24, in the revised manuscript). 

 

4. Page 7, lines 21 – 27: In general the default values (in the software implementation) of 

random forests parameters are good. 

Response 4: We agree with the reviewer’s opinion. In this study, we used the default 

values of parameters. 

 

5. Page 7, lines 21 – 27: In general it is suggested to use as high number of trees as 

computationally feasible. However, indeed the number of 500 trees is high enough in most 

applications. 

Response 5: We agree with the reviewer’s opinion. Please refer to the response to “Minor 

Comment 4” above. 

 



6. Page 7, line 27 – page 8, line 2: In general the larger the dataset, the better the predictive 

ability of a regression algorithm. 

Response 6: We agree with the reviewer’s opinion. Fig. 7 suggests that the accuracy of 

the SVM estimation is related to the training data size (Xiao et al., 2018).  

 

Figure 7. Trend of R (correlation coefficient), MAE (mean absolute error) and RMSE (root 

mean squared error) with increasing training sample size. K represents one thousand 

(from Xiao et al., 2018). 

In our study, we also analyzed the performances of the RF model with increasing training 

sample size. The results revealed that the accuracy of RF estimation is insensitive to the 

training data size (Fig. 8). One of the advantages of the RF model is that it can effectively 

handle small sample sizes (Biau and Scornet et al., 2016). 

 

Figure 8. Trends of (a) unbiased RMSE, (b) bias and (c) correlation coefficient with 

increasing training sample size. 

 

7. Page 10, lines 8–12: By increasing the size of training sample one would expect that the 

performance of predictive algorithm would increase. 

Response 7: Thank you for your comments. Please refer to the response to “Minor 

Comment 6” above. 

 

8. Page 11, lines 4, 5: Which linear model? 

Response 8: Thank you for your comments. We have changed the sentence to the 

following: “The reconstructed product was also compared with the static linear-fitting 

algorithm developed by fitting 19 and 37 GHz with the snow depth measurements with a 

constant empirical coefficient over China (Che et al., 2008). The daily snow depth data 

were obtained from the Environmental and Ecological Science Data Center for West China 

(http://westdc.westgis.ac.cn) (hereafter, WESTDC product)” (Page 6, Line 17-20, in the 

revised manuscript). 

 



9. Page 11, lines 22–24: The comparison between random forests and the linear model is 

unfair considering that the latter uses less predictor variables. 

Response 9: Thank you for your comments. We studied whether the machine learning 

method can overcome the limitations of empirical algorithms. Yang et al. (2019) validated 

five empirical algorithms and found that this linear model outperformed four other snow 

depth estimation methods in China. Thus, in this study, we directly compared the estimates 

of the RF and linear models. We removed this comparison and conducted a more 

comprehensive analysis of the reconstructed snow depth product. 

[1] Yang, J., Jiang, L., Wu, S., Wang, G., Wang, J., and Liu, X.: Development of a Snow 

Depth Estimation Algorithm over China for the FY-3D/MWRI, Remote Sensing, 11, 977, 

10.3390/rs11080977, 2019. 

 

10. Page 12, lines 25–27: This procedure is not clear. 

Response 10: We apologize that the description of this procedure was not specific and 

clear. We omitted this procedure in the revised manuscript according to the reviewers’ 

suggestions. Please refer to the response to “General evaluation 1” above. 

 

11. Page 13, lines 3, 4: I do not understand why assigning values to the slope and intercept. 

Response 11: We apologize that the description was not clear. If there are fewer than 

three available measurements in a pixel during the winter seasons for the 2012-2018 

period, the regression coefficients (slope and intercept) can not be calculated. But the snow 

cover detection method maybe classify this pixel into snow. In such case, we have to 

assign values to the slope (0.66) and intercept (0) according to the linear model. 

We omitted this procedure in the revised manuscript according to the reviewers’ 

suggestions. Please refer to the response to “General evaluation 1” above. 

 

12. Page 16, lines 8–11: It is not clear which period was used to compute variable 

importance. 

Response 12: Thank you for your comment. We added the period in the revised 

manuscript (Page 4, Line 8-9). 

 

13. Page 16, lines 24–28: Perhaps the information added by the longitude and latitude 

predictor variables is already included in the remaining predictor variables (see e.g. a 

similar application in Tyralis et al. 2019b). In the latter study, the predictive performance 

was examined by comparing models with and without longitude and latitude, and the effect 

of coordinates was found insignificant. Perhaps, computing variable importance and 

predicting performance would give some explanations on the value of the remaining 

predictor variables and make the model less dependent on the proximity of nearby stations. 

Response 13: We agree with your opinion. Fig. 3 shows that the latitude is highly 

correlated with the brightness temperature. Thus, latitude has a very slight influence on 

the predictive performance. However, longitude is poorly correlated with the brightness 

temperature. Moreover, Fig. 3 indicates that the longitude is more important than latitude 

to snow depth. We read the reference carefully and cited it as follows: “In addition, RF 

provides an assessment of the relative importance of predictor variables, which have 



proven to be useful for evaluating the relative contribution of input variables (Tyralis et al., 

2019b)” (Page 4, Line 29-30, in the revised manuscript). 

 

14. Page 18, lines 1–3: In general one would expect that using more predictor variables 

related to the dependent variable of interest would improve the trained model. Furthermore, 

redundant predictor variables slightly affect random forests. 

Response 14: We agree with the reviewer’s opinion. Our results also demonstrate that 

redundant predictor variables slightly affect random forests. 

 

15. Figure 6: Figures should be numbered and respective explanations should be added 

in the caption. 

Response 15: We corrected it. 

 

16. Regarding the implementation of random forests, some of their disadvantages and their 

impact in the results of the study can be discussed (see a list of disadvantages in Tyralis 

et al. 2019a), e.g. they do not extrapolate outside the training range, variable importance 

metrics are not always reliable, as they are affected by high correlations and interactions, 

and more. 

Response 16: These comments are very useful for improving our paper. We read the 

reference paper carefully and disscussd the limitaions of the RF model in Section 4.1. 

“The RF technique is already used to generate temporal and spatial predictions. Generally, 

the RF model cannot extrapolate outside the training range (Hengl et al., 2018). Fig. 6 and 

Table 4 indicate that the spatial predictions of fitted RF algorithms are more biased than 

are the temporal predictions. Thus, the transferability of a fitted RF algorithm to other areas 

is in question. Several studies (Prasad, Iverson & Liaw, 2006; Hengl et al., 2017; Vaysse 

& Lagacherie, 2015; Nussbaum et al., 2018) have proven that RF is a promising technique 

for spatial prediction; however, these studies aim at spatial prediction of properties that are 

relatively static over the observational period, e.g., soil types and soil properties.  

What makes the Earth system interesting is that it is not static but dynamic (especially 

concerning snow parameters). Generally, snow depth increases at the beginning of winter 

and then decreases in spring due to melting. Moreover, snow cover has different spatial 

patterns in various regions, such as generally deep snow in high-latitude and high-

elevation areas. In China, there are five climatological snow classes according to Sturm et 

al. (1995). Each snow class is defined by an ensemble of snow stratigraphic characteristics, 

including snow density, grain size, and crystal morphology, which influences the 

snowpack’s microwave signature (Sturm et al., 2010). These dynamic properties of snow 

will lead to many cases in which the same satellite TB corresponds to different snow depths, 

while the same snow depth is associated with various TB observations, rendering the fitted 

RF algorithm suboptimal. Using ML techniques in combination with snow forward models 

(physical modeling) has the potential to overcome many limitations that have hindered a 

more widespread adoption of ML approaches" (Page 9, Line 22-30, in the revised 

manuscript). 

 



17. Implemented software, software packages, libraries etc used in the study for 

computations and visualizations should be cited in the references list to credit software 

developers. 

Response 17: Thank you for your suggestion. We added the information on the RF model 

(https://cran.r-project.org/web/packages/randomForest): “In this paper, a randomForest R 

package (Version 4.6-14) is used for regression (Liaw and Wiener 2002; Breiman et al. 

2018)” (Page 5, Line 1-2, in the revised manuscript). 

 

Language 

 

1. Page 4, line 8: Perhaps regression instead of prediction would be more accurate. 

Response 1: We agree with your opinion. We changed “prediction” to “regression” in the 

revised manuscript. 



Response to Reviewer Comments by Tomasz Berezowski on “Real-Time Snow 

Depth Estimation and Historical Data Reconstruction Over China Based on a 

Random Forest Machine Learning Approach” by Jianwei Yang et al 

 

Thank you for your letter and the comments concerning our manuscript. Those comments have been 

very helpful for revising and improving our paper as well as providing guidance for our research. 

We have studied the comments carefully and have made corrections, which we hope meet with 

approval. We provide responses in blue below. 

 

Review #3  

 

General Comments: The manuscripts aims to reconstruct the historical snow data set and 

to develop a real time snow depth estimation. I qualify this manuscript somewhere between 

major revision and rejection. The major revision is because the MS has some serious 

issues in methods, validation and some of the statements are not supported by the result. 

On the other hand the historical snow data set is an interesting product (if properly 

validated). The rejection is due to lack of novelty in this study: Authors use well established 

methods in a standard way and what they obtain is a product that has a similar RMSE as 

a former product available for China. 

Response: Thank you for your comments. We revised the manuscript carefully and 

thoroughly. According to yours and other reviewers’ suggestions, we redesigned the 

methodology and conducted the comparisons between the complicated and simple 

methods to demonstrate which procedure is more effective for snow depth estimation, also 

improving novelty of the study. The primary objectives of this study are to assess the 

feasibility of the RF model in estimating snow depth, to determine whether the inclusion of 

auxiliary information (geolocation, elevation and land cover fraction) contributes to the 

improvement of RF, and eventually to develop a time series (1987 to 2018) of snow depth 

data in China and analyze the trends in annual mean snow depth. To complete the 

feasibility study of the RF model, we designed four RF algorithms trained with different 

combinations of predictor variables and validated them using temporally and spatially 

independent reference data. To our knowledge, this type of assessment of RF algorithm 

performance has not been made to date over China. The reconstructed snow depth 

dataset is now available and we will upload it later. There are four major revisions in this 

study. 

1) Revision 1: scientific validation dataset 

One of major issues in the original manuscript was the validation data are not temporally 

and spatially independent. Thus, in the revised manuscript, available stations in China 

were randomly divided into two roughly equal-sized parts by Matlab software (Fig. 1). The 

snow depth observations from training stations (342 sites) together with satellite TB and 

other auxiliary data can be used to train the RF model. The measurements from validation 

stations (341 sites), as spatially independent data, can be applied to validate the fitted RF 

algorithm and the reconstructed snow depth product. Fig. 2 shows the histograms of snow 

depth observations from training and validation stations during the period 2012-2018. 

Ninety percent of the samples range from 1 cm to 25 cm. The maximum values of the snow 



depth extend to approximately 50 cm. However, the number of such cases is small and is 

therefore not evident in Fig. 2. 

 

Figure 1. Spatial distribution of the weather stations and land cover types in the study 

area. There are three stable snow cover areas in China: Northeast China (NE), northern 

Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP). 

 

Figure 2. Histograms of snow depth observations from (a) training and (b) validation 

stations. The average values (black dashed lines) are equal to 10.5 cm and 9.8 cm, 

respectively. 

2) Revision 2: four selection rules of predictor variables 

The procedure described in the original manuscript was complicated. Based on the 

correlations between the predictor variables and the variable importance metrics (Fig. 3), 

we designed four schemes of predictor variables to train the RF model in the revised 

manuscript. The scheme one was the simplest and its predictor variables included satellite 

observations at 19 GHz and 37 GHz only (Table 1). The scheme four was the most 

complicated. We first demonstrated whether certain predictor variables are necessary and 

whether their inclusion affects the RF model. 

(a) (b) 



   
Figure 3. Correlations between the predictor variables (left) and the ranking of variable 

importance (right). The importance of variables, referred to as Mean Decrease Accuracy 

(MDA) in RF model, is obtained by averaging the difference in out-of-bag error estimation 

before and after the permutation over all trees. The larger the MDA, the greater the 

importance of the variable is. 

Table 1. A detailed description of the input predictor variables based on four selection 

rules of training sample. 

Name Predictor Variables Target Note 

RF1 TB19V, TB37V 

snow 

depth 

land cover 

types: 

grassland,  

cropland,  

bareland,  

shurbland,  

forest 

RF2 TB19V, TB37V, Latitude, Longitude 

RF3 TB19V, TB37V, Latitude, Longitude, Elevation 

RF4 TB19V, TB37V, Latitude, Longitude, Elevation, Land cover fraction 

 

3) Revision 3: validation of the fitted RF algorithms 

We conducted three tests to verify the fitted RF algorithms (Table 2). The same training 

samples (same algorithms) were used for three tests but with different validation datasets. 

In Test1, the validation data are from out-of-bag (OOB) samples. Generally, in the RF 

model, approximately two-thirds of the samples (in-bag samples) are used to train the trees 

and the remaining one-third (OOB samples) are used to estimate how well the fitted RF 

algorithm performs. This preliminary assessment offers a simple way to adjust the 

parameters of the RF model. However, we should use the OOB errors with caution 

because its samples are not independent at temporal and spatial scales. In Test2, we 

applied temporally independent reference data during the period 2015-2018 to assess the 

accuracy of the temporal prediction of fitted algorithms. In Test3, a spatially independent 

dataset from validation stations during the period 2015-2018 was used to assess the 

accuracy of spatio-temporal prediction. 

Fig. 4 indicates that the accuracy of RF model is greatly influenced by geographic location, 

elevation, and land cover fractions. However, the redundant predictor variables (if highly 

correlated) slightly affect the RF model (Fig. 3). The fitted RF algorithms perform better at 



the temporal scale than that at the spatial scale, with unbiased RMSEs of ~4.4 cm and 

~7.3 cm, respectively. 

Table 2. Summary of three tests of the fitted RF algorithms in Table 1. 

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

training 

training stations 2012-2014 training stations 2012-2014 training stations 2012-2014 

samples 28602 samples 28602 samples 28602 

validation 

training stations 2012-2014 training stations 2015-2018 validation stations 2015-2018 

samples 14301 samples 34684 samples 25879 

 

 

Figure 4. The color-density scatterplots of the estimated snow depth with four fitted RF 

algorithms and the ground truth snow depth. The four trained RF algorithms (RF1, RF2, 

RF3, RF4) were evaluated with three validation datasets (Test1, Test2, Test3). 

4) Revision 4: validation of the reconstructed snow depth product 

RF1-Test1 RF1-Test2 RF1-Test3 

RF2-Test1 RF2-Test2 RF2-Test3 

RF3-Test1 RF3-Test2 RF3-Test3 

RF4-Test1 RF4-Test2 RF4-Test3 



Finally, we directly used the fitted RF2 algorithm to retrieve a consistent 32-year daily snow 

depth dataset from 1987 to 2018. The product was evaluated against the independent 

station observations during the period 1987-2018. The mean unbiased RMSE and bias 

were 7.1 cm and -0.05 cm, respectively, outperforming the former snow depth dataset (8.4 

cm and -1.20 cm) from the Environmental and Ecological Science Data Center for West 

China (WESTDC). 

 
Figure 5. Scatterplots of the estimated snow depth and the ground truth observation for 

(a) RF and (b) WESTDC products. 

To determine the interannual variability in the uncertainty, the time series of assessment 

indexes, including the unbiased RMSE, bias and correlation coefficient, are shown in Fig. 

6. The results show that the RF estimates outperform the WESTDC product with respect 

to unbiased RMSE and correlation coefficient from season to season. 

(a) (b) 



 
Figure 6. Time series of (a) unbiased RMSE (unRMSE), (b) correlation coefficient 

(corr.coe) and (c) bias for RF and WESTDC products. The colorful dashed lines 

represent mean values of assessment indexes. 

The assessment of snow depth product was performed in three snow cover areas in China. 

We selected 20 cm as a threshold to assess the performances in deep (> 20 cm) and 

shallow (≤ 20 cm) snow cover. Table 3 displays the comparison between RF estimates and 

WESTDC product in the three snow cover areas. Both products present notable 

underestimation of deep snow cover, with the biases of -34.1 cm and -33.8 cm in QTP for 

the RF and WESTDC products, respectively. The biases are -10.4 cm and -8.9 cm in NE 

and northern XJ for RF product, respectively, whereas they are -11.8 cm and -13.2 cm for 

WESTDC data. For shallow snow cover, the RF product is superior to the WESTDC 

estimates in QTP, with unbiased RMSEs of 3.4 cm (RF) and 5.6 cm (WESTDC). 

Furthermore, the WESTDC product presents an overestimation in QTP, with a bias of 4.0 

cm that is much higher than RF’s 0.6 cm. The unbiased RMSEs of the RF product are 5.4 

cm and 6.1 cm in NE and northern XJ for shallow snow cover, respectively, lower than the 

WESTDC’s values of 6.5 cm and 7.4 cm.  

In the Discussion, we list the potential errors of the reconstrued snow depth (Page 10, Line 

18-28 and Page 11, Line 1-13, in the revised manuscript). 

(c) 

(a) 

(b) 



 
Figure 7. The validation of RF and WESTDC snow depth products in the three stable 

snow cover areas in China with respect to (a) the unbiased RMSE, (b) bias and 

correlation coefficient. 

Table 3. Comparison between RF estimates and WESTDC product in three stable snow 

cover areas for deep (> 20 cm) and shallow (≤ 20 cm) snow cover. 

RF product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.30  0.06  0.49  0.17  0.48  0.31  

bias (cm) 0.59  -34.12  1.79  -10.38  2.52  -8.85  

unRMSE (cm) 3.43  20.70  5.36  7.00  6.12  9.62  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

WESTDC product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.16  -0.18  0.37  0.03  0.34  0.16  

bias (cm) 4.02  -33.78  0.47  -11.75  -0.39  -13.22  

unRMSE (cm) 5.60  21.62  6.47  9.10  7.35  11.30  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

 

Major issues: 

 

1. I agree with the Anonymous Reviewer (point 9b), who pointed that this complicated 

methodology of using RF to produce more data is probably unnecessary and that it should 

be tested whether this step is necessary and whether it does increase uncertainty to the 

product or not. 

Response 1: Thank you for your comments. We tested four RF algorithms trained with 

different predictor variables (Fig. 4). The results showed that the accuracy of RF model is 

greatly influenced by geographic location, elevation, and land cover fractions. However, 

we also found redundant predictor variables due to high correlation. The elevation variable 

is highly correlated (correlations higher than 0.9) with geographic location (Fig. 3). 

Additionally, the correlation between longitude and land cover type (e.g., grassland, 

cropland, forest and bareland) is significant. Thus, land cover type and elevation are not 

(a) (b) 



necessary. We directly used a simple RF algorithm to retrieve a consistent 32-year daily 

snow depth dataset from 1987 to 2018. Please refer to the response to “General 

Comments” above. 

 

2. The most important issue is that the validation of the RF and the pixel based snow depths 

is not fair. This is because stations used for validation are only a temporal subsample of 

the training station set. The spatial sub-sampling was not conducted, i.e., stations for all 

geographic locations were used for training and validation. This is a very important problem, 

because latitude and longitude are the third and fourth important predictors in the model, 

nearly as important as the Tb. The RF model cannot know values of this predictors already 

during training, because the validation does not make sense. Therefore, the errors reported 

in this study are very optimistic (underestimated) and should be recalculated using 50% of 

the stations (not the data, i.e. spatial not temporal subset) which were not used to train the 

RF model. The same 50% subset should be used to validate the pixel-based method. 

Response 2: Thank you for your constructive comments. Other reviewers gave similar 

comments. In the revised manuscript, available stations were randomly divided into two 

roughly equal-sized parts by Matlab software (Fig. 1). The snow depth observations from 

training stations (342 sites) together with satellite TB and other auxiliary data can be used 

to train the RF model. The measurements from validation stations (341 sites), as spatially 

independent data, can be applied to validate the fitted RF algorithm and the reconstructed 

snow depth product. Please refer to the response to “General Comments” above. 

 

3. The pixel based SD product effectively fails to model snow above 20cm depth (Figure9). 

This is a serious limitation and it should be explained very deeply in the discussion: (1) why 

this happens, (2) what is the true applicability of the product given the RMSE is 5cm. 

Response 3: Thank you for your comments. We discussed this in Section 4.3. 

"Fig. 7 indicates that the RF model does not fully solve the overestimation and 

underestimation problems. For deep snow (> 20 cm), the biases are up to -8.9 cm and -

10.4 cm in NE and northern XJ, respectively. Deep snow conditions account for roughly 

10% of all training samples (Fig. 2). The estimates for deep snow cover in the QTP exhibit 

a large bias of -34.1 mm. Fig. 6 also illustrates that the fitted RF algorithms have no 

predictive ability for extremely deep snow conditions, especially in QTP. We checked the 

training data and found that the extreme high snow depth data (> 60 cm) occurred in QTP. 

However, the number of such cases is very small. In addition, the station measurements 

are point values while the satellite grids have a spatial resolution of 25 km × 25 km. Thus, 

the representativeness of these data is questionable. Snow depth estimation in the 

mountains remains a challenge (Lettenmaier et al., 2015; Dozier et al., 2016; Dahri et al., 

2018). Numerous studies have been conducted on the snow cover over the QTP and have 

indicated that the snow cover in the Himalayas is higher than elsewhere, ranging from 80% 

to 100% during the winter (Basang et al., 2017; Hao et al., 2018). Additionally, Dai et al. 

(2018) showed that deep snow (greater than 20 cm) was mainly distributed in the 

Himalayas, Pamir, and Southeastern Mountains. Thus, the RF product produced in this 

paper has poor performance in QTP for deep snow cover." 



4. The methods are very difficult to follow, I noticed that the other Reviewers managed to 

understand them better than me, but still, I am not completely sure how the study was 

conducted. This entire chapter should be rewritten, simplified and better structured. Often 

different words are used in the same context to name the same things, what makes 

understanding of this paper even more difficult (see attachment for some examples). The 

results and discussion sections are very poorly written: methods, results and discussion 

are mixed in each of these sections (see attachment for some examples). 

Response 4: Thank you for your comments. We revised the manuscript carefully and 

thoroughly to make paper structure clearer. Additionally, a thorough revision of the 

manuscript was completed by a native speaker. 

 

5. Authors should also justify better why this is a real-time approach. Is there an operational 

implementation of this algorithm? 

Response 5: We removed the word ‘real-time’ in the revised manuscript. 

 

6. Eventually, Authors claim that ML in RS is a very novel research problem, e.g. “Machine 

learning (ML) is a common method used in many research fields, and its early application 

in remote sensing is promising”. The applications of ML in RS are not early, they are in RS 

since decades, either for regression (as in this study) or classification. The use of RF for 

regression, cannot be understand as a novelty, because it simply is not. Authors should 

better explain in which aspects the MS is novel. 

Response 6: We apologize for the ambiguous description. We rewrote this paragraph as 

follows: “Over the last two decades, RF has been one of the most successful ML algorithms 

for practical applications due to its proven accuracy, stability, speed of processing and 

ease of use (Rodriguez-Galiano et al., 2012; Belgiu et al., 2016; Maxwell et al., 2018; Bair 

et al., 2018; Qu et al., 2019; Reichstein et al., 2019, Tyralis et sl., 2019a)" (Page 3, Line 2-

5, in the revised manuscript).  

In Section 2.2, we listed some advantages of the RF model. (Page 4, Line 19-30, in the 

revised manuscript). 

We agree with your opinion that machine learning method is not novel in remote sensing 

and have rewritten the sentence. It now reads, “The primary objectives of this study are to 

assess the feasibility of the RF model in estimating snow depth, to determine whether the 

inclusion of auxiliary information (geolocation, elevation and land cover fraction) 

contributes to the improvement of RF, and eventually to develop a time series (1987 to 

2018) of snow depth data in China and analyze the trends in annual mean snow depth. To 

complete the feasibility study of the RF model, we designed four RF algorithms trained with 

different combinations of predictor variables and validated them using independent 

reference data temporally and spatially. To our knowledge, this type of assessment of RF 

algorithm performance has not been made to date over China" (Page 3, Line 7-12, in the 

revised manuscript). 

 

Minor issues: (from hand-written comments) 

 



1. Page 1, line 20, the applications of ML in RS are not early, please remove early. 

Response 1: Word ‘early’ removed. 

 

2. Page 1, Line 22, from 1987-2018. 

Response 2: We changed the sentence to ‘during the period 1987-2018.’ 

 

3. Page 1, Line 23, ‘the advanced microwave scanning radiometer’. The first letter should 

be capitalized. 

Response 3: We selected SSM/I and SSMIS data as satellite observations and thus 

deleted this description. 

 

4. Page 2, Line 23, this paper is about snow depth, not SWE. 

Response 4: Thank you for your comments. We rewrote it as “Snow depth is a crucial 

parameter for climate studies, hydrological applications and weather forecasts (Foster et 

al., 2011; Takala et al., 2017; Tedesco et al., 2016; Safavi et al., 2017).” 

 

5. Page 4, Line 8, not prediction, but regression. 

Response 5: We changed ‘prediction’ to ‘regression.’ 

 

6. Page 4, Line 24, 25*25km2 ? ? 

Response 6: It is 25 km x 25 km. We selected SSM/I and SSMIS data as satellite 

observations to retrieve snow depth in the revised manuscript and thus deleted this 

description. 

 

7. Page 6, Line 7, cold overpass ? ? 

Response 7: Thank you for your comments. We rewrote this sentence as ‘To avoid the 

influence of wet snow, only ascending (F08) and descending (F11, F13 and F17) overpass 

data were used (Table 1).’ 

Table 1. Summary of the main passive microwave remote sensing sensors. 

Sensor SSM/I   SSMIS 

Satellite DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17 

On Orbit time 1987-1991 1991-1995 1995-2008 2006-present 

Passing Time 
A: 06:20                   

D: 18:20 

A: 17:17                    

D: 05:17 

A: 17:58             

D: 05:58 

A: 17:31           

D: 05:31 

Frequency & 

footprint (GHz) : 

(km × km) 

19.35: 45×68  

23.235: 40×60  

37: 24×36    

85.5: 11×16 

19.35: 42×70  

23.235: 42×70  

37: 28×44    

91.655: 13×15 

 

8. Page 6, Line 13-15, station data is daily? What is harsh climate? 

Response 8: Thank you for your comments. We rewrote these sentences as ‘The weather 

station daily data in China from 1987 to 2018 were provided by the National Meteorological 

Information Centre, China Meteorology Administration (CMA, http://data.cma.cn/en)’ and 



‘The sites are not distributed homogeneously, and few are located in inaccessible regions 

with extreme climates and complex terrain conditions, e.g., the western part of QTP.’ 

 

9. Page 6, Line 22, snow depth can be over 70 cm 

Response 9: Thank you for your comments. Fig. 2 showed the histograms of snow depth 

observations from training and testing stations. Ninety percent of the samples range from 

1 cm to 25 cm. The maximum values of the snow depth extend to approximately 50 cm. 

However, the number of such cases is small and therefore not evident. In the revised 

manuscript, we maintained these data. 

 

10. Page 7, Line 15-19, the description is not clear. 

Response 10: Thank you for your comments. We rewrote this paragraph in Section 2.2.1.  

‘2.2.1 Random forest 

RF is an ensemble ML algorithm proposed by Breiman in 2001. It combines several 

randomized decision trees and aggregates their predictions by averaging in regression 

(Biau and Scornet, 2016). Generally, approximately two-thirds of the samples (in-bag 

samples) are used to train the trees and the remaining one-third (out-of-bag samples, OOB) 

are used to estimate how well the fitted RF algorithm performs. Few user-defined 

parameters are generally required to optimize the algorithm, such as the number of trees 

in the ensemble (ntree) and the number of random variables at each node (mtry). The ntree 

is set equal to 1000 in the present study since the gain in the predictive performance of the 

algorithm would be small with the addition of more trees (Probst and Boulesteix, 2018). 

The default value of mtry is determined by the number of input prediction variables, usually 

1/3 for regression tasks (Biau and Scornet, 2016). The RF regression is insensitive to the 

quality of training samples and to overfitting due to the large number of decision trees 

produced by randomly selecting a subset of training samples and a subset of variables for 

splitting at each tree node (Maxwell et al., 2018). In addition, RF provides an assessment 

of the relative importance of predictor variables, which have proven to be useful for 

evaluating the relative contribution of input variables (Tyralis et al., 2019b). Furthermore, 

the RF model can rapidly trained and is easy to use. In this paper, a randomForest R 

package (Version 4.6-14) is used for regression (Liaw and Wiener 2002; Breiman et al. 

2018)." 

 

11. Page 7, Line 27-28, why you asking questions here. Page 8, Line 3, 80000 pairs? Not 

clear 

Response 11: We deleted the questions and rewrote this paragraph in Section 2.2.2.  

‘(2) Training sample size 

One of the advantages of the RF model is that it can effectively handle small sample sizes 

(Biau and Scornet et al., 2016). A test was conducted to demonstrate the insensitivity of 

the RF model to the training sample size. The input predictor variables include geographic 

location and TB (Table 2, RF2). The flowchart of the test process is shown in Fig. 4. To 

ensure a sufficient number of samples, 80,000 records from 1987 to 2004 were used to 

test the required size of the training samples and a two-year stand-alone dataset from 

(2005-2006) was applied to assess the performance. During this process, the number of 



samples selected randomly was from 5000 to 80,000 (step, 5000). We consider three 

evaluating indicators (the unbiased root mean square error (RMSE), bias and correlation 

coefficient) to illustrate the stability of the RF model to the training sample size." 

 

12. Page 8, Line 4-8, what is this paragraph about? What is ‘stability’? in respect to what? 

Response 12: Thank you for your comments. We tested the sensitivity of the RF model to 

the training sample size. We rewrote this paragraph. Please refer to the response to “Minor 

Comment 11” above. 

 

13. Page 8, Line 15-26, this is ambiguous. Which radiation is scattered by snow? Which 

radiation the snow is transparent? What is the snow of these radiations? Perhaps some of 

the radiation is radiated by snow itself, not scattered… 

Response 13: Thank you for your comments. Most passive microwave snow depth 

retrieval algorithms exploit the negative spectral gradient between measurements at 19 

GHz and 37 GHz. We rewrote this paragraph in Section 2.2.2. 

‘All available channels on the SSM/I and SSMIS are listed in Table 1. The 23 GHz channel 

is sensitive to water vapor and not surface scattering, which introduces uncertainty to the 

estimation process (Ji et al., 2017). The 85 (91) GHz channel is seriously influenced by the 

atmosphere (Kelly et al., 2009; Xue et al., 2017). Typically, the lower frequency (19 GHz) 

is used to provide a background TB against which the higher frequency (37 GHz) scattering-

sensitive channels are used to retrieve snow depth.’ 

 

14. Page 9, Line 2-4, this sentence should move to the introduction section. 

Response 14: We left out the pixel-based method in this paper due to RF’s limitations. 

 

15. Page 9, Line 6-7, 19GHz is always 18GHz. 

Response 15: Thank you for your comments. We used the same symbol in the manuscript. 

‘In this study, the difference between 19.35 (36.5) GHz and 18.7 (37) GHz was ignored 

(hereafter referred as 19 GHz and 37 GHz, respectively).’ 

 

16. Page 9, Line 24-25, seasons, should be season or months. Isn’t wet snow likely in 

November? 

Response 16: We changed the word ‘seasons’ to ‘season.’ Although a snow cover 

detection method (Grody et al., 1996) was used to filter out wet snow conditions, wet snow 

is still possible in November.  

 

17. Page 10, Line 1-3, some repetition, not clear.  

Response 17: We modified the sentence to “The sensitivity of the RF model to the training 

sample size was conducted to confirm the appropriate number of training samples.” 

 

18. Page 10, Line 5, the term ‘represents’ is changed to ‘presents’. RMSE ranges.., not 

RMSEs range… 



Response 18: Thank you for your comments. We rewrote this sentence as ‘Fig. 4a 

presents unbiased RMSE ranges from 5.1 cm to 5.5 cm.’ 

 

19. Page 10, Line 10, what is the optimal number you chosen here?  

Response 19: According to the sensitivity analysis, the number of training samples has 

less influence on the prediction accuracy of the RF model. In our study, we selected all 

available samples (28602) from training stations (Fig. 1) during the period 2012-2014 to 

train the RF models. 

 

20. Page 10, Line 11, this statement is not supported by the results. 

Response 20: One of the advantages of the RF model is that it can effectively handle 

small sample sizes (Biau and Scornet et al., 2016). Our results also indicated that the 

performance of RF model is insensitive to the training sample size. 

 

21. Page 10, Line 16-18, please move this sentence to the method section. 

Response 21: We moved it to Section 2.2.2. 

 

22. Page 10, Line 23, this is discussion, not result. 

Response 22: It was moved to Section 4.3. 

 

23. Page 11, Line 2-3, how the relative error was calculated? 

Response 23: RPE=abs(bias*100/SDground). 

 

24. Page 11, Line 6-8, is method, not result. 

Response 24: Moved. 

 

25. Page 11, Line 11-13, the reference? 

Response 25: We added the reference and moved this sentence to the discussion section. 

" Second, the large diurnal temperature range tends to subject the snowpack to frequent 

freeze-thaw cycles and leads to rapid snow grain (~2 mm) and snow density (200-350 

kg/m3) growth and consequently a high TB difference (Meløysund et al., 2007; Durand et 

al., 2008; Yang et al., 2015; Dai et al., 2017).” 

 

26. Page 11, Line 16-19, aren’t only cold/night orbits data used? 

Response 26: In this study, a snow cover detection method is used to filter out wet snow 

cover; however, there are still misclassification errors, especially at the end of winter (Liu 

et al., 2018). 

Liu, X., Jiang, L., Wu, S., Hao, S., Wang, G., and Yang, J.: Assessment of Methods for 

Passive Microwave Snow Cover Mapping Using FY-3C/MWRI Data in China, Remote 

Sensing, 10, 524-539, 10.3390/rs10040524, 2018. 

 

27. Page 11, Line 25-30, this is how to judge base on the maps? 



Response 27: We moved this sentence to the discussion. 

 

28. Page 12, Line 12-16, mixing results and discussion! 

Response 28: We moved this sentence to Section 4.3. 

 

29. Page 12, Line 25-27, move to method section! 

Response 29: In the revised manuscript, we left out the pixel-based method and thus 

deleted this sentence. 

 

30. Page 13, Line 3-4, where and why? 

Response 30: We deleted this sentence because the pixel-based method was left out in 

the revised manuscript. 

 

31. Page 13, Line 12-13, this sentence should be “To evaluate the long-term….” 

Response 31: We corrected this sentence. 

 

32. Page 13, Line 23, where is the comparison? 

Response 32: We rewrote it as “The overall accuracy of the RF product is higher than the 

WESTDC estimates, with unbiased RMSEs of 7.1 cm and 8.5 cm, respectively (Fig. 7a 

and 7b).” 

 

33. Page 15, Line 3-13, move to results section. 

Response 33: Done. 

 

34. Page 15, Line 17-22, only cold/night orbits data were used in winter season, how to 

explain it?  

Response 34: Please refer to the response to “Minor Comment 26” above. 

 

35. Page 15, Line 22, It is result, not discussion.  

Response 35: Moved. 

 

36. Page 16, Line 2, ”H-pol” is “in horizontal polariton”.  

Response 36: Corrected. 

 

37. Page 16, Line 8-15, not clear explanation. Not ‘predictor importance’ but ‘predictor 

variable importance’.   

Response 37: We modified the sentence to “The importance of predictor variables, 

referred to as Mean Decrease Accuracy (MDA) in the RF model, is obtained by averaging 

the difference in out-of-bag error estimation before and after the permutation over all trees. 

The larger the MDA, the greater the importance of the variable is” (Page 19, Line 6-9, in 

the revised manuscript). 

 



38. Page 16, Line 12, remove the ‘by far’, ‘more dependent on station data’ is changed to 

‘geographically dependent’.  

Response 38: Done. 

 

39. Page 16, Line 17-27, the result does not support this because DEM was not a predictor 

variable in this paper. If DEM is better than lat/lon, why not use DEM? 

Response 39: We redesigned the procedure and included the DEM as one of the predictor 

variables (Table 1). Fig. 3 indicates that DEM is highly correlated with the geolocation 

(lat/lon). 

 

40. Page 17, Line 2, Significantly? Statistical test conducted? 

Response 40: It means that there is a notable accuracy difference for different land cover 

types. We deleted the word ‘significantly.’ 

 

41. Page 17, Line 3, what if land cover changes over time? 

Response 41: This is a wonderful question. In this study, we assume the land cover type 

does not change. We can study this in future work. 

 

42. Page 17, Line 15-29, These sentences belong to method section. 

Response 42: The aim of this part is to demonstrate that more prior snow information can 

improve the performance of the RF model. According to Reviewer #4's suggestion, we 

omitted this and will present it in a future publication. 

 

43. Page 18, Line 4-6, This part is discussion. 

Response 43: We moved it to Section 4.1. 

 

44. Page 18, Line 8, where is this method? 

Response 44: The method is the pixel-based algorithm. We omitted this part. 

 

45. Page 18, Line 11, past or present 

Response 45: We revised the manuscript carefully and thoroughly to make the tense 

correct. 

 

46. Page 18, Line 15, than the former… 

Response 46: word ‘former’ added. 

 

47. Page 18, Line 16-20, is this really a conclusion? Page 18, Line 21, This is not a 

conclusion, but summary. What is the conclusion here? I do not find… 

Response 47: We rewrote the conclusion (Page 11, Line 14-28, Page 12, Line 1-16, in 

the revised manuscript).  

“The present study analyzed the application of the RF model to snow depth estimation at 

temporal and spatial scales. Temporally and spatially independent datasets were applied 



to verify the fitted RF algorithms. The results suggested that the accuracy of fitted RF 

algorithms was greatly influenced by auxiliary data, especially the geographic location. 

However, the inclusion of strongly correlated predictor variables (elevation and land cover 

fraction) did not further improve the RF estimates. Therefore, in some cases, a few 

representative predictor variables should be selected. Due to naive extrapolation outside 

the training range, the transferability of a fitted RF algorithm at the temporal scale was 

better that that in spatial terms, e.g., with unbiased RMSEs of 4.5 cm and 7.2 cm for the 

RF2 algorithm, respectively. 

In this study, the fitted RF2 algorithm was used to retrieve a consistent 32-year daily 

snow depth dataset from 1987 to 2018. Then, an evaluation was carried out using 

independent reference data from the validation stations during the period 1987-2018. The 

overall unbiased RMSE and bias were 7.1 cm and -0.05 cm, respectively, outperforming 

the WESTDC product (8.4 cm and -1.20 cm). In QTP, the unbiased RMSE and bias of RF 

estimates for shallow (≤ 20 cm) snow cover were 3.4 cm and 0.59 cm, respectively, much 

lower than WESTDC’s 5.6 cm and 4.02 cm. In NE and northern XJ, RF estimates were 

superior to the WESTDC product but still presented an underestimation for deep snow (> 

20 cm), with biases of -10.4 cm and -8.9 cm, respectively. 

Three long-term (1987-2018) datasets, including ground truth observations, RF 

estimates and WESTDC product, were applied to analyze the trends of snow depth 

variation in China. The results suggested that there existed different trends among the 

three datasets. The overall trend of snow depth in China presented a significant increasing 

based on the ground truth observations, with a correlation coefficient of 0.57. Moreover, 

the trend in NE was highly consistent with the overall trend in China, with a correlation 

coefficient of 0.64. Neither the WESTDC nor the RF product presented significant trends 

except in QTP. The WESTDC product showed a significant decreasing trend in QTP, with 

a correlation coefficient of -0.55, whereas there were no significant trends for ground truth 

observations and the RF product. 

As discussed in Section 4, our reconstructed snow depth estimates are still challenged by 

several problems, e.g., underestimation for deep snow. Additional prior knowledge of snow 

cover, such as snow cover fraction, snow density, and snow grain size, is necessary to 

improve the RF model. Combining the snow forward model with the ML method will be the 

focus of future work. Furthermore, the mass balance approaches, e.g., the Parallel Energy 

Balance model, will be used to improve the snow depth retrievals in high-altitude areas. In 

addition, although our results indicate that the RF method is a promising potential tool for 

snow depth estimation, there are a few pitfalls such as the risk of naive extrapolation and 

poor transferability in spatial terms limiting its application in spatio-temporal dynamics. It is 

in addressing these shortcomings that the techniques of deep learning promise 

breakthroughs. We are attempting to operate the Deep Neural Networks (DNN) model to 

overcome the limitations of traditional ML approaches." 



Response to Reviewer Comments by Nir Krakauer on “Real-Time Snow Depth 

Estimation and Historical Data Reconstruction Over China Based on a Random 

Forest Machine Learning Approach” by Jianwei Yang et al. 

 

Thank you for your letter and the comments concerning our manuscript. Those comments have been 

very helpful for revising and improving our paper as well as providing guidance for our research. 

We have studied the comments carefully and have made corrections, which we hope meet with 

approval. We provide responses in blue below. 

 

Review #4  

 

General Comments: The basic theme of this manuscript, the application of random forest 

(RF) to provide an empirical transfer model from remotely sensed radiances to snow depth, 

has merit, given that physically based transfer models are subject to limitations. However, 

some of the modeling choices appear questionable and should be better justified or 

simplified. The RF modeling described in Section 2.3 has the following main components: 

(1) Using SSMI data from 1987-2004 for training and from 2005-2006 for validation, in 

order to evaluate the number of training samples required for good accuracy. (2) Using 

AMSR2 data from 2014-2015 for training and from 2012-2013 for validation. Snow depth 

estimated by this model is then used to generate an approximate spatially varying 

relationship between 2 SSMI channel radiances and snow depth. The resulting simple 

SSMI-based formula is used to reconstruct estimated snow depth for 1987-2018, which is 

validated for 2017-2018. 

 

Specific comments: 

 

1. Approach (2) appears unnecessarily complicated. If the goal is to establish a product 

for 1987-2018, where only SSMI inputs are available for the entire period, it is more logical 

to train an RF model directly with SSMI inputs (as done in (1) – not with AMSR2 inputs) 

fitted to station data (not reconstructed data). If the authors want to retain their more 

complicated approach, they should compare it to the simpler one to demonstrate that it 

actually has superior accuracy. 

Response 1: We agree with the reviewer’s opinion, and these suggestions are very 

constructive. Other reviewers gave us similar comments. Thus, we directly selected SSM/I 

and SSMIS data as satellite observations in the revised manuscript.   

The procedure described in the original manuscript was complicated. Based on the 

correlations between the predictor variables and the variable importance metrics (Fig. 1), 

we designed four schemes of predictor variables to train the RF model in the revised 

manuscript. The scheme one was the simplest and its predictor variables included satellite 

observations at 19 GHz and 37 GHz only (Table 1). The scheme four was the most 

complicated. We first demonstrated whether certain predictor variables are necessary and 

whether their inclusion affects the RF model.  



   
Figure 1. Correlations between the predictor variables (left) and the ranking of variable 

importance (right). The importance of variables, referred to as Mean Decrease Accuracy 

(MDA) in RF model, is obtained by averaging the difference in out-of-bag error estimation 

before and after the permutation over all trees. The larger the MDA, the greater the 

importance of the variable is. 

Table 1. A detailed description of the input predictor variables based on four selection 

rules of training sample. 

Name Predictor Variables Target Note 

RF1 TB19V, TB37V 

snow 

depth 

land cover 

types: 

grassland,  

cropland,  

bareland,  

shurbland,  

forest 

RF2 TB19V, TB37V, Latitude, Longitude 

RF3 TB19V, TB37V, Latitude, Longitude, Elevation 

RF4 TB19V, TB37V, Latitude, Longitude, Elevation, Land cover fraction 

 

Then, we conducted three tests to verify the fitted RF algorithms (Table 1). The same 

training samples (same algorithms) were used for the three tests but with different 

validation datasets. In Test1, the validation data are from out-of-bag (OOB) samples. 

Generally, in the RF model, approximately two-thirds of the samples (in-bag samples) are 

used to train the trees and the remaining one-third (OOB samples) are used to estimate 

how well the fitted RF algorithm performs. This preliminary assessment offers a simple way 

to adjust the parameters of the RF model. However, we should use the OOB errors with 

caution because its samples are not independent at temporal and spatial scales. In Test2, 

we applied temporally independent reference data during the period 2015-2018 to assess 

the accuracy of temporal prediction of fitted algorithms. In Test3, a spatially independent 

dataset from validation stations during the period 2015-2018 was used to assess the 

accuracy of spatio-temporal prediction. 

Fig. 2 indicates that the accuracy of RF model is greatly influenced by geographic location, 

elevation, and land cover fractions. However, the redundant predictor variables (if highly 

correlated) slightly affect the RF model. The fitted RF algorithms perform better at the 

temporal scale than that at the spatial scale, with unbiased RMSEs of ~4.4 cm and ~7.3 

cm, respectively. 



Table 2. Summary of three tests to the fitted RF algorithms in Table 1. 

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

training 

training stations 2012-2014 training stations 2012-2014 training stations 2012-2014 

samples 28602 samples 28602 samples 28602 

validation 

training stations 2012-2014 training stations 2015-2018 validation stations 2015-2018 

samples 14301 samples 34684 samples 25879 

 

 

Figure 2. The color-density scatterplots of the estimated snow depth with four fitted RF 

algorithms and the ground truth snow depth. The four trained RF algorithms (RF1, RF2, 

RF3, RF4) were evaluated with three validation datasets (Test1, Test2, Test3). 

Finally, we directly used the fitted RF2 algorithm to retrieve a consistent 32-year daily snow 

depth dataset. It was evaluated against the independent ground truth measurements from 

the validation stations (Fig. 6) during the period 1987-2018. The mean unbiased RMSE 

and bias were 7.1 cm and -0.05 cm, respectively, outperforming the former snow depth 

RF1-Test1 RF1-Test2 RF1-Test3 

RF2-Test1 RF2-Test2 RF2-Test3 

RF3-Test1 RF3-Test2 RF3-Test3 

RF4-Test1 RF4-Test2 RF4-Test3 



dataset (8.4 cm and -1.20 cm) from the Environmental and Ecological Science Data Center 

for West China (WESTDC).  

 

Figure 3. Scatterplots of the estimated snow depth and the ground truth observation for 

(a) RF and (b) WESTDC products. 

To determine the interannual variability in the uncertainty, the time series of assessment 

indexes, including the unbiased RMSE, bias and correlation coefficient, are shown in Fig. 

4. The results show that the RF estimates outperform the WESTDC product with respect 

to unbiased RMSE and correlation coefficient from season to season. 

 

Figure 4. Time series of (a) unbiased RMSE (unRMSE), (b) correlation coefficient 

(corr.coe) and (c) bias for RF and WESTDC products. The colorful dashed lines 

represent mean values of assessment indexes. 

(c) 

(a) 

(b) 

(a) (b) 



The assessment of snow depth product was also performed in three snow cover areas in 

China for shallow (≤ 20 cm) and deep snow cover (> 20 cm). 

 
Figure 5. The validation of RF and WESTDC snow depth products in three stable snow 

cover areas in China with respect to (a) the unbiased RMSE, (b) bias and correlation 

coefficient. 

Table 3. Comparison between RF estimates and WESTDC product in three stable snow 

cover areas for deep (> 20 cm) and shallow (≤ 20 cm) snow cover. 

RF product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.30  0.06  0.49  0.17  0.48  0.31  

bias (cm) 0.59  -34.12  1.79  -10.38  2.52  -8.85  

unRMSE (cm) 3.43  20.70  5.36  7.00  6.12  9.62  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

WESTDC product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.16  -0.18  0.37  0.03  0.34  0.16  

bias (cm) 4.02  -33.78  0.47  -11.75  -0.39  -13.22  

unRMSE (cm) 5.60  21.62  6.47  9.10  7.35  11.30  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

 

2. There is another way to tackle the problem of different microwave satellite sensors being 

available over different portions of the 1987-2018 period, which the authors may also want 

to consider. This would involve combining estimates from multiple fitted RF models, one 

for each satellite sensor available for part of the time period, which would potentially more 

fully use the partly-independent information from multiple satellite sources, which may each 

have different wavelength ranges, overpass times, and other sensor characteristics. 

Response 2: These suggestions are very constructive. However, as a change from the 

original manuscript, we resorted to using only SSM/I and SSMIS data as satellite 

observations in this study. As shown in Table 4 below, the characteristics of these sensors 

are sufficiently similar to assume that an algorithm defined for one sensor can be applicable 

(a) (b) 



to the next. We have rewritten the introduction of satellite data in Section 2.1: “The SSM/I 

and SSMIS sensors are suitable for producing a long-term consistent snow depth dataset 

due to their similar configurations and intersensor calibrations (Armstrong et al., 1994)” 

(Page 3, Line 21-23, in the revised manuscript). 

Table 4. Summary of the main passive microwave remote sensing sensors. 

Sensor SSM/I   SSMIS 

Satellite DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17 

On Orbit time 1987-1991 1991-1995 1995-2008 2006-present 

Passing Time 
A: 06:20                   

D: 18:20 

A: 17:17                    

D: 05:17 

A: 17:58             

D: 05:58 

A: 17:31           

D: 05:31 

Frequency & 

footprint (GHz) : 

(km × km) 

19.35: 45×68  

23.235: 40×60  

37: 24×36    

85.5: 11×16 

19.35: 42×70  

23.235: 42×70  

37: 28×44    

91.655: 13×15 

 

3. Another issue is the training/validation station data split. As one of the other reviewers 

points out, in order to better estimate the error at ungauged sites, it makes more sense to 

not use some stations at all for training and retain them for validation, instead of validating 

with data for the same stations but different years. 

Response 3: Thank you for your comments. One of the major issues of this study is that 

the validation data are not temporally and spatially independent. Thus, available stations 

in China were randomly divided into two roughly equal-sized parts by Matlab software (Fig. 

6). The snow depth observations from training stations (342 sites) together with satellite TB 

and other auxiliary data can be used to train the RF model. The measurements from 

validation stations (341 sites), as spatially independent data, can be applied to validate the 

fitted RF algorithm and the reconstructed snow depth product. Fig. 7 shows the histograms 

of snow depth observations from training and validation stations during the period 2012-

2018. Ninety percent of the samples range from 1 cm to 25 cm. The maximum values of 

the snow depth extend to approximately 50 cm. However, the number of such cases is 

small and is therefore not evident in Fig. 7. 



 

Figure 6. Spatial distribution of the weather stations and land cover types in the study 

area. There are three stable snow cover areas in China: Northeast China (NE), northern 

Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP). 

 

Figure 7. Histograms of snow depth observations from (a) training and (b) validation 

stations. The average values (black dashed lines) are equal to 10.5 cm and 9.8 cm, 

respectively. 

 

4. There is no comparison presented between the RF method and physically based 

transfer models or existing satellite or reanalysis snow products over China. This work 

would be stronger if the authors can conduct such a comparison and show whether RF in 

fact leads to improvements in snow estimation beyond existing approaches. 

Response 4: Thank you for your comments. The linear-fitting method was developed 

based on SSM/I observations and station snow depth data by Che et al (2008). The daily 

snow depth data were obtained from the Environmental and Ecological Science Data 

Center for West China (http://westdc.westgis.ac.cn) (hereafter, WESTDC product). Yang 

et al. (2019) demonstrated that the WESTDC product outperforms four other snow depth 

datasets in China. Thus, in this study, we directly compared the RF estimates with the 

WESTDC product. 

(a) (b) 



We also show that an overall improvement of 15.4 % in China is achieved compared to the 

WESTDC product (Fig. 3). In QTP, the unbiased RMSE and bias of RF estimates for 

shallow (≤ 20 cm) snow cover were 3.4 cm and 0.59 cm, respectively, much lower than 

WESTDC’s 5.6 cm and 4.02 cm (Table 3). Please refer to the response to “Specific 

comment 1” above. 

 

[1] Yang, J., Jiang, L., Wu, S., Wang, G., Wang, J., and Liu, X.: Development of a Snow 

Depth Estimation Algorithm over China for the FY-3D/MWRI, Remote Sensing, 11, 977, 

10.3390/rs11080977, 2019. 

 

5. Section 4.5 discusses the performance of an RF model under an ensemble of simulated 

weather conditions and microwave radiances. It is not clear what this section adds to the 

stronger results of the earlier section, which are based on real satellite and snow data. The 

authors should consider omitting it, and returning to these considerations in a future 

publication. 

Response 5: We agree and deleted it.  

 

6. Also, the authors should discuss the difference between snow depth and snow water 

equivalent (SWE). To my understanding, SWE is more relevant for hydrologic applications, 

and may be more directly measured by the microwave retrievals. 

Response 6: We agree with the reviewer’s opinion. Snow water equivalent (SWE), 

describing the amount of water stored in a snowpack, is a key variable for hydrological 

applications. Generally, a reasonable ‘global’ snow density (240 kg/m3) is used to transfer 

snow depth to SWE (Takala et al., 2011). 

In our study, we used the RF algorithm to retrieve snow depth rather than SWE because 

that station observations include only snow depth data. 

Generally, snow density presents a variation in space and time. Thus, a relation to SWE 

through a fixed snow density is unreasonable. In the future, the temporospatial distribution 

of snow density in China will be mapped based on the reanalysis data from ERA5-land to 

improve SWE estimation. We are now assessing the ERA5 data using ground truth 

observations. 

 

Takala, M., Luojus, K., Pulliainen, J., Lemmetyinen, J., Juha-Petri, K., Koskinen, J., and 

Bojkov, B., 2011. Estimating northern hemisphere snow water equivalent for climate 

research through assimilation of space-borne radiometer data and ground-based 

measurements. Remote Sensing of Environment. 115, 3517-3529. 

 

7. On a related note, the authors note that snow measurements in high mountain areas 

are sparse, so that remote sensing based snow estimates cannot be validated. This could 

be partly overcome using a mass balance approach based on, for example, spring and 

summer streamflow measurements, which would give SWE (and hence, making 

assumptions about density, also snow depth) on a watershed scale (which in some cases 

might even be comparable with the satellite spatial resolution scale). See, e.g., Dahri et al. 



(2018) "Adjustment of measurement errors to reconcile precipitation distribution in the 

high-altitude Indus basin" and related work. 

Response 7: We appreciate your constructive suggestions. We are considering a snow 

depletion curve, e.g., Parallel Energy Balance Model, to improve the snow depth retrievals 

in high-altitude areas. We read the reference carefully and cited it in the revised manuscript. 

“Snow depth estimation in the mountains remains a challenge (Lettenmaier et al., 2015; 

Dozier et al., 2016; Dahri et al., 2018)” (Page 10, Line 25-26). 



We would like to thank the four referees and the editor for dedicating their time to our 

manuscript and providing us with positive and constructive comments. We have studied 

the comments carefully and have made detailed corrections: 

Given the extensive changes in the revised manuscript, here we make a summary of the 

main revisions: 

 • Independent validation dataset:  

One of major issues of the original study was that the validation data were not temporally 

and spatially independent from the training data. Thus, available stations were randomly 

divided into two roughly equally sized parts: training stations and validation stations. The 

snow depth observations from training stations (342 sites) together with satellite TB and 

other auxiliary data can be used to train the RF model. The measurements from 

validation stations (341 sites), as spatially independent data, can be applied to validate 

the fitted RF algorithm and reconstructed snow depth product.  

• Optimal input predictor variables for RF model: 

  The procedure described in the original manuscript was complicated due to so many 

predictor variables. Based on the correlations between the predictor variables and the 

variable importance metrics, we designed four schemes of predictor variables to train 

the RF model in the revised manuscript. The scheme one was the simplest and its 

predictor variables included satellite observations at 19 GHz and 37 GHz only. The 

scheme four was the most complicated. The predictor variables were satellites 

observations, latitude, longitude, elevation and land cover fraction. These four 

combinations of predictor variables, together with snow depth measurements, trained 

the four RF algorithms. We validated these four fitted RF algorithms to determine 

whether certain predictor variables are necessary and whether their inclusion affects the 

RF model. 

• Validation of the fitted RF algorithms: 

The fitted RF algorithm was validated using temporally independent data in the original 

manuscript. To assess the feasibility of RF model in estimating snow depth, we 

conducted three tests to verify the fitted RF algorithms in the revised manuscript. The 

same training samples (same algorithms) were used for three tests but with different 

validation datasets. In Test1, the validation data were from out-of-bag (OOB) samples. 

Generally, approximately two thirds of the samples (in-bag samples) were used to train 

the trees and the remaining one-third (OOB samples) were used to estimate how well 

the fitted RF algorithm performed. This preliminary assessment generally provides a 

simple way to adjust the parameters of the RF model. In Test2, we applied temporally 

independent reference data during the period 2015-2018 to assess the accuracy of the 

temporal prediction of fitted algorithms. In Test 3, a spatially independent dataset from 

validation stations during the period 2015-2018 was used to assess the accuracy of 

spatio-temporal prediction. 

According to the validation of the fitted RF algorithms, we found many redundant inputs 

due to highly correlated predictor variables. Thus, we used a straightforward fitted RF 

algorithm (trained with TB and geolocation) to retrieve a consistent 32-year daily snow 

depth dataset from 1987 to 2018. 

• Validation of the reconstructed snow depth product: 



This product was evaluated against the independent station observations during the 

period 1987-2018. We also compared the performances of snow depth product in three 

snow cover areas over China. 

• Trends analysis of snow depth: 

Three long-term (1987-2018) datasets, including ground truth observations, RF 

estimates and former snow depth product in China, were applied to analyze the trends 

of snow depth variation in China using the Mann-Kendall test and slope method. 

• Available long-term snow depth dataset: 

The reconstructed dataset from 1987 to 2018 is now available and we will upload the 

data later. 

• Rewritten, simplified and better structured: 

We revised the manuscript carefully and thoroughly to clarify the structure and content 

of the paper. We rewrote the results and discussion sections and split them. Additionally, 

a thorough revision of the manuscript was completed by a native speaker.  
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Abstract. We studied whether the random forest (RF) machine learning (ML) model could be used to retrieve snow depth. Four 13 

combinations composed of critical predictor variables were used to train the RF model. Then, we utilized three validation 14 

datasets from out-of-bag (OOB) samples, a temporal subset and a spatiotemporal subset to verify the fitted RF algorithms. 15 

The results indicated the following: (1) the accuracy of RF model is greatly influenced by geographic location, elevation, and 16 

land cover fractions; (2) however, the redundant predictor variables (if highly correlated) slightly affect the RF model; (3) the 17 

fitted RF algorithms perform better in temporal scale than in spatial scale, with unbiased RMSEs of ~4.4 cm and ~7.3 cm, 18 

respectively. Finally, we used the fitted RF2 algorithm to retrieve a consistent 32-year daily snow depth dataset from 1987 to 19 

2018. This product was evaluated against the independent station observations during the period 1987-2018. The mean unbiased 20 

RMSE and bias were 7.1 cm and -0.05 cm, respectively, outperforming the former snow depth dataset (8.4 cm and -1.20 cm) 21 

from the Environmental and Ecological Science Data Center for West China (WESTDC). Although the RF product was superior 22 

to the WESTDC dataset, it still underestimated deep snow cover (> 20 cm), with biases of -10.4 cm, -8.9 cm and -34.1 cm in 23 

Northeast China (NE), northern Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP), respectively. Additionally, the long-term 24 

snow depth datasets (station observations, RF estimates and WESTDC product) were analyzed in terms of temporal and spatial 25 

variations over China. On a temporal scale, the ground truth snow depth presented a significant increasing trend from 1987 to 26 

2018, especially in NE. However, the RF and WESTDC products displayed no significant changing trends except in QTP. The 27 

WESTDC product presented a significant decreasing trend in QTP, with a correlation coefficient of -0.55, whereas there were 28 

no significant trends for ground truth observations and the RF product. For the spatial characteristics, similar trend patterns were 29 

observed for RF and WESTDC products over China. These characteristics presented significant decreasing trends in most areas 30 

and a significant increasing trend in central NE. 31 
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1 Introduction 1 

Seasonal snow covers a considerable portion of the land surface in the Northern Hemisphere during winter and has a significant 2 

effect on the Earth’s radiation balance and surface-atmosphere interaction due to its high albedo and low thermal conductivity 3 

(Fernandes et al., 2009; Derksen et al., 2012; Kevin et al., 2017; Dorji et al., 2018; Bormann et al., 2018). Snow depth is a crucial 4 

parameter for climate studies, hydrological applications and weather forecasts (Foster et al., 2011; Takala et al., 2017; Tedesco 5 

et al., 2016; Safavi et al., 2017). For these applications, long time series are needed to conduct meaningful statistics on trends 6 

and variability. Fortunately, passive microwave (PMW) signals can penetrate snow cover and provide snow depth estimates 7 

through volume scattering of snow particles in dry snow conditions. PMW remote sensing also has the advantage of sensing 8 

without depending on solar illumination and weather conditions (Chang et al., 1987; Foster et al., 2011). In addition, there exists 9 

a long historical record of spaceborne PMW data dating back to 1978, allowing us to study seasonal snow climatological changes 10 

(Takala et al., 2011; Santi et al., 2012). These advantages make snow depth estimation from satellite PMW remote sensing an 11 

attractive option. 12 

Diverse methods have been proposed to retrieve snow depth from PMW observations. The most widely used inversion 13 

algorithms were based on empirical relationships between satellite brightness temperature (TB) gradient and snow depth (Chang 14 

et al., 1987; Foster et al., 1997; Derksen et al., 2005; Che et al., 2008; Kelly et al., 2003; Kelly et al., 2009; Jiang et al., 2014). 15 

However, these algorithms are not always reliable in all regions due to the fixed empirical constants (Derksen et al., 2010; 16 

Davenport et al., 2012; Che et al., 2016; Yang et al., 2019). Subsequently, more advanced algorithms that use theoretical or 17 

semi-empirical radiative transfer models were developed (Jiang et al., 2007; Takala et al., 2011; Picard et al., 2012; 18 

Lemmetyinen et al., 2015; Metsämäki et al., 2015; Tedesco et al., 2016; Pan et al., 2017; Saberi et al., 2017); however, these 19 

complicated algorithms are computationally expensive and require complex ancillary data to provide accurate predictions. These 20 

factors restrict the applications of these algorithms on a global scale. Improving the performance of PMW retrieval algorithms 21 

through data assimilation has also been investigated (Durand et al., 2006; Tedesco et al., 2010; Che et al., 2014; Huang et al., 22 

2017). The widely used and operational assimilation system combines synoptic weather station data with satellite PMW 23 

radiometer measurements through the snow forward model (Helsinki University of Technology snow emission model, HUT), 24 

and it provides long-term snow water equivalent data from 1979 to the present in the Northern Hemisphere (> 35º N) (Pulliainen 25 

et al., 1999; Pulliainen., 2006; Takala et al., 2011). However, the coverage of this product does not include the Qinghai-Tibetan 26 

Plateau (QTP), which is one of three stable snow cover areas in China. 27 

Machine learning (ML) has attained outstanding results in the regression estimation of land surface parameters from 28 

remotely sensed observations at local and global scales over the past decade (Reichstein et al., 2019). The random forest (RF) 29 

is an ensemble method whereby multiple trees are grown from random subsets of predictors, producing a weighted ensemble of 30 
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trees (Breiman, 2001). RF is also robust against overfitting in the presence of large datasets and increases predictive accuracies 1 

over single decision trees (Biau and Scornet, 2016; Tyralis et sl., 2019b). Over the last two decades, RF has been one of the 2 

most successful ML algorithms for practical applications due to its proven accuracy, stability, speed of processing and ease of 3 

use (Rodriguez-Galiano et al., 2012; Belgiu et al., 2016; Maxwell et al., 2018; Bair et al., 2018; Qu et al., 2019; Reichstein et 4 

al., 2019; Tyralis et sl., 2019a). Although the RF model can present good results in many research areas, studies on the spatio-5 

temporal prediction of snow depth are few and the potential utility of RF in such studies is unknown.  6 

The primary objectives of this study are to assess the feasibility of the RF model in estimating snow depth, to determine 7 

whether the inclusion of auxiliary information (geolocation, elevation and land cover fraction) contributes to the improvement 8 

of RF, and eventually to develop a time series (1987 to 2018) of snow depth data in China and analyze the trends in annual mean 9 

snow depth. To complete the feasibility study of the RF model, we designed four RF algorithms trained with different 10 

combinations of predictor variables and validated them using temporally and spatially independent reference data. To our 11 

knowledge, this type of assessment of RF algorithm performance has not been made to date over China. The data and 12 

methodology are described in Section 2. Section 3 presents the results regarding the feasibility study of the RF model, the 13 

validation of the snow depth product reconstructed with the RF algorithm and the trend analysis of snow depth. The results are 14 

discussed in Section 4, and conclusions are given in Section 5. 15 

2 Data and Methodology 16 

2.1 Data 17 

(1) Satellite passive microwave measurements 18 

The series of the Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) 19 

instruments has provided continuous TB measurements at 19.35, 23.235, 37, 85.5 and 91.655 GHz since July 1987. The data are 20 

available from the National Snow and Ice Center (https://daacdata.apps.nsidc.org/pub/DATASETS). The SSM/I and SSMIS 21 

sensors are suitable for producing a long-term consistent snow depth dataset due to their similar configurations and intersensor 22 

calibrations (Armstrong et al., 1994). To avoid the influence of wet snow, only ascending (F08) and descending (F11, F13 and 23 

F17) overpass data were used (Table 1). In this study, the difference between 19.35 (36.5) GHz and 18.7 (37) GHz was ignored 24 

(hereafter referred as 19 GHz and 37 GHz, respectively). 25 

(2) In situ measurements 26 

The weather station daily data in China from 1987 to 2018 were provided by the National Meteorological Information Centre, 27 

China Meteorology Administration (CMA, http://data.cma.cn/en). The geographical locations of the meteorological stations and 28 

the three stable snow cover areas are shown in Fig. 1. The recorded variables include the site name, observation time, geolocation 29 
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(latitude and longitude), altitude (m), near-surface soil temperature (measured at a 5-cm depth, °C), and snow depth (cm). The 1 

sites are not distributed homogeneously, and few are located in inaccessible regions with extreme climates and complex terrain 2 

conditions, e.g., the western part of QTP (Fig. 1). 3 

Quality control was conducted prior to using the data for developing and validating the retrieval algorithm. The first step 4 

was to select the records where the near-surface soil temperature was lower than 0 °C. The second step was to remove the sites 5 

if the areal fraction of the open water exceeded 30% within a satellite pixel. Finally, the 683 stations were randomly divided 6 

into two roughly equal-sized parts (Fig. 1). The snow depth observations from training stations (342 sites) together with satellite 7 

TB and other auxiliary data can be used to train the RF model. The measurements from validation stations (341 sites), as 8 

independent data spatially, can be applied to validate the fitted RF algorithm. Fig. 2 shows the histograms of snow depth 9 

observations from training and validation stations during the period 2012-2018. Ninety percent of the samples range from 1 cm 10 

to 25 cm. The maximum values of the snow depth extend to approximately 50 cm. However, the number of such cases is small 11 

and is therefore not evident in Fig. 2.  12 

 (3) Land cover fraction 13 

A 1-km land use/land cover (LULC) map derived from the 30-m Thematic Mapper (TM) imagery classification was provided 14 

by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). The map 15 

was recalculated as the areal percentages of each land cover type in the 25-km grid cells. In this study, the fractions of grassland, 16 

bareland, cropland, forest, and shrubland were calculated as predictor variables of the RF model. To avoid the influence of water 17 

bodies and construction, the record was used only if the total fraction was greater than 60%.  18 

2.2 Methodology 19 

2.2.1 Random forest 20 

RF is an ensemble ML algorithm proposed by Breiman in 2001. It combines several randomized decision trees and aggregates 21 

their predictions by averaging in regression (Biau and Scornet, 2016). Generally, approximately two-thirds of the samples (in-22 

bag samples) are used to train the trees and the remaining one-third (out-of-bag samples, OOB) are used to estimate how well 23 

the fitted RF algorithm performs. Few user-defined parameters are generally required to optimize the algorithm, such as the 24 

number of trees in the ensemble (ntree) and the number of random variables at each node (mtry). The ntree is set equal to 1000 25 

in the present study since the gain in the predictive performance of the algorithm would be small with the addition of more trees 26 

(Probst and Boulesteix, 2018). The default value of mtry is determined by the number of input prediction variables, usually 1/3 27 

for regression tasks (Biau and Scornet, 2016). The RF regression is insensitive to the quality of training samples and to overfitting 28 

due to the large number of decision trees produced by randomly selecting a subset of training samples and a subset of variables 29 

for splitting at each tree node (Maxwell et al., 2018). In addition, RF provides an assessment of the relative importance of 30 
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predictor variables, which have proven to be useful for evaluating the relative contribution of input variables (Tyralis et al., 1 

2019b). Furthermore, the RF model can rapidly trained and is easy to use. In this paper, a randomForest R package (Version 2 

4.6-14) is used for regression (Liaw and Wiener 2002; Breiman et al. 2018).  3 

2.2.2 Feasibility study of the RF model 4 

(1) Selection of predictor variables 5 

The possible predictor variables used include geographic location (longitude, latitude), elevation, land cover fractions (grassland, 6 

cropland, bareland, shrubland and forest) and multi-channel brightness temperatures. All available channels on the SSM/I and 7 

SSMIS are listed in Table 1. The 23 GHz channel is sensitive to water vapor and not surface scattering, which introduces 8 

uncertainty to the estimation process (Ji et al., 2017). The 85 (91) GHz channel is seriously influenced by the atmosphere (Kelly 9 

et al., 2009; Xue et al., 2017). Typically, the lower frequency (19 GHz) is used to provide a background TB against which the 10 

higher frequency (37 GHz) scattering-sensitive channels are used to retrieve snow depth. The mixed-pixel problem is the 11 

dominant limitation on snow depth estimation accuracy (Derksen et al., 2005; Jiang et al., 2014; Roy et al., 2014; Cai et al., 12 

2017; Li et al., 2017). The satellite pixel usually covers several land cover types due to a coarse footprint. Thus, the land cover 13 

fractions were included as possible predictor variables. Previous studies have shown that geographic location and elevation 14 

indeed contribute to improving ML model performance (Bair et al., 2018; Qu et al., 2019). 15 

To determine a suitable selection rule for training samples, we selected four combinations of predictor variables from training 16 

stations (Fig. 1) during the period 2012-2014 to train the RF algorithms. Table 2 presents a detailed description of the four 17 

selection rules of training samples. The correlations between the predictor variables and the variable importance metrics are 18 

shown in Fig. 3. The TB measurements at horizontal polarization (H-pol) are highly correlated (correlations higher than 0.9) 19 

with observations at vertical polarization (V-pol). Moreover, according to their ranking of the predictor variables, the channels 20 

of V-pol are more relevant to the independent variable (snow depth) than are the H-pol channels. Therefore, the RF1 algorithm 21 

was trained with only two channels' TB measurements at V-pol. The ranking of variables' importance in Fig. 3 indicates that the 22 

geographic location is more important than elevation to snow depth. Thus, the geographic location and elevation were included 23 

in the predictor variables of RF2 and RF3, respectively. Fig. 3 also shows that the correlations between TB and land cover 24 

fraction are relatively low. Thus, we will validate whether the inclusion of land cover fraction would increase the performance 25 

of the fitted RF4 algorithm.  26 

(2) Training sample size 27 

One of the advantages of the RF model is that it can effectively handle small sample sizes (Biau and Scornet et al., 2016). A test 28 

was conducted to demonstrate the insensitivity of the RF model to the training sample size. The input predictor variables include 29 

geographic location and TB (Table 2, RF2). The flowchart of the test process is shown in Fig. 4. To ensure a sufficient number 30 
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of samples, 80,000 records from 1987 to 2004 were used to test the required size of the training samples and a two-year stand-1 

alone dataset from (2005-2006) was applied to assess the performance. During this process, the number of samples selected 2 

randomly was from 5000 to 80,000 (step, 5000). We consider three evaluating indicators (the unbiased root mean square error 3 

(RMSE), bias and correlation coefficient) to illustrate the sensitivity of the RF model to the training sample size. 4 

(3) Validation datasets of the fitted RF algorithms 5 

We conducted three tests to verify the fitted RF algorithms (Table 3). The same training samples (same algorithms) were used 6 

for the three tests but with different validation datasets. In Test1, the validation data were from OOB samples. This preliminary 7 

assessment generally offers a simple way to adjust the parameters of the RF model. However, the OOB errors should be used 8 

with caution because its samples are not independent at temporal and spatial scales. In Test2, we applied independent reference 9 

data during the period 2015-2018 to assess the accuracy of the temporal prediction of fitted algorithms. Although this dataset is 10 

composed of observations from training stations in Fig. 1, it is temporally independent of the training samples (2012-2014). 11 

Generally, the RF model cannot extrapolate outside the training range (Hengl et al., 2018). Thus, in Test3, a spatially independent 12 

dataset from validation stations during the period 2015-2018 was used to assess the accuracy of spatio-temporal prediction. The 13 

unbiased RMSE, bias and correlation coefficient are used for the assessment of the predictive performance of the fitted 14 

algorithms. 15 

2.2.3 Validation of reconstructed snow depth product and trend analysis 16 

The reconstructed long-term snow depth dataset was evaluated by the stand-alone ground truth measurements over the period 17 

1987-2018 from the validation stations (Fig. 1). The reconstructed product was also compared with the static linear-fitting 18 

algorithm developed by fitting 19 and 37 GHz with the snow depth measurements with a constant empirical coefficient over 19 

China (Che et al., 2008). The daily snow depth data were obtained from the Environmental and Ecological Science Data Center 20 

for West China (http://westdc.westgis.ac.cn) (hereafter, WESTDC product). Then, the spatiotemporal patterns of snow depth 21 

were analyzed in Northeast China (NE), northern Xinjiang (XJ), and the QTP. The slope method (regression) was employed to 22 

analyze the snow depth variation trend at the temporal scale (Huang et al., 2019). To show the spatial distribution of snow depth 23 

variation, the Mann-Kendall test (significance levels of α=0.05) was used to analyze the trends of changes in China (Mann., 24 

1945; Kendall et al., 1975; Milan, 2013). To ensure the presence of dry snow cover, the reconstruction periods are the main 25 

snow winter season (January, February, March, November, and December). 26 

3 Results 27 

3.1 Sensitivity to training sample size 28 

The sensitivity of the RF model toward the training sample size was evaluated to confirm the appropriate number of training 29 

samples. Fig. 5 displays the accuracy according to unbiased RMSE, bias, and correlation coefficient. These accuracy indexes 30 
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show slight fluctuations when the number of training sample increases from 5000 to 80,000. Fig. 5a shows that the unbiased 1 

RMSE ranges from 5.1 cm to 5.5 cm with increasing training samples. Fig. 5c shows that the correlation coefficient is as high 2 

as 0.79 and becomes stable when the samples are up to 30,000. According to the sensitivity analysis, the number of training 3 

samples has less influence on the prediction accuracy of the RF model. This test is very helpful for us to determine the number 4 

of training samples because of the limited number of training samples over the period 2012-2014. We selected all available 5 

samples (28,602) from training stations (Fig. 1) during the period 2012-2014 to train the RF models in Table 2. 6 

3.2 Validation of the fitted RF algorithms 7 

The fitted RF algorithms were evaluated by three validation datasets as shown in Table 3. The color-density scatterplots of the 8 

measured snow depth versus the retrieved snow depth are presented in Fig. 6. For all fitted RF algorithms (RF1, RF2, RF3 and 9 

RF4), notable differences in accuracy were revealed through the validation of three datasets (Table 4). Generally, the validation 10 

with OOB samples presented higher overall accuracy than the other two datasets. This result, however, does not demonstrate 11 

that the fitted RF algorithm performs well in snow depth estimation. The assessments in Test2 (temporal subset) and Test3 12 

(spatio-temporal subset) demonstrate that the temporal prediction of the RF model outperforms the spatio-temporal prediction, 13 

with unbiased RMSEs of 4.4-5.4 cm and 7.2-7.9 cm, respectively. 14 

   Comparing the validation results of RF1, RF2, RF3 and RF4, we find that the inclusion of auxiliary information indeed 15 

improved the performance of the fitted RF algorithms (Fig. 6). For Test1(OOB), the unbiased RMSE decreased from 6.4 cm to 16 

3.9 cm with increasing predictor variables of auxiliary information, while the correlation coefficient increased from 0.72 to 0.90 17 

(Table 4). For Test2(temporal subset), the unbiased RMSE decreased from 5.4 cm to 4.4 cm and the correlation coefficient 18 

increased from 0.77 to 0.85 (Table 4). There was a slight improvement in spatio-temporal prediction when including the auxiliary 19 

information, with the unbiased RMSE ranging from 7.9 cm to 7.3 cm (Table 4).  20 

3.3 Validation of the reconstructed snow depth product 21 

According to the results in Fig. 6 and Table 4, there are no notable differences in accuracy among the RF2, RF3, RF4 22 

algorithms. In this study, we selected the RF2 algorithm to reconstruct a long-term snow depth dataset (1987 to 2018). We used 23 

the independent in situ measurements over the period 1987-2018 from validation stations (Fig. 1) to evaluate this product 24 

(hereafter, RF product). Fig. 7 shows the scatter diagrams of estimated vs. measured values for RF and WESTDC products. The 25 

overall accuracy of the RF product is higher than that of the WESTDC estimates, with unbiased RMSEs of 7.1 cm and 8.5 cm, 26 

respectively (Fig. 7a and 7b). The correlation coefficient is 0.65, which is larger than the WESTDC’s coefficient of 0.49. Both 27 

products particularly underestimate snow depth when snowpack is thicker than 20 cm. The error bar shows that the WESTDC 28 

product tends to more seriously underestimate snow depth than do the RF estimates. 29 
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To determine the interannual variability in the uncertainty, the time series of assessment indexes, including the unbiased 1 

RMSE, bias and correlation coefficient, are shown in Fig. 8. The results show that the RF estimates outperform the WESTDC 2 

product with respect to unbiased RMSE and correlation coefficient from season to season. The bias also fluctuates from season 3 

to season, ranging from -8 cm to 3 cm (Fig. 8c). There is a slight overestimation during the period 1987-2000, whereas it presents 4 

a notable underestimation since 2006. 5 

The assessment of snow depth product was performed in three snow cover areas of China. As shown in Fig. 9a, the RF data 6 

are superior to the WESTDC estimates, with the unbiased RMSEs of 8.3 cm, 6.8 cm and 8.8 cm in QTP, NE and northern XJ 7 

for the RF product, respectively. Fig. 9b shows a notable underestimation and overestimation for the WESTDC product in 8 

northern XJ and the QTP, respectively. For the RF product, the bias is close to zero and fluctuates across a relatively narrow 9 

range in the three snow cover areas.  10 

Based on the results in Fig. 7, we selected 20 cm as a threshold to assess the performances in deep (> 20 cm) and shallow 11 

(≤20 cm) snow cover. The percentage of shallow snow conditions to total samples was approximately 90%. Table 5 displays 12 

the comparison between RF estimates and the WESTDC product in the three snow cover areas. The ‘Samples’ row in Table 5 13 

shows the number of samples and the corresponding percentage in each region. Both products present notable underestimation 14 

for deep snow cover, with the biases of -34.1 cm and -33.8 cm in QTP for the RF and WESTDC products, respectively. The 15 

biases are -10.4 cm and -8.9 cm for the RF product in NE and northern XJ, respectively, whereas the same biases are -11.8 cm 16 

and -13.2 cm for the WESTDC data. Moreover, the correlation is very poor in deep snow cover, even negative (-0.18) in QTP 17 

for the WESTDC product. For shallow snow cover, the RF product is superior to the WESTDC estimates in QTP, with unbiased 18 

RMSEs of 3.4 cm (RF) and 5.6 cm (WESTDC). Furthermore, the WESTDC product presents overestimation in QTP, with a 19 

bias of 4.0 cm that is much higher than the RF’s bias of 0.6 cm. The unbiased RMSEs of the RF product are 5.4 cm and 6.1 cm 20 

in NE and northern XJ for shallow snow cover, respectively, lower than the WESTDC’s values of 6.5 cm and 7.4 cm. However, 21 

the RF product tends to overestimate snow depth relative to WESTDC estimates, with higher biases of 1.8 cm and 2.5 cm than 22 

WESTDC’s 0.5 cm and -0.4 cm in NE and northern XJ, respectively. 23 

3.4 Spatial-temporal analysis of snow depth in three snow cover areas 24 

The trend analysis of snow depth was conducted based on ground truth observations, the RF dataset and the WESTDC product 25 

during the period 1987-2018. The time series of yearly mean snow depth in different regions over China is shown in Fig. 10. 26 

The red, green and blue solid lines represent yearly mean snow depth in northern XJ, NE and QTP, respectively. The black solid 27 

line displays the overall mean snow depth in China. Fig. 10a shows that the ground truth snow depth in China presents a 28 

significant increasing trend from 1987 to 2018, with a correlation coefficient of 0.57. The trend in NE is highly consistent with 29 

the overall trend over China, with a correlation coefficient of 0.64 (Fig. 10a). Although there are increasing trends in northern 30 
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XJ and QTP, the correlation coefficients are lower than 0.40, not significant (Fig. 10a). Fig. 10b and 10c show the time series 1 

of yearly mean snow depth from the RF and WESTDC products, respectively. Neither of these values present significant trends. 2 

In the QTP, the WESTDC product presents a significant decreasing trend, with a correlation coefficient of -0.55 (Fig. 10c). 3 

Snow depth in northern XJ is the greatest among three snow cover areas, and snow cover in the QTP is very shallow, 4 

approximately 5 cm (Fig. 10a and 10b). With respect to magnitude and change trends, the ground truth observations and RF 5 

estimates in this study are consistent. 6 

Fig. 11 shows the spatial patterns of snow depth variation based on the RF and WESTDC products. Only the area with 7 

continuous snow depth measurements from 1987 to 2018 is shown in Fig. 11. The two products show similar patterns in the 8 

most areas over China. There are notable trend differences between RF and WESTDC products in the northeast of QTP and 9 

western NE. The RF product presents an increasing trend in the northeast of QTP, whereas a significant decreasing trend is 10 

presented for the WESTDC product (Fig. 11a and 11b). In the western NE, there is a significant increasing for the RF product 11 

but no significant trend for WESTDC data. 12 

Based on the comparison of trends in Fig. 11 and available station observations in Fig. 1, we selected two specific areas 13 

(black and green grids in Fig. 11) to test the changing trend. Fig. 12 shows the trends of snow depth based on the station 14 

observations (black solid line), RF estimates (red solid line) and WESTDC product (blue solid line). The ground truth snow 15 

depth presents a significant increasing trend in the specific area of NE, with a high correlation coefficient of 0.75 (Fig. 12a). 16 

The RF product shows a significant increasing trend, which is consistent with the ground truth data (Fig. 11a and Fig. 12a). Fig. 17 

12b shows that WESTDC product displays a decreasing trend in the selected area of QTP, while station observations and RF 18 

estimates present no significant trends. 19 

4 Discussion 20 

4.1 Disadvantages of the RF model 21 

The RF technique is already used to generate temporal and spatial predictions. Generally, the RF model cannot extrapolate 22 

outside the training range (Hengl et al., 2018). Fig. 6 and Table 4 indicate that the spatial predictions of fitted RF algorithms are 23 

more biased than are the temporal predictions. Thus, the transferability of a fitted RF algorithm to other areas is in question. 24 

Several studies (Prasad, Iverson & Liaw, 2006; Hengl et al., 2017; Vaysse & Lagacherie, 2015; Nussbaum et al., 2018) have 25 

proven that RF is a promising technique for spatial prediction; however, these studies aim at spatial prediction of properties that 26 

are relatively static over the observational period, e.g., soil types and soil properties.  27 

What makes the Earth system interesting is that it is not static but dynamic (especially concerning snow parameters). 28 

Generally, snow depth increases at the beginning of winter and then decreases in spring due to melting. Moreover, snow cover 29 

has different spatial patterns in various regions, such as generally deep snow in high-latitude and high-elevation areas. In China, 30 
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there are five climatological snow classes following the classification by Sturm et al. (1995). Each snow class is defined by an 1 

ensemble of snow stratigraphic characteristics, including snow density, grain size, and crystal morphology, which influences 2 

the snowpack’s microwave signature (Sturm et al., 2010). These dynamic properties of snow will lead to many cases in which 3 

the same satellite TB corresponds to different snow depths, while the same snow depth is associated with various TB observations, 4 

rendering the fitted RF algorithm suboptimal. Using ML techniques in combination with snow forward models (physical 5 

modeling) has the potential to overcome many limitations that have hindered a more widespread adoption of ML approaches. 6 

4.2 Influence of predictor variables on the RF model 7 

Fig. 6 and Table 4 indicate that the inclusion of correlated predictor variables has a very slight influence in the predictive 8 

performance. Geographic location contributes to improving the RF model’s temporal and spatio-temporal estimates, and the 9 

inclusion of both elevation and land cover fraction does not further improve the performance of the fitted models (Fig. 6). This 10 

is because elevation is highly correlated (correlations higher than 0.9) with geographic location (Fig. 3). Fig. 3 also indicates 11 

that the correlation between longitude or elevation and land cover type (e.g., grassland, cropland, forest and bareland) is 12 

significant. However, this correlation does not mean that the effects of elevation and land cover fraction on fitted RF model can 13 

be ignored. We tested the RF algorithms trained with TB and elevation or land cover fraction data. The results (not shown here) 14 

indicate that these auxiliary data do improve the performance of the fitted algorithms. Strongly correlated variables have a very 15 

slight influence on the predictive performance of the RF model (Boulesteix et al. 2012). Therefore, in some cases, a few 16 

representative predictor variables should be selected. 17 

4.3 Potential errors of the reconstrued snow depth 18 

Fig. 7 indicates that the RF model does not fully solve the overestimation and underestimation problems. For deep snow (> 20 19 

cm), the biases are up to -8.9 cm and -10.4 cm in NE and northern XJ, respectively. Deep snow conditions account for roughly 20 

10% of all training samples (Fig. 2). The estimates for deep snow cover in the QTP exhibit a large bias of -34.1 cm. Fig. 6 also 21 

illustrates that the fitted RF algorithms have no predictive ability for extremely deep snow conditions, especially in QTP. We 22 

checked the training data and found that the extreme high snow depth data (> 60 cm) occurred in QTP. However, the number of 23 

such cases is very small. In addition, the station measurements are point values while the satellite grids have a spatial resolution 24 

of 25 km × 25 km. Thus, the representativeness of these data is questionable. Snow depth estimation in the mountains remains 25 

a challenge (Lettenmaier et al., 2015; Dozier et al., 2016; Dahri et al., 2018). Numerous studies have been conducted on the 26 

snow cover over the QTP and have indicated that the snow cover in the Himalayas is higher than elsewhere, ranging from 80% 27 

to 100% during the winter (Basang et al., 2017; Hao et al., 2018). Additionally, Dai et al. (2018) showed that deep snow (greater 28 
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than 20 cm) was mainly distributed in the Himalayas, Pamir, and Southeastern Mountains. Thus, the RF product produced in 1 

this paper has poor performance in QTP for the deep snow cover. 2 

Table 5 indicates that there is overestimation in NE and northern XJ for shallow snow cover, which may be due to the 3 

following reasons. First, the PMW signals are insensitive to thin snow cover, especially for fresh snow with low snow density 4 

and snow grain size. Second, the large diurnal temperature range tends to subject the snowpack to frequent freeze-thaw cycles 5 

and leads to rapid snow grain (~2 mm) and snow density (200-350 kg/m3) growth and consequently a high TB difference 6 

(Meløysund et al., 2007; Durand et al., 2008; Yang et al., 2015; Dai et al., 2017). Third, frozen soil reduces the accuracy of 7 

estimates. Both snow and frozen ground are volume-scattering materials, and they have similar microwave radiation 8 

characteristics, making them difficult to distinguish. In addition, a limiting factor in estimating snow depth for PMW remote 9 

sensing is the presence of liquid water. In this study, a snow cover detection method is used to filter out wet snow cover; however, 10 

there are still misclassification errors, especially at the end of the winter season (Grody and Basist., 1996; Liu et al., 2018). In 11 

such cases, satellite observations are mainly associated with the emissions from the wet surface of the snowpack. Therefore, in 12 

wet snow conditions, snow depth retrieval is not possible (Derksen et al., 2010; Tedesco et al., 2016). 13 

5 Conclusions 14 

The present study analyzed the application of the RF model to snow depth estimation at temporal and spatial scales. Temporally 15 

and spatially independent datasets were applied to verify the fitted RF algorithms. The results suggested that the accuracy of 16 

fitted RF algorithms was greatly influenced by auxiliary data, especially the geographic location. However, the inclusion of 17 

strongly correlated predictor variables (elevation and land cover fraction) did not further improve the RF estimates. Therefore, 18 

in some cases, a few representative predictor variables should be selected. Due to naive extrapolation outside the training range, 19 

the transferability of a fitted RF algorithm at the temporal scale was better that that in spatial terms, e.g., with unbiased RMSEs 20 

of 4.5 cm and 7.2 cm for the RF2 algorithm, respectively. 21 

In this study, the fitted RF2 algorithm was used to retrieve a consistent 32-year daily snow depth dataset from 1987 to 2018. 22 

Then, an evaluation was carried out using independent reference data from the validation stations during the period 1987-2018. 23 

The overall unbiased RMSE and bias were 7.1 cm and -0.05 cm, respectively, outperforming the WESTDC product (8.4 cm and 24 

-1.20 cm). In QTP, the unbiased RMSE and bias of RF estimates for shallow (≤ 20 cm) snow cover were 3.4 cm and 0.59 cm, 25 

respectively, much lower than WESTDC’s 5.6 cm and 4.02 cm. In NE and northern XJ, RF estimates were superior to the 26 

WESTDC product but still presented an underestimation for deep snow (> 20 cm), with biases of -10.4 cm and -8.9 cm, 27 

respectively. 28 
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Three long-term (1987-2018) datasets, including ground truth observations, RF estimates and WESTDC product, were 1 

applied to analyze the trends of snow depth variation in China. The results suggested that there existed different trends among 2 

the three datasets. The overall trend of snow depth in China presented a significant increasing based on the ground truth 3 

observations, with a correlation coefficient of 0.57. Moreover, the trend in NE was highly consistent with the overall trend in 4 

China, with a correlation coefficient of 0.64. Neither the WESTDC nor the RF product presented significant trends except in 5 

QTP. The WESTDC product showed a significant decreasing trend in QTP, with a correlation coefficient of -0.55, whereas 6 

there were no significant trends for ground truth observations and the RF product. 7 

As discussed in Section 4, our reconstructed snow depth estimates are still challenged by several problems, e.g., 8 

underestimation for deep snow. Additional prior knowledge of snow cover, such as snow cover fraction, snow density, and snow 9 

grain size, is necessary to improve the RF model. Combining the snow forward model with the ML method will be the focus of 10 

future work. Furthermore, the mass balance approaches, e.g., the Parallel Energy Balance model, will be used to improve the 11 

snow depth retrievals in high-altitude areas. In addition, although our results indicate that the RF method is a promising potential 12 

tool for snow depth estimation, there are a few pitfalls such as the risk of naive extrapolation and poor transferability in spatial 13 

terms limiting its application in spatio-temporal dynamics. It is in addressing these shortcomings that the techniques of deep 14 

learning promise breakthroughs. We are attempting to operate the Deep Neural Networks (DNN) model to overcome the 15 

limitations of traditional ML approaches. 16 
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Table 1. Summary of the main passive microwave remote sensing sensors. 14 

Sensor SSM/I   SSMIS 

Satellite DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17 

On Orbit time 1987-1991 1991-1995 1995-2008 2006-present 

Passing Time 
A: 06:20                   

D: 18:20 

A: 17:17                    

D: 05:17 

A: 17:58             

D: 05:58 

A: 17:31           

D: 05:31 

Frequency & footprint 

(GHz): (km × km) 

19.35: 45×68  

23.235: 40×60  

37: 24×36 

85.5: 11×16 

19.35: 42×70  

23.235: 42×70  

37: 28×44 

91.655: 13×15 

 15 

Table 2. A detailed description of the input predictor variables based on four selection rules of the training sample. 16 

Name Predictor Variables Target Note 

RF1 TB19V, TB37V 

snow 

depth 

land cover types: 

grassland,  

cropland,  

bareland,  

shrubland,  

forest 

RF2 TB19V, TB37V, Latitude, Longitude 

RF3 TB19V, TB37V, Latitude, Longitude, Elevation 

RF4 TB19V, TB37V, Latitude, Longitude, Elevation, Land cover fraction 

 17 

Table 3. Summary of three tests of the fitted RF algorithms in Table 2. 18 

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

training 
training stations 2012-2014 training stations 2012-2014 training stations 2012-2014 

samples 28602 samples 28602 samples 28602 

validation 
training stations 2012-2014 training stations 2015-2018 validation stations 2015-2018 

samples 14301 samples 34684 samples 25879 

 19 

Table 4. Accuracy of four snow-depth retrieval models with unbiased RMSE, bias and correlation coefficient. 20 

Name 
Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

unRMSE bias corr.coe unRMSE bias corr.coe unRMSE bias corr.coe 



 

18 

 

RF1 6.4 -0.01  0.72  5.4 0.12  0.77  7.9 -0.76  0.57  

RF2 4.1 0.07  0.90  4.5 0.27  0.85  7.2 -0.97  0.66  

RF3 3.9 0.08  0.90  4.5 0.24  0.85  7.3 -0.83  0.66  

RF4 3.9 0.03  0.91  4.4 0.21  0.85  7.3 -0.40  0.65  

 1 

Table 5. Comparison between RF estimates and WESTDC product in three stable snow cover areas for deep (> 20 cm) 2 

and shallow (≤ 20 cm) snow cover. 3 

RF product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.30  0.06  0.49  0.17  0.48  0.31  

bias (cm) 0.59  -34.12  1.79  -10.38  2.52  -8.85  

unRMSE (cm) 3.43  20.70  5.36  7.00  6.12  9.62  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

WESTDC product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.16  -0.18  0.37  0.03  0.34  0.16  

bias (cm) 4.02  -33.78  0.47  -11.75  -0.39  -13.22  

unRMSE (cm) 5.60  21.62  6.47  9.10  7.35  11.30  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

 4 

 5 

Figure 1. Spatial distribution of the weather stations and land cover types in the study area. There are three stable snow cover 6 

areas in China: Northeast China (NE), northern Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP). 7 

 8 
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 1 

Figure 2. Histograms of snow depth observations from (a) training and (b) validation stations. The average values (black dashed 2 

lines) are equal to 10.5 cm and 9.8 cm, respectively. 3 

 4 

   5 

Figure 3. Correlations between the predictor variables (left) and the ranking of variable importance (right). The importance 6 

of variables, referred to as Mean Decrease Accuracy (MDA) in the RF model, is obtained by averaging the difference in 7 

out-of-bag error estimation before and after the permutation over all trees. The larger the MDA, the greater the importance 8 

of the variable is. 9 

 10 

Figure 4. The test process flowchart for the sensitivity of the RF model to the training sample size. 11 

(a) (b) 
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 1 

Figure 5. Trends of (a) unbiased RMSE, (b) bias and (c) correlation coefficient with increasing training sample size. 2 

 3 

 4 

(a) (b) (c) 

RF1-Test1 RF1-Test2 RF1-Test3 

RF2-Test1 RF2-Test2 RF2-Test3 

RF3-Test1 RF3-Test2 RF3-Test3 

RF4-Test1 RF4-Test2 RF4-Test3 
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Figure 6. The color-density scatterplots of the estimated snow depth with four fitted RF algorithms and the ground truth 1 

snow depth. The four trained RF algorithms (RF1, RF2, RF3, RF4) were evaluated with three validation datasets (Test1, 2 

Test2, Test3). 3 

  4 

 5 
Figure 7. Scatterplots of the estimated snow depth and the ground truth observation for (a) RF and (b) WESTDC products. 6 

 7 

 8 

Figure 8. Time series of (a) unbiased RMSE (unRMSE), (b) correlation coefficient (corr.coe) and (c) bias for RF and 9 

WESTDC products. The colorful dashed lines represent mean values of assessment indexes. 10 
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 1 

Figure 9. The validation of RF and WESTDC snow depth products in three stable snow cover areas over China with respect to 2 

(a) the unbiased RMSE, (b) bias and correlation coefficient. 3 

 4 

 5 

Figure 10. Trend analysis of snow depth based on (a) station observations, (b) RF estimates, and (d) WESTDC product in 6 

three stable snow cover areas of China. The correlation is statistically significant at the 0.05 level. 7 

 8 

 9 

Figure 11. Trend analysis of snow depth during the period 1987-2018: (a) RF product; (b) WESTDC data. Light red and light 10 

blue represent no significant trend changes.  11 

 12 

(a) (b) 

(a) (b) (c) 

(a) (b) 



 

23 

 

 1 

Figure 12. Comparison of changing trends of snow depth between RF estimates and WESTDC product in specific areas of (a) 2 

NE and (b) QTP. 3 

(a) (b) 


