
Response to Reviewer Comments by Nir Krakauer on “Real-Time Snow Depth 

Estimation and Historical Data Reconstruction Over China Based on a Random 

Forest Machine Learning Approach” by Jianwei Yang et al. 

 

Thank you for your letter and the comments concerning our manuscript. Those comments have been 

very helpful for revising and improving our paper as well as providing guidance for our research. 

We have studied the comments carefully and have made corrections, which we hope meet with 

approval. We provide responses in blue below. 

 

Review #4  

 

General Comments: The basic theme of this manuscript, the application of random forest 

(RF) to provide an empirical transfer model from remotely sensed radiances to snow depth, 

has merit, given that physically based transfer models are subject to limitations. However, 

some of the modeling choices appear questionable and should be better justified or 

simplified. The RF modeling described in Section 2.3 has the following main components: 

(1) Using SSMI data from 1987-2004 for training and from 2005-2006 for validation, in 

order to evaluate the number of training samples required for good accuracy. (2) Using 

AMSR2 data from 2014-2015 for training and from 2012-2013 for validation. Snow depth 

estimated by this model is then used to generate an approximate spatially varying 

relationship between 2 SSMI channel radiances and snow depth. The resulting simple 

SSMI-based formula is used to reconstruct estimated snow depth for 1987-2018, which is 

validated for 2017-2018. 

 

Specific comments: 

 

1. Approach (2) appears unnecessarily complicated. If the goal is to establish a product 

for 1987-2018, where only SSMI inputs are available for the entire period, it is more logical 

to train an RF model directly with SSMI inputs (as done in (1) – not with AMSR2 inputs) 

fitted to station data (not reconstructed data). If the authors want to retain their more 

complicated approach, they should compare it to the simpler one to demonstrate that it 

actually has superior accuracy. 

Response 1: We agree with the reviewer’s opinion, and these suggestions are very 

constructive. Other reviewers gave us similar comments. Thus, we directly selected SSM/I 

and SSMIS data as satellite observations in the revised manuscript.   

The procedure described in the original manuscript was complicated. Based on the 

correlations between the predictor variables and the variable importance metrics (Fig. 1), 

we designed four schemes of predictor variables to train the RF model in the revised 

manuscript. The scheme one was the simplest and its predictor variables included satellite 

observations at 19 GHz and 37 GHz only (Table 1). The scheme four was the most 

complicated. We first demonstrated whether certain predictor variables are necessary and 

whether their inclusion affects the RF model.  



   
Figure 1. Correlations between the predictor variables (left) and the ranking of variable 

importance (right). The importance of variables, referred to as Mean Decrease Accuracy 

(MDA) in RF model, is obtained by averaging the difference in out-of-bag error estimation 

before and after the permutation over all trees. The larger the MDA, the greater the 

importance of the variable is. 

Table 1. A detailed description of the input predictor variables based on four selection 

rules of training sample. 

Name Predictor Variables Target Note 

RF1 TB19V, TB37V 

snow 

depth 

land cover 

types: 

grassland,  

cropland,  

bareland,  

shurbland,  

forest 

RF2 TB19V, TB37V, Latitude, Longitude 

RF3 TB19V, TB37V, Latitude, Longitude, Elevation 

RF4 TB19V, TB37V, Latitude, Longitude, Elevation, Land cover fraction 

 

Then, we conducted three tests to verify the fitted RF algorithms (Table 1). The same 

training samples (same algorithms) were used for the three tests but with different 

validation datasets. In Test1, the validation data are from out-of-bag (OOB) samples. 

Generally, in the RF model, approximately two-thirds of the samples (in-bag samples) are 

used to train the trees and the remaining one-third (OOB samples) are used to estimate 

how well the fitted RF algorithm performs. This preliminary assessment offers a simple way 

to adjust the parameters of the RF model. However, we should use the OOB errors with 

caution because its samples are not independent at temporal and spatial scales. In Test2, 

we applied temporally independent reference data during the period 2015-2018 to assess 

the accuracy of temporal prediction of fitted algorithms. In Test3, a spatially independent 

dataset from validation stations during the period 2015-2018 was used to assess the 

accuracy of spatio-temporal prediction. 

Fig. 2 indicates that the accuracy of RF model is greatly influenced by geographic location, 

elevation, and land cover fractions. However, the redundant predictor variables (if highly 

correlated) slightly affect the RF model. The fitted RF algorithms perform better at the 

temporal scale than that at the spatial scale, with unbiased RMSEs of ~4.4 cm and ~7.3 

cm, respectively. 



Table 2. Summary of three tests to the fitted RF algorithms in Table 1. 

Name Test1 (OOB) Test2 (temporal subset) Test3 (spatio-temporal subset) 

training 

training stations 2012-2014 training stations 2012-2014 training stations 2012-2014 

samples 28602 samples 28602 samples 28602 

validation 

training stations 2012-2014 training stations 2015-2018 validation stations 2015-2018 

samples 14301 samples 34684 samples 25879 

 

 

Figure 2. The color-density scatterplots of the estimated snow depth with four fitted RF 

algorithms and the ground truth snow depth. The four trained RF algorithms (RF1, RF2, 

RF3, RF4) were evaluated with three validation datasets (Test1, Test2, Test3). 

Finally, we directly used the fitted RF2 algorithm to retrieve a consistent 32-year daily snow 

depth dataset. It was evaluated against the independent ground truth measurements from 

the validation stations (Fig. 6) during the period 1987-2018. The mean unbiased RMSE 

and bias were 7.1 cm and -0.05 cm, respectively, outperforming the former snow depth 

RF1-Test1 RF1-Test2 RF1-Test3 

RF2-Test1 RF2-Test2 RF2-Test3 

RF3-Test1 RF3-Test2 RF3-Test3 

RF4-Test1 RF4-Test2 RF4-Test3 



dataset (8.4 cm and -1.20 cm) from the Environmental and Ecological Science Data Center 

for West China (WESTDC).  

 

Figure 3. Scatterplots of the estimated snow depth and the ground truth observation for 

(a) RF and (b) WESTDC products. 

To determine the interannual variability in the uncertainty, the time series of assessment 

indexes, including the unbiased RMSE, bias and correlation coefficient, are shown in Fig. 

4. The results show that the RF estimates outperform the WESTDC product with respect 

to unbiased RMSE and correlation coefficient from season to season. 

 

Figure 4. Time series of (a) unbiased RMSE (unRMSE), (b) correlation coefficient 

(corr.coe) and (c) bias for RF and WESTDC products. The colorful dashed lines 

represent mean values of assessment indexes. 

(c) 

(a) 

(b) 

(a) (b) 



The assessment of snow depth product was also performed in three snow cover areas in 

China for shallow (≤ 20 cm) and deep snow cover (> 20 cm). 

 
Figure 5. The validation of RF and WESTDC snow depth products in three stable snow 

cover areas in China with respect to (a) the unbiased RMSE, (b) bias and correlation 

coefficient. 

Table 3. Comparison between RF estimates and WESTDC product in three stable snow 

cover areas for deep (> 20 cm) and shallow (≤ 20 cm) snow cover. 

RF product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.30  0.06  0.49  0.17  0.48  0.31  

bias (cm) 0.59  -34.12  1.79  -10.38  2.52  -8.85  

unRMSE (cm) 3.43  20.70  5.36  7.00  6.12  9.62  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

WESTDC product 

Regions QTP NE northern XJ 

SnowDepth (cm) <= 20  > 20 <= 20 > 20 <= 20 > 20 

corr.coe 0.16  -0.18  0.37  0.03  0.34  0.16  

bias (cm) 4.02  -33.78  0.47  -11.75  -0.39  -13.22  

unRMSE (cm) 5.60  21.62  6.47  9.10  7.35  11.30  

Samples 15503 (96.4%) 583 (3.6%) 151939 (87.3%) 22168 (12.7%) 32468 (69.8%) 14051 (30.2%) 

 

2. There is another way to tackle the problem of different microwave satellite sensors being 

available over different portions of the 1987-2018 period, which the authors may also want 

to consider. This would involve combining estimates from multiple fitted RF models, one 

for each satellite sensor available for part of the time period, which would potentially more 

fully use the partly-independent information from multiple satellite sources, which may each 

have different wavelength ranges, overpass times, and other sensor characteristics. 

Response 2: These suggestions are very constructive. However, as a change from the 

original manuscript, we resorted to using only SSM/I and SSMIS data as satellite 

observations in this study. As shown in Table 4 below, the characteristics of these sensors 

are sufficiently similar to assume that an algorithm defined for one sensor can be applicable 

(a) (b) 



to the next. We have rewritten the introduction of satellite data in Section 2.1: “The SSM/I 

and SSMIS sensors are suitable for producing a long-term consistent snow depth dataset 

due to their similar configurations and intersensor calibrations (Armstrong et al., 1994)” 

(Page 3, Line 21-23, in the revised manuscript). 

Table 4. Summary of the main passive microwave remote sensing sensors. 

Sensor SSM/I   SSMIS 

Satellite DMSP-F08 DMSP-F11 DMSP-F13 DMSP-F17 

On Orbit time 1987-1991 1991-1995 1995-2008 2006-present 

Passing Time 
A: 06:20                   

D: 18:20 

A: 17:17                    

D: 05:17 

A: 17:58             

D: 05:58 

A: 17:31           

D: 05:31 

Frequency & 

footprint (GHz) : 

(km × km) 

19.35: 45×68  

23.235: 40×60  

37: 24×36    

85.5: 11×16 

19.35: 42×70  

23.235: 42×70  

37: 28×44    

91.655: 13×15 

 

3. Another issue is the training/validation station data split. As one of the other reviewers 

points out, in order to better estimate the error at ungauged sites, it makes more sense to 

not use some stations at all for training and retain them for validation, instead of validating 

with data for the same stations but different years. 

Response 3: Thank you for your comments. One of the major issues of this study is that 

the validation data are not temporally and spatially independent. Thus, available stations 

in China were randomly divided into two roughly equal-sized parts by Matlab software (Fig. 

6). The snow depth observations from training stations (342 sites) together with satellite TB 

and other auxiliary data can be used to train the RF model. The measurements from 

validation stations (341 sites), as spatially independent data, can be applied to validate the 

fitted RF algorithm and the reconstructed snow depth product. Fig. 7 shows the histograms 

of snow depth observations from training and validation stations during the period 2012-

2018. Ninety percent of the samples range from 1 cm to 25 cm. The maximum values of 

the snow depth extend to approximately 50 cm. However, the number of such cases is 

small and is therefore not evident in Fig. 7. 



 

Figure 6. Spatial distribution of the weather stations and land cover types in the study 

area. There are three stable snow cover areas in China: Northeast China (NE), northern 

Xinjiang (XJ) and the Qinghai-Tibetan Plateau (QTP). 

 

Figure 7. Histograms of snow depth observations from (a) training and (b) validation 

stations. The average values (black dashed lines) are equal to 10.5 cm and 9.8 cm, 

respectively. 

 

4. There is no comparison presented between the RF method and physically based 

transfer models or existing satellite or reanalysis snow products over China. This work 

would be stronger if the authors can conduct such a comparison and show whether RF in 

fact leads to improvements in snow estimation beyond existing approaches. 

Response 4: Thank you for your comments. The linear-fitting method was developed 

based on SSM/I observations and station snow depth data by Che et al (2008). The daily 

snow depth data were obtained from the Environmental and Ecological Science Data 

Center for West China (http://westdc.westgis.ac.cn) (hereafter, WESTDC product). Yang 

et al. (2019) demonstrated that the WESTDC product outperforms four other snow depth 

datasets in China. Thus, in this study, we directly compared the RF estimates with the 

WESTDC product. 

(a) (b) 



We also show that an overall improvement of 15.4 % in China is achieved compared to the 

WESTDC product (Fig. 3). In QTP, the unbiased RMSE and bias of RF estimates for 

shallow (≤ 20 cm) snow cover were 3.4 cm and 0.59 cm, respectively, much lower than 

WESTDC’s 5.6 cm and 4.02 cm (Table 3). Please refer to the response to “Specific 

comment 1” above. 

 

[1] Yang, J., Jiang, L., Wu, S., Wang, G., Wang, J., and Liu, X.: Development of a Snow 

Depth Estimation Algorithm over China for the FY-3D/MWRI, Remote Sensing, 11, 977, 

10.3390/rs11080977, 2019. 

 

5. Section 4.5 discusses the performance of an RF model under an ensemble of simulated 

weather conditions and microwave radiances. It is not clear what this section adds to the 

stronger results of the earlier section, which are based on real satellite and snow data. The 

authors should consider omitting it, and returning to these considerations in a future 

publication. 

Response 5: We agree and deleted it.  

 

6. Also, the authors should discuss the difference between snow depth and snow water 

equivalent (SWE). To my understanding, SWE is more relevant for hydrologic applications, 

and may be more directly measured by the microwave retrievals. 

Response 6: We agree with the reviewer’s opinion. Snow water equivalent (SWE), 

describing the amount of water stored in a snowpack, is a key variable for hydrological 

applications. Generally, a reasonable ‘global’ snow density (240 kg/m3) is used to transfer 

snow depth to SWE (Takala et al., 2011). 

In our study, we used the RF algorithm to retrieve snow depth rather than SWE because 

that station observations include only snow depth data. 

Generally, snow density presents a variation in space and time. Thus, a relation to SWE 

through a fixed snow density is unreasonable. In the future, the temporospatial distribution 

of snow density in China will be mapped based on the reanalysis data from ERA5-land to 

improve SWE estimation. We are now assessing the ERA5 data using ground truth 

observations. 

 

Takala, M., Luojus, K., Pulliainen, J., Lemmetyinen, J., Juha-Petri, K., Koskinen, J., and 

Bojkov, B., 2011. Estimating northern hemisphere snow water equivalent for climate 

research through assimilation of space-borne radiometer data and ground-based 

measurements. Remote Sensing of Environment. 115, 3517-3529. 

 

7. On a related note, the authors note that snow measurements in high mountain areas 

are sparse, so that remote sensing based snow estimates cannot be validated. This could 

be partly overcome using a mass balance approach based on, for example, spring and 

summer streamflow measurements, which would give SWE (and hence, making 

assumptions about density, also snow depth) on a watershed scale (which in some cases 

might even be comparable with the satellite spatial resolution scale). See, e.g., Dahri et al. 



(2018) "Adjustment of measurement errors to reconcile precipitation distribution in the 

high-altitude Indus basin" and related work. 

Response 7: We appreciate your constructive suggestions. We are considering a snow 

depletion curve, e.g., Parallel Energy Balance Model, to improve the snow depth retrievals 

in high-altitude areas. We read the reference carefully and cited it in the revised manuscript. 

“Snow depth estimation in the mountains remains a challenge (Lettenmaier et al., 2015; 

Dozier et al., 2016; Dahri et al., 2018)” (Page 10, Line 25-26). 


