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Abstract. Changes in Arctic sea ice affect atmospheric circulation, ocean current, and polar ecosystems. There have been 

unprecedented decreases in the amount of Arctic sea ice, due to global warming and its various adjoint cases. In this study, a 10 

novel one-month sea ice concentration (SIC) prediction model is proposed, with eight predictors using a deep learning 

approach, Convolutional Neural Networks (CNN). This monthly SIC prediction model based on CNN is shown to perform 

better predictions (mean absolute error (MAE) of 2.28%, anomaly correlation coefficient (ACC) of 0.98, root mean square 

error (RMSE) of 5.76%, normalized RMSE (nRMSE) of 16.15%, and NSE of 0.97) than a random forest (RF)-based model 

(MAE of 2.45%, ACC of 0.98, RMSE of 6.61%, nRMSE of 18.64%, and NSE of 0.96) and the persistence model based on 15 

the monthly trend (MAE of 4.31%, ACC of 0.95, RMSE of 10.54%, nRMSE of 29.17%, and NSE of 0.89) through hindcast 

validations. The spatiotemporal analysis also confirmed the superiority of the CNN model. The CNN model showed good SIC 

prediction results in extreme cases that recorded unforeseen sea ice plummets in 2007 and 2012 with less than 5.0% RMSEs. 

This study also examined the importance of the input variables through a sensitivity analysis. In both the CNN and RF models, 

the variables of past SIC were identified as the most sensitive factor in predicting SIC. For both models, the SIC-related 20 

variables generally contributed more to predict SICs over ice-covered areas, while other meteorological and oceanographic 

variables were more sensitive to the prediction of SICs in marginal ice zones. The proposed one-month SIC prediction model 

provides valuable information which can be used in various applications, such as Arctic shipping route planning, management 

of fishery industry, and long-term sea ice forecasting and dynamics. 

1 Introduction 25 

Sea ice refers to the frozen seawater that covers approximately 15% of the oceans in the world (National Snow and Ice Data 

Center, 2018). Sea ice reflects more solar radiation than the water’s surface, which makes the polar regions relatively cool. 

Sea ice shrinks in summer due to the warmer climate and expands in the winter season. Many studies on Arctic sea ice 

monitoring and dynamics have been conducted because it plays a significant role in the energy and water balance of global 

climate systems (Ledley, 1988; Guemas et al., 2014). In particular, the change in sea ice is an important indicator that shows 30 
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the degree of on-going climate change (Johannessen et al., 2004). Global warming causes a decrease in sea ice that worsens 

the arctic amplification, which in turn accelerates global warming itself (Cohen et al., 2014; Francis and Vavrus, 2015). In 

addition, sea ice affects various oceanic characteristics and societal issues, such as ocean current circulation, by changing 

salinity and temperature gradation (Timmermann et al., 2009); polar ecosystems, by affecting key parts of the Arctic food web 

like sea-ice algae (Doney et al., 2011); and economic industries e.g., Arctic shipping routes (Melia et al., 2016). 35 

Arctic sea ice has been rapidly declining, which impacts not only the Arctic climate but also possibly the mid-latitudes (Yu et 

al., 2017). Numerous studies have shown significant interactions between the ocean and climate characteristics, such as sea 

surface temperature, solar radiation, surface temperature, and the changes in sea ice (Guemas et al., 2014). Therefore, the 

prediction of long and short-term sea ice change is an important issue in projecting climate change (Yuan et al., 2016). Various 

approaches, including numerical modeling and statistical analysis, have been proposed to develop models to predict sea ice 40 

characteristics (Guemas et al., 2014; Chi and Kim, 2017). Many of the studies have adopted statistical models using in situ 

observations or reanalysis data based on the relationship between sea ice and ocean/climate parameters (Comeau et al., 2019). 

The long-range forecasting models of sea ice severity index and concentration (monthly to seasonal) using multiple linear 

regression were developed by Drobot (2003) and Drobot et al. (2006), respectively. Lindsay et al. (2008) examined the short 

and long-term sea ice extent (SIE) prediction using a multiple linear regression model with historical information regarding 45 

the ocean and ice data. Wang et al. (2016) developed a vector autoregressive (VAR) model to predict the intraseasonal 

variability of SIC in the summer season (May – September). The suggested VAR model considering only the historical sea ice 

data without any atmospheric and oceanic information showed a root mean square error (RMSE) ~ 17% for 30-days’ prediction. 

However, the literature has reported that sea ice prediction is a very challenging task under the changing Arctic climate system 

(Holland et al., 2010; Stroeve et al, 2014). A short-term forecast of SIC has been also examined using statistical approaches. 50 

Wang et al. (2019) evaluated the sub-seasonal predictability of Arctic SIC using multi-variables of sea ice, the atmosphere, 

and the ocean based on statistical approaches—the VAR and vector Markov models. The VAR model showed quite good 

predictability in the short-term with RMSE of 10%, but still resulted in high RMSEs (~20%) for longer than 4 weeks over pan-

Arctic during the summer season (from June to August). Meanwhile, the Data-Adaptive Harmonic (DAH) technique, which 

examines a data-driven feature using cross-correlations, was demonstrated to predict Arctic SIE (Kondrashov et al., 2018). 55 

The DAH model showed a promising predictability of SIE in September, resulting in the absolute error of about 0.3 million 

km2 in 2014-2016. Chi and Kim (2017) suggested a deep learning-based model using Long and Short-Term Memory (LSTM) 

in comparison to a traditional statistical model. Their model showed good performance in the one-month prediction of sea ice 

concentration (SIC), with less than 9% average monthly prediction errors. However, it had low predictability during the melting 

season (RMSE of 11.09% from July to September). Kim et al. (2018) proposed a near-future SIC prediction model (10-20 60 

years) using deep neural networks together with the Bayesian model averaging ensemble, resulting in RMSE of 19.4% on the 

annual average. This study suggests that deep learning techniques are good to connect variables under non-linear relationships, 

such as SIC and climate variables. However, this study also showed low prediction accuracy during the melting season 
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(nRMSE of 102.25% from June to September). Wang et al. (2017) used convolutional neural networks (CNN) to estimate SIC 

in the Gulf of Saint Lawrence from synthetic aperture radar (SAR) imagery. Their study compared their CNN model to a 65 

multilayer perceptron (MLP) model, showing the superiority of the CNN model in SIC estimation with an RMSE of about 

22%. 

However, different from the classic statistical models, the previous studies using deep learning techniques have focused on the 

long-term prediction of SIC (i.e., over one-year prediction). The short-term forecasting of sea ice conditions is also important 

for maritime industries and decision making on-field logistics (Schweiger and Zhang, 2015). In addition, there is room to 70 

further improve the accuracy of short-term SIC prediction models with more advanced techniques and data. SIC describes the 

fraction of a specified area (typically a grid cell) covered by sea ice and it has been widely used as a simple and intuitive proxy 

to identify the characteristics of sea ice. Thus, this study aimed to predict the changes in Arctic sea ice characteristics using 

SIC. 

This study proposes a novel deep learning-based method to predict SIC based on the predictors of spatial patterns, considering 75 

the operational forecast of sea ice characteristics. The objectives of this study were to (1) develop a novel monthly SIC 

prediction model using a deep learning approach, CNN; (2) examine the prediction performance of the proposed model through 

comparison with a random forest-based SIC prediction model; and (3) conduct a sensitivity analysis of predictors that affect 

SIC predictions. 

2. Data 80 

Three types of datasets were used in this study, which represent sea ice concentrations, oceanographic, and meteorological 

characteristics in the Arctic. This study focuses on the prediction accuracy of the proposed models as well as the sensitivity of 

each predictor on monthly SIC prediction. The spatial domain of this study is a region of the Arctic Ocean (180°W – 180°E / 

40°N – 90°N), and the temporal coverage is the 30 years between 1988 and 2017.  

The first dataset is the daily sea ice concentration observation data, obtained from the National Snow and Ice Data Center 85 

(NSIDC), which is derived from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) and the Defense 

Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I and SSMIS). The second dataset is the 

daily sea surface temperature data, obtained from National Oceanic and Atmospheric Administration (NOAA) Optimal 

Interpolation Sea Surface Temperature (OISST) version 2, which is constructed from Advanced Very High-Resolution 

Radiometer (AVHRR) observation data with 0.25° resolution from 1988 to 2017. The third dataset is the monthly European 90 

Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim) data, which is used in order to 

construct predictors for one-month SIC prediction, including the surface air temperature, albedo, and v-wind vector in 0.125°. 
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In this study, a total of eight predictors were selected and used to predict SIC next month (Table 1) based on the literature and 

a preliminary statistical analysis of potential predictors through a feature selection process using random forest (Strobl et al., 

2007). We selected the eight predictors by comparing the mean decrease accuracy (MDA) changes based on twelve monthly 95 

prediction RF models from 1988 to 2017. The MDA has been widely used as feature selection criteria by measuring the 

accuracy changes by randomly permuting input variables (Archer and Kimes, 2008). It should be noted that fewer predictors 

than the selected eight ones did not produce better results. The predictors are: SIC one-year before (sic_1y), SIC one-month 

before (sic_1m), SIC anomaly one-year before (ano_1y), SIC anomaly one-month before (ano_1m), sea surface temperature 

(SST), 2-meter air temperature (T2m), forecast albedo (FAL), and the amount of v-wind (v-wind). 100 

Table 1. The specifications of the eight predictors used to predict short-term SIC in the study. 

Variable Source Unit 
Temporal 

resolution 

Spatial 

resolution 
Normalization 

SIC one-year before (sic_1y) NSIDC % Daily 25km 0 - 1 

SIC one-month before (sic_1m) NSIDC % Daily 25km 0 - 1 

SIC anomaly one-year before 

(ano_1y) 
NSIDC % Daily 25km -1 - 1 

SIC anomaly one-month before 

(ano_1m) 
NSIDC % Daily 25km -1 - 1 

Sea surface temperature one-month 

before (SST) 
NOAA OISST ver.2 K Daily 0.25° 0 - 1 

2-meter air temperature one-month 

before (T2m) 
ECMWF ERA Interim K Monthly 0.125° 0 - 1 

forecast albedo one-month before 

(FAL) 
ECMWF ERA Interim % Monthly 0.125° 0 - 1 

the amount of v-wind one-month 

before (v-wind) 
ECMWF ERA Interim m/s Monthly 0.125° 0 - 1 

 

In order to have the same spatial and temporal scales, the daily data, including SIC and SST, were transformed into monthly-

means and onto a polar stereographic projection with 25km grids. The predictors were normalized into 0 to 1 or -1 to 1 (for 

ano_1y and ano_1m). Since sea ice decline has accelerated in recent years, especially in the summer season (Stroeve et al, 105 

2008; Schweiger et al., 2008; Chi and Kim, 2017), we computed the SIC anomaly variables only for a more recent time period 

(2001-2017) rather than the entire study period (1988-2017). This was done in order to focus on the trends in recent sea ice 

changes. Since the anomalies were calculated from the recent years (2001-2017), there is no significant multicollinearity issue 

that could cause overfitting (Pearson’s correlation coefficient between mean SICs and anomalies (ρ) = -0.39, p<0.01). The v-

wind indicates the relative amount of wind towards the North Pole: the larger the v-wind, the more it blows from South to 110 

North. The v-wind data were derived using an 11-by-11 moving window based on a mean function from the raw 10-meter-

height v-wind vector data. Regarding the moving window, this study set the analysis unit as an 11-by-11 window (neighboring 

5 pixels; about 125 km) in order to consider the synoptic-scaled climate and ocean circulation in the polar region (Crane, 1978; 

Emery et al., 1997). 
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The eight predictors selected in this study through random forest-based feature selection have theoretical backgrounds that are 115 

related to the characteristics of SIC. First, SIC itself can affect the SIC in the future because it has a clear inter-annual trend 

through the melting and freezing seasons (Deser and Teng, 2008; Chi and Kim, 2017). It is a useful characteristic when 

conducting a time-series analysis, and thus, two SIC time-series climatology predictors (SIC one-year before and SIC one-

month before) were used in this study. Although there is no clear physical explanation of why the interannual variations would 

contribute to the forecasting skill, it clearly worked well in long-term SIC forecasting in previous studies (Wang et al., 2016; 120 

Chi and Kim, 2017). Further, we used two supplementary predictors that indicate the anomalies of SIC one-year before and 

SIC one-month before, in order to consider anomalous sea ice conditions in the models. The anomaly data could give 

information about SST anomaly along the sea ice edge in terms of the re-emergence mechanism from the melting to the 

freezing seasons (Guemas et al., 2014). Second, changes in SST and SIC have a significant relationship with each other, with 

regards to the heat budget (Rayner et al., 2003; Screen and et al., 2013; Prasad et al., 2018). The re-emergence of sea ice 125 

anomalies is also partially explained by the persistence of SST anomalies (Guemas et al., 2014). Air temperature and albedo 

are related to the amount of solar radiation enabling the prediction of SIC changes. The solar radiation heats the surface of the 

ocean as well as the sea ice. This causes a rise in the SST while also reducing albedo on the sea ice by melting the surface 

snow or thinning the sea ice (Screen and Simmonds, 2010; Mahajan et al., 2011). Moreover, the surface snow melting produces 

melt ponds, wet sea-ice surfaces, and wet snow cover which accelerate sea ice melting (Kern et al., 2016). Warm winds from 130 

lower latitudes toward the Arctic can also reduce sea ice (Kang et al., 2014) and local wind forces affect sea ice motion and 

formation (Shimada et al., 2006). The wind vector also can cause short or long-range sea ice drifts (Guemas et al., 2014), 

which may influence SIC variation.  

3. Methods 

3.1 Prediction models: Convolutional Neural Networks (CNN), Random Forest (RF), and anomaly persistence model 135 

This study proposes a SIC prediction model using a Convolutional Neural Network (CNN) deep learning approach. CNN is a 

kind of artificial neural network (ANN) model first suggested by LeCun et al. (1998) and has since been further developed 

with various structures and algorithms (Deng et al., 2013). Many studies have adopted CNN approaches to complete image 

recognition or classification tasks (Kim et al., 2018a; Ren et al., 2015; Yoo et al., 2019; Zhang et al., 2019b). CNN learns the 

features of images and takes them into account as key information, in order to extract outputs (Kim et al., 2018b; Wiley et al., 140 

2019). Convolutional networks share their weights and connect neighboring layers using convolution layers like neurons (Yu 

et al., 2017). The convolutional structure is a unique feature of CNN models that often shows higher performance than other 

types of ANN in image recognition studies (Krizhevsky et al., 2012; Lee et al., 2009; Zhao et al., 2020). The basic CNN 

structure consists of a bundle of convolutional layers, a number of pooling layers, and a fully connected layer. The 

convolutional process is to generate feature maps from gridded input data with kernel and activation functions. A CNN model 145 
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extracts the best feature map from an input image through an iterative training process including backpropagation learning and 

optimization algorithm.  

In CNN approaches, when 3-dimensional data (i.e., width, height, and depth (or channel)) are entered, several moving kernels 

pass through the data for each channel and transform them into feature maps using dot-product calculation. Through a number 

of convolutional processes, the model uses the fully connected layer to generate the final answer. The series of convolutional 150 

processes involved in this process requires significant computation loads. To prevent heavy computation, both the stride (i.e., 

how to shift a moving kernel) and the pooling (i.e., how to conduct downsampling) techniques are widely used, which make 

the size of the input data in the following convolutional process reduced. To avoid too much data reduction, many studies have 

adopted a padding technique, which covers input data with extra dummy values (Wang et al., 2016). The feature map achieved 

through the convolutional process is a convolved map that contains a higher level of features of an image (Chen et al., 2015). 155 

In general, a CNN model contains larger learning capacity and provides more robustness against noise than normal MLP 

models because of the more trainable parameters as well as the structure of deeper networks (Wang et al., 2017). 

In order to conduct a quantitative comparison of the prediction performance of the proposed CNN model, this study used 

random forest (RF), which is an ensemble-based machine learning technique (Latifi et al, 2018; Yoo et al., 2018). The RF 

model was used to solve image-based classification problems such as building extraction, land-cover classification, and crop 160 

classification (Liu et al., 2018; Guo and Du, 2017; Forkuor et al., 2018; Sonobe et al., 2017). RF extracts features using 

classifiers of each variable (Zhang et al., 2019a). The user can deal with two main parameters: the number of decision trees 

and the number of split variables at the nodes (Fagua et al., 2019). In this study, we used 50 trees and 11 random variables to 

be used in the decision split because random selection using one-third of variables in each split has been used widely in solving 

regression problems (Chu et al., 2014; Mutanga et al., 2012; Mutowo et al., 2019). Compared to the CNN approach, RF has a 165 

relatively low learning capacity from the perspective of the parametric size.  

Finally, an anomaly persistence forecast model was also examined for predicting the monthly Arctic SIC. The anomaly 

persistence model is a useful reference for forecast skill for time-series data (Wang et al., 2016). Since sea ice shows a clear 

climatological pattern (Parkinson and Cavalieri, 2002; Deser and Teng, 2008; Chi and Kim, 2017), this study used the 

persistence forecast model along with the RF regression model as baseline models to figure out the performance of the CNN 170 

model for SIC prediction. 

3.2 Research Flow 

This study examined three models in order to predict SIC using the persistence and RF-based (baselines), and CNN-based 

approaches (Fig. 1). We designed twelve individual models (i.e., monthly models) to predict SIC for each month. A hindcast 

validation approach was used to evaluate each model’s performance. Each monthly model was trained using the past data 175 
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staring from 1988. For instance, 12-years’ data (1988-1999) and 29-years’ data (1988-2016) were trained to predict SICs in 

2000 and 2017, and 2000 and 2017 SIC data were used as validation data, respectively. Eight input data during the past 30 

years that consist of 304 * 448 sized grids were used as training data in the RF and CNN models. In the case of the RF model, 

an additional 24 input parameters, along with the eight predictors, were considered. They are the mean, minimum, and 

maximum values of each predictor calculated using the 11-by-11 window. These additional variables for RF are to fill the 180 

conceptual gaps between the two approaches by considering the spatial patterns of predictors such as features in the CNN 

model. Since most SIC samples were biased to zero values because of the numerous pixels in the open sea, the training samples 

were balanced out considering the SIC values (0 – 100%) using a monthly maximum SIE mask, which shows the widest SIE 

during the entire study period (1988-2017) for each month. As a result, in the case of 2017, about 600,000 samples on average 

(i.e., from about 400,000 samples in Sep. to about 850,000 samples in Mar.) were trained for both monthly models (i.e., RF 185 

and CNN). However, the unbalance sampling problem still remained because the lower SIC (less than 40%) samples were 

relatively small (about 20% of the entire training samples). In the case of the anomaly persistence forecast model, the monthly 

SIC anomaly of each pixel persisted and the observed trend was calculated for that month ahead. For example, SICs in Jan. 

2000 were predicted by summing one-month persisted anomaly and one-month ahead SIC from a linear trend of SICs from 

Jan. 1988 to Dec. 1999 by each grid. 190 

As described in Fig. 1, the CNN model consists of three convolutional layers and one fully connected layer. Wang et al. (2017) 

used CNNs to estimate SIC from SAR data and showed that the use of three convolutional layers performed better than one or 

two layers. In this study, the root mean square propagation (RMSProp) optimizer with a learning rate of 0.001 and the relu 

activation function were used in the model. The RMSProp optimizer has a similar process to a gradient descent algorithm 

which divides the gradients by a learning rate (Tieleman and Hinton, 2012). Fifty (50) epochs with batch size as 1,024 were 195 

used in the proposed CNN model. The best model showing the highest validation accuracy during the training process was 

selected and used for further analysis. The CNN model was implemented using the Tensorflow Keras open-source library, 

while the persistence and RF models were implemented using the interp1 and TreeBagger functions in the MATLAB r2018a, 

respectively. 
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 200 

Figure 1. Study area and research flow. 
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This study firstly evaluated the model performance by quantitatively comparing the prediction results of the three models 

based on five accuracy metrics: mean absolute error (MAE, Eq. (1)), anomaly correlation coefficient (ACC, Eq. (2)), root 

mean square error (RMSE, Eq. (3)), normalized root mean square error (nRMSE, Eq. (4)), and Nash-Sutcliffe efficiency (NSE, 

Eq. (5)). In the melting season, many pixels contain relatively low SIC values compared to the freezing season. By dividing 205 

the RMSE by the standard deviation of actual SICs, the nRMSE can represent the prediction accuracy considering the range 

of SIC values (Kim et al., 2018). The ACC is a measure of skill score to evaluate the quality of the forecast model (Wang et 

al., 2016) and has a value between -1 (inversely correlated) and 1 (positively correlated). The NSE is a widely-used measure 

of prediction accuracy (Moriasi et al., 2007). It can provide comprehensive information regarding data by comparing the 

relative variance of prediction errors and the variance of the observation data (Nash and Sutcliffe, 1970; Moriasi et al., 2007). 210 

The NSE has a range from  −∞ to 1.0. A model is more accurate when the NSE value closer to 1, but unacceptable when the 

value is negative (Moriasi et al., 2007). Every error matrix was computed with respect to space and time. The errors were 

spatially averaged after masking, and then temporally averaged. 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶|)         (1) 

𝐴𝐶𝐶 =
𝑚𝑒𝑎𝑛(∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶−𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅))

√𝑚𝑒𝑎𝑛(∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2)√𝑚𝑒𝑎𝑛(∑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶−𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2)
 , 𝑥̅: 𝑚𝑒𝑎𝑛    (2) 215 

𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛[(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶)2]        (3) 

𝑛𝑅𝑀𝑆𝐸 =
√𝑚𝑒𝑎𝑛[(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶−𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶)2]

𝑠𝑡𝑑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶)
         (4) 

𝑁𝑆𝐸 = 1 −
∑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶)2

∑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶−𝑚𝑒𝑎𝑛(𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶))
2         (5) 

 

With respect to prediction accuracy analysis, a specific mask that covers only pixels that have shown sea ice more than once 220 

in the past 10 years was used to prevent an inflation of overall accuracy that may have happened due to the effect of pixels on 

open seas in the melting season (Chi and Kim, 2017; Kim et al. 2018). For example, to calculate the prediction accuracy of 

predicted SIC in January 2017, the mask covered only pixels that have shown sea ice in Januarys from 2007 to 2016. To 

examine prediction performance in the marginal sea ice zone, the models were compared in two cases: all range of SICs (0-

100%) and low SICs (0-40%). 225 

In addition, the study examined the spatial distribution maps showing the annual MAE and ACC of three models from 2000 

to 2017. The spatial relationship between SIC anomalies and prediction errors was also explored. Since the actual anomalies, 

as well as actual prediction errors (predicted SICs – actual SICs), tended to cancel each other out by averaging negative and 

positive values, we used absolute anomaly and error values. Since the actual anomalies, as well as actual prediction errors 

(predicted SICs – actual SICs), tended to cancel each other out by averaging negative and positive values, we used absolute 230 

anomaly and error values. In order to examine temporal forecast skill, this study compared the ACC between the monthly time 
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series of reference and predicted SICs at each grid (Wang et al., 2016). The distribution of predicted SICs by both models was 

also compared for the melting season (Jun.  – Sep.). The Sea Ice Outlook (SIO) open community has investigated the pan-

Arctic sea ice especially in the September SIE since 2008 (Stroeve et al., 2014; Chi and Kim, 2017). They have shared the 

predicted September SIE from June, July, and August based on a heuristic, statistical, dynamical, and mixed approaches. Chi 235 

and Kim (2017) have pointed out the difficulties of sea ice prediction because the prediction errors have increased since 2012. 

To figure out September minimum SIE which is the main focus of the SIO community (Stroeve et al., 2014), we compared the 

predicted SIEs based on the three models evaluated in this study, together with the other 37 SIO contributions for the September 

SIE predictions reported in August 2017. In the present study, the SIE was identified as an area of SIC > 15% (Chi and Kim, 

2017). Further, the averaged monthly trends of prediction accuracy using RMSE and nRMSE together were examined with 240 

the trends of annual mean nRMSE by dividing the data into melting (Jun. – Sep.) and freezing (Dec. – Mar.) seasons.  

In this research, we compared and examined prediction results focusing on two extreme cases of SIC: September 2007 and 

2012. There was unexpectedly large Arctic sea ice shrinkage in the summer 2007 and 2012 because of the large-scale changes 

in climate conditions and August cyclones, respectively (Devasthale et al., 2013). Therefore, for detailed analysis, visual 

interpretation comparing the spatial patterns of prediction errors and input variables was conducted by focusing on the regions 245 

showing high prediction errors in Sep. 2007 and Sep. 2012.  

Finally, we examined the variable sensitivity for each model. Rodner et al. (2016) evaluated the variable sensitivity of built-in 

CNN architectures in three ways: adding random Gaussian noises, taking geometric perturbations, and setting random impulse 

noises (i.e., set the pixel values to zero) to input images. In this research, the analysis of variable sensitivity was conducted 

using their first and third methods. To examine the influence of variables on prediction accuracy, we added random Gaussian 250 

noises with zero-mean and 0.1 standard deviations, then compared any changes of RMSE for each variable (Eq. (6)). In addition, 

to examine the spatial effects on the predictions, the prediction results were compared by setting zero values for two groups of 

variables: sea ice related variables (sic_1y, ano_1y, sic_1m, and ano_1m) and other environmental variables (SST, T2m, FAL, 

and v-wind).  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑉𝑎𝑟𝑥) =
𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝑅𝑀𝑆𝐸 𝑤𝑖𝑡ℎ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑖𝑠𝑒𝑠

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑅𝑀𝑆𝐸
      (6) 255 

4. Results and Discussion 

4.1 Monthly prediction of SIC 

Table 2 shows the average prediction accuracies of the models from 2000 to 2017. The CNN model showed higher performance 

than the persistence as well as RF models in all accuracy metrics. When it comes to considering all range of SICs (0-100%), 

the persistence model resulted in the lowest prediction performance (MAE of 4.31%, ACC of 0.95, RMSE of 10.54%,  nRMSE 260 
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of 29.17%, and NSE of 0.89). While the RF and CNN models resulted in good prediction accuracy with a small difference in 

MAE, ACC, and RMSE (CNN: MAE of 2.28%, ACC of 0.98, RMSE of 5.76%, and NSE of 0.97; RF: MAE of 2.45%, ACC 

of 0.98, RMSE of 6.61%, and NSE of 0.96), the CNN model showed better results than the RF model for nRMSE (16.15% 

and 18.64%, respectively). These results imply that the error distribution of the CNN model was more stable than the 

persistence model as well as RF. For the low SICs (0-40%), the MAE increased but it was due to the lower SIC values. The 265 

RMSE and nRMSE of the persistence model have decreased, but the others increased (persistence: 8.94% of RMSE and 

nRMSE of 24.62%; RF: RMSE of 7.23% and nRMSE of 19.87%; and CNN: RMSE of 6.18% and nRMSE of 16.87%). It 

implies that the RF and CNN models might be relatively weak to predict SICs in the marginal sea ice zone when compared to 

the central zone. The ACC and NSE values decreased for all models for low SICs (persistence: ACC of from 0.95 to 0.54 and 

NSE of from 0.89 to 0.81; RF: ACC of from 0.98 to 0.96 and NSE of from 0.96 to 0.90; and CNN: ACC of from 0.98 to 0.96 270 

and NSE from 0.97 to 0.93). Especially, the persistence model shows a larger decrease than the other models. Nonetheless, the 

CNN model produced consistently higher performance than the other models for both cases. 

Table 2. Average prediction accuracies among three models on every SIC (0-100%) and low SICs (0-40%) during 2000-2017 (mean absolute 

error, anomaly correlation coefficient, root mean square errors, normalized root mean square errors, and Nash-Sutcliffe efficiency). 

  MAE ACC RMSE nRMSE NSE 

All range of 

SICs  

(0-100%) 

Persistence 4.31% 0.95 10.54% 29.17% 0.89 

RF 2.45% 0.98 6.61% 18.64% 0.96 

CNN 2.28% 0.98 5.76% 16.15% 0.97 

Low SICs  

(0-40%) 

Persistence 2.94% 0.54 8.94% 24.62% 0.81 

RF 2.38% 0.96 7.23% 19.87% 0.90 

CNN 2.13% 0.96 6.18% 16.87% 0.93 

The spatial distribution of the annual MAE of three models from 2000 to 2017 is shown in Fig. 2. From visual inspection, it 275 

appeared that the prediction errors were dominant in the marginal areas (i.e., the boundaries between the sea ice and open seas). 

Since the marginal sea ice, particularly thin ice, is susceptible to change (Stroeve et al., 2008; Chevallier et al., 2013; Zhang 

et al., 2013), the prediction accuracy may have decreased. Weak predictability on the marginal sea ice zone might be due to a 

relatively small training sample size over the area. In the melting season, relatively higher prediction errors appeared not only 

in the marginal area, but also even ice-covered areas near the Arctic center (Fig. 2f-h). On the other hand, in the freezing 280 

season, the prediction errors were shown mainly in the marginal area (Fig., 2j-l). Further, relatively higher prediction errors 

appeared around the Kara Sea and the Barents Sea (Fig. 2a, e, and i). The region from the Kara Sea to the Barents Sea shows 

consistent sea ice retreats because of inflows of warm and salty ocean water from the Atlantic Ocean into the Barents-Kara 

Sea (Schauer et al., 2002; Å rthun et al., 2012; Kim et al., 2018) and cumulative positive solar radiation in the summer season 

(Stroeve et al., 2012). Using a visual comparison, it can be seen that the degree of errors is higher in RF than CNN (Fig. 2). 285 
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Figure 2. The mean absolute SIC anomaly (a) and mean absolute errors between predicted SICs and the actual SICs by the persistence (b), 

RF (c) and CNN (d) during 2000-2017. As in (a) - (d), but for the melting (Jun. – Sep.) and freezing (Dec. – Mar.) season, (e) - (f) and (i) - 

(l), respectively. 
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(c) MAE of RF  
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(l) MAE of CNN 
(CNN-NSIDC) 

 
 



13 

 

The spatial distribution of the temporal ACCs of three models from 2000 to 2017 is shown in Fig. 3. First of all, every prediction 290 

model showed quite good skill scores with high positive correlation (near 1.0, Fig. 3a-c). Interestingly, the ACCs were higher 

in the marginal area where showed relatively high prediction errors. Even though the models were weak to predict SIC changes 

in the marginal sea ice zone, but they caught decreasing trends of SICs relatively well. On the other hand, the region near the 

Arctic center showed relatively low ACCs. In contrast to the marginal sea ice zone, the Arctic center region is relatively stable 

to the changes (Stroeve et al., 2008; Chevallier et al., 2013). Since SICs in the center is almost saturated (100% of SIC) and 295 

very stable, it might cause lower ACC values even there were relatively small prediction errors.  In case of the melting season 

(Jun. – Sep., Fig. 3d-f), the degree of ACCs decreased when compared to the annual-mean (Fig. 3a-c), but they also showed 

the decreasing trends well in accordance with global warming. Unlike the melting season, the freezing season (Dec. – Mar.) 

showed relatively lower ACCs in the marginal and Arctic center regions (Fig. 3g-i). The persistence model did not catch the 

decreasing trend and showed a negative correlation in the Laptev Sea (Fig. 3g). Further, the ACCs were quite low in the Arctic 300 

center region. As mentioned above, the stable and saturated sea ice resulted in lower skill scores in terms of ACC. From visual 

inspection, the CNN model showed better prediction with a stable skill score than the other models.  
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Figure 3. The temporal ACC of the persistence (a), RF (b) and CNN (c) during 2000-2017. As in (a) - (c), but for the melting (Jun. – Sep.) 305 
and freezing (Dec. – Mar.) seasons, (d) - (f) and (g) - (i), respectively.  

  

   
(a) ACC of Persistence  (b) ACC of RF  (c) ACC of CNN  

   
(d) ACC of Persistence  (e) ACC of RF  (f) ACC of CNN  

   
(g) ACC of Persistence  (h) ACC of RF  (i) ACC of CNN  
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Figure 4 shows the histograms of NSIDC SICs and the predicted SICs by three models in the melting season (Jun. – Sep.) 

during 2000-2017. The persistence forecasting model shows poor predictability for all ranges of SICs (Fig. 4a). In addition, 

the model tended to over-estimate for higher SICs in the melting season. The model did not catch well the decreasing trends 310 

of sea ice due to global warming. On the other hand, the RF and CNN models showed relatively weak predictability for 

boundary SIC values (i.e., less than 10% and over 90% SICs). In particular, the RF model showed a weakness to predict SICs 

near zero (0%) and 100%. By focusing on the RF and CNN models, the mean and standard deviation values of prediction 

errors (predicted SIC - NSIDC) were examined for lower as well as higher SICs. In the case of lower SICs (less than 5%), both 

models showed over-estimation. In detail, the CNN model showed a better prediction result than RF (CNN: mean error of 315 

4.84% and std. of 7.65%; RF: mean error of 5.92% and std. of 9.77%). On the other hand, in the case of higher SICs (over 

95%), both models showed under-estimation. The RF model shows -4.62% of error and 4.57% of standard deviation, but the 

CNN shows -4.17% and 4.14%, respectively. With the same training samples, the CNN resulted in higher prediction accuracy 

on both lower and higher SICs. It might be because of the larger learning capacity of CNN than RF (Wang et al., 2017). 

 320 

Figure 4. Histograms of SICs based on NSIDC (blue) and three models (red) in the melting season (Jun. – Sep.) during 2000-2017. 

 

  

   

(a) Distribution of SICs  
predicted by 
persistence 

(b) Distribution of SICs  
predicted by RF 

(c) Distribution of SICs  
predicted by CNN 
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The spatial comparison of the predicted September SIEs in 2017 between the reference (NSIDC) and three approaches used 

in this study is shown in Figure 5. The observed SIE in Sep. 2017 was 4.80 million km2 which was reported by the Sea Ice 325 

Prediction Network (http://www.arcus.org/sipn). The SIE in Sep. 13, 2017 was the eighth-lowest in the satellite record since 

1981 (NSIDC, 2017). The SIEs predicted by the anomaly persistence, RF and CNN models were 4.37, 4.95, and 4.88 million 

km2, respectively. While the anomaly persistence model under-estimated the SIE, the other two models slightly over-estimated. 

The anomaly persistence model considered the decreasing trends of sea ice somewhat excessively. The CNN-based model 

showed the lowest prediction error compared to the Sea Ice Prediction Network reference data (0.09 million km2). In terms of 330 

spatial distributions, the anomaly persistence model showed the excessive retreat of sea ice in the Beaufort and Laptev Sea 

(Fig. 5a). However, the RF and CNN models showed slightly wide SIE in the Chukchi and Barents Sea (Figs. 5b and c). The 

over-estimated SIE might be because of the July storm across the central Arctic Ocean through the Barents Sea (West and 

Blockley, 2017). The accuracy of one-month SIE prediction based on three approaches was compared to the other 37 SIO 

contributions for Sep. 2017 (Fig. 5d). Since the SIO reports contain only quantitative SIE values, it was not possible to compare 335 

their spatial distributions. With regard to the SIE values, the statistical approaches showed quite accurate prediction results 

based on Arctic sea ice thickness distributions and ice velocity data (UTokyo) and non-parametric statistical model 

(Slater/Barrett NSIDC). The CNN prediction result showed relatively accurate prediction accuracy. 
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 340 
Figure 5. The predicted SIEs using the anomaly persistence (a), RF (b), and CNN (c) for Sep. 2017. Distribution of SIO values for Sep. 

2017 SIEs reported in Aug. 2017. (d). 
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Since the persistence model did not work well when compared to the RF and CNN models, the subsequent analyses are focused 

on the RF and CNN models. Figure 6 shows monthly prediction accuracies (i.e., RMSE and nRMSE) for the RF and the CNN 

models. The RF model showed lower prediction accuracy than the CNN model for all months. With regards to the RMSE of 345 

the CNN model, the prediction accuracy was higher in the melting season (Jun. – Sep.; 5.41%) than in the freezing season 

(Dec. – Mar.; 6.13%). However, as mentioned, the RMSE considers the range of sample values; for instance, more zero or low 

SIC values were found in the melting season (Chi and Kim, 2017). Thus, the nRMSE showed the opposite pattern to the RMSE. 

The normalized RMSE using the standard deviation can show the prediction accuracy considering the different ranges of SIC 

by month. In nRMSE of the CNN model, there is a different pattern between the melting season (Jun. – Sep.; 19.09%) and 350 

freezing season (Dec. – Mar.; 14.08%). According to the two-sample t-test, the nRMSE in the melting season is higher than in 

the freezing season (p < 0.01; n = 18) throughout the entire period (2000-2017). The difficulty of SIC prediction in the melting 

season is a well-known problem because of the unexpected decline of Arctic sea ice in recent years (Stroeve et al., 2007; Chi 

and Kim, 2017). 

 355 

Figure 6. Monthly prediction accuracies with differences between two models for the entire periods (2000-2017, RMSEs and nRMSEs). 

By focusing on the different patterns of prediction accuracy in the freezing (Dec. – Mar.; nRMSE of 14.08%) and melting 

season (Jun. – Sep.; nRMSE of 19.09%), the yearly trends in the prediction accuracy of the CNN model were examined (Fig. 

7). The nRMSE in the melting season showed an increasing trend in more recent years (2000-2017). Since the dynamic changes 



19 

 

in the Arctic environment, including warm air temperature (Hassol, 2004; Zhang et al., 2007), thinning sea ice (Maslanik et 360 

al., 2007), higher ocean surface temperature (Steele et al., 2008) have intensified in recent years, it makes the prediction of 

SIC in the melting season much more challenging. For instance, the Arctic sea ice extent experienced two major plummets, 

one in summer 2007, and one in summer 2012 because of multiple causes, such as the unexpected warm atmospheric conditions, 

radiation anomalies, and summer cyclones (Kauker et al., 2009; Kay et al., 2008; Parkinson and Comiso, 2012; Zhang et al., 

2013). 365 

 

Figure 7. Changes of prediction accuracy (nRMSE) using CNN model in freezing (Dec.-Mar.) and melting (Jun.-Sep.) season (2000-2017, 

dotted lines show trend). 

4.2 Prediction results in extreme cases: September 2007 and 2012 

SIC prediction results of the actual SIC and the SICs predicted by the RF and CNN models were conducted using two extreme 370 

cases: September 2007 and 2012 (Fig. 8 and 9). Even though there were unpredicted plummets in the extent of the sea ice, the 

CNN model showed relatively good prediction results in Sep. 2007 and 2012 (RMSE of 5.00 % and 4.71%, nRMSE of 21.93% 

and 23.95%, respectively). 
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In the case of Sep. 2007, there were large sea ice losses through the Beaufort Sea – Chukchi Sea – Laptev Sea during summer 

(Fig. 8d). Both the RF and CNN models showed an over-estimation of SIC over the Chukchi Sea and Laptev Sea. This implies 375 

that both models were not able to effectively learn the speed of the drastic retreat of sea ice in that region through training (Fig. 

8e-f). Similarly, Fig. 9 shows the prediction results and errors based on the RF and the CNN models in Sep. 2012. In summer 

2012, there was also a large loss of sea ice over the Beaufort Sea – Laptev Sea – Kara Sea (Fig. 9d). Both the RF and CNN 

models yielded over-estimations of SIC in the region between the Barents Sea and the Kara Sea. This might have been caused 

by the fast decline of sea ice in that region because of warm seawater inflows from the Atlantic Ocean in the summer season 380 

(Schauer et al., 2002; Å rthun et al., 2012; Kim et al., 2018). The results of two extreme cases showed that the prediction errors 

were mainly found in the regions that show high SIC anomalies (i.e., marginal ice zone with small training sample size; Figs. 

8d-f and 9d-f). 
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Figure 8. The actual SIC (a), predicted SICs (b-c), SIC anomaly (d), and errors between predicted and the actual SICs (e-f) in September 385 
2007. 

   
(a) SIC (NSIDC, %) (b) SIC (RF, %) (c) SIC (CNN, %) 
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(e) Error (RF-NSIDC,  
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RMSE = 5.00%; 
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Figure 9. The actual SIC (a), predicted SICs (b-c), SIC anomaly (d), and errors between predicted and the actual SICs (e-f) in September 

2012. 

 390 
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23 

 

Together, Figs. 10 and 11 show a detailed analysis focusing on the regions containing high numbers of prediction errors in 

September 2007 and 2012. Interestingly in both cases, over-estimation was found in no ice zones directly neighboring the 

marginal sea ice zone (dotted black circle area, Figs. 10 and 11c-d). Both cases show high SST and T2m anomalies together 

with a low FAL anomaly, caused by a melted snow layer (Figs. 10 and 11i-k). Those anomalous patterns of SST, T2m, and 

FAL were caused by anomalous strong solar radiation for both cases (Kauker et al., 2009; Kay et al., 2008; Parkinson and 395 

Comiso, 2012; Zhang et al., 2013). In regards to v-wind, the anomalous warm wind toward the Arctic center, inflowed by 

strong southerly winds driven from the Pacific water, resulted in melting in the Beaufort Sea in 2007 (Zhang et al., 2008, Fig. 

10l). However, the CNN model did not catch the past negative SIC anomalies effectively. For instance, Figs. 10d and h depict 

overestimation errors in the northern part of the region by showing negative SIC anomalies. Similarly, Figs. 11d, g, and h 

document over-estimations in the northern part of the region that shows negative SIC anomalies near the Barents Sea and the 400 

Kara Sea. Such over-estimation might be caused by the use of a small moving window (i.e., 11-by-11). Since the anomalies 

were found quite far from the marginal sea ice zone, the models were not able to predict changes in sea ice well. However, a 

larger window size might impede the overall performance of the model by forcing it to deal with too much learnable 

information in the CNN approach (Lai et al., 2015). A detailed exploration of the optimum window size is needed in future 

research. 405 
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Figure 10. Comparison of the prediction results of both models with eight input variables in the Beaufort Sea–Laptev Sea in September 

2007. Dotted black circle: the region shows higher prediction errors. 
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Figure 11. Comparison of the prediction results of both models with eight input variables in the Barents Sea –Kara Sea in September 2012. 410 
Dotted black circle: the region shows higher prediction errors. 
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4.3 Variable sensitivity 

Table 3 shows the variable sensitivity results of both models from 2000 to 2017. The two models show SIC-related variables 

as the most sensitive factor, i.e. sic_1m and sic_1y, rather than other oceanic or climate variables. These results are consistent 

for each model in the annual mean, freezing season (Dec.-Mar.), and melting season (Jun.-Sep.). As the SIC-related variables 415 

have a role regarding the time-series climatology information of sea ice, SICs themselves can affect SIC prediction in the 

future (Deser and Teng, 2008; Chi and Kim, 2017). Between long-term climatologies (sic_1y and ano_1y) and short-term 

climatologies (sic_1m and ano_1m), the former showed higher sensitivity in both models (except sic_1y and sic_1m in the 

RF). The previous studies have revealed the clear yearly sea ice trends of each month by investigating monthly averaged sea 

ice extents of the nine Arctic regions and the total from 1979 (Cavalieri and Parkinson, 2012; Parkinson and Cavalieri, 2002). 420 

Thus, the monthly models showed long-term climatologies as more contributing factors than the other variables (i.e., SICs in 

past Jan. is important in the Jan. prediction model). Although long-term climatologies were important in the monthly models, 

the RF model identified sic_1m as the most contributing factor than sic_1y. It might be due to the limitation of the input 

variables of the RF model used in this study, resulting in a lack of detailed spatial information. The RF model considered 

spatial information based on 24 additional proxies using an 11-by-11 window (i.e., mean, minimum, and maximum). However, 425 

it may not be sufficient to examine the various spatial distributions of input variables. As a result, the RF model might be 

highly influenced by short-term information rather than long-term variables. 

Table 1. The average variable sensitivity for the RF and CNN models during 2000-2017 (annual mean, freezing season (Dec.-Mar.), and 

melting season (Jun.-Sep.)). 

  sic_1y sic_1m ano_1y ano_1m SST T2m FAL v-wind 

R
F

 

Annual 

mean 
1.098 1.107 1.086 1.032 1.059 1.029 1.080 1.018 

Freezing 

season 
1.080 1.091 1.087 1.045 1.053 1.011 1.071 1.019 

Melting 

season 
1.098 1.104 1.099 1.031 1.045 1.060 1.079 1.034 

C
N

N
 

Annual 

mean 
1.134 1.029 1.095 1.012 1.035 1.005 1.006 1.008 

Freezing 

season 
1.145 1.063 1.113 1.026 1.042 1.024 1.015 1.026 

Melting 

season 
1.121 1.033 1.090 1.017 1.054 1.010 1.005 1.015 

The highest value is highlighted 

4.4 Variable sensitivity in extreme case: September 2007 and 2012 430 

Table 4 shows the variable sensitivity focusing on every September in 2000-2017, 2007, and 2012. Unlike the results in Table 

3, T2m and FAL were identified as the most influencing factors in the RF model. As reported in many studies, solar radiation 

has a large effect on the changes in sea ice (Kang et al., 2014; Guemas et al., 2016). In addition, the ice-albedo feedback 
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contributes to the recovery of sea ice from the losses in summer (Comiso, 2006; Tietsche et al., 2011). In the case of September 

2007, the warm surface air temperature was the main cause of the drastic decrease of sea ice (Kauker et al., 2009). However, 435 

in the case of v-wind, a Gaussian noise made an improvement to the prediction accuracy in two extreme cases for the RF 

model. While there are no studies revealing the effects of v-wind in Sep. 2012, there is an indirect effect from the southerly 

warm wind toward the Arctic center in Sep. 2007 (Zhang et al., 2008). Moreover, in the RF model, the degree of sensitivity of 

FAL is bigger in the two extreme cases than for the entire period. These pieces of evidence may point out that the RF model 

is less robust than the CNN model to highly anomalous SIC cases. In contrast to the RF model, the CNN model consistently 440 

identified the sic_1y as the most contributing variable. Although there is no clear causality between the SICs one-year before 

and the anomalous decline of sea ice in Sep. 2007 and 2012, past SICs provide information on SICs in the future as time-series 

data (Chi and Kim, 2017). 

Table 2. The average relative variable importance for the RF and CNN models in September (2000-2017 average, 2007, and 2012). 

  sic_1y sic_1m ano_1y ano_1m SST T2m FAL v-wind 

R
F

 Average 1.095 1.069 1.137 1.067 1.072 1.148 1.165 1.070 

2007 1.136 1.122 1.177 1.118 1.225 1.258 1.207 0.996 

2012 1.126 1.057 1.102 1.064 1.096 1.100 1.207 0.997 

C
N

N
 Average 1.090 1.035 1.056 1.005 1.009 1.000 1.002 1.004 

2007 1.133 1.046 1.091 1.022 1.017 1.007 1.008 1.015 

2012 1.078 1.054 1.041 1.020 1.040 1.034 1.023 1.028 

The highest value is highlighted 

Figure 12 shows the spatial influence of two sets of variables with impulse noise (zero values). As shown in Figs. 12b and e, 445 

the CNN model was not able to predict SICs in the existing sea ice area when using zero values for the SIC-related variables 

(sic_1y, sic_1m, ano_1y, and ano_1m). When the CNN model set zero values for the other environmental variables (SST, 

T2m, FAL, and v-wind), the model was not able to predict a decrease of SICs around the marginal areas between the sea ice 

and open sea (Fig. 12c and f). It is possibly due to decays on the marginal ice zone by anomalous SST, T2m, and FAL in both 

cases. Consistent with the results of the sensitivity analysis (Table 4), SIC-related variables were identified as important 450 

indicators to predict SICs (Deser and Teng, 2008). The other meteorological and oceanographic variables tended to affect the 

SIC changes of the marginal zone ice, particularly, the neighboring thin ice and no ice zone (Stroeve et al., 2008; Chevallier 

et al., 2013; Zhang et al., 2013). 
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Figure 12. The prediction errors (predictions by CNN – NSIDC, %) and RMSE (%) from three prediction results in (a-c) September 2007 455 
(d-f) and 2012: (a and d) original model, (b and e) with noises on SIC variables (sic_1y, sic_1m, ano_1y, and ano_1m), (c and f) with noises 

on the other variables. 

4.5 Novelty and limitations 

Our study developed a novel one-month SIC prediction model using the CNN deep learning approach. The research findings 

from this study can make a contribution towards filling the gaps in the research on short-term sea ice change and prediction 460 

   
   

(a) original model 
(5.00%) 

(b) noises on sic-related 
variables (20.98%)  

(c) noises on the other 
variables (8.09%) 

   
   

(d) original model 
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using a deep-learning approach (Grumbine, 1998; Preller and Posey, 1989). Our short-term SIC prediction model can provide 

valuable information, which can be used in various decision-making processes in the maritime industry and in research 

regarding sea ice forecasting (Schweiger and Zhang, 2015). Notably, the non-linear learning architectures of the CNN model 

showed good prediction accuracy based on the larger learning capacity and more consistent temporal SIC prediction than the 

traditional machine learning approach (Wang et al., 2016; Liu et al., 2018).  465 

However, there are some challenging limitations to the proposed CNN model, particularly regarding the prediction variables. 

First, this study did not consider the effects of a longer time scale, or persistent effects, on sea ice changes (Guemas et al., 

2014). For example, the 2007 and 2012 sea ice minimums were caused by not only the anomalous warm atmospheric conditions 

of the summer season but also by persistently warm winter and spring seasons, which especially affected the melting in the 

marginal ice zone (Devasthale et al., 2013). The proposed CNN model could be used for the longer prediction (i.e., two- or 470 

three-month prediction) in consideration of the persistent effects of input variables such as SST and T2m. Moreover, additional 

input variables that represent seasonal, or longer-term variabilities of the Arctic environment should be considered in the 

proposed models. The persistence of sea-ice volume and atmospheric circulation related variables would be suitable for the 

long-term sea ice forecast (Guemas et al., 2014). Second, the sea ice thickness is an important factor when predicting sea ice 

changes because the thinner sea ice is relatively vulnerable to melt (Stroeve et al., 2008; Chevallier et al., 2013; Zhang et al., 475 

2013). However, we did not consider sea ice thickness data because of the limited availability of reliable sea ice thickness 

products. Third, there is a well-known problem with deep-learning models — interpretability. Because of complicated and 

non-linear connections between hidden layers, the deep learning models are hard to interpret (Koh et al., 2017; Guidotti et al., 

2018). Recent deep learning studies have attempted to report explainable results using various visualization approaches such 

as heat maps and occlusion maps (Brahimi et al., 2017; Trigueros et al., 2018). The present study explained the model using a 480 

variable sensitivity analysis, as well as the inspection of the spatial distribution. However, the model still has problems 

providing clear interpretations of the non-linear relationships among variables. 

5. Conclusion 

The main purpose of this study was to develop a novel one-month SIC prediction model using the CNN approach. The CNN 

model showed better prediction performance (MAE of 2.28%, ACC of 0.98, RMSE of 5.76%, nRMSE of 16.15%, and NSE 485 

of 0.97) than the persistence forecast (MAE of 4.31%, ACC of 0.95, RMSE of 10.54%, nRMSE of 29.17%, and NSE of 0.89) 

and RF models (MAE of 2.45%, ACC of 0.98, RMSE of 6.61%, nRMSE of 18.64%, and NSE of 0.96). The prediction accuracy 

in the melting season (Jun. – Sep., nRMSE of 19.09%) was lower than the freezing season (Dec. – Mar., nRMSE of 14.08%). 

The overall prediction accuracy decreased in the more recent years because of the accelerated sea ice melting caused by global 

warming. In two extreme cases, the CNN model yielded promising prediction results with respect to RMSE, as well as the 490 

spatial distribution of SICs (less than 5% RMSE). The prediction errors normally occurred in the marginal ice zone, which has 
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higher sea ice anomalies. From the variable sensitivity analysis using CNN, the SICs one-year before was identified as the 

most important factor in predicting sea ice changes. While the SIC-related variables had high effects on SIC prediction over 

ice-covered areas, the other meteorological and oceanographic variables were more sensitive in predicting the SICs in marginal 

ice zones. 495 
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