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Response to the interactive comment on “Prediction of monthly Arctic sea ice concentration 
using satellite and reanalysis data based on convolutional neural networks” by Young Jun Kim 
et al. 
 
The authors would like to thank the referees for their precious time and invaluable comments. The 5 
corresponding changes and refinements are highlighted in yellow in the revised paper and are also 
summarized in our responses below. Authors’ responses are in blue. Reviewer’s comments are in 
black. When the manuscript in cited, it is shown in italics. 
 
Response to anonymous referee #1 10 
 
Main comments: 
1) On the choices of SIC predictors, I think more justification should be provided regarding 
why all of these predictors are needed. I would argue that they are not. 
 15 

 We conducted a feature selection process in the early stage of the study. Including the eight 
predictors, four additional predictors were used for feature selection to develop the CNN 
model:  
o ice surface temperature (IST), which affects a heat balance that determines the growth or 

decay of sea ice (Gabison, 1987; Guemas, 2014); 20 
o mean sea level pressure (MSL), which is a driving force to make wind variability on the 

Arctic region as well as sea ice drift (Tsukernik et al., 2009; D¨oscher et al., 2010; 
Guemas, 2014); 

o total cloud cover (TCC), which is a proxy of the amount of solar radiation like a FAL 
(Kay et al., 2008; Kang et al., 2014); 25 

o and 10-meter u-wind vector (u-wind), which transfers heat energies across to the Arctic 
region and affects on growth or decay of sea ice (Arfeuille et al., 2000; Guemas, 2014). 

 Then we selected predictors using mean decrease accuracy (MDA) based on random forest. 
The MDA has widely used feature selection criteria by measuring the accuracy changes by 
randomly permuting input variables (Strobl et al., 2007; Archer and Kimes, 2008). 30 

 Finally, we selected the eight predictors based on the mean MDA from twelve monthly 
prediction models from 1988 to 2017 using the RF model (Supplementary Table 1 below). 

 
Supplementary Table 1. MDA for input variables used for feature selection in random forest 

ano_1y t2m ano_1m fal sst 
v-
wind

sic_1y sic_1m tcc 
u-
wind 

msl ist 

7.32 6.93 6.09 4.26 4.17 4.02 3.51 3.29 2.89 2.45 1.78 1.24
 35 
(references) 
Gabison, R. (1987). A thermodynamic model of the formation, growth, and decay of first-year sea ice. 
Journal of Glaciology, 33(113), 105-119. 
Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-Reyes, F. J., 
Fučkar, N. S., Germe, A., Hawkins, E., Keeley, S. and others: A review on Arctic sea-ice 40 
predictability and prediction on seasonal to decadal time-scales, Q. J. R. Meteorol. Soc., 142(695), 
546–561, doi:10.1002/qj.2401, 2016. 
Tsukernik M, Deser C, Alexander M, Tomas R. 2009. Atmospheric forcing of Fram Strait sea ice 
export: A closer look. Clim. Dyn. 35: 1349–1360, doi: 10.1007/s003-82-009-0647-z. 
D¨oscher R, Wyser K, Meier M, Qian M, Redler R. 2010. Quantifying Arctic contributions to climate 45 
predictability in a regional coupled ocean–ice–atmosphere model. Clim. Dyn. 34: 1157–1176, doi: 
10.1007/s00382-009-0567-y. 
Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G. and O’Dell, C.: The contribution of cloud and 
radiation anomalies to the 2007 Arctic sea ice extent minimum, Geophys. Res. Lett., 35(8), 
doi:10.1029/2008gl033451, 2008. 50 
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Kang, D., Im, J., Lee, M. I., and Quackenbush, L. J.: The MODIS ice surface temperature product as 
an indicator of sea ice minimum over the Arctic Ocean. Remote Sens. Environ., 152, 99-108., 
doi.org/10.1016/j.rse.2014.05.012, 2014. 
Arfeuille GL, Mysak A, Tremblay LB. 2000. Simulation of the interannual variability in the wind-
driven Arctic sea ice cover 1958–1988. Clim. Dyn. 16: 107–121. 55 
Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable 
importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 25. 
Archer, K. J., & Kimes, R. V. (2008). Empirical characterization of random forest variable 
importance measures. Computational Statistics & Data Analysis, 52(4), 2249-2260. 
 60 

 We added the justification for the selection of each predictor in the revised manuscript. We 
also briefly described the feature selection process.  
 

Lines 86 – 91: “In this study, a total of eight predictors were selected and used to predict SIC next 
month (Table 1) based on the literature and a preliminary statistical analysis of potential predictors 65 
through a feature selection process using random forest (Strobl et al., 2007). We selected the eight 
predictors by comparing the mean decrease accuracy (MDA) changes based on twelve monthly 
prediction RF models from 1988 to 2017. The MDA has been widely used as feature selection criteria 
by measuring the accuracy changes by randomly permuting input variables (Archer and Kimes, 
2008). It should be noted that fewer predictors than the selected eight ones did not produce better 70 
results.” 
 
Lines 108 – 126: “The eight predictors selected in this study though random forest-based feature 
selection have theoretical backgrounds that are related to the characteristics of SIC. First, SIC itself 
can affect the SIC in the future because it has a clear inter-annual trend through the melting and 75 
freezing seasons (Deser and Teng, 2008; Chi and Kim, 2017). It is a useful characteristic when 
conducting a time-series analysis, and thus, two SIC time-series climatology predictors (SIC one-year 
before and SIC one-month before) were used in this study. Although there is no physical explanation 
of why the interannual variations would contribute to the forecasting skill, it clearly worked well in 
long-term SIC forecasting through previous studies (Wang et al., 2016; Chi and Kim, 2017). Further, 80 
we used two supplementary predictors that indicate the anomalies of SIC one-year before and SIC 
one-month before, in order to consider anomalous sea ice conditions in the models. The anomaly data 
could give information about SST anomaly along the sea ice edge in terms of the re-emergence 
mechanism from the melting to the freezing seasons (Guemas et al., 2014). Second, changes in SST 
and SIC have a significant relationship with each other, with regards to the heat budget (Rayner et 85 
al., 2003; Screen and et al., 2013; Prasad et al., 2018). The re-emergence of sea ice anomalies is also 
partially explained by the persistence of SST anomalies (Guemas et al., 2014). Air temperature and 
albedo are related to the amount of solar radiation enabling the prediction of SIC changes. The solar 
radiation heats the surface of the ocean as well as the sea ice. This causes a rise in the SST while also 
reducing albedo on the sea ice by melting the surface snow or thinning the sea ice (Screen and 90 
Simmonds, 2010; Mahajan et al., 2011). Moreover, the surface snow melting produces melt ponds, 
wet sea-ice surfaces, and wet snow cover (Kern et al., 2016). Warm winds from lower latitudes 
toward the Arctic can also reduce sea ice (Kang et al., 2014) and local wind forces affect sea ice 
motion and formation (Shimada et al., 2006). The wind vector also can cause short or long-range sea 
ice drifts (Guemas et al., 2014), which may influence SIC variation.”  95 
 

From my understanding of the model and intuition of the problem, the SIC information from the year 
before should only be contributing information to the statistical model regarding the trend in observed 
SIC – i.e. there’s no physical explanation why these interannual variations would contribute to skill 
one year in advance. 100 
 

 On a statistical basis, there is a clear climatological pattern in SICs (Parkinson and Cavalieri, 
2002; Deser and Teng, 2008; Chi and Kim, 2017). Although there is no clear physical 
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explanation of why the interannual variations would contribute to the forecasting skill, the 
long-term effects of environmental conditions for SIC variability might be represented by 105 
SICs one year before.  

 For example, the different sea ice variability in the Kara Sea and the Barents Sea is 
controlled by underlying environmental conditions (Wang et al., 2016). Further, the 
anomalies of sea ice cause anomalies on SST along the sea ice edge to affect sea ice 
conditions (Guemas et al., 2014). 110 

 
However, sic_1y and ano_1y both contain interannual variability information as well. Those 
fluctuations are just noise in this case and very likely resulting in over-fitting. I would suggest 
replacing both of these predictors simply by the observed trend, and see how this affects the model 
results. If they are kept, these issues should be addressed.  115 
 

 Thanks for the comment. We partially agree with that point. However, we decided to keep 
both predictors based on the following three reasons.  

 First, they are not highly correlated with each other according to Pearson’s correlation 
coefficient between SICs and anomalies during the entire study period (ρ=-0.39, p<0.01). 120 
Since ano_1y and ano_1m were calculated only for a more recent time period (2001-2017) to 
focus on the recent sea ice changes, they would play different roles in forecasting even 
though they state interannual variability information as well.  

 Second, their spatial patterns are quite different. They would contribute to different ways in 
prediction based on their different spatial patterns in a CNN-based model (Supplementary 125 
Figure 1).  

 
Supplementary Figure 1. Spatial pattern of SICs (left) and SIC anomalies (right). 

 
 Third, we attempted to revise the prediction model using only the observed trend by 130 

removing ano_1y and ano_1m. As a result, the overall prediction accuracy (RMSE) 
significantly dropped from 5.76% to 6.68%. 

 We revised the manuscript to address these issues. 
 
Lines 101 – 102: “Since the anomalies were calculated from the recent years (2001-2017), there is no 135 
significant multicollinearity issue that could cause overfitting (Pearson’s correlation coefficient 
between mean SICs and anomalies (ρ) = -0.39, p<0.01).” 
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Second, what is the reasoning behind using both sic_1m and ano_1m? Apart from the baseline used to 
compute anom_1m, they should be perfectly correlated with one another, which introduces the 140 
problem of multicollinearity. Have the authors tried only using anom_1m and not sic_1m? Again, if 
both are kept these issues should be addressed. 
 

 The sic_1y and sic_1m were used considering the long and short-term climatology of SICs. 
The ano_1y and ano_1m were used considering additional effects on SIC changes due to 145 
other underlying environmental conditions as we responded to the Main Comment (1) above.  

 As mentioned before, since they were not highly correlated with each other (ρ=-0.39, 
p<0.01), there is no significant multicollinearity issue. In addition, we tested the prediction 
model without sic_1m and ano_1m, which resulted in the increase of RMSE from 5.76% to 
6.15% and 6.38%, respectively.  150 

 We revised the manuscript to address these issues. 
 
Lines 114 – 117: “Further, we used two supplementary predictors that indicate the anomalies of SIC 
one-year before and SIC one-month before, in order to consider anomalous sea ice conditions in the 
models. The anomaly data could give information about SST anomaly along the sea ice edge in terms 155 
of the re-emergence mechanism from the melting to the freezing seasons (Guemas et al., 2014).” 
 
2) On the simple statistical model as reference: 
The use of a yearly trend extrapolation as a reference forecast is a bit conservative for the one-month 
lead time forecast, since there is typically high autocorrelation at a lag of one month for SIC (even 160 
after accounting for the long-term trend). A more robust reference, and what is commonly used, is an 
anomaly persistence forecast, or a damped anomaly persistence forecast (e.g. see Wang et al 2016). 
Ideally this would be done by persisting anom_1m one month ahead and adding it to the observed 
trend calculated for that month (as opposed to climatology as done in Wang et al 2016). 
 165 

 We replaced the simple prediction model to the anomaly persistence forecast model as you 
suggested. 

 
Lines 159 – 160: “Finally, an anomaly persistence forecast model was also examined for predicting 
the monthly Arctic SIC. The anomaly persistence model is a useful reference for forecast skill for 170 
time-series data (Wang et al., 2016).” 
 
Lines 179 – 182: “In the case of the anomaly persistence forecast model, the monthly SIC anomaly of 
each pixel persisted and the observed trend was calculated for that month ahead. For example, SICs 
in Jan. 2000 were predicted by summing one-month persisted anomaly and one-month ahead SIC 175 
from a linear trend of SICs from Jan. 1988 to Dec. 1999 by each grid.” 
 
3) Fig. 2 - it would be helpful to split these up for the melt and freeze seasons. Showing the annual 
mean makes it difficult to interpret the figure. 
 180 

 We revised Figure 2 by splitting into the annual mean, melting, and freezing seasons as 
suggested. The corresponding text was revised according to Figure 2. 
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Figure 2. The mean absolute SIC anomaly (a) and mean absolute errors between predicted SICs and 185 
the actual SICs by the persistence (b), RF (c) and CNN (d) during 2000-2017. As in (a) - (d), but for 
the melting (Jun. – Sep.) and freezing (Dec. – Mar.) season, (e) - (f) and (i) - (l), respectively. 
 
Lines 261 – 271: “The spatial distribution of the annual MAE of three models from 2000 to 2017 is 
shown in Fig. 2. From visual inspection, it appeared that the prediction errors were dominant in the 190 
marginal areas (i.e., the boundaries between the sea ice and open seas). Since the marginal sea ice, 
particularly thin ice, is susceptible to change (Stroeve et al., 2008; Chevallier et al., 2013; Zhang et 
al., 2013), the prediction accuracy may have decreased. Weak predictability on the marginal sea ice 
zone might be due to a relatively small training sample size over the area. In the melting season, 
relatively higher prediction errors appeared not only in the marginal area, but also even ice-covered 195 
areas near the Arctic center (Fig. 2f-h). On the other hand, in the freezing season, the prediction 
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errors were shown mainly in the marginal area (Fig., 2j-l). Further, relatively higher prediction 
errors appeared around the Kara Sea and the Barents Sea (Fig. 2a, e, and i). The region from the 
Kara Sea to the Barents Sea shows consistent sea ice retreats because of inflows of warm and salty 
ocean water from the Atlantic Ocean into the Barents-Kara Sea (Schauer et al., 2002; Årthun et al., 200 
2012; Kim et al., 2018) and cumulative positive solar radiation in the summer season (Stroeve et al., 
2012). Using a visual comparison, it can be seen that the degree of errors is higher in RF than CNN 
(Fig. 2).” 
 

4) Why are only error/bias metrics considered? Include a figure analogous to Fig.2 showing maps of 205 
anomaly correlation for the de-trended predictions relative to detrended obs would provide a more 
comprehensive analysis. 
 

 We added Figure 3 to show maps of anomaly correlation coefficient (ACC) for the annual 
mean, melting, and freezing seasons as suggested. The corresponding text was also added. 210 
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Figure 3. The temporal ACC of the persistence (a), RF (b) and CNN (c) during 2000-2017. As in (a) - 
(c), but for the melting (Jun. – Sep.) and freezing (Dec. – Mar.) season, (d) - (f) and (g) - (i), 
respectively. 215 
 
Lines 278 – 290: “The spatial distribution of the temporal ACCs of three models from 2000 to 2017 is 
shown in Fig. 3. First of all, every prediction model showed quite good skill scores with high positive 
correlation (near 1.0, Fig. 3a-c). Interestingly, the ACCs were higher in the marginal area where 
showed relatively high prediction errors. Even though the models were weak to predict SIC changes 220 
in the marginal sea ice zone, but they caught decreasing trends of SICs relatively well. On the other 
hand, the region near the Arctic center showed relatively low ACCs. In contrast to the marginal sea 
ice zone, the Arctic center region is relatively stable to the changes (Stroeve et al., 2008; Chevallier et 
al., 2013). Since SICs in the center is almost saturated (100% of SIC) and very stable, it might cause 
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lower ACC values even there were relatively small prediction errors.  In case of the melting season 225 
(Jun. – Sep., Fig. 3d-f), the degree of ACCs decreased when compared to the annual-mean (Fig. 3a-
c), but they also showed the decreasing trends well in accordance with global warming. Unlike the 
melting season, the freezing season (Dec. – Mar.) showed relatively lower ACCs in the marginal and 
Arctic center regions (Fig. 3g-i). The persistence model did not catch the decreasing trend and 
showed a negative correlation in the Laptev Sea (Fig. 3g). Further, the ACCs were quite low in the 230 
Arctic center region. As mentioned above, the stable and saturated sea ice resulted in lower skill 
scores in terms of ACC. From visual inspection, the CNN model showed better prediction with a 
stable skill score than the other models.”  
 
5) The paper needs to be reviewed carefully for proper use of the english language. There are several 235 
spelling and grammatical errors. 
 

 We corrected the spelling and grammatical errors carefully throughout the entire manuscript. 
 
  240 
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Minor comments: 
1) L35-40: “Arctic sea ice has been rapidly declining, which impacts not only the Arctic climate, but 
also mid-latitudes (Yu et al., 2017)” should say “... but also possibly the mid-latitudes”. There is not 
yet a consensus on this matter. 
 245 

 We revised the statement. 
 
Lines 36 – 37: “Arctic sea ice has been rapidly declining, which impacts not only the Arctic climate 
but also possibly the mid-latitudes (Yu et al., 2017).” 
 250 
2) L40: Usually we say “projecting climate change”; “forecasting” refers to an initial-value problem. 
 

 We revised the expression. 
 
Lines 38 – 39: “Therefore, the prediction of long and short-term sea ice change is an important issue 255 
in projecting climate change (Yuan et al., 2016).” 
 
3) L 40-45: Should reference Drobot et al, 2003, 2006; Lindsay et al. 2008; and Wang et al. 2016 for 
statistical predictions of sea ice concentration. 
 260 

 We have reviewed and added the suggested references regarding the statistical predictions of 
SIC. 

 
Lines 43 – 48: “The long-range forecasting models of sea ice severity index and concentration 
(monthly to seasonal) using multiple linear regression were developed by Drobot (2003) and Drobot 265 
et al. (2006), respectively. Lindsay et al. (2008) examined the short and long-term sea ice extent 
prediction using a multiple linear regression model with historical information regarding the ocean 
and ice data. Wang et al. (2016) developed a vector autoregressive (VAR) model to predict the 
intraseasonal variability of SIC in the summer season (May – September). The suggested VAR model 
considering only the historical sea ice data without any atmospheric and oceanic information showed 270 
a root mean square error (RMSE) ~ 17% for 30-days’ prediction.” 
 
Added References: 
“Drobot, S.: Long-range statistical forecasting of ice severity in the Beaufort–Chukchi Sea., Weather 
Forecast, 18(6), 1161-1176., doi: 10.1175/1520-0434(2003)018<1161:lsfois>2.0.co;2, 2003.” 275 
“Drobot, S. D., Maslanik, J. A. and Fowler, C.: A long-range forecast of Arctic summer sea-ice 
minimum extent., Geophys. Res. Lett., 33(10), doi: 10.1029/2006GL026216, 2006.” 
 “Lindsay, R. W., Zhang, J., Schweiger, A. J., and Steele, M. A.: Seasonal predictions of ice extent in 
the Arctic Ocean., J. Geophys. Res.-Oceans., 113(C2)., doi:10.1029/2007JC004259, 2008.” 
 “Wang, L., Yuan, X., Ting, M., and Li, C.: Predicting summer Arctic sea ice concentration 280 
intraseasonal variability using a vector autoregressive model., J. Climate., 29(4), 1529-1543., doi: 
10.1175/JCLI-D-15-0313.1, 2016.” 
 
4) L55-60: “Studies regarding short-term sea ice forecasting have received relatively little attention 
(Grumbine, 1998; Preller and Posey, 1989).” Specify that you’re referring to machine learning 285 
predictions; studies have considered this with classic statistics models (e.g. references on previous 
comment). 
 

 We revised the sentence. 
 290 
Lines 61 – 62: “However, different from the classic statistical models, the previous studies using deep 
learning techniques have focused on the long-term prediction of SIC (i.e., over one-year prediction).” 
 
5) L60: “SIC describes the amount of the sea that is covered by ice”. ’The sea’ is poorly defined; 
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better to say “SIC describes the fraction of a specified area (typically a grid cell) covered by sea ice”. 295 
 

 We revised the definition of SIC as you suggested. 
 
Lines 64 – 65: “SIC describes the fraction of a specified area (typically a grid cell) covered by sea 
ice.” 300 
 
6) L185: eqs 1-4; please expand on how these error metrics are computed with respect to space and 
time. I would think that the spatial averaging would have to be done before any temporal averaging in 
order for the mask (based on the previous nine years w.r.t the forecast month) to be applied 
effectively… Is this correct? 305 
 

 Yes, it is. We revised the sentence about the computation of error metrics. 
 
Lines 204 – 205: “Every error matrix was computed with respect to space and time. The errors were 
spatially averaged after masking, and then temporally averaged.” 310 
 
7) L250: “The model did not catch well the decreasing trends of sea ice due to global warming.” The 
model is a linear trend, so that’s exactly what it should be doing unless the actual trend is accelerating. 
I would think It’s more likely that the trend forecast is showing 100% SIC in the central Arctic in 
years like 2007 and 2012 when sea ice retreated further north than the marginal ice zone predicted by 315 
the trend. However, the fact that high-SIC values that are less than 100% do not show this bias in Fig. 
3a is highly suspect. Are the authors sure an error hasn’t been made either making the figure or in 
calculating the reference forecast? 

 Differ to the RF and CNN, the simple yearly extrapolation model showed larger than 100% 
of SICs according to their yearly trend. We post-processed them into 100% and the results 320 
were shown like in Fig. 3a. There was no mistake in the process. 

 As we revised the simple prediction model to the anomaly persistence forecast model, the 
manuscript, as well as Figure 3, were revised either. 
 

8) Fig. 5: Was the impulse noise (i.e. setting to zero) used on the predictors over the training sample 325 
and the testing (i.e. forecast) sample?  
 

 We adjusted the impulse noise only for the test.  
 
Are the predictions for 2007 and 2012 with impulses on the SIC variables (panels b and c) just that 330 
there is no sea ice (all very negative values)?  
 

 The model predicted the existence of SICs, but under-estimated. Since the error bar shows 
only from -30% to 30%, the Figure might result in a confusion. We revised the figure as 
below. 335 
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Figure 11. The prediction errors (predictions by CNN – NSIDC, %) and RMSE (%) from three 
prediction results in (a-c) September 2007 (d-f) and 2012: (a and d) original model, (b and e) with 
noises on SIC variables (sic_1y, sic_1m, ano_1y, and ano_1m), (c and f) with noises on the other 340 
variables.  
 
 
If the impulses are applied over the training data, it’s hard to imagine why the remaining variables 
wouldn’t be capable of “creating ice” in the model, even if it’s just a climatology. 345 
 

 The impulses were not applied to the training data. As mentioned in our response to the 
previous comment, the model predicted the existence of SICs, but under-estimated. We 
revised Figure 11 to show the effect of impulse noises clearly. 

 350 
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Response to the interactive comment on “Prediction of monthly Arctic sea ice concentration 
using satellite and reanalysis data based on convolutional neural networks” by Young Jun Kim 
et al. 
 
The authors would like to thank the referees for their precious time and invaluable comments. The 5 
corresponding changes and refinements are highlighted in yellow in the revised paper and are also 
summarized in our responses below. Authors’ responses are in blue. Reviewer’s comments are in 
black. When the manuscript in cited, it is shown in italics. 
 
Response to anonymous referee #2 10 
 
General comments: 
The paper presents a new one-month sea ice concentration prediction model using the Convolutional 
Neural Network deep learning approach. Output is compared to the results of a Random Forest and a 
simple prediction model. Models are applied to the time period from 1988 to 2017 and extreme cases 15 
of sea ice concentration decline are analysed in detail. 
 
The subject is appropriate for TC. The title reflects the content of the paper, the abstract provides a 
complete summary and the paper is generally well structured. The review of existing published work 
is good, the number of references is appropriate. 20 
 
Overall, figures and tables are clear and their captions self-explanatory. However, few figures should 
by improved according to specific comments below. 
 
Especially the selection of predictors is not convincing and should be justified in more detail.  25 
 

 We conducted a feature selection process in the early stage of the study. Including the eight 
predictors, four additional predictors were used for feature selection to develop the CNN 
model:  
o ice surface temperature (IST), which affects a heat balance that determines the growth or 30 

decay of sea ice (Gabison, 1987; Guemas, 2014); 
o mean sea level pressure (MSL), which is a driving force to make wind variability on the 

Arctic region as well as sea ice drift (Tsukernik et al., 2009; D¨oscher et al., 2010; 
Guemas, 2014); 

o total cloud cover (TCC), which is a proxy of the amount of solar radiation like a FAL 35 
(Kay et al., 2008; Kang et al., 2014); 

o and 10-meter u-wind vector (u-wind), which transfers heat energies across to the Arctic 
region and affects on growth or decay of sea ice (Arfeuille et al., 2000; Guemas, 2014). 

 Then we selected predictors using mean decrease accuracy (MDA) based on random forest. 
The MDA has widely used feature selection criteria by measuring the accuracy changes by 40 
randomly permuting input variables (Strobl et al., 2007; Archer and Kimes, 2008). 

 Finally, we selected the eight predictors based on the mean MDA from twelve monthly 
prediction models from 1988 to 2017 using the RF model (Supplementary Table 1 below). 

 
Supplementary Table 1. MDA for input variables used for feature selection in random forest 45 

ano_1y t2m ano_1m fal sst 
v-
wind

sic_1y sic_1m tcc 
u-
wind 

msl ist 

7.32 6.93 6.09 4.26 4.17 4.02 3.51 3.29 2.89 2.45 1.78 1.24
 
(references) 
Gabison, R. (1987). A thermodynamic model of the formation, growth, and decay of first-year sea ice. 
Journal of Glaciology, 33(113), 105-119. 
Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-Reyes, F. J., 50 
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Fučkar, N. S., Germe, A., Hawkins, E., Keeley, S. and others: A review on Arctic sea-ice 
predictability and prediction on seasonal to decadal time-scales, Q. J. R. Meteorol. Soc., 142(695), 
546–561, doi:10.1002/qj.2401, 2016. 
Tsukernik M, Deser C, Alexander M, Tomas R. 2009. Atmospheric forcing of Fram Strait sea ice 
export: A closer look. Clim. Dyn. 35: 1349–1360, doi: 10.1007/s003-82-009-0647-z. 55 
D¨oscher R, Wyser K, Meier M, Qian M, Redler R. 2010. Quantifying Arctic contributions to climate 
predictability in a regional coupled ocean–ice–atmosphere model. Clim. Dyn. 34: 1157–1176, doi: 
10.1007/s00382-009-0567-y. 
Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G. and O’Dell, C.: The contribution of cloud and 
radiation anomalies to the 2007 Arctic sea ice extent minimum, Geophys. Res. Lett., 35(8), 60 
doi:10.1029/2008gl033451, 2008. 
Kang, D., Im, J., Lee, M. I., and Quackenbush, L. J.: The MODIS ice surface temperature product as 
an indicator of sea ice minimum over the Arctic Ocean. Remote Sens. Environ., 152, 99-108., 
doi.org/10.1016/j.rse.2014.05.012, 2014. 
Arfeuille GL, Mysak A, Tremblay LB. 2000. Simulation of the interannual variability in the wind-65 
driven Arctic sea ice cover 1958–1988. Clim. Dyn. 16: 107–121. 
Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable 
importance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1), 25. 
Archer, K. J., & Kimes, R. V. (2008). Empirical characterization of random forest variable 
importance measures. Computational Statistics & Data Analysis, 52(4), 2249-2260. 70 
 

 We added the justification for the selection of each predictor in the revised manuscript. We 
also briefly described the feature selection process.  
 

Lines 86 – 91: “In this study, a total of eight predictors were selected and used to predict SIC next 75 
month (Table 1) based on the literature and a preliminary statistical analysis of potential predictors 
through a feature selection process using random forest (Strobl et al., 2007). We selected the eight 
predictors by comparing the mean decrease accuracy (MDA) changes based on twelve monthly 
prediction RF models from 1988 to 2017. The MDA has been widely used as feature selection criteria 
by measuring the accuracy changes by randomly permuting input variables (Archer and Kimes, 80 
2008). It should be noted that fewer predictors than the selected eight ones did not produce better 
results.” 
 
Lines 108 – 126: “The eight predictors selected in this study though random forest-based feature 
selection have theoretical backgrounds that are related to the characteristics of SIC. First, SIC itself 85 
can affect the SIC in the future because it has a clear inter-annual trend through the melting and 
freezing seasons (Deser and Teng, 2008; Chi and Kim, 2017). It is a useful characteristic when 
conducting a time-series analysis, and thus, two SIC time-series climatology predictors (SIC one-year 
before and SIC one-month before) were used in this study. Although there is no physical explanation 
of why the interannual variations would contribute to the forecasting skill, it clearly worked well in 90 
long-term SIC forecasting through previous studies (Wang et al., 2016; Chi and Kim, 2017). Further, 
we used two supplementary predictors that indicate the anomalies of SIC one-year before and SIC 
one-month before, in order to consider anomalous sea ice conditions in the models. The anomaly data 
could give information about SST anomaly along the sea ice edge in terms of the re-emergence 
mechanism from the melting to the freezing seasons (Guemas et al., 2014). Second, changes in SST 95 
and SIC have a significant relationship with each other, with regards to the heat budget (Rayner et 
al., 2003; Screen and et al., 2013; Prasad et al., 2018). The re-emergence of sea ice anomalies is also 
partially explained by the persistence of SST anomalies (Guemas et al., 2014). Air temperature and 
albedo are related to the amount of solar radiation enabling the prediction of SIC changes. The solar 
radiation heats the surface of the ocean as well as the sea ice. This causes a rise in the SST while also 100 
reducing albedo on the sea ice by melting the surface snow or thinning the sea ice (Screen and 
Simmonds, 2010; Mahajan et al., 2011). Moreover, the surface snow melting produces melt ponds, 
wet sea-ice surfaces, and wet snow cover (Kern et al., 2016). Warm winds from lower latitudes 
toward the Arctic can also reduce sea ice (Kang et al., 2014) and local wind forces affect sea ice 
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motion and formation (Shimada et al., 2006). The wind vector also can cause short or long-range sea 105 
ice drifts (Guemas et al., 2014), which may influence SIC variation.”  
 
Regarding the atmospheric predictors, why is FAL and v-wind necessary? 
 

 We selected t2m, fal, and v-wind by feature selection process using the MDA analysis 110 
mentioned above. 

 We originally considered TCC, u-wind, and MSL as the atmospheric predictors, but some of 
them have similar physical backgrounds, which could cause an overfitting problem (i.e., 
TCC and fal are related with solar radiation, v-wind, u-wind, and MSL are related with wind 
parameter because the gradient of surface pressure derives winds). 115 

 
Why is a simple linear extrapolation model used for a one-month prediction? 
 

 We replaced the simple linear extrapolation model to the anomaly persistence forecast model 
as requested by referee #1. 120 

 
Lines 159 – 160: “Finally, an anomaly persistence forecast model was also examined for predicting 
the monthly Arctic SIC. The anomaly persistence model is a useful reference for forecast skill for 
time-series data (Wang et al., 2016).” 
 125 
Lines 179 – 182: “In the case of the anomaly persistence forecast model, the monthly SIC anomaly of 
each pixel persisted and the observed trend was calculated for that month ahead. For example, SICs 
in Jan. 2000 were predicted by summing one-month persisted anomaly and one-month ahead SIC 
from a linear trend of SICs from Jan. 1988 to Dec. 1999 by each grid.” 
 130 
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Specific comments: 
1) Figure 1: A larger font should be used in the bottom right part of the figure. 
 

 We revised Figure 1 with a larger font. 135 
 

 

Figure 1. Study area and research flow. 
 
 140 
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2) Figure 2: Results should be shown for the freeze and the melt season separately. 
 

 We revised Figure 2 for the annual mean, melting, and freezing seasons separately. 
 145 

 
Figure 2. The mean absolute SIC anomaly (a) and mean absolute errors between predicted SICs and 
the actual SICs by the persistence (b), RF (c) and CNN (d) during 2000-2017. As in (a) - (d), but for 
the melting (Jun. – Sep.) and freezing (Dec. – Mar.) season, (e) - (f) and (i) - (l), respectively. 
 150 
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3) Figure 8, Figure 9: A larger font should be used. 155 
 

 We revised Figure 8 and 9 with a larger font as suggested. 
 

 
Figure 9. Comparison of the prediction results of both models with eight input variables in the 160 
Beaufort Sea–Laptev Sea in September 2007. Dotted black circle: the region shows higher prediction 
errors. 
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Figure 10. Comparison of the prediction results of both models with eight input variables in the 165 
Barents Sea –Kara Sea in September 2012. Dotted black circle: the region shows higher prediction 
errors. 
 
 

 170 

Technical corrections: 
There are numerous spelling and grammatical errors in the text, which should be eliminated. 
 

 We corrected the spelling and grammatical errors carefully throughout the entire manuscript. 
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Abstract. Changes in Arctic sea ice affect atmospheric circulation, ocean current, and polar ecosystems. There have been 

unprecedented decreases in the amount of Arctic sea ice, due to global warming and its various adjoint cases. In this study, a 10 

novel one-month sea ice concentration (SIC) prediction model is proposed, with eight predictors using a deep learning 

approach, Convolutional Neural Networks (CNN). This monthly SIC prediction model based on CNN is shown to perform 

better predictions (mean absolute error (MAE) of 2.28%, anomaly correlation coefficient (ACC) of 0.98, root mean square 

error (RMSE) of 5.76%, normalized RMSE (nRMSE) of 16.15%, and NSE of 0.97) than a random forest (RF)-based model 

(MAE of 2.45%, ACC of 0.98, RMSE of 6.61%, nRMSE of 18.64%, and NSE of 0.96) and the persistence model based on 15 

the monthly trend (MAE of 4.31%, ACC of 0.95, RMSE of 10.54%, nRMSE of 29.17%, and NSE of 0.89) through hindcast 

validations. The spatiotemporal analysis also confirmed the superiority of the CNN model. The CNN model showed good SIC 

prediction results in extreme cases that recorded unforeseen sea ice plummets in 2007 and 2012 with less than 5.0% RMSEs. 

This study also examined the importance of the input variables through a sensitivity analysis. In both the CNN and RF models, 

the variables of past SIC were identified as the most sensitive factor in predicting SIC. For both models, the SIC-related 20 

variables generally contributed more to predict SICs over ice-covered areas, while other meteorological and oceanographic 

variables were more sensitive to the prediction of SICs in marginal ice zones. The proposed one-month SIC prediction model 

provides valuable information which can be used in various applications, such as Arctic shipping route planning, management 

of fishery industry, and long-term sea ice forecasting and dynamics. 

1 Introduction 25 

Sea ice refers to the frozen seawater that covers approximately 15% of the oceans in the world (National Snow and Ice Data 

Center, 2018). Sea ice reflects more solar radiation than the water’s surface, which makes the polar regions relatively cool. 

Sea ice shrinks in summer due to the warmer climate and expands in the winter season. Many studies on Arctic sea ice 

monitoring and dynamics have been conducted because it plays a significant role in the energy and water balance of global 

climate systems (Ledley, 1988; Guemas et al., 2014). In particular, the change in sea ice is an important indicator that shows 30 



2 
 

the degree of on-going climate change (Johannessen et al., 2004). Global warming causes a decrease in sea ice that worsens 

the arctic amplification, which in turn accelerates global warming itself (Cohen et al., 2014; Francis and Vavrus, 2015). In 

addition, sea ice affects various oceanic characteristics and societal issues, such as ocean current circulation, by changing 

salinity and temperature gradation (Timmermann et al., 2009); polar ecosystems, by affecting key parts of the Arctic food web 

like sea-ice algae (Doney et al., 2011); and economic industries e.g., Arctic shipping routes (Melia et al., 2016). 35 

Arctic sea ice has been rapidly declining, which impacts not only the Arctic climate but also possibly the mid-latitudes (Yu et 

al., 2017). Numerous studies have shown significant interactions between the ocean and climate characteristics, such as sea 

surface temperature, solar radiation, surface temperature, and the changes in sea ice (Guemas et al., 2014). Therefore, the 

prediction of long and short-term sea ice change is an important issue in projecting climate change (Yuan et al., 2016). Various 

approaches, including numerical modeling and statistical analysis, have been proposed to develop models to predict sea ice 40 

characteristics (Guemas et al., 2014; Chi and Kim, 2017). Many of the studies have adopted statistical models using in situ 

observations or reanalysis data based on the relationship between sea ice and ocean/climate parameters (Comeau et al., 2019). 

The long-range forecasting models of sea ice severity index and concentration (monthly to seasonal) using multiple linear 

regression were developed by Drobot (2003) and Drobot et al. (2006), respectively. Lindsay et al. (2008) examined the short 

and long-term sea ice extent prediction using a multiple linear regression model with historical information regarding the ocean 45 

and ice data. Wang et al. (2016) developed a vector autoregressive (VAR) model to predict the intraseasonal variability of SIC 

in the summer season (May – September). The suggested VAR model considering only the historical sea ice data without any 

atmospheric and oceanic information showed a root mean square error (RMSE) ~ 17% for 30-days’ prediction. However, the 

literature has reported that sea ice prediction is a very challenging task under the changing Arctic climate system (Holland et 

al., 2010; Stroeve et al, 2014). Chi and Kim (2017) suggested a deep learning-based model using Long and Short-Term 50 

Memory (LSTM) in comparison to a traditional statistical model. Their model showed good performance in the one-month 

prediction of sea ice concentration (SIC), with less than 9% average monthly prediction errors. However, it had low 

predictability during the melting season (RMSE of 11.09% from July to September). Kim et al. (2018) proposed a near-future 

SIC prediction model (10-20 years) using deep neural networks together with the Bayesian model averaging ensemble, 

resulting in RMSE of 19.4% on the annual average. This study suggests that deep learning techniques are good to connect 55 

variables under non-linear relationships, such as SIC and climate variables. However, this study also showed low prediction 

accuracy during the melting season (nRMSE of 102.25% from June to September). Wang et al. (2017) used convolutional 

neural networks (CNN) to estimate SIC in the Gulf of Saint Lawrence from synthetic aperture radar (SAR) imagery. Their 

study compared their CNN model to a multilayer perceptron (MLP) model, showing the superiority of the CNN model in SIC 

estimation with an RMSE of about 22%. 60 

However, different from the classic statistical models, the previous studies using deep learning techniques have focused on the 

long-term prediction of SIC (i.e., over one-year prediction). The short-term forecasting of sea ice conditions is also important 
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for maritime industries and decision making on-field logistics (Schweiger and Zhang, 2015). In addition, there is room to 

further improve the accuracy of short-term SIC prediction models with more advanced techniques and data. SIC describes the 

fraction of a specified area (typically a grid cell) covered by sea ice and it has been widely used as a simple and intuitive proxy 65 

to identify the characteristics of sea ice. Thus, this study aimed to predict the changes in Arctic sea ice characteristics using 

SIC. 

This study proposes a novel deep learning-based method to predict SIC based on the predictors of spatial patterns, considering 

the operational forecast of sea ice characteristics. The objectives of this study were to (1) develop a novel monthly SIC 

prediction model using a deep learning approach, CNN; (2) examine the prediction performance of the proposed model through 70 

comparison with a random forest-based SIC prediction model; and (3) conduct a sensitivity analysis of predictors that affect 

SIC predictions. 

2. Data 

Three types of datasets were used in this study, which represent sea ice concentrations, oceanographic, and meteorological 

characteristics in the Arctic. This study focuses on the prediction accuracy of the proposed models as well as the sensitivity of 75 

each predictor on monthly SIC prediction. The spatial domain of this study is a region of the Arctic Ocean (180°W – 180°E / 

40°N – 90°N), and the temporal coverage is the 30 years between 1988 and 2017.  

The first dataset is the daily sea ice concentration observation data, obtained from the National Snow and Ice Data Center 

(NSIDC), which is derived from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) and the Defense 

Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I and SSMIS). The second dataset is the 80 

daily sea surface temperature data, obtained from National Oceanic and Atmospheric Administration (NOAA) Optimal 

Interpolation Sea Surface Temperature (OISST) version 2, which is constructed from Advanced Very High-Resolution 

Radiometer (AVHRR) observation data with 0.25° resolution from 1988 to 2017. The third dataset is the monthly European 

Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim) data, which is used in order to 

construct predictors for one-month SIC prediction, including the surface air temperature, albedo, and v-wind vector in 0.125°. 85 

In this study, a total of eight predictors were selected and used to predict SIC next month (Table 1) based on the literature and 

a preliminary statistical analysis of potential predictors through a feature selection process using random forest (Strobl et al., 

2007). We selected the eight predictors by comparing the mean decrease accuracy (MDA) changes based on twelve monthly 

prediction RF models from 1988 to 2017. The MDA has been widely used as feature selection criteria by measuring the 

accuracy changes by randomly permuting input variables (Archer and Kimes, 2008). It should be noted that fewer predictors 90 

than the selected eight ones did not produce better results. The predictors are: SIC one-year before (sic_1y), SIC one-month 
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before (sic_1m), SIC anomaly one-year before (ano_1y), SIC anomaly one-month before (ano_1m), sea surface temperature 

(SST), 2-meter air temperature (T2m), forecast albedo (FAL), and the amount of v-wind (v-wind). 

Table 1. The specifications of the eight predictors used to predict short-term SIC in the study. 

Variable Source Unit
Temporal 
resolution

Spatial 
resolution 

Normalization

SIC one-year before (sic_1y) NSIDC % Daily 25km 0 - 1
SIC one-month before (sic_1m) NSIDC % Daily 25km 0 - 1
SIC anomaly one-year before 

(ano_1y) 
NSIDC % Daily 25km -1 - 1 

SIC anomaly one-month before 
(ano_1m) 

NSIDC % Daily 25km -1 - 1 

Sea surface temperature one-month 
before (SST) 

NOAA OISST ver.2 K Daily 0.25° 0 - 1 

2-meter air temperature one-month 
before (T2m) 

ECMWF ERA Interim K Monthly 0.125° 0 - 1 

forecast albedo one-month before 
(FAL) 

ECMWF ERA Interim % Monthly 0.125° 0 - 1 

the amount of v-wind one-month 
before (v-wind) 

ECMWF ERA Interim m/s Monthly 0.125° 0 - 1 

 95 

In order to have the same spatial and temporal scales, the daily data, including SIC and SST, were transformed into monthly-

means and onto a polar stereographic projection with 25km grids. The predictors were normalized into 0 to 1 or -1 to 1 (for 

ano_1y and ano_1m). Since sea ice decline has accelerated in recent years, especially in the summer season (Stroeve et al, 

2008; Schweiger et al., 2008; Chi and Kim, 2017), we computed the SIC anomaly variables only for a more recent time period 

(2001-2017) rather than the entire study period (1988-2017). This was done in order to focus on the trends in recent sea ice 100 

changes. Since the anomalies were calculated from the recent years (2001-2017), there is no significant multicollinearity issue 

that could cause overfitting (Pearson’s correlation coefficient between mean SICs and anomalies (ρ) = -0.39, p<0.01). The v-

wind indicates the relative amount of wind towards the North Pole: the larger the v-wind, the more it blows from South to 

North. The v-wind data were derived using an 11-by-11 moving window based on a mean function from the raw 10-meter-

height v-wind vector data. Regarding the moving window, this study set the analysis unit as an 11-by-11 window (neighboring 105 

5 pixels; about 125 km) in order to consider the synoptic-scaled climate and ocean circulation in the polar region (Crane, 1978; 

Emery et al., 1997). 

The eight predictors selected in this study through random forest-based feature selection have theoretical backgrounds that are 

related to the characteristics of SIC. First, SIC itself can affect the SIC in the future because it has a clear inter-annual trend 

through the melting and freezing seasons (Deser and Teng, 2008; Chi and Kim, 2017). It is a useful characteristic when 110 

conducting a time-series analysis, and thus, two SIC time-series climatology predictors (SIC one-year before and SIC one-

month before) were used in this study. Although there is no clear physical explanation of why the interannual variations would 
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contribute to the forecasting skill, it clearly worked well in long-term SIC forecasting in previous studies (Wang et al., 2016; 

Chi and Kim, 2017). Further, we used two supplementary predictors that indicate the anomalies of SIC one-year before and 

SIC one-month before, in order to consider anomalous sea ice conditions in the models. The anomaly data could give 115 

information about SST anomaly along the sea ice edge in terms of the re-emergence mechanism from the melting to the 

freezing seasons (Guemas et al., 2014). Second, changes in SST and SIC have a significant relationship with each other, with 

regards to the heat budget (Rayner et al., 2003; Screen and et al., 2013; Prasad et al., 2018). The re-emergence of sea ice 

anomalies is also partially explained by the persistence of SST anomalies (Guemas et al., 2014). Air temperature and albedo 

are related to the amount of solar radiation enabling the prediction of SIC changes. The solar radiation heats the surface of the 120 

ocean as well as the sea ice. This causes a rise in the SST while also reducing albedo on the sea ice by melting the surface 

snow or thinning the sea ice (Screen and Simmonds, 2010; Mahajan et al., 2011). Moreover, the surface snow melting produces 

melt ponds, wet sea-ice surfaces, and wet snow cover which accelerate sea ice melting (Kern et al., 2016). Warm winds from 

lower latitudes toward the Arctic can also reduce sea ice (Kang et al., 2014) and local wind forces affect sea ice motion and 

formation (Shimada et al., 2006). The wind vector also can cause short or long-range sea ice drifts (Guemas et al., 2014), 125 

which may influence SIC variation.  

3. Methods 

3.1 Prediction models: Convolutional Neural Networks (CNN), Random Forest (RF), and anomaly persistence model 

This study proposes a SIC prediction model using a Convolutional Neural Network (CNN) deep learning approach. CNN is a 

kind of artificial neural network (ANN) model first suggested by LeCun et al. (1998) and has since been further developed 130 

with various structures and algorithms (Deng et al., 2013). Many studies have adopted CNN approaches to complete image 

recognition or classification tasks (Ren et al., 2015; Kim et al., 2018; Yoo et al., 2019; Zhang et al., 2019). CNN learns the 

features of images and takes them into account as key information, in order to extract outputs (Wang et al., 2017). 

Convolutional networks share their weights and connect neighboring layers using convolution layers like neurons (Wang et 

al., 2016). The convolutional structure is a unique feature of CNN models that often shows higher performance than other 135 

types of ANN in image recognition studies (Krizhevsky et al., 2012; Lee et al., 2009). The basic CNN structure consists of a 

bundle of convolutional layers, a number of pooling layers, and a fully connected layer. The convolutional process is to 

generate feature maps from gridded input data with kernel and activation functions. A CNN model extracts the best feature 

map from an input image through an iterative training process including backpropagation learning and optimization algorithm.  

In CNN approaches, when 3-dimensional data (i.e., width, height, and depth (or channel)) are entered, several moving kernels 140 

pass through the data for each channel and transform them into feature maps using dot-product calculation. Through a number 

of convolutional processes, the model uses the fully connected layer to generate the final answer. The series of convolutional 

processes involved in this process requires significant computation loads. To prevent heavy computation, both the stride (i.e., 
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how to shift a moving kernel) and the pooling (i.e., how to conduct downsampling) techniques are widely used, which make 

the size of the input data in the following convolutional process reduced. To avoid too much data reduction, many studies have 145 

adopted a padding technique, which covers input data with extra dummy values (Wang et al., 2016). The feature map achieved 

through the convolutional process is a convolved map that contains a higher level of features of an image (Chen et al., 2015). 

In general, a CNN model contains larger learning capacity and provides more robustness against noise than normal MLP 

models because of the more trainable parameters as well as the structure of deeper networks (Wang et al., 2017). 

In order to conduct a quantitative comparison of the prediction performance of the proposed CNN model, this study used 150 

random forest (RF), which is an ensemble-based machine learning technique (Yoo et al., 2018). The RF model was used to 

solve image-based classification problems such as building extraction, land-cover classification, and crop classification (Liu 

et al., 2018; Guo and Du, 2017; Forkuor et al., 2018; Sonobe et al., 2017). RF extracts features using classifiers of each variable 

(Liu et al., 2018). The user can deal with two main parameters: the number of decision trees and the number of split variables 

at the nodes (Ghimire et al., 2010). In this study, we used 50 trees and 11 random variables to be used in the decision split 155 

because random selection using one-third of variables in each split has been used widely in solving regression problems 

(Mutanga et al., 2012; Chu et al., 2014). Compared to the CNN approach, RF has a relatively low learning capacity from the 

perspective of the parametric size.  

Finally, an anomaly persistence forecast model was also examined for predicting the monthly Arctic SIC. The anomaly 

persistence model is a useful reference for forecast skill for time-series data (Wang et al., 2016). Since sea ice shows a clear 160 

climatological pattern (Parkinson and Cavalieri, 2002; Deser and Teng, 2008; Chi and Kim, 2017), this study used the 

persistence forecast model along with the RF regression model as baseline models to figure out the performance of the CNN 

model for SIC prediction. 

3.2 Research Flow 

This study examined three models in order to predict SIC using the persistence and RF-based (baselines), and CNN-based 165 

approaches (Fig. 1). We designed twelve individual models (i.e., monthly models) to predict SIC for each month. A hindcast 

validation approach was used to evaluate each model’s performance. Each monthly model was trained using the past data 

staring from 1988. For instance, 12-years’ data (1988-1999) and 29-years’ data (1988-2016) were trained to predict SICs in 

2000 and 2017, and 2000 and 2017 SIC data were used as validation data, respectively. Eight input data during the past 30 

years that consist of 304 * 448 sized grids were used as training data in the RF and CNN models. In the case of the RF model, 170 

an additional 24 input parameters, along with the eight predictors, were considered. They are the mean, minimum, and 

maximum values of each predictor calculated using the 11-by-11 window. These additional variables for RF are to fill the 

conceptual gaps between the two approaches by considering the spatial patterns of predictors such as features in the CNN 

model. Since most SIC samples were biased to zero values because of the numerous pixels in the open sea, the training samples 
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were balanced out considering the SIC values (0 – 100%) using a monthly maximum sea ice extent mask, which shows the 175 

widest sea ice extent during the entire study period (1988-2017) for each month. As a result, in the case of 2017, about 600,000 

samples on average (i.e., from about 400,000 samples in Sep. to about 850,000 samples in Mar.) were trained for both monthly 

models (i.e., RF and CNN). However, the unbalance sampling problem still remained because the lower SIC (less than 40%) 

samples were relatively small (about 20% of the entire training samples). In the case of the anomaly persistence forecast model, 

the monthly SIC anomaly of each pixel persisted and the observed trend was calculated for that month ahead. For example, 180 

SICs in Jan. 2000 were predicted by summing one-month persisted anomaly and one-month ahead SIC from a linear trend of 

SICs from Jan. 1988 to Dec. 1999 by each grid. 

As described in Fig. 1, the CNN model consists of three convolutional layers and one fully connected layer. Wang et al. (2017) 

used CNNs to estimate SIC from SAR data and showed that the use of three convolutional layers performed better than one or 

two layers. In this study, the root mean square propagation (RMSProp) optimizer with a learning rate of 0.001 and the relu 185 

activation function were used in the model. The RMSProp optimizer has a similar process to a gradient descent algorithm 

which divides the gradients by a learning rate (Tieleman and Hinton, 2012). Fifty (50) epochs with batch size as 1,024 were 

used in the proposed CNN model. The best model showing the highest validation accuracy during the training process was 

selected and used for further analysis. The CNN model was implemented using the Tensorflow Keras open-source library, 

while the persistence and RF models were implemented using the interp1 and TreeBagger functions in the MATLAB r2018a, 190 

respectively. 
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Figure 1. Study area and research flow. 
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This study firstly evaluated the model performance by quantitatively comparing the prediction results of the three models 

based on five accuracy metrics: mean absolute error (MAE, Eq. (1)), anomaly correlation coefficient (ACC, Eq. (2)), root 195 

mean square error (RMSE, Eq. (3)), normalized root mean square error (nRMSE, Eq. (4)), and Nash-Sutcliffe efficiency (NSE, 

Eq. (5)). In the melting season, many pixels contain relatively low SIC values compared to the freezing season. By dividing 

the RMSE by the standard deviation of actual SICs, the nRMSE can represent the prediction accuracy considering the range 

of SIC values (Kim et al., 2018). The ACC is a measure of skill score to evaluate the quality of the forecast model (Wang et 

al., 2016) and has a value between -1 (inversely correlated) and 1 (positively correlated). The NSE is a widely-used measure 200 

of prediction accuracy (Moriasi et al., 2007). It can provide comprehensive information regarding data by comparing the 

relative variance of prediction errors and the variance of the observation data (Nash and Sutcliffe, 1970; Moriasi et al., 2007). 

The NSE has a range from  −∞ to 1.0. A model is more accurate when the NSE value closer to 1, but unacceptable when the 

value is negative (Moriasi et al., 2007). Every error matrix was computed with respect to space and time. The errors were 

spatially averaged after masking, and then temporally averaged. 205 

𝑀𝐴𝐸 ൌ 𝑚𝑒𝑎𝑛ሺ|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶 െ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶|ሻ         (1) 

𝐴𝐶𝐶 ൌ
ሺ∑ሺௗ௧ௗ ௌூିௗప௧ௗ ௌூതതതതതതതതതതതതതതതതതതതതሻሺ௧௨ ௌூି௧௨ ௌூതതതതതതതതതതതതതതതሻሻ

ඥሺ∑ሺௗ௧ௗ ௌூିௗప௧ௗ ௌூതതതതതതതതതതതതതതതതതതതതሻమሻඥሺ∑ሺ௧௨ ௌூି௧௨ ௌூതതതതതതതതതതതതതതതሻమሻ
 , �̅�: 𝑚𝑒𝑎𝑛    (2) 

𝑅𝑀𝑆𝐸 ൌ ඥ𝑚𝑒𝑎𝑛ሾሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝐼𝐶 െ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑆𝐼𝐶ሻଶሿ        (3) 

𝑛𝑅𝑀𝑆𝐸 ൌ
ඥሾሺௗ௧ௗ ௌூି௧௨ ௌூሻమሿ

௦௧ௗሺ௧௨ ௌூሻ
         ሺ4ሻ 

𝑁𝑆𝐸 ൌ 1 െ
∑ሺ௧௨ ௌூିௗ௧ௗ ௌூሻమ

∑൫௧௨ ௌூିሺ௧௨ ௌூሻ൯
మ         ሺ5ሻ 210 

 

With respect to prediction accuracy analysis, a specific mask that covers only pixels that have shown sea ice more than once 

in the past 10 years was used to prevent an inflation of overall accuracy that may have happened due to the effect of pixels on 

open seas in the melting season (Chi and Kim, 2017; Kim et al. 2018). For example, to calculate the prediction accuracy of 

predicted SIC in January 2017, the mask covered only pixels that have shown sea ice in Januarys from 2007 to 2016. To 215 

examine prediction performance in the marginal sea ice zone, the models were compared in two cases: all range of SICs (0-

100%) and low SICs (0-40%). 

In addition, the study examined the spatial distribution maps showing the annual MAE and ACC of three models from 2000 

to 2017. The spatial relationship between SIC anomalies and prediction errors was also explored. Since the actual anomalies, 

as well as actual prediction errors (predicted SICs – actual SICs), tended to cancel each other out by averaging negative and 220 

positive values, we used absolute anomaly and error values. Since the actual anomalies, as well as actual prediction errors 

(predicted SICs – actual SICs), tended to cancel each other out by averaging negative and positive values, we used absolute 

anomaly and error values. In order to examine temporal forecast skill, this study compared the ACC between the monthly time 
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series of reference and predicted SICs at each grid (Wang et al., 2016). The distribution of predicted SICs by both models was 

also compared for the melting season (Jun.  – Sep.). Further, the averaged monthly trends of prediction accuracy using RMSE 225 

and nRMSE together were examined with the trends of annual mean nRMSE by dividing the data into melting (Jun. – Sep.) 

and freezing (Dec. – Mar.) seasons.  

In this research, we compared and examined prediction results focusing on two extreme cases of SIC: September 2007 and 

2012. There was unexpectedly large Arctic sea ice shrinkage in the summer 2007 and 2012 because of the large-scale changes 

in climate conditions and August cyclones, respectively (Devasthale et al., 2013). Therefore, for detailed analysis, visual 230 

interpretation comparing the spatial patterns of prediction errors and input variables was conducted by focusing on the regions 

showing high prediction errors in Sep. 2007 and Sep. 2012.  

Finally, we examined the variable sensitivity for each model. Rodner et al. (2016) evaluated the variable sensitivity of built-in 

CNN architectures in three ways: adding random Gaussian noises, taking geometric perturbations, and setting random impulse 

noises (i.e., set the pixel values to zero) to input images. In this research, the analysis of variable sensitivity was conducted 235 

using their first and third methods. To examine the influence of variables on prediction accuracy, we added random Gaussian 

noises with zero-mean and 0.1 standard deviations, then compared any changes of RMSE for each variable (Eq. (6)). In addition, 

to examine the spatial effects on the predictions, the prediction results were compared by setting zero values for two groups of 

variables: sea ice related variables (sic_1y, ano_1y, sic_1m, and ano_1m) and other environmental variables (SST, T2m, FAL, 

and v-wind).  240 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ሺ𝑉𝑎𝑟௫ሻ ൌ
ௗ ோெௌா ௪௧ ௩ ௫ ௧ ௦௦

ை ோெௌா
      (6) 

4. Results and Discussion 

4.1 Monthly prediction of SIC 

Table 2 shows the average prediction accuracies of the models from 2000 to 2017. The CNN model showed higher performance 

than the persistence as well as RF models in all accuracy metrics. When it comes to considering all range of SICs (0-100%), 245 

the persistence model resulted in the lowest prediction performance (MAE of 4.31%, ACC of 0.95, RMSE of 10.54%,  nRMSE 

of 29.17%, and NSE of 0.89). While the RF and CNN models resulted in good prediction accuracy with a small difference in 

MAE, ACC, and RMSE (CNN: MAE of 2.28%, ACC of 0.98, RMSE of 5.76%, and NSE of 0.97; RF: MAE of 2.45%, ACC 

of 0.98, RMSE of 6.61%, and NSE of 0.96), the CNN model showed better results than the RF model for nRMSE (16.15% 

and 18.64%, respectively). These results imply that the error distribution of the CNN model was more stable than the 250 

persistence model as well as RF. For the low SICs (0-40%), the MAE increased but it was due to the lower SIC values. The 

RMSE and nRMSE of the persistence model have decreased, but the others increased (persistence: 8.94% of RMSE and 
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nRMSE of 24.62%; RF: RMSE of 7.23% and nRMSE of 19.87%; and CNN: RMSE of 6.18% and nRMSE of 16.87%). It 

implies that the RF and CNN models might be relatively weak to predict SICs in the marginal sea ice zone when compared to 

the central zone. The ACC and NSE values decreased for all models for low SICs (persistence: ACC of from 0.95 to 0.54 and 255 

NSE of from 0.89 to 0.81; RF: ACC of from 0.98 to 0.96 and NSE of from 0.96 to 0.90; and CNN: ACC of from 0.98 to 0.96 

and NSE from 0.97 to 0.93). Especially, the persistence model shows a larger decrease than the other models. Nonetheless, the 

CNN model produced consistently higher performance than the other models for both cases. 

Table 2. Average prediction accuracies among three models on every SIC (0-100%) and low SICs (0-40%) during 2000-2017 (mean absolute 
error, anomaly correlation coefficient, root mean square errors, normalized root mean square errors, and Nash-Sutcliffe efficiency). 260 

  MAE ACC RMSE nRMSE NSE 

All range of 

SICs  

(0-100%) 

Persistence 4.31% 0.95 10.54% 29.17% 0.89 

RF 2.45% 0.98 6.61% 18.64% 0.96 

CNN 2.28% 0.98 5.76% 16.15% 0.97 

Low SICs  

(0-40%) 

Persistence 2.94% 0.54 8.94% 24.62% 0.81 

RF 2.38% 0.96 7.23% 19.87% 0.90 

CNN 2.13% 0.96 6.18% 16.87% 0.93 

The spatial distribution of the annual MAE of three models from 2000 to 2017 is shown in Fig. 2. From visual inspection, it 

appeared that the prediction errors were dominant in the marginal areas (i.e., the boundaries between the sea ice and open seas). 

Since the marginal sea ice, particularly thin ice, is susceptible to change (Stroeve et al., 2008; Chevallier et al., 2013; Zhang 

et al., 2013), the prediction accuracy may have decreased. Weak predictability on the marginal sea ice zone might be due to a 

relatively small training sample size over the area. In the melting season, relatively higher prediction errors appeared not only 265 

in the marginal area, but also even ice-covered areas near the Arctic center (Fig. 2f-h). On the other hand, in the freezing 

season, the prediction errors were shown mainly in the marginal area (Fig., 2j-l). Further, relatively higher prediction errors 

appeared around the Kara Sea and the Barents Sea (Fig. 2a, e, and i). The region from the Kara Sea to the Barents Sea shows 

consistent sea ice retreats because of inflows of warm and salty ocean water from the Atlantic Ocean into the Barents-Kara 

Sea (Schauer et al., 2002; Årthun et al., 2012; Kim et al., 2018) and cumulative positive solar radiation in the summer season 270 

(Stroeve et al., 2012). Using a visual comparison, it can be seen that the degree of errors is higher in RF than CNN (Fig. 2). 
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Figure 2. The mean absolute SIC anomaly (a) and mean absolute errors between predicted SICs and the actual SICs by the persistence (b), 
RF (c) and CNN (d) during 2000-2017. As in (a) - (d), but for the melting (Jun. – Sep.) and freezing (Dec. – Mar.) season, (e) - (f) and (i) - 275 
(l), respectively. 
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The spatial distribution of the temporal ACCs of three models from 2000 to 2017 is shown in Fig. 3. First of all, every prediction 

model showed quite good skill scores with high positive correlation (near 1.0, Fig. 3a-c). Interestingly, the ACCs were higher 

in the marginal area where showed relatively high prediction errors. Even though the models were weak to predict SIC changes 

in the marginal sea ice zone, but they caught decreasing trends of SICs relatively well. On the other hand, the region near the 280 

Arctic center showed relatively low ACCs. In contrast to the marginal sea ice zone, the Arctic center region is relatively stable 

to the changes (Stroeve et al., 2008; Chevallier et al., 2013). Since SICs in the center is almost saturated (100% of SIC) and 

very stable, it might cause lower ACC values even there were relatively small prediction errors.  In case of the melting season 

(Jun. – Sep., Fig. 3d-f), the degree of ACCs decreased when compared to the annual-mean (Fig. 3a-c), but they also showed 

the decreasing trends well in accordance with global warming. Unlike the melting season, the freezing season (Dec. – Mar.) 285 

showed relatively lower ACCs in the marginal and Arctic center regions (Fig. 3g-i). The persistence model did not catch the 

decreasing trend and showed a negative correlation in the Laptev Sea (Fig. 3g). Further, the ACCs were quite low in the Arctic 

center region. As mentioned above, the stable and saturated sea ice resulted in lower skill scores in terms of ACC. From visual 

inspection, the CNN model showed better prediction with a stable skill score than the other models.  

 290 
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Figure 3. The temporal ACC of the persistence (a), RF (b) and CNN (c) during 2000-2017. As in (a) - (c), but for the melting (Jun. – Sep.) 
and freezing (Dec. – Mar.) seasons, (d) - (f) and (g) - (i), respectively.  
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Figure 4 shows the histograms of NSIDC SICs and the predicted SICs by three models in the melting season (Jun. – Sep.) 295 

during 2000-2017. The persistence forecasting model shows poor predictability for all ranges of SICs (Fig. 4a). In addition, 

the model tended to over-estimate for higher SICs in the melting season. The model did not catch well the decreasing trends 

of sea ice due to global warming. On the other hand, the RF and CNN models showed relatively weak predictability for 

boundary SIC values (i.e., less than 10% and over 90% SICs). In particular, the RF model showed a weakness to predict SICs 

near zero (0%) and 100%. By focusing on the RF and CNN models, the mean and standard deviation values of prediction 300 

errors (predicted SIC - NSIDC) were examined for lower as well as higher SICs. In the case of lower SICs (less than 5%), both 

models showed over-estimation. In detail, the CNN model showed a better prediction result than RF (CNN: mean error of 

4.84% and std. of 7.65%; RF: mean error of 5.92% and std. of 9.77%). On the other hand, in the case of higher SICs (over 

95%), both models showed under-estimation. The RF model shows -4.62% of error and 4.57% of standard deviation, but the 

CNN shows -4.17% and 4.14%, respectively. With the same training samples, the CNN resulted in higher prediction accuracy 305 

on both lower and higher SICs. It might be because of the larger learning capacity of CNN than RF (Wang et al., 2017). 

 

Figure 4. Histograms of SICs based on NSIDC (blue) and three models (red) in the melting season (Jun. – Sep.) during 2000-2017. 

Since the persistence model did not work well when compared to the RF and CNN models, the subsequent analyses are focused 

on the RF and CNN models. Figure 5 shows monthly prediction accuracies (i.e., RMSE and nRMSE) for the RF and the CNN 310 

models. The RF model showed lower prediction accuracy than the CNN model for all months. With regards to the RMSE of 

the CNN model, the prediction accuracy was higher in the melting season (Jun. – Sep.; 5.41%) than in the freezing season 
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(Dec. – Mar.; 6.13%). However, as mentioned, the RMSE considers the range of sample values; for instance, more zero or low 

SIC values were found in the melting season (Chi and Kim, 2017). Thus, the nRMSE showed the opposite pattern to the RMSE. 

The normalized RMSE using the standard deviation can show the prediction accuracy considering the different ranges of SIC 315 

by month. In nRMSE of the CNN model, there is a different pattern between the melting season (Jun. – Sep.; 19.09%) and 

freezing season (Dec. – Mar.; 14.08%). According to the two-sample t-test, the nRMSE in the melting season is higher than in 

the freezing season (p < 0.01; n = 18) throughout the entire period (2000-2017). The difficulty of SIC prediction in the melting 

season is a well-known problem because of the unexpected decline of Arctic sea ice in recent years (Stroeve et al., 2007; Chi 

and Kim, 2017). 320 

 

Figure 5. Monthly prediction accuracies with differences between two models for the entire periods (2000-2017, RMSEs and nRMSEs). 

By focusing on the different patterns of prediction accuracy in the freezing (Dec. – Mar.; nRMSE of 14.08%) and melting 

season (Jun. – Sep.; nRMSE of 19.09%), the yearly trends in the prediction accuracy of the CNN model were examined (Fig. 

6). The nRMSE in the melting season showed an increasing trend in more recent years (2000-2017). Since the dynamic changes 325 

in the Arctic environment, including warm air temperature (Hassol, 2004; Zhang et al., 2007), thinning sea ice (Maslanik et 

al., 2007), higher ocean surface temperature (Steele et al., 2008) have intensified in recent years, it makes the prediction of 

SIC in the melting season much more challenging. For instance, the Arctic sea ice extent experienced two major plummets, 

one in summer 2007, and one in summer 2012 because of multiple causes, such as the unexpected warm atmospheric conditions, 
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radiation anomalies, and summer cyclones (Kauker et al., 2009; Kay et al., 2008; Parkinson and Comiso, 2012; Zhang et al., 330 

2013). 

 

Figure 6. Changes of prediction accuracy (nRMSE) using CNN model in freezing (Dec.-Mar.) and melting (Jun.-Sep.) season (2000-2017, 
dotted lines show trend). 

4.2 Prediction results in extreme cases: September 2007 and 2012 335 

SIC prediction results of the actual SIC and the SICs predicted by the RF and CNN models were conducted using two extreme 

cases: September 2007 and 2012 (Fig. 7 and 8). Even though there were unpredicted plummets in the extent of the sea ice, the 

CNN model showed relatively good prediction results in Sep. 2007 and 2012 (RMSE of 5.00 % and 4.71%, nRMSE of 21.93% 

and 23.95%, respectively). 

In the case of Sep. 2007, there were large sea ice losses through the Beaufort Sea – Chukchi Sea – Laptev Sea during summer 340 

(Fig. 7d). Both the RF and CNN models showed an over-estimation of SIC over the Chukchi Sea and Laptev Sea. This implies 

that both models were not able to effectively learn the speed of the drastic retreat of sea ice in that region through training (Fig. 

7e-f). Similarly, Fig. 8 shows the prediction results and errors based on the RF and the CNN models in Sep. 2012. In summer 

2012, there was also a large loss of sea ice over the Beaufort Sea – Laptev Sea – Kara Sea (Fig. 8d). Both the RF and CNN 
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models yielded over-estimations of SIC in the region between the Barents Sea and the Kara Sea. This might have been caused 345 

by the fast decline of sea ice in that region because of warm seawater inflows from the Atlantic Ocean in the summer season 

(Schauer et al., 2002; Årthun et al., 2012; Kim et al., 2018). The results of two extreme cases showed that the prediction errors 

were mainly found in the regions that show high SIC anomalies (i.e., marginal ice zone with small training sample size; Fig. 

7d-f and 8d-f). 
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 350 

Figure 7. The actual SIC (a), predicted SICs (b-c), SIC anomaly (d), and errors between predicted and the actual SICs (e-f) in September 
2007. 
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Figure 8. The actual SIC (a), predicted SICs (b-c), SIC anomaly (d), and errors between predicted and the actual SICs (e-f) in September 

2012. 355 
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Together, Figs. 9 and 10 show a detailed analysis focusing on the regions containing high numbers of prediction errors in 

September 2007 and 2012. Interestingly in both cases, over-estimation was found in no ice zones directly neighboring the 

marginal sea ice zone (dotted black circle area, Figs. 9 and 10c-d). Both cases show high SST and T2m anomalies together 

with a low FAL anomaly, caused by a melted snow layer (Figs. 9 and 10i-k). Those anomalous patterns of SST, T2m, and 360 

FAL were caused by anomalous strong solar radiation for both cases (Kauker et al., 2009; Kay et al., 2008; Parkinson and 

Comiso, 2012; Zhang et al., 2013). In regards to v-wind, the anomalous warm wind toward the Arctic center, inflowed by 

strong southerly winds driven from the Pacific water, resulted in melting in the Beaufort Sea in 2007 (Zhang et al., 2008, Fig. 

8l). However, the CNN model did not catch the past negative SIC anomalies effectively. For instance, Figs. 9d and h depict 

overestimation errors in the northern part of the region by showing negative SIC anomalies. Similarly, Figs. 10d, g, and h 365 

document over-estimations in the northern part of the region that shows negative SIC anomalies near the Barents Sea and the 

Kara Sea. Such over-estimation might be caused by the use of a small moving window (i.e., 11-by-11). Since the anomalies 

were found quite far from the marginal sea ice zone, the models were not able to predict changes in sea ice well. However, a 

larger window size might impede the overall performance of the model by forcing it to deal with too much learnable 

information in the CNN approach (Lai et al., 2015). A detailed exploration of the optimum window size is needed in future 370 

research. 
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Figure 9. Comparison of the prediction results of both models with eight input variables in the Beaufort Sea–Laptev Sea in September 2007. 
Dotted black circle: the region shows higher prediction errors. 
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 375 

Figure 10. Comparison of the prediction results of both models with eight input variables in the Barents Sea –Kara Sea in September 2012. 
Dotted black circle: the region shows higher prediction errors. 
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4.3 Variable sensitivity 

Table 3 shows the variable sensitivity results of both models from 2000 to 2017. The two models show SIC-related variables 

as the most sensitive factor, i.e. sic_1m and sic_1y, rather than other oceanic or climate variables. These results are consistent 380 

for each model in the annual mean, freezing season (Dec.-Mar.), and melting season (Jun.-Sep.). As the SIC-related variables 

have a role regarding the time-series climatology information of sea ice, SICs themselves can affect SIC prediction in the 

future (Deser and Teng, 2008; Chi and Kim, 2017). Between long-term climatologies (sic_1y and ano_1y) and short-term 

climatologies (sic_1m and ano_1m), the former showed higher sensitivity in both models (except sic_1y and sic_1m in the 

RF). The previous studies have revealed the clear yearly sea ice trends of each month by investigating monthly averaged sea 385 

ice extents of the nine Arctic regions and the total from 1979 (Cavalieri and Parkinson, 2012; Parkinson and Cavalieri, 2002). 

Thus, the monthly models showed long-term climatologies as more contributing factors than the other variables (i.e., SICs in 

past Jan. is important in the Jan. prediction model). Although long-term climatologies were important in the monthly models, 

the RF model identified sic_1m as the most contributing factor than sic_1y. It might be due to the limitation of the input 

variables of the RF model used in this study, resulting in a lack of detailed spatial information. The RF model considered 390 

spatial information based on 24 additional proxies using an 11-by-11 window (i.e., mean, minimum, and maximum). However, 

it may not be sufficient to examine the various spatial distributions of input variables. As a result, the RF model might be 

highly influenced by short-term information rather than long-term variables. 

Table 1. The average variable sensitivity for the RF and CNN models during 2000-2017 (annual mean, freezing season (Dec.-Mar.), and 
melting season (Jun.-Sep.)). 395 

  sic_1y sic_1m ano_1y ano_1m SST T2m FAL v-wind

R
F

 

Annual 
mean 

1.098 1.107 1.086 1.032 1.059 1.029 1.080 1.018 

Freezing 
season 

1.080 1.091 1.087 1.045 1.053 1.011 1.071 1.019 

Melting 
season 

1.098 1.104 1.099 1.031 1.045 1.060 1.079 1.034 

C
N

N
 

Annual 
mean 

1.134 1.029 1.095 1.012 1.035 1.005 1.006 1.008 

Freezing 
season 

1.145 1.063 1.113 1.026 1.042 1.024 1.015 1.026 

Melting 
season 

1.121 1.033 1.090 1.017 1.054 1.010 1.005 1.015 

The highest value is highlighted

4.4 Variable sensitivity in extreme case: September 2007 and 2012 

Table 4 shows the variable sensitivity focusing on every September in 2000-2017, 2007, and 2012. Unlike the results in Table 

3, T2m and FAL were identified as the most influencing factors in the RF model. As reported in many studies, solar radiation 

has a large effect on the changes in sea ice (Kang et al., 2014; Guemas et al., 2016). In addition, the ice-albedo feedback 
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contributes to the recovery of sea ice from the losses in summer (Comiso, 2006; Tietsche et al., 2011). In the case of September 400 

2007, the warm surface air temperature was the main cause of the drastic decrease of sea ice (Kauker et al., 2009). However, 

in the case of v-wind, a Gaussian noise made an improvement to the prediction accuracy in two extreme cases for the RF 

model. While there are no studies revealing the effects of v-wind in Sep. 2012, there is an indirect effect from the southerly 

warm wind toward the Arctic center in Sep. 2007 (Zhang et al., 2008). Moreover, in the RF model, the degree of sensitivity of 

FAL is bigger in the two extreme cases than for the entire period. These pieces of evidence may point out that the RF model 405 

is less robust than the CNN model to highly anomalous SIC cases. In contrast to the RF model, the CNN model consistently 

identified the sic_1y as the most contributing variable. Although there is no clear causality between the SICs one-year before 

and the anomalous decline of sea ice in Sep. 2007 and 2012, past SICs provide information on SICs in the future as time-series 

data (Chi and Kim, 2017). 

Table 2. The average relative variable importance for the RF and CNN models in September (2000-2017 average, 2007, and 2012). 410 

  sic_1y sic_1m ano_1y ano_1m SST T2m FAL v-wind

R
F

 Average 1.095 1.069 1.137 1.067 1.072 1.148 1.165 1.070
2007 1.136 1.122 1.177 1.118 1.225 1.258 1.207 0.996
2012 1.126 1.057 1.102 1.064 1.096 1.100 1.207 0.997

C
N

N
 Average 1.090 1.035 1.056 1.005 1.009 1.000 1.002 1.004

2007 1.133 1.046 1.091 1.022 1.017 1.007 1.008 1.015
2012 1.078 1.054 1.041 1.020 1.040 1.034 1.023 1.028

The highest value is highlighted

Figure 11 shows the spatial influence of two sets of variables with impulse noise (zero values). As shown in Figs. 11b and e, 

the CNN model was not able to predict SICs in the existing sea ice area when using zero values for the SIC-related variables 

(sic_1y, sic_1m, ano_1y, and ano_1m). When the CNN model set zero values for the other environmental variables (SST, 

T2m, FAL, and v-wind), the model was not able to predict a decrease of SICs around the marginal areas between the sea ice 

and open sea (Fig. 11c and f). It is possibly due to decays on the marginal ice zone by anomalous SST, T2m, and FAL in both 415 

cases. Consistent with the results of the sensitivity analysis (Table 4), SIC-related variables were identified as important 

indicators to predict SICs (Deser and Teng, 2008). The other meteorological and oceanographic variables tended to affect the 

SIC changes of the marginal zone ice, particularly, the neighboring thin ice and no ice zone (Stroeve et al., 2008; Chevallier 

et al., 2013; Zhang et al., 2013). 
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 420 

Figure 11. The prediction errors (predictions by CNN – NSIDC, %) and RMSE (%) from three prediction results in (a-c) September 2007 
(d-f) and 2012: (a and d) original model, (b and e) with noises on SIC variables (sic_1y, sic_1m, ano_1y, and ano_1m), (c and f) with noises 
on the other variables. 

4.5 Novelty and limitations 

Our study developed a novel one-month SIC prediction model using the CNN deep learning approach. The research findings 425 

from this study can make a contribution towards filling the gaps in the research on short-term sea ice change and prediction 
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using a deep-learning approach (Grumbine, 1998; Preller and Posey, 1989). Our short-term SIC prediction model can provide 

valuable information, which can be used in various decision-making processes in the maritime industry and in research 

regarding sea ice forecasting (Schweiger and Zhang, 2015). Notably, the non-linear learning architectures of the CNN model 

showed good prediction accuracy based on the larger learning capacity and more consistent temporal SIC prediction than the 430 

traditional machine learning approach (Wang et al., 2016; Liu et al., 2018).  

However, there are some challenging limitations to the proposed CNN model, particularly regarding the prediction variables. 

First, this study did not consider the effects of a longer time scale, or persistent effects, on sea ice changes (Guemas et al., 

2014). For example, the 2007 and 2012 sea ice minimums were caused by not only the anomalous warm atmospheric conditions 

of the summer season but also by persistently warm winter and spring seasons, which especially affected the melting in the 435 

marginal ice zone (Devasthale et al., 2013). Second, the sea ice thickness is an important factor when predicting sea ice changes 

because the thinner sea ice is relatively vulnerable to melt (Stroeve et al., 2008; Chevallier et al., 2013; Zhang et al., 2013). 

However, we did not consider sea ice thickness data because of the limited availability of reliable sea ice thickness products. 

Third, there is a well-known problem with deep-learning models — interpretability. Because of complicated and non-linear 

connections between hidden layers, the deep learning models are hard to interpret (Koh et al., 2017; Guidotti et al., 2018). 440 

Recent deep learning studies have attempted to report explainable results using various visualization approaches such as heat 

maps and occlusion maps (Brahimi et al., 2017; Trigueros et al., 2018). The present study explained the model using a variable 

sensitivity analysis, as well as the inspection of the spatial distribution. However, the model still has problems providing clear 

interpretations of the non-linear relationships among variables. 

5. Conclusion 445 

The main purpose of this study was to develop a novel one-month SIC prediction model using the CNN approach. The CNN 

model showed better prediction performance (MAE of 2.28%, ACC of 0.98, RMSE of 5.76%, nRMSE of 16.15%, and NSE 

of 0.97) than the persistence forecast (MAE of 4.31%, ACC of 0.95, RMSE of 10.54%, nRMSE of 29.17%, and NSE of 0.89) 

and RF models (MAE of 2.45%, ACC of 0.98, RMSE of 6.61%, nRMSE of 18.64%, and NSE of 0.96). The prediction accuracy 

in the melting season (Jun. – Sep., nRMSE of 19.09%) was lower than the freezing season (Dec. – Mar., nRMSE of 14.08%). 450 

The overall prediction accuracy decreased in the more recent years because of the accelerated sea ice melting caused by global 

warming. In two extreme cases, the CNN model yielded promising prediction results with respect to RMSE, as well as the 

spatial distribution of SICs (less than 5% RMSE). The prediction errors normally occurred in the marginal ice zone, which has 

higher sea ice anomalies. From the variable sensitivity analysis using CNN, the SICs one-year before was identified as the 

most important factor in predicting sea ice changes. While the SIC-related variables had high effects on SIC prediction over 455 

ice-covered areas, the other meteorological and oceanographic variables were more sensitive in predicting the SICs in marginal 

ice zones. 
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