
Point by point response to review#1

We are very thankful for the thorough review from which the manuscript benefited greatly. It 
allowed us to better work out the benefits and limitations of this study. The new benchmark proved 
to be very valuable to set the calibration results into context and to make a case for spatial ice sheet 
model calibrations. We believe we can address all concerns in a convincing manner, as outlined in 
the following.
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This paper presents a new approach to probabilistic forecasting of future ice flow. [...]
However I have serious concerns about the conclusions that the authors made from the
application of their methods and cannot recommend the paper for publication. These
methods have not yet been benchmarked on representative synthetic problems and
this step is a necessary prerequisite for the publication of results using new methods.

We have now added a benchmark on representative synthetic problems as suggested, and adjusted 
our conclusions accordingly. This has allowed us to improve clarity on what we can, and what we 
cannot, achieve with this calibration approach, and how it compares to other approaches.
Changes have been made throughout the manuscript but most notable are the new sections 3.5 
(Calibration model test) and 3.6 (Comparison with other calibration approaches).

General comments:
The statistical methods that the authors use are comparatively new in glaciology. The
authors cite several precedents from other fields and a paper by Chang and others
from 2016 that used a similar combination of emulation and calibration. Chang et al
2016 and the current paper apply these methods to different datasets, however, and the
success of the method at making certain inferences from one data set is no guarantee
that the inferences from a different one are accurate.

To establish the correctness and capability of a new method on real data, it is com-
mon practice to first test it on a synthetic problem where the ground truth values of all
fields and the signal-to-noise ratio of the synthetic observations are both known exactly.
Without going through this preliminary testing step, you cannot be sure if the method
improves on existing approaches, if the posterior density assigns non-zero probability
to ground truth values, or even if the code to implement it is correct.

We agree and have now added a synthetic model test which we have applied to our proposed 
calibration approach as well to two other approaches for comparison. This analysis shows, very 
much in agreement with your remarks below, that the sliding law is not correctly inferred with any 
of the approaches tested here. The same is true for the ocean melt rate and we propose an 
explanation in the following (see below).

As the calibration does not adequately constrain these two parameters, we base the calibration
only on the remaining parameters, namely the bedrock and basal traction and viscosity scalings. We 
use a uniform prior for basal melt and select nonlinear sliding by expert judgment (see below for 
reasoning).
The synthetic model test is described in section 3.5.



My most serious concern is with the authors’ finding that a linear sliding relation gave
the best fit to observational data using their calibration procedure. This result disagrees
with recent published work using model-data comparison. Gillet-Chaulet et al. 2016
found that m = 1/5 or smaller gave the best fit to several years of velocity measurements
for Pine Island Glacier. Joughin et al. 2019 tested the linear viscous, Weertman, and
Schoof sliding laws against several years of velocity and thickness change measure-
ments at Pine Island Glacier and found that the Schoof sliding law, which is asymptotic
to m = 0 in the limit of high sliding speed, gave the best fit to observations. Other stud-
ies through the years have found evidence for nonlinear sliding using methods ranging
from laboratory studies to seismic sensing. The authors state that their calibration pro-
cedure gave the best fit with m = 1 with little further discussion. Is this an assertion that
glacier sliding really is linear viscous, despite numerous studies showing nonlinear and
even near-plastic sliding? Or is it an artifact of the calibration? If it’s the latter then the
calibration procedure should be fixed, as other published methods do not come to this
same conclusion.

Agreed, as explained above, the preference to linear sliding was not a robust finding. We follow 
your argument to justify the selection of nonlinear sliding by expert judgment.

“From this test we conclude that basal sliding law and ocean melt scaling cannot be inferred from 
this calibration approach. We will therefore only calibrate the bedrock as well as basal traction and
viscosity scaling factors. Several studies used the observed dynamical changes of parts of the ASE 
to test different sliding laws. Gillet-Chaulet et al. (2016) find a better fit to evolving changes of Pine
Island Glacier surface velocities for smaller m, reaching a minimum of the cost function from 
around m=1/5 and smaller. This is supported by Joughin et al. (2019) who find m=1/8 to capture 
the PIG speed up from 2002 to 2017 very well, matched only by a regularized Coulomb (Schoof-) 
sliding law. It further is understood that parts of the ASE bed consist of sediment-free, bare rocks 
for which a linear Weertman sliding law is not appropriate (Joughin et al., 2009). We therefore 
select nonlinear sliding by expert judgment and use a uniform prior for the ocean melt scaling.“

Moreover, the finding that m = 1 gave the best fit to observations compared to other
parameter choices that were tried does not imply that it gives a good fit to obser-
vations in any absolute sense. If the errors in the thickness change measurements
are, for example, normally distributed with known variance, then the normalized sum of
squared errors should come out to around 1/2. The Konrad et al 2017 paper only offers
some range of possible measurement errors but this could be handled in a hierarchical
Bayesian framework and the idea is the same. The question is not just what parameter
combination gave the best fit to observations, but also whether that fit is good enough
in an absolute sense given what we know about the error statistics. Otherwise we are
merely choosing the best among bad options. This issue is discussed in MacAyeal et
al. 1995 and Habermann et al. 2012.

This issue is now addressed by an initial history matching where for each parameter combination 
the implausibility parameter is calculated and only those parameter combinations with an 
implausibility below a threshold based on 95% of a chi-squared distribution with k degrees of 
freedom are considered for the probabilistic calibration. This initial history matching ensures that 
the probabilistic calibration is only based on parameter combinations which are sufficiently close to 
the observations that they cannot be easily ruled out. About 1.4% of the input space cannot be ruled 
out in this way.

This is now covered in the new section 3.4.1: History matching



Part of the problem might stem from the choice of which parameters to calibrate. The
only means by which the viscosity and basal traction can be adjusted is by scaling
the amplitude of the optimal results from an inversion computed in Nias et al. 2016.
The emulation method can capture the sensitivity of model outputs to variations in
this amplitude scaling, but amplitude scaling as such is not necessarily a good way to
capture additional modes of spatial variability. Several papers (Isaac et al. 2015, Petra
et al. 2014) have successfully applied a dimensionality reduction approach in inverse
problems by using the largest several eigenvalues of the Gauss-Newton approximation
to the Hessian of the log-posterior. The unusual results from the calibration procedure
might be ameliorated by a different choice of basis.

We agree that scaling an optimized input field, as has been done for the dataset used here, is inferior
to fully exploring the ice sheet response to more flexible, higher dimensional variations to the input 
fields. However, computational and methodological challenges make simple scaling approaches 
more feasible and a common approach to represent basal traction coefficient uncertainty in forward 
ice sheet model simulations (see e.g. Schlegel et al. 2018, Nias et al. 2019). That is, if this 
uncertainty is represented at all.
The focus of this manuscript is on how spatial observations can be used for calibration of an 
existing set of ice sheet model simulations. Here it is not our intention to improve the initial design 
of ensemble experiments. Therefore higher dimensional perturbations are not possible in this case. 
This focus has been clarified, e.g. by the following paragraph:

“The model perturbation has been done by amplitude scaling of the optimized input fields alone, 
other variations to the input fields could potentially produce model setups with better agreement to 
the observations (Petra et al., 2014; Isaac et al., 2015). However, computational and 
methodological challenges make simple scaling approaches more feasible and the use of a 
published dataset bars us from testing additional types of perturbations. Probabilistic calibrations 
are an assessment of model setups to be the best of all tested cases. It has to be clear that this is, 
despite emulation, a vast simplification in searching for the best of all possible model setups 
imaginable.”

Schlegel, Nicole-Jeanne, et al. "Exploration of Antarctic Ice Sheet 100-year contribution to sea level
rise and associated model uncertainties using the ISSM framework." Cryosphere 12.11 (2018): 
3511-3534.

Nias, I. J., et al. "Assessing uncertainty in the dynamical ice response to ocean warming in the 
Amundsen Sea Embayment, West Antarctica." Geophysical Research Letters. (2019)

Finally, the authors state that the prediction uncertainty is greatly reduced by using
their method. However, they apply a constant climate forcing, which is difficult to justify
given recent trends of CO2 release that more follow the RCP8.5 scenario. The authors
also state that future ocean warming is uncertain, but recent results from ocean GCMs
suggest that the warming trend around the Amundsen Sea is likely to continue into the
future, see Holland et al. 2019.

We agree that the simulations used here should not be understood as predictions and we have made 
this more clear in the manuscript now. We are not using the word ‘prediction’ for the model 
simulations used here anymore. We also take up the findings of Holland et al. 2019 but it has to be 
clear that it is one thing to suggest a long-term anthropogenic influence on the ocean melt in the 



ASE and a very different challenge to robustly represent climate scenarios in model simulations. To 
quote Holland et al. (2019):

“Owing to the unpredictable phasing of internal climate variability, there is significant 
variance in wind trends between ensemble members, with the 1 s.d. range for LENS and 
MENS extending between no trend and twice the mean trend (Supplementary Fig. 6). 
Internal variability is therefore of comparable importance to radiative forcing in determining 
the magnitude of PITT wind changes during the twenty-first century. In the CMIP5 ensembles,
inter-model differences add further uncertainty to the future trajectory of PITT winds 
(Supplementary Fig. 6). To deliver meaningful projections of the WAIS over this period, ice-
sheet models will need to adopt an ensemble approach forced by multiple realizations of 
ocean melting.”

Note that our projections are even shorter than the time scales considered in the quote, increasing 
the role of internal variability even more. 
We therefore note that climate scenarios are expected to have small net impact on 50 year 
simulations and add:

“Relating climate scenarios to local ice shelf melt rates is associated with deep uncertainties itself. 
CMIP5 climate models are inconsistent in predicting Antarctic shelf water temperatures so that the 
model choice can make a substantial (>50%) difference in the increase of ocean melt by 2100 for 
the ASE (Naughten et al., 2018). Melt parameterisations, linking water temperature and salinity to 
ice melt rates, can add variations of another 50% in total melt rate for the same ocean conditions
(Favier et al., 2019). The location of ocean melt can be as important as the integrated melt of an 
ice shelf (Goldberg et al., 2019). The treatment of melt on partially floating grid cells further 
impacts ice sheet models significantly, even for fine spatial resolutions of 300 m (Yu et al., 2018). It 
is therefore very challenging to make robust climate scenario dependent ice sheet model 
predictions. Instead we use projections of the current state of the ASE for a well defined set of 
assumptions for which climate forcing uncertainty is simply represented by a halving to doubling in
ocean melt.”

Naughten, Kaitlin A., et al. "Future projections of Antarctic ice shelf melting based on CMIP5 
scenarios." Journal of Climate 31.13 (2018): 5243-5261.
Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F.,
and Mathiot, P. (2019). Assessment of sub-shelf melting parameterisations using the ocean–ice-
sheet coupled model nemo (v3. 6)–elmer/ice (v8. 3). Geoscientific Model Development, 
12(6):2255–2283.
Yu, Hongju, et al. "Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using 
various ice flow models, ice shelf melt scenarios and basal friction laws." The Cryosphere 12.12 
(2018): 3861-3876.

In general the study has been re-framed towards a methods test which reduces the 
importance of the SLR projections.

Specific comments:
Page 2: 10-11: Worth mentioning some of the paleoglaciology literature, see Hein et
al. 2016.
Done



Page 3: 9-11: How nearby and how correlated? A standard approach in geostatistics
would be to assume that the correlations between the error made in measurements at
point x and point y is proportional to exp(-|x - y|/L) for some correlation length L. What
is the correlation length for the observational data you’re using? You assert that model-
to-observation comparisons on a cell-by-cell basis are not statistically independent,
but that depends on whether the model resolution is large or small compared to the
correlation length.

Using the seven year mean, gridded (10X10km) dh/dt data from Konrad et al. (2017) for the ASE 
we derived the above semivariogram which has a range value for the shown exponential fit of 
approximately 28000 m. Therefore the covariance of measurements 28km apart from each other 
reaches about 63% of the far field variance (the sill= 2 m^2 year^-2). This is in agreement with 
visual inspections for Figure 1 of Konrad et al. (2017) and means that L>10km. This has been 
added to the supplement.

Page 4: 15-16: Why should scaling the viscosity and friction coefficients up and down be a good 
way to capture variability in these fields that was not captured in the original study by Nias et al.? 
The true misfit might instead have a completely different spatial pattern.

The model ensemble, including the scaling, is performed by Nias et al. (2016). See above 
discussion on the use of scaling factors

Page 10: 3: The fact that the most likely fields match the inversion from Nias only tells
us that the fit can’t be improved within the much lower-dimensional parameter space
that you’ve chosen, not that it can’t be improved through the addition of a completely
different mode of spatial variability.

We did not intend to claim that there cannot be further improvements. The referenced note about 
“suggested good model consistency” was directed towards the absence of basin wide velocity 



biases, which could be balanced by scaled traction or viscosity fields. However, we removed this 
statement.
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Point by point response to review#2

We are very thankful for the thorough review from which the manuscript benefited greatly. In 
particular we hope that the stronger focus on method evaluation instead of future sea level/retreat 
might increase the value of the manuscript for the wider ice sheet modelling community. We believe
we can address all concerns in a convincing manner, as outlined in the following.

In the manuscript, Wernecke et al., present a promising method to calibrate uncertainty distri-
butions of mass loss derived from ice-sheet model simulations with spatial data. [...] 
Before considering it for publication, I recommend additional analyses, a more detailed
discussion of the capabilities and limitations of the method and reframing as explained in the
comments below.

Major comments:
• p.1 l.9, l.11, & other: with some more analysis, this study can make a very good test
case that demonstates the capabilities of the new method. However, it is problematic
to say that in this study you are estimating future sea-level contribution or that you
are making ‘predictions’ or ‘projections’, since your analysis is based on simulations with
constant ocean forcing, excluding for example natural variability (e.g., Jenkins et al., 2016)
or potential future changes in ambient oceanic and atmospheric conditions (e.g., Holland
et al., 2019) depending on the different socio-economic pathways (RCP scenarios). Possible
future evolution of surface mass balance is not considered and uncertainty in basal melting
is based on a simple amplitude scaling, neglecting for instance the effect of changes in
spatial melt rate distributions (discussed, e.g., in Goldberg et al., 2019) or uncertainties
related to the basal melt rate parameterisation (see, e.g., Favier et al., 2019).

We agree that we should have been more clear about the limitations of our projections. As 
suggested, the revised manuscript now focuses on testing the method.

We are not using the word ‘prediction’ for the model simulations used here any more. We also note 
that climate scenarios are expected to have small net impact on 50 year simulations and add:

“Relating climate scenarios to local ice shelf melt rates is associated with deep uncertainties itself. 
CMIP5 climate models are inconsistent in predicting Antarctic shelf water temperatures so that the 
model choice can make a substantial (>50%) difference in the increase of ocean melt by 2100 for 
the ASE (Naughten et al., 2018). Melt parameterisations, linking water temperature and salinity to 
ice melt rates, can add variations of another 50% in total melt rate for the same ocean conditions
(Favier et al., 2019). The location of ocean melt can be as important as the integrated melt of an 
ice shelf (Goldberg et al., 2019). The treatment of melt on partially floating grid cells further 
impacts ice sheet models significantly, even for fine spatial resolutions of 300 m (Yu et al., 2018). It 
is therefore very challenging to make robust climate scenario dependent ice sheet model 
predictions. Instead we use projections of the current state of the ASE for a well defined set of 
assumptions for which climate forcing uncertainty is simply represented by a halving to doubling in
ocean melt.”

Naughten, Kaitlin A., et al. "Future projections of Antarctic ice shelf melting based on CMIP5 
scenarios." Journal of Climate 31.13 (2018): 5243-5261.

Favier, L., Jourdain, N. C., Jenkins, A., Merino, N., Durand, G., Gagliardini, O., Gillet-Chaulet, F.,



and Mathiot, P. (2019). Assessment of sub-shelf melting parameterisations using the ocean–ice-
sheet coupled model nemo (v3. 6)–elmer/ice (v8. 3). Geoscientific Model Development, 
12(6):2255–2283.

Yu, Hongju, et al. "Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using 
various ice flow models, ice shelf melt scenarios and basal friction laws." The Cryosphere 12.12 
(2018): 3861-3876.

We thus argue that due to the large and multi-level uncertainty in RCP forced simulations the simple
ocean melt scaling can be considered a representation of climate forcing uncertainty. This is not to 
say that we predict the future but that we do not neglect uncertainty in the forcing altogether. As 
long as we are not able to robustly propagate uncertainties through every level of the mapping from 
climate scenarios to sub-ice shelf melt, we consider a simple perturbation approach most 
appropriate. 
In general the manuscript is re-framed towards a methods test, by adding a new synthetic model test
and comparisons with different calibration approaches. This further reduces focus from the SLR 
projections. The spatial retreat probabilities section has been removed.

• p.5 l.11: the choice of calibration of dh/dt after running the model for 7 years appears
random. Please explain this. Also, how would your results be influenced if your calibration
was done after 1, 5 or 10 years?

The rationale to use dh/dt fields for calibration is the following. The variety of datasets available to 
calibrate ice sheet models is limited. Reliable and spatially-resolved satellite observations which 
could be useful for calibrations are limited to surface ice velocity, surface elevation and the 
corresponding rates of change. The surface velocity is used for model inversion and is therefore not 
an independent parameter. The absolute ice thickness (equivalent to using ice surface elevation with
a fixed bedrock) is also set in the model parameter inversions and in addition only semi-continuous 
(as it cannot become negative). This causes additional challenges as described in Chang et al. 
(2019). We avoid these challenges by using ice thickness change data (which can be considered 
fully continuous as long as changes in ice thickness are smaller than the total thickness so that 
negative and positive values are equally possible).

Regarding the period, we compare several calibration periods and find a short spin-up phase of 
three years to be beneficial. Following this spin-up, the proposed calibration approach on the first 
four years, seven years and from the fourth to the seventh year all produce very similar results with 
projections for the end of model period of 21 [16.8, 25.5], 19.1[13.9, 24.8] and 19.5 [15.9, 24.4] 
mm SLE (weighted mean and 5.- and 95- percentiles), respectively. In the spin-up period the model 
adjusts to to the boundary conditions and calibrating on this period with the proposed approach 
creates a tendency towards slower ice sheet model runs and an underestimation of sea level 
contribution. The analysis has been changed accordingly and the sensitivities to the calibration 
period is now discussed in the manuscript with more information the the supplement.

Chang, Won, et al. "Ice Model Calibration Using Semi-continuous Spatial Data." arXiv preprint 
arXiv:1907.13554 (2019).

• p.12 l.3: my understanding of Nias et al. (2016) is, that inversion techniques were used
to estimate the spatial fields of viscosity and basal traction coefficients. Were different
inversions run for the different bed geometries and values of m? If the inversion was run
only for m = 1, a better fit for m = 1 in comparison to m = 1/3 would not be a surprise as



the parameter fields were optimized for this case. If this is true, your findings are maybe
more due to the experimental design rather than being physically interpretable. Please clarify this 
(similar for the bed topography and the other parameters) and, if applicable,
consider it in the discussion of your findings.

Thank you for the suggestion. However, Nias et al. (2016) used different basal traction coefficient 
fields for the different sliding laws and bed geometries. This has been clarified in the manuscript.

• p.14 l.24-27 and Appendix B: you state that your method improves calibration with aggre-
gated variables. It is interesting to see the effect on the different parameters (Figure B1),
but to make this point clear, please add also the effect on the mass loss and grounding line
probability estimates (similar to Figures 5,6).

We now address the impact of different calibration approaches in much more detail. This is done on 
a synthetic model test (new section 3.6), likelihood estimates (supplement) and for projections of 
mass loss (Figure 4). 

Further comments:
• page 2 lines 22ff: there are a number of modelling studies with coarser resultion that do not
require a parameterised grounding line for retreat (e.g., Schlegel et al., 2018). ‘Regional’
is maybe more appropriate than ‘one glacier’ ( e.g. Arthern and Williams, 2017).

We tried to clarify that we are talking about challenges of adequate representations of the grounding
line in low resolution models in general and make sure not to imply that there are no useful low 
resolution model studies without sub-resolution parameterisation. We also follow the suggestion of 
using ‘regional’.
“In most studies, the computational expense of exploring uncertainties either restricts the minimum
spatial resolution to several kilometres, causing challenges in representing the grounding line, or 
else are restricted regional applications.”

• p.2 l.28 and l.20: please check your use of ‘predicted’ versus ‘projected’.

We do not use ‘predictions’ for the model simulations used in this study any more.

• p.3 l.23-29: emulation of model output was also used for example in Levermann et al.
(2014).
Corrected

• p.4 section 2.1: since basal melt is the driver of mass loss in the Amundsen Sea at present,
more details should be given here, e.g., how do mass fluxes compare to observations?
We added:
“The ensemble covers a wide range of sea level rise contributions for the 50 year period with the 
most extreme members reaching -0.19 mm/year and 1.62 mm/year, respectively. About 10% of the 
ensemble shows an increasing volume above flotation (negative sea level contribution) and the 
central runs (0.5 for traction, viscosity and ocean melt parameters) contribute 0.27 mm/year (linear
sliding) and 0.26 mm/year (nonlinear sliding). The average contributions are generally reasonably 
close to satellite observations (0.33 ± 0.05 mm/year from 2010-2013 (McMillan et al., 2014)) with 
0.30 mm/year for linear sliding and modified bedrock, 0.37 mm/year for linear sliding and 
Bedmap-2, 0.38 mm/year for nonlinear sliding and modified bedrock and 0.51 mm/year for 
nonlinear sliding and Bedmap-2 (Nias et al., 2016).



• p.5 l.13: you could state here that your y(θ i ) is dhdt.
Done

• p.5 l.16: Θ = [0, 1] 5 ⊆ R d ?
Clarified

• p.5 l.21: shouldn’t S ∈ R m×n , U ∈ R m×m , V ∈ R n×n , since U, V are unitary matrices and
by definition quadratic? Please check also the other matrix dimensions.
You are right, we got sidetracked by S being diagonal but not square. Thank you.

• Section 3.1: a reference to Fig. 1 is missing.
Added

• Figure 1: please give here more explanation, e.g., of ‘unit length’.
Replaced ‘unit length’ by “normalized PCs, building an orthogonal basis” and explain: “They 
represent the main modes of variation in the model ensemble”

• p.6, l.8: would it be an option to calibrate not only after 7 years but at all datasets from
Konrad et al. (2017) individually as they find variations in the onset and propagation of
surface lowering?
A spatio-temporal calibration would be a logical next step and is now mentioned in the discussion, 
but we believe this would exceed the scope of this study.

• Figure 2: in your reprojection of the mean observation, artifacts of thickening occur. How
will this affect your calibration?
• p.7 l.1: a value of 0.6 seems to be rather large, please explain.

Combined:
By increasing the truncation value k we can investigate how said artifacts influence the calibration. 
For values of k greater than six the whole parameter space is ruled out by history matching. As can 
be seen, increasing k to six does not remove the positive artifacts and the likelihood distribution 
does change only marginally (compare upper right quarter of the figure below with Figure 5a in the 
manuscript). 
Therefore we turn the history matching off to investigate the behaviour for large k. The positive 
artifacts disappear for large values of k (e.g. k=200) and the fraction of the observations which 
cannot be represented by k principal components, as evaluated by the remaining spatial variance, 
reduces from 0.58 to 0.09. The likelihood distribution is affected but the overall picture is the same 
(compare top to bottom of following Figure). This includes a fair amount of overlap of the more 
likely parameter setups. We  conclude that the influence of the artifacts is small.



Caption: Re-projected mean observations (left) and likelihood distribution (right) for truncation 
value k=6 (top) and k=200 (bottom).

• p.7 l. 5: I cannot find where this is discussed in the results section?
It was not discussed but the BISICLES ensemble runs are now added as histogram in the SLE 
distribution plot to illustrate the improved representation by using emulation. This is now also 
mentioned in the text.

• p.7 l.7: you could help the reader if you explain what the rows of S 0 T 0T represent.
Done:
“A row of V^T can be understood as indices of how much of a particular principal component is 
present in every ice sheet model simulation.”

• p.7 l.7: how is the training done? please give more details here.
• p.7 l.12: I cannot find the definition of a Gaussian Process Emulator in the given reference.
• p.7 l.15ff: more details are needed here.
Combined:
We now additionally feature Equation 2.19 from Rasmussen and Williams (2006) in the manuscript 
which describes in detail how the emulator predictions are based on the training data and hence how
to understand the training process. In this context more details are also added to the description of 
the covariance function and how exactly it is used. We also reference the python functions which 
are used for training and marginal likelihood optimization.



• p.8 l.16: eqn.3
corrected

• Section 3.4: you are switching between observational errors and model errors in this section.
It might be easier to read if you give and explain one by one.
Has been rearranged 

• p.10 l.11: prediction, see above
Corrected

• p.15 l. 28: ‘the’ too much
Corrected

• p.16 l. 4: please specify ‘uniform within the parameter space’.
Rephrased:
“The emulator performance, as described above, shows no dependence on the input parameters”

• Figure A2: how are the quantities shown on the x and y axis obtained?
We expanded the description and added the mathematical nomenclature used elsewhere.

• Appendix B: It would be great to see also how your method compares to calibrations using
a spatially aggregated, temporal evolution of mass loss as used for example for targeted
parameter optimization in Golledge et al. (2019).
We increased the use of spatially aggregated quantities to compare the calibrations but think that a 
temporal calibration would exceed the scope of this manuscript.
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Abstract.

Probabilistic predictions of the sea level contribution from Antarctica often have large uncertainty intervals. Calibration

with observations can reduce uncertainties and improve confidence in projections, particularly if this exploits as much of the

available information as possible (such as spatial characteristics), but the necessary statistical treatment is often challenging

and can be computationally prohibitive. Ice sheet models with sufficient spatial resolution to resolve grounding line evolution5

are also computationally expensive.

Here we address these challenges by adopting a novel dimension-reduced approach to calibration,
:
combined with statistical

emulation of the adaptive mesh model BISICLES. We find the most likely contribution to global mean sea level rise from

::::
With

:::
the

::::
help

:::
of

:
a
:::::::::
published

::::::::
perturbed

:::::::::
parameter

:::
ice

:::::
sheet

:::::
model

:::::::::
ensemble

::
of

:
the Amundsen Sea Embayment (ASE)over

the next
:
,
:::
we

::::
show

::::
how

:::
the

::::
use

::
of

:::::::
spatially

::::::::
resolved

::::::::::
observations

::::
can

:::::::
improve

:::::::::::
probabilistic

::::::::::
calibrations.

::
In

::::::::
synthetic

::::::
model10

::::::::::
experiments

::::::::::
(calibrating

:::
the

::::::
model

::::
with

::::::
altered

::::::
model

::::::
results)

::::
we

:::
can

:::::::
identify

:::
the

::::::
correct

:::::
basal

:::::::
traction

::::
and

:::
ice

::::::::
viscosity

::::::
scaling

:::::::::
parameters

::
as

::::
well

::
as

:::
the

:::::::
bedrock

::::
map

:::::
with

:::::
spatial

::::::::::
calibrations

:::::
while

::
a
:::
net

:::
sea

::::
level

::::::::::
contribution

::::::::::
calibration

:::::::
imposes

::::
only

::::::
weaker

:::::::::
constraints.

:

:::::::::
Projections

::
of

:::
the

:
50 years is 10.4

:::
year

::::
sea

::::
level

:::
rise

:::::::::::
contribution

::::
from

:::
the

::::::
current

::::
state

:::
of

:::
the

::::
ASE

:::
can

:::
be

::::::::
narrowed

:::::
down

::::
with

:::::::
satellite

::::::::::
observations

:::
of

:::::
recent

:::
ice

:::::::::
thickness

::::::
change

::
to

:::::
18.9 [0.6, 23.3

::::
13.9,

::::
24.8] mm (mode and 5-95% probability15

interval) , a substantial reduction in uncertainty from the uncalibrated estimates of 9.6
:::
mm

:::::::
(median

::::
and

::::
90%

::::::
range)

::::
with

:::
the

:::::::
proposed

::::::
spatial

:::::::::
calibration

:::::::::
approach,

::::::::
compared

:::
to

::::
16.8 [-5.9, 78.2

:::
7.7,

::::
25.6] mm. We predict retreat of the grounding line

along most parts of the ASE coast with high confidence, with a maximum inland extent of around 28 km at Smith Glacier.

The
::
for

:::
the

:::
net

:::
sea

::::
level

:::::::::
calibration

::::
and

::::
23.1 [

::::
-8.4,

::::
94.5]

::
for

:::
the

:::::::::::
uncalibrated

::::::::
ensemble.

::::
The

::::::
spatial model behaviour is much

more consistent with observations if, instead of Bedmap2, a modified bedrock topography is used that most notably removes a20

topographic rise near the initial grounding line of Pine Island Glacier, though this does influence the future mass loss less than

basal traction and viscosity scaling parameters.
:
.

The ASE dominates the current Antarctic sea level contribution, but other regions have the potential to become more impor-

tant on centennial scales. These larger spatial and temporal scales would benefit even more from methods of fast but exhaustive

model calibration. Our approach therefore has the potential to improve projections for the Antarctic ice sheet on continental and25

1



centennial scales by efficiently improving our understanding of model behaviour, and substantiating and reducing projection

uncertainties.

Copyright statement. Will be included by Copernicus

1 Introduction5

The Antarctic ice sheet is currently losing mass at a rate of around 0.5 to 0.6 mm/year sea level equivalent, predominantly in the

Amundsen Sea Embayment (ASE) area of the West Antarctic Ice Sheet (WAIS) (Shepherd et al., 2018; Bamber et al., 2018).

This is due to the presence of warm Circumpolar Deep Water causing sub-shelf melting and ice dynamical changes including

retreat of the grounding line that divides grounded from floating ice (Khazendar et al., 2016). The dynamical changes are

consistent with those expected from the Marine Ice Sheet Instability (MISI) hypothesis (Favier et al., 2014; Ritz et al., 2015).10

Although projections of future ocean changes are uncertain, basal melting is expected to continue for the next few years

to decades, possibly even if the external oceanic heat flux towards the ice sheet decays (Naughten et al., 2018). Persistent

grounding line retreat could lead eventually to a collapse of the marine-based WAIS, contributing up to 3.4 m equivalent to

global mean sea level (Fretwell et al., 2013)
::::
even

::::::
though

:::::
there

:::
are

:::::::::
indications

::::
that

:
a
:::::
small

::::
part

::
of

:::
the

::::::
WAIS,

::::::::
centered

::
at

:::
the

::::::::
Ellsworth

::::::::::
Mountains,

::::::
existed

::
at

::::
least

:::
for

::::
the

:::
last

:::
1.4

:::::::
million

:::::
years

:::::::::::::::
(Hein et al., 2016). However, the future response of the15

Antarctic ice sheet is one of the least well understood aspects of climate predictions (Church et al., 2013). Predictions of the

dynamic ice sheet response are challenging because local physical properties of the ice and the bedrock it is laying on are

poorly observed. Parameterisations of unresolved physical processes are often used and need to be validated (DeConto and

Pollard, 2016; Edwards et al., 2019; Cornford et al., 2015; Pattyn et al., 2017). Progress has been made in the understanding

of ice sheet feedbacks, like MISI and the Marine Ice Cliff Instability hypothesis (DeConto and Pollard, 2016), as well as20

the development of numerical models with higher resolutions and improved initialization methods (Pattyn, 2018). But these

improvements cannot yet overcome the challenges of simulating what can be described as under-determined system with more

unknowns than knowns. For this reason, some studies use parameter perturbation approaches which employ ensembles of

model runs, where each ensemble member is a possible representation of the ice sheet using a different set of uncertain input

parameter values (Nias et al., 2016; DeConto and Pollard, 2016; Schlegel et al., 2018; Gladstone et al., 2012; Ritz et al.,25

2015; Bulthuis et al., 2019) (Here we do not distinguish between initial values of state variables, which will change during

the simulation, and model parameters, which represent physical relationships. All of those quantities can be poorly known

and contribute to uncertainties in predictions.). In most studies, the computational expense of exploring uncertainties either

restricts the minimum spatial resolution to several kilometres, necessitating parameterisation of grounding lineretreat
::::::
causing

::::::::
challenges

::
in
:::::::::::
representing

:::
the

::::::::
grounding

::::
line, or else restricts the domain to a single glacier

::
are

::::::::
restricted

:::::::
regional

::::::::::
applications.30
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One exception is the ensemble by Nias et al. (2016), which uses the adaptive mesh model BISICLES at sub-km minimum

resolution over the ASE domain (Pine Island, Thwaites, Smith and Pope glaciers).

In Antarctic ice sheet model ensemble studies, the projected sea level contribution by the end of the century typically ranges

from around zero to tens of centimetres, i.e. the ensemble spread is twice the predicted (mean/median) contribution (Edwards

et al., 2019). It is therefore essential to constrain ice sheet model parameters to reduce these uncertainties i.e. to attain sharper5

and more distinctive prediction distributions for different climate scenarios. Statistical calibration of model parameters refines

predictions by using observations to judge the quality of ensemble members, in order to increase confidence in, and potentially

reduce uncertainty in, the predicted distributions. Calibration approaches range from straightforward ‘tuning’ to formal proba-

bilistic inference. Simple ruled out/not ruled out classifications (also called history matching or precalibration) can be used to

identify and reject completely unrealistic ensemble members while avoiding assumptions about the weighting function used10

for the calibration (e.g. Holden et al., 2010; Williamson et al., 2017; Vernon et al., 2010). Formal probabilistic, or Bayesian,

calibrations using high dimensional datasets require experience of statistical methods and can be computationally prohibitive

(Chang et al., 2014). There are few ice sheet model studies using calibrations, among which are history matching (DeConto

and Pollard, 2016; Edwards et al., 2019), gradual weight assignments (Pollard et al., 2016) and more formal probabilistic treat-

ments (Ritz et al., 2015; Chang et al., 2016b, a). Most use one or a small number of aggregated summaries of the observations,15

such as spatial and/or temporal averages, thus discarding information that might better constrain the parameters.

Ideally, then, calibrating a computer model with observations should use all available information, rather than aggregating

the observations with spatio-temporal means. However, the formal comparison of model simulations with two-dimensional ob-

servations, such as satellite measurements of Antarctica, poses statistical challenges. Measurements of the Earth
::::
earth system

typically show coherent spatial patterns, meaning that nearby observations are highly correlated due to the continuity of phys-20

ical quantities. Model to observation comparisons on a grid-cell-by-grid-cell basis can therefore not be treated as statistically

independent. On the other hand, appropriate treatment of these correlations with the inclusion of a co-variance matrix in the

statistical framework for calibration can be computationally prohibitive (Chang et al., 2014). While the simplest way to avoid

this is by aggregation, often into a single value
:::::
either

::::
over

:::
the

:::::
whole

::::::
domain

:
(Ritz et al., 2015; DeConto and Pollard, 2016; Ed-

wards et al., 2019)
::
or

::::::::::
subsections

:::::::
assumed

::
to

:::
be

::::::::::
independent

:::::::::::::::
(Nias et al., 2019), a more sophisticated approach that preserves25

far more information is to decompose the spatial fields into orthogonal Principal Components (PCs) (Chang et al., 2016a, b;

Holden et al., 2015; Sexton et al., 2012; Salter et al., 2018; Higdon et al., 2008). The decompositions are used as simplified

representations of the original model ensemble in order to aid predicting
::
the

:
behaviour of computationally expensive models,

and in some cases to restrict flexibility of the statistical model in parameter calibration so that the problem is computationally

feasible and well-posed (Chang et al., 2016a, b). But the latter studies, which employ a formal probabilistic approach, still30

assume spacial and/or temporal independence at some point in the calibration. This independence assumption is not necessary

if the weighting (likelihood) calculation is shifted from the spatio-temporal domain into that of principal component basis

vectors, as proposed e.g. in Chang et al. (2014).

A further difficulty is the computational expense of Antarctic ice sheet models that have sufficient spatial resolution to

resolve grounding line migration. This can be overcome by building an ’emulator’, which is a statistical model of the response35
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of a physically-based computer model. Emulation allows a small ensemble of the original ice sheet model to be extended

to a much larger number, essentially by interpolation in the parameter space. This approach has only recently been applied in

projections of the Antarctic ice sheet contribution to sea level rise (Edwards et al., 2019; Chang et al., 2016a, b)
::
by

:::::::::::
interpolation

::
in

::
the

:::::
input

:::::::::
parameter

:::::
space

::
in

::::::
general

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Edwards et al., 2019; Chang et al., 2016a, b; Bulthuis et al., 2019)

:::
and

::::
melt

:::::::
forcing

::
in

::::::::
particular

::::::::::::::::::::
(Levermann et al., 2014). Emulation becomes particularly important in model calibration, as this down-weights or5

rejects ensemble members and therefore reduces the effective ensemble size.

The aim of this study is to use a novel, practical, yet comprehensive calibration of the high-resolution Antarctic ice sheet

model BISICLES to give smooth, refined probability functions for the dynamic sea level contribution from the Amundsen

Sea Embayment for 50 years from the present day. We derive principal components of ice thickness change estimates with a

singular value decomposition, thus exploiting more of the available information of satellite observations than previous studies.10

The statistical independence of those PCs aids the of use of Bayesian inference for probabilisticpredictions
::::::::::::
(probabilistic)

:::::::
inference. We use emulation of the ice sheet model to ensure dense sampling of the input space and therefore smooth probability

density functions. Emulating the full spatial fields allows us to assess the probabilities not only of total mass loss (in mm Sea

Level Equivalent, SLE) but also of the locations of grounding line retreat.

In Section 2 we describe the ice sheet model and satellite observation data, followed by our calibration approach in Section15

3. In Section 4 we present the resulting probabilistic ice sheet predictions
:::::::::
projections which are discussed in Section 5.

2 Model Ensemble and Observations

2.1 Ice sheet model ensemble

We use the ice sheet model ensemble published in Nias et al. (2016) using the adaptive mesh model BISICLES (Cornford

et al., 2013) with equations from Schoof and Hindmarsh (2010). The mesh has a minimum spatial resolution of 0.25 km and20

evolves during the simulation. The model was run for the Amundsen Sea Embayment with constant climate forcing for 50

years with 284 different parameter configurations. Three
::::
Two

::::::::
uncertain

:::::
inputs

:::
are

:::::
varied

::::::::::::
categorically:

:::
two

::::::::
different

:::::::
bedrock

:::::::
elevation

:::::
maps

:::
are

:::::
used,

::
as

::::
well

::
as

:::
two

::::::::
different

::::::
sliding

:::
law

:::::::::
exponents.

::::
The

:::
first

:::::::
bedrock

::::::::
elevation

::::
map

::
is

::::::::
Bedmap2,

::::::
which

::
is

:::::
based

::
on

::
an

::::::::
extensive

::::::::::
compilation

::
of
:::::::::::
observations

::::::::::::::::::
(Fretwell et al., 2013),

:::::
while

:::
the

::::::
second

::::
was

:::::::
modified

:::
by

:::::::::::::::
Nias et al. (2016)

::
in

::::
order

:::
to

:::::
reduce

:::::::::
unrealistic

::::::
model

:::::::::
behaviour.

::::
The

:::::::::::
modifications

:::
are

::::::::
primarily

:::::
local

::::
(<10

::::
km)

:::
and

:::::::
include

:::
the

:::::::
removal

::
of

::
a25

::::::::::
topographic

:::
rise

::::
near

:::
the

::::::
initial

:::::::::
grounding

:::
line

::
of
:::::

Pine
:::::
Island

:::::::
Glacier.

::::
The

::::::
sliding

::::
law

::::::::
exponent

::::::
defines

:::
the

:::::::
linearity

:::
of

:::
the

::::
basal

:::
ice

:::::::
velocity

::::
with

:::::
basal

:::::::
traction,

::::
and

::::::
values

::
of

::
1

::::::
(linear)

::::
and

:::
1/3

::::::
(power

::::
law)

:::::
have

::::
been

:::::
used.

::
In

::::::::
addition,

::::
three

:
scalar

parameters were perturbed continuously, representing amplitude scalings of (1) the ocean-induced basal melting underneath

ice shelves (i.e. the floating extensions of the ice streams), (2) the effective viscosity of the ice, determining the dynamic

response to horizontal strain, and (3) the basal traction coefficient representing bedrock-ice interactions and local hydrology.30

The default values for these three parameters were determined for initialisation of the model by Nias et al. (2016), using

inversion from
::
by

::::::
model

:::::::
inversion

::::::::::::::::::::::::::::::::::::::::
(Habermann et al., 2012; MacAyeal et al., 1995)

::
of surface ice speeds (Rignot et al., 2011),

and subsequently perturbed between half and double the default values in a Latin Hypercube design (Nias et al., 2016). We

4



use
::
by

::::::::::::::::
(Nias et al., 2016).

::::::::
Different

:::::::
default

::::
basal

:::::::
traction

::::::::::
coefficient

:::::
fields

::::
have

:::::
been

:::::
found

:::
for

:::::
each

:::::::::::
combination

::
of

::::
bed

:::::::::
topography

::::
and

::::::
sliding

:::
law

:::::
while

:::
the

:::::::
default

:::::::
viscosity

:::::
field

::::
only

::::::
differs

:::::::
between

:::
bed

::::::::::
geometries

::::
(but

:::
not

::::::
sliding

:::::
laws).

::::
We

:::
use

:::
the normalized parameter ranges with halved, default and doubled scaling factors mapped to 0, 0.5 and 1, respectively. In

addition, two further uncertain inputs are varied categorically: two different bedrock elevation maps are used, as well as two

different sliding law exponents. The first bedrock elevation map is Bedmap2, which is based on an extensive compilation of5

observations (Fretwell et al., 2013), while the second was modified by Nias et al. (2016) in order to reduce unrealistic model

behaviour. The modifications are primarily local (<

:::
The

::::::::
ensemble

::::::
covers

::
a
::::
wide

:::::
range

:::
of

:::
sea

::::
level

::::
rise

:::::::::::
contributions

:::
for

:::
the

:::
50

::::
year

::::::
period

::::
with

:::
the

:::::
most

:::::::
extreme

::::::::
members

:::::::
reaching

:::::
-0.19

:::::::
mm/year

::::
and

::::
1.62

::::::::
mm/year,

::::::::::
respectively.

::::::
About 10km) and include the removal of a topographic rise near the

initial grounding line of Pine Island Glacier. The sliding law exponent defines the linearity of the basal ice velocity with basal10

traction, and values of 1 (linear ) and 1
:
%

:::
of

:::
the

::::::::
ensemble

::::::
shows

::
an

:::::::::
increasing

:::::::
volume

::::::
above

:::::::
flotation

::::::::
(negative

:::
sea

:::::
level

::::::::::
contribution)

::::
and

:::
the

::::::
central

::::
runs

:::
(0.5

:::
for

:::::::
traction,

::::::::
viscosity

:::
and

:::::
ocean

::::
melt

::::::::::
parameters)

:::::::::
contribute

::::
0.27

::::
mm/3 (power law)are

used.
:::
year

::::::
(linear

:::::::
sliding)

:::
and

::::
0.26

::::::::
mm/year

:::::::::
(nonlinear

:::::::
sliding).

::::
The

::::::
average

::::::::::::
contributions

:::
are

::::::::
generally

:::::::::
reasonably

:::::
close

::
to

::::::
satellite

:::::::::::
observations

::::::::::
(0.33± 0.05

::::::::
mm/year

::::
from

:::::::::
2010-2013

:::::::::::::::::::
(McMillan et al., 2014)

:
)
::::
with

::::
0.30

::::::::
mm/year

::
for

:::::
linear

::::::
sliding

::::
and

:::::::
modified

::::::::
bedrock,

::::
0.37

:::::::
mm/year

:::
for

::::::
linear

::::::
sliding

:::
and

::::::::::
Bedmap-2,

::::
0.38

:::::::
mm/year

:::
for

::::::::
nonlinear

::::::
sliding

::::
and

::::::::
modified

:::::::
bedrock15

:::
and

::::
0.51

:::::::
mm/year

:::
for

::::::::
nonlinear

::::::
sliding

::::
and

:::::::::
Bedmap-2

::::::::::::::
(Nias et al., 2016)

:
.

For a full description of the model ensemble see Nias et al. (2016). For the calibration we
:::
We

:::::
allow

:::
for

:
a
::::
short

::::
spin

:::
up

:::::
phase

::
of

:
3
:::::
years

:::
for

:::
the

::::::
model

::
to

:::::
adjust

:::
to

:::
the

:::::::::::
perturbations

:::
and

::::
use

:::
the

::::::::
following

::
7

:::::
years

::
as

:::::::::
calibration

::::::
period.

::::::
Other

:::::::::
calibration

::::::
periods

::::
have

::::
been

::::::
tested

:::
and

:::::
show

::::
small

::::::
impact

:::
on

:::
the

::::::
results

::
for

::::::::::
calibrations

::
in

:::::
basis

::::::::::::
representation.

:::
We

:
regrid the simulated

surface elevation fields for the first 7 years
:::
this

::::::
period

:
to the same spatial resolution as the observations (10 km×10 km) by20

averaging.

We do use the whole model domain and a finer model resolution of 4 km×4 km for projections (after
::::
The

:::
sea

::::
level

::::
rise

::::::::::
contribution

::
at

:::
the

:::
end

::
of
:::

the
::::::

model
::::::
period

:
(50 years) because we are not restricted by the observational data characteristics.

Besides this, the same methods (spatial decomposition and emulation, see below) are used for the projections (after 50 years)

as for the calibration period. The spatial mask defining the catchment area
:
is

:::::::::
calculated

::::::
directly

:::
on

:::
the

:::::
model

:::::
grid,

:::::
using

:::
the25

::::
same

:::::::::
catchment

::::
area

::::
mask

:
as in Nias et al. (2016)is used for sea level rise estimates.

:
.

2.2 Observations

We use a compilation of five satellite altimeter datasets of surface elevation changes from 1992-2015 by Konrad et al. (2017).

The synthesis involves fitting local empirical models over spatial and temporal extents of up to 10 km and 5 years, respectively,30

as developed by McMillan et al. (2014). The satellite missions show high agreement, with a median mis-match of 0.09 m/year.

3 Theoretical basis and Calibration Model
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Our
:
In

:::
the

::::::::
following

:::
we

:::::::
propose

:
a
::::
new

::
ice

:::::
sheet

:::::
model

:::::::::
calibration

::::::::
approach

:::::
which

::::
will

::
be

:::::
tested

::
in

::::::
section

:::
3.1

:::
and

:::::::::
compared

::
to

::::::::
alternative

::::::::::
approaches

::
in

::::::
section

::::
3.2.

::::
This calibration approach consists of an emulation step and a calibration step. Emulation

- statistical modelling of the ice sheet model - helps to overcome computational constraints and to refine probability density

functions, while the subsequent calibration infers model parameter values which are likely to lead to good representations of the

ice sheet. Both emulation and calibration take place in the basis representation of a Principal Component (PC) decomposition,5

in order to adequately represent spatial correlation and avoid unnecessary loss of information (e.g. by comparing total or mean

model-observation differences). We build two spatial emulators: one represents the model response after the first 7 years of

the simulation, which is used for calibration. The second
::::::::
construct

:
a
::::::
spatial

::::::::
emulator

:::
for

:::
the

:::::::::
calibration

::::::
period

::
to

:::::::::
represents

::
the

::::
two

::::::::::
dimensional

::::::
model

:::::::
response

::
in
:::
ice

::::::::
thickness

:::::::
change.

::
A

::::::
second,

::::::::::
non-spatial emulator represents the response

::::
total

:::
sea

::::
level

:::
rise

:
at the end of the 50 year simulation, and is used to make probabilistic predictions of total sea level contribution and10

spatial grounding line retreat.
::::::::::
simulations.

3.1 Principal Component Decomposition

Let y(θi) be the m dimensional spatial ice sheet model
:::::
model

:::
ice

::::::::
thickness

::::::
change output for a parameter setting θi, where

m is the number of spatial
::::::::
horizontal

:
grid cells and the model ensemble has n members so that θ1, ...,θn ∈Θ, Θ ∈Rd

being the parameter space which is
:::::::::::::
θ1, ...,θn = Θ,

:::::::::::::::
Θ⊂ [0,1]d ⊂Rd

:::::
being

::
the

::::::
whole

::
set

:::
of

::::
input

::::::::::
parameters,

::::::::
spanning in our15

case spanned by
::
the

:
d= 5 model input parameters

::::::::::
dimensional

::::::
model

::::
input

:::::
space. The m×n matrix Ỹ is the row-centered

combined model output with the i.th column consisting of y(θi) minus the mean of all ensemble members, ȳ, and each row

represents a single location.
::
In

:::
the

:::::::::
following

:::
we

:::
will

:::::::
assume

::::::
n <m.

:
A principal component decomposition is achieved by

finding U, S and V so that

Ỹ = USV
T

(1)20

where the n×n
::::::
m×n

:::::::::
rectangular

:
diagonal matrix S contains the n positive singular values of Ỹ and U and VT are unitary.

The rows of VT are the
::::::::::
orthonormal eigenvectors of ỸT Ỹ and the columns of U are the

::::::::::
orthonormal

:
eigenvectors of ỸỸ

T
.

In both cases the corresponding eigenvalues are given by diag(S)2. By convention U, S and VT are arranged so that the values

of diag(S) are descendingand we .
::::
We

:::
use

::::::::
B = US

::
as

::::::::
shorthand

:::
for

:::
the

::::
new

:::::
basis

:::
and

:
call the i.th column of U

:
B

:
the i.th

principal component.25

The fraction of ensemble variance represented by a principal component is proportional to its eigenvalue
:::
the

::::::::::::
corresponding

:::::::::
eigenvalue

::
of

::
U and typically there is a number k < n for which the first k principal components represent the whole ensemble

sufficiently well. We choose k = 4 for the emulator at the beginning of the model period and k=5 for the second emulator at

the end of the period so that in both cases
:::::
k = 5

::
so

::::
that 90% of the model variance is captured (Appendix A).

:::::
Figure

:::
1).

::::
The

:::
first

::
k

:::::::
columns

::
of

:::
U)

:::
are

::::::::
illustrated

::
in
::::::
Figure

::
1

:::::
which

:::
are

::::::
related

::
to

:::
the

::::
PCs

::::
(Bi)::

by
::::::::::::
multiplication

::::
with

:::
the

:::::::
singular

::::::
values.

:
30

Ỹ ≈U′S′V′Ỹ ≈B′V′
::::::::

T (2)
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Figure 1. First four
:::
The

:::
first

:::
five

:::::::::
normalized PCs

:
,
::::::
building

::
an

::::::::
orthogonal

:::::
basis.

::::
They

:::::::
represent

::
the

::::
main

::::::
modes of

::::::
variation

::
in the calibration

period with unit length
:::::
model

:::::::
ensemble

with U′
::
B′

:
and V′ consisting of the first k columns of U

::
B

:
and V, while S′ is the k× k upper left corner matrix of S

:
.

This decomposition reduces the dimensions from m grid cells to just k principal components. The PCs are by construction

orthogonal to each other and can be treated as statistically independent.

3.2 Observations in basis representation

Spatial m dimensional observations z(xy) can be transformed to the basis representation by:5

ẑ = (U′(B′
::

TU′)−1U′B′)−1B′
:::::::

Tz(xy) (3)

for z(xy) on the same spatial grid as the model output y(θ) which has the mean model output ȳ subtracted for consistency.

We perform the transformation as in Equation 3 for all of the bi-yearly observations over a seven year period to get 14

different realizations of ẑ. Due to the smooth temporal behaviour of the ice sheet on these timescales we use the observations

as repeated observations of the same point in time to specify ẑ as the mean and use the variance among the 14 realizations of10

ẑ to define the observational uncertainty in the calibration model (sec 3.4).
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Figure 2. Left: Mean observations
::::::
observed

:::
ice

:::::::
thickness

:::::
change. Right: Observations

:::::::
Observed

:::
ice

:::::::
thickness

:::::
change

:
projected to first 4

:::
five

PCs and reprojected to spatial field

Figure 2 shows that large parts of the observations can be represented by the first 4
:
5
:
PCs from Fig. 1. It is only this part

illustrated on the right of Fig. 2 which is used for calibration. The spatial variance of the difference between the reprojected

and original fields is substantially smaller than from z(xy) alone:

V AR(z(xy)−U′((U′
T
U′)−1U′

T
z(xy)))

V AR(z(xy))

V AR(z(xy)−B′((B′
T
B′)−1B′

T
z(xy)))

V AR(z(xy))
::::::::::::::::::::::::::::::::::

≈ 0.62.58
::

3.3 Emulation

For probabilistic prediction
:::::::::
projections

:
we need to consider the probability density in the full, five-dimensional parameter5

space. This exploration can require very dense sampling of probabilities in the input space to ensure appropriate representation

of all probable parameter combinations. This is especially the case if the calibration is favouring only small subsets of the

original input space. In our case more than half
:::
90%

:
of the projection distribution would be based on just six

::
five

:
BISICLES

ensemble members. For computationally expensive models sufficient sampling can be achieved by statistical emulation, as laid

out in the following.10

:
A
::::

row
:::

of
::::
V′

T
::::
can

::
be

::::::::::
understood

:::
as

::::::
indices

:::
of

::::
how

:::::
much

:::
of

:
a
:::::::::

particular
::::::::
principal

:::::::::
component

::
is
:::::::

present
::
in
::::::

every
:::
ice

::::
sheet

::::::
model

:::::::::
simulation.

:::::::::
Emulation

::
is
:::::

done
:::
by

::::::::
replacing

:::
the

:::::::
discrete

:::::::
number

::
of

:::
ice

:::::
sheet

::::::
model

::::::::::
simulations

::
by

::::::::::
continuous

:::::::
functions

:::
or

::::::::
statistical

::::::::
models. We use each row of S′V′

T in combination
::::
V′

T ,
:::::::::

combined
:
with Θto train independent

continuous statistical models,
::
to
:::::

train
:::
an

::::::::::
independent

::::::::
statistical

::::::
model

::::::
where

:::
the

:::::
mean

::
of
::::

the
:::::::
random

:::::::::
distribution

:::
at

::
θ

::
is

::::::
denoted

::::::
ωi(θ).

:::::
Here

:::
the

:::::::
training

::::::
points

:::
are

:::::
noise

::::
free

::
as

:::
the

::::::::
emulator

::
is

:::::::::::
representing

:
a
:::::::::::

deterministic
::::

ice
::::
sheet

::::::
model

::::
and15

:::::::
therefore

::::::::::::::
ωi(Θ) = [V′

T
]i :::

for
:::::::
principal

::::::::::
components

:::::::::
i= 1, ...,k. Each of those statistical models can be used to interpolate (ex-

trapolation should be avoided) between members of Θ to predict the ice sheet model behaviour and create surrogate ensemble

members. We call the aggregation of those statistical models an emulator.
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We use Gaussian Process (GP) models, which are a common choice for their high level of flexibility and inherent emulation

uncertainty representation (Kennedy and O’Hagan, 2001; O’Hagan, 2006; Higdon et al., 2008).
:::
The

::::::
random

::::::::::
distribution

::
of

::
a

:::::::
Gaussian

:::::::
process

:::::
model

::::
with

:::::
noise

:::
free

:::::::
training

:::
data

::
at
::
a

:::
new

:::
set

::
of

::::
input

::::::
values

::
θ∗::

is
:::::
found

::
by

:::::::::::::::::::::::::::::::
(e.g. Rasmussen and Williams, 2006)

:
:

Ωi∗ =N(K(θ∗,Θ)K(Θ,Θ)−1ωi(Θ),

K(θ∗,θ∗)−K(θ∗,Θ)K(Θ,Θ)−1K(Θ,θ∗))
:::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)5

:::::
where

:::
the

::::::
values

::
of

::::::::::::::::::::
K(Θ,Θ)ij = c(θi,θj)

:::
are

:::::::
derived

::::
from

::::::::::
evaluations

:::
of

:::
the

:::
GP

:::::::::
covariance

::::::::
function

:::::
c(·, ·).

::::::::::
Equivalent

::::::::
definitions

::::
are

::::
used

:::
for

:::::::::
K(θ∗,Θ),

:::::::::
K(Θ,θ∗):::

and
::::::::::
K(θ∗,θ∗),

::::
note

::::
that

:::::::::
K(θ∗,θ∗)::

is
::
a

::::
1× 1

::::::
matrix

::
if
:::
we

:::::::
emulate

::::
one

::::
new

::::
input

:::
set

::
at

:
a
:::::
time.

:::
We

:::
use

:
a
:::::::
Matern

:::
( 52 )

::::
type

:::::::
function

:::
for

:::::
c(·, ·)

:::::
which

::::::::
describes

:::
the

:::::::::
covariance

:::::
based

:::
on

::
the

::::::::
distance

:::::::
between

::::
input

::::::::::
parameters.

::::::::::
Coefficients

:::
for

:::::
c(·, ·)

:::::
(also

:::::
called

::::::::::::::::
hyper-parameters),

::::::::
including

:::
the

:::::::::
correlation

::::::
length

:::::
scale,

:::
are

:::::::::
optimized

::
on

:::
the

::::::::
marginal

::::::::
likelihood

::
of

::::::
ω(Θ)

::::
given

:::
the

::::
GP. We refer to Rasmussen and Williams (2006) for an in-depth discussion and10

tutorial of Gaussian Process Emulators. The emulator can be described as a joint Gaussian distribution:

Ω =N(ω(θ), Σω(θ))

where Σω is the k× k emulator co-variance matrix and ω the emulator mean vector for any given θ. Here Σω is diagonal due

:::
Due

:
to the statistical independence of the principal components . The diagonal values of Σω are derived from the corresponding

Gaussian Process models and are dependant on the distance between the new θ, for which the emulator is evaluated, and the15

training points from the ice sheet model. The nature of this distance dependency is defined by the Gaussian Process covariance

function which we define as Matern ( 52 )type with length scales optimized on the marginal likelihood
::
we

:::
can

::::::::
combine

:::
the

::
k

:::
GPs

:::
to:

Ω =N(ω(θ), Σω(θ))
::::::::::::::::::::

(5)

:::
The

::::::::
combined

:::
Ω

:
is
::
in
:::
the

:::::::::
following

:::::
called

:::::::
emulator

::::
and

:::::
ω(θ)

::
as

::::
well

::
as

:::
the

::::::
entries

::
of

:::
the

:::::::
diagonal

::::::
matrix

::::::
Σω(θ)

:::::
follow

:::::
from20

:::::::
equation

::
4.

:::
We

:::
use

:::
the

::::::
python

::::::
module

::::
GPy

:::
for

::::::
training

:::::::::::::::
(GPRegression())

:::
and

:::::::
marginal

:::::::::
likelihood

::::::::::
optimization

:::::::::::::::::
(optimize_restarts()).

In total we generate more than 119
:

000 emulated ensemble members. Emulator estimates of ice sheet model values in a

leave-one-out cross-validation scheme are very precise with squared correlation coefficients for both emulators of R2 > 0.993

(Appendix A
::::::::::
R2 > 0.988

::::
(See

::::::::::
supplement

:::
for

::::
more

::::::::::
information).

3.4 Calibration Model25

Given the emulator in basis representation, a calibration can be performed either after re-projecting the emulator output back to

the original spatial field (Chang et al., 2016a; Salter et al., 2018, e.g.)
::::::::::::::::::::::::::::::::::::
(e.g. Chang et al., 2016a; Salter et al., 2018) or in the ba-

sis representation itself (Higdon et al., 2008, e.g.)
::::::::::::::::::::::::::::::::::::
(e.g. Higdon et al., 2008; Chang et al., 2014). Here we will base probability

statements
::::
focus

:
on the PC basis representation.
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We assume the existence of a parameter configuration θ∗ within the bounds of Θ which leads to an optimal model represen-

tation of the real world. To infer the probability of any θ to be θ∗ we rely on the existence of observables, i.e. model quantities

z for which corresponding measurements ẑ are available. We follow Bayes’ theorem to update prior (uninformed) expectations

about the optimal parameter configuration with the observations to find posterior (updated) estimates. The posterior probability

of θ being the optimal θ∗ given the observations is:5

π(θ|z = ẑ)∝ L(z = ẑ|θ)×π(θ) (6)

where L(z = ẑ|θ) is the likelihood of the observables to be as they have been observed under the condition that θ is θ∗, and

π(θ) is the prior (uninformed) probability that θ = θ∗. Following Nias et al. (2016) we choose uniform prior distributions in

the scaled parameter range [0,1] (see also section 2 and eq
::
Eq. 11 in Nias et al. (2016)). We relate the observables

:::
The

::::::::
emulator

:::::
output

::
is

::::::
related to the real state of the ice sheets in basis representation, γ, by :

:::
the

:::::
model

::::::::::
discrepancy

::
ε:

:
10

=γ=
:
ω(θ∗) + (U′

T
U′)−1U′

T
ε (7)

:::
We

::::::
assume

:::
the

:::::
model

::::::::::
discrepancy

::
to

::
be

::::::::::
multivariate

::::::::
Gaussian

:::::::::
distributed

::::
with

::::
zero

:::::
mean;

::::::::::::::
ε=N(0, Σε).

::::
The

::::::::::
observables

::
are

::
in
::::
turn

::::::
related

::
to

::
γ

:::
by:

:

z = γ+ (B′
T
B′)−1B′

T
e

:::::::::::::::::::::
(8)

where e is the spatial observational error and the transformation (U′
T
U′)−1U′

T follows from equ 3. The emulator output is15

related to γ by the model discrepancy ε:

γ = ω(θ∗) + ε

:::::::::::::
(B′

T
B′)−1B′

T

::::::
follows

:::::
from

:::
Eq.

::
3.

We simplify the probabilistic inference by assuming the observational error e, model error/discrepancy εand
:
,
:
the model

parameter values Ω
::
Θ

:::
and

::::::::::::
observational

::::
error

::
e

:
to be mutually statistically independent with ε=N(0, Σε). We further20

assume the observational error
:::
and

:
e
:
to be spatially identically distributed with variance σ2

e , so that

(U′(B′
::

TU′)−1U′B′)−1B′
:::::::

Te=N(0, σ2
e(U′(B′

::

TU′)−1B′)−1
:::::

) (9)

The k× k matrix (U′
T
U′)−1

::::::::::
(B′

T
B′)−1

:
is diagonal with the element-wise inverse of diag(S′)2i as diagonal values. We

estimate σ2
e from the variance among the 14 observational periods for the first principal component constituting ẑ1, i.e.

σ2
e = V AR(ẑ1) · diag(S′)21 (10)25

Note that the existence of γ is an abstract concept, implying that it is only because of an error ε that we cannot create

a numerical model which is equivalent to reality. However abstract, it is a useful, hence common statistical concept allow-

ing us to structure expectations of model and observational limitations (Kennedy and O’Hagan, 2001). Neglecting model

10



uncertainty
::::::::::
discrepancy, whether explicitly by setting ε= 0, or implicitly, would imply that the

::
an

:
ice sheet model can make

exact predictions of the future once the right parameter values are found. This expectation is hard to justify considering the

assumptions which are made for the development of ice sheet models, including sub-resolution processes. Neglecting model

discrepancy typically results in overconfidence and potentially biased results.

It follows from equations 5, 8, 7 and 9 that5

L(z = ẑ|θ)∝ exp
[
− 1

2
(ω(θ)− ẑ)TΣ−1T (ω(θ)− ẑ)

]

with ΣT = σ2
e(U′

T
U′)−1 + Σε + Σω.

The inclusion of systematic model uncertainties can
::
At

:::
the

::::
same

:::::
time

:::
can

:::
the

::::::::
inclusion

::
of

:::::
model

::::::::::
discrepancy

:
lead to identi-

fiability issues where the model signal cannot be distinguished from imposed systematic model uncertainty (discrepancy)
::::
error.

To overcome such issues, constraints on the, e.g. spatial shape, of the discrepancy can be
::
are

:
used (Kennedy and O’Hagan,10

2001; Higdon et al., 2008). An inherent problem with representing discrepancy is that its amplitude and spatial shape are in

general unknown. If the discrepancy were well understood the model itself or its output could be easily corrected. Even if

experts can specify regions or patterns which are likely to show inconsistent behaviour, it cannot be assumed that these regions

or patterns are the only possible forms of discrepancy. If its representation is too flexible it can however become numerically

impossible in the calibration step to differentiate between discrepancy and model behaviour.15

For these reasons we choose a rather heuristic method which considers the impact of discrepancy on the calibration directly

and independently for each PC. Therefore Σε is diagonal with diag(Σε) = (σ2
ε1, ...,σ

2
εk)T . A common ruleof thumb is

:::
The

:::::
’three

:::::
sigma

::::
rule’

:::::
states

:
that at least 95% of a probability distribution lies

:::::::::
continuous

::::::::
unimodal

:::::::
density

::::::::
functions

::::
with

:::::
finite

:::::::
variance

::
lie

:
within three standard deviations from the mean (Pukelsheim, 1994). For the i.th PC we find σ2

εi :::::::
therefore

::::
find

::::
σ2
i95

so that 95% of the observational distribution N(ẑi, σ2
ei) lies within 3σεi ::::

3σi95:from the mean of ω(Θ)i, i.e. across the n20

ensemble members. We
:::::
further

::::
note

:::
that

:::
we

:::
do

:::
not

:::::
know

:::
the

::::::
optimal

::::::
model

::::
setup

::::::
better

:::
than

:::
we

:::::
know

:::
the

::::
real

::::
state

::
of

:::
the

:::
ice

::::
sheet

:::
and

:::
set

:::
the

::::::::
minimum

::::::::::
discrepancy

:::
to

::
the

::::::::::::
observational

::::::::::
uncertainty.

:::::
Hence

::::::::::::::::::::
σ2
εi =MAX(σ2

i95,σ
2
ei).

:::
We thereby force the observations to fulfill the ‘three-sigma rule’ by considering them as part of the model distribution

ω(Θ)i :::::
while

:::::::
avoiding

::::
over

:::::::::
confidence

::
in

:::::
cases

:::::
where

:::::::::::
observations

:::
and

::::::
model

::::
runs

:::::::
coincide.

3.4.1
::::::
History

:::::::::
matching25

::::::::::
Probabilistic

::::::::::
calibrations

::::::
search

:::
for

:::
the

:::
best

:::::
input

::::::::::
parameters,

:::
but

::::::::::
stand-alone

::::::::::
probabilistic

::::::::::
calibrations

::::::
cannot

::::::::
guarantee

::::
that

::::
those

:::
are

::::
also

::::::
’good’

:::::
input

:::::::::
parameters

:::
in

::
an

:::::::
absolute

::::::
sense.

:::::
While

::::::
’good’

::
is
::::::::::

subjective,
:
it
::
is
:::::::
possible

:::
to

:::::
define

::::
and

::::
rule

:::
out

:::::::::
implausible

:::::
input

::::::::::
parameters.

:::
The

::::::::::::
Implausibility

:::::::::
parameter

:
is
:::::::::
commonly

:::::::
defined

::
as

:::::::::::::::::::
(e.g. Salter et al., 2018)

:
:

I(θ) = (ω(θ)− ẑ)TΣ−1T (ω(θ)− ẑ)
::::::::::::::::::::::::::::::

(11)

::::
with

:::::::::::::::::::::::::::
ΣT = σ2

e(B′
T
B′)−1 + Σε + Σω .

::
A
::::::::
threshold

:::
on

::::
I(θ)

:::
can

:::
be

:::::
found

:::::
using

:::
the

::::
95%

:::::::
interval

::
of

:
a
::::::::::
chi-squared

::::::::::
distribution30

::::
with

:::::
k = 5

::::::
degrees

:::
of

:::::::
freedom.

:::::::::
Therefore

:::
we

:::
rule

::::
out

::
all

::
θ

::::
with

::::::::::
I(θ)> 11.

::
By

::::::
adding

::::
this

::::
test,

:::::
called

::::::
history

:::::::::
matching,

:::
we

11



:::::
ensure

::::
that

::::
only

:::::
those

::::
input

:::::::::
parameters

:::
are

:::::
used

::
for

::
a
::::::::::
probabilistic

:::::::::
calibration

::::::
which

:::
are

:::::::::
reasonably

:::::
close

::
to

:::
the

:::::::::::
observations.

::
In

:::
the

:::::
worst

::::
case

:::
the

:::::
whole

:::::
input

:::::
space

:::::
could

::
be

:::::
ruled

:::
out,

:::::::
forcing

:::
the

:::::::::
practitioner

::
to
:::::::::

reconsider
:::
the

:::::::::
calibration

::::::::
approach

::::
and

:::::::::
uncertainty

::::::::
estimates.

:::::
Here

:::::
about

::::
1.4%

:::
of

:::
the

::::::::
parameter

:::::
space

::::::
cannot

::
be

:::::
ruled

:::
out.

:

3.4.2
:::::::::::
Probabilistic

::::::::::
Calibration

:::
For

::
all

::
θ

:::::
which

:::::
have

:::
not

::::
been

::::
ruled

::::
out,

:::
the

:::::::::
likelihood

::::::::::
L(z = ẑ|θ)

::::::
follows

::::
from

:::::::::
equations

::
5,

::
8,

:
7
:::
and

:::
9:5

L(z = ẑ|θ)∝ exp
[
− 1

2
(ω(θ)− ẑ)TΣ−1T (ω(θ)− ẑ)

]
::::::::::::::::::::::::::::::::::::::::::::

(12)

The calibration distribution in Equation 6 can be evaluated using Eq. 12 with a trained emulator (Eq. 5
:
4), observational (Eq.

10) and model uncertainties
:::::::::
discrepancy

:
(above) and the prior parameter distributions π(θ) set by expert judgment.

4 Results

3.1
:::::::::

Calibration
::::::
model

::::
test10

::
In

:::
this

:::::::
section

:::
we

:::
test

::::
our

:::::::::
calibration

::::::::
approach

:::
on

::::::::
synthetic

::::::::::
observations

:::
to

:::
see

:::::::
whether

:::
our

:::::::
method

::
is
:::::::
capable

::
of

:::::::
finding

::::::::::::
known-correct

::::::::
parameter

:::::::
values.

:::
We

:::::
select

::::
one

:::::::
member

:::
of

:::
the

:::::::::
BISICLES

::::::
model

::::::::
ensemble

::
at
::

a
::::
time

::::
and

:::
add

:::
14

::::::::
different

:::::::::
realizations

::
of

:::::
noise

::
to

::
it.

::::
The

::::
noise

::
is

:::::
added

::
to

:::
see

::::
how

:::
the

:::::::::
calibration

::::::::
performs

:
if
:::
the

:::::::::::
observations

::::::
cannot

::
be

::::
fully

::::::::::
represented

::
by

:::
the

:::
ice

::::
sheet

::::::
model.

:

3.2 Parameter calibration15

:::
We

:::
use

:::::::
spatially

:::::::::::
independent,

::::::::::
zero-mean,

::::::::
normally

:::::::::
distributed,

:::::::
random

:::::
noise

::::
with

:::::::
variance

:::::
equal

::
to

:::
the

:::::
local

:::::::
variance

:::::
from

::
the

:::
14

::::::
periods

:::
of

::::::
satellite

:::::::::::
observations.

:::::
This

:::
way

:::
the

::::::::
variance

::::::::::
incorporates

:::::::
dynamic

:::::::
changes

::::::::::::::::::::::
(acceleration/deceleration

::
of

:::
the

::
ice

::::::::
thickness

:::::::
change)

::::
and

::::::::
technical

:::::
errors

::::
(e.g.

:::::::::::
measurement

::::
and

::::::::
sampling

::::::
errors).

:::
For

:::::
each

:::::::
selected

:::::
model

:::
run

:::
we

::::::::
generate

::
14

:::::
noise

:::::
fields

:::
and

:::
add

:::::
them

::
to

:::
the

:::::
single

::::::
model

:::
ice

:::::::
thickness

:::::::
change

::::
field.

:::::
These

:::
14

::::::::::
realizations

:::
are

::::
used

::
in

::::::
exactly

:::
the

:::::
same

:::
way

::
as
:::::::::
described

:::::
before

:::
for

:::
the

:::
14

::::::
periods

::
of

:::::::
satellite

:::::::::::
observations.20

Likelihood of different model inputs (evaluations of Equation 12). Upper right panels show likelihood values marginalized to

pairs of parameters, normalized to the respective maximum for clarity. Lower left panel shows likelihood values marginalized

to individual parameters for the three scalar parameters (line plots), and sliding law and bedrock topography map (text and

quotation within), normalized to an integral of one in the style of Probability Density Functions.
::
For

::::::
Figure

::
3
:::
the

:::::
model

::::
run

::::
with

:::::
central

:::::::::
parameter

:::::
values

:::::::
(= 0.5)

::
for

:::::
basal

:::::::
traction,

:::::::
viscosity

::::
and

:::::
ocean

::::
melt

::::::
scaling

::::::
factors,

::::::::
nonlinear

::::::
sliding

:::
and

::::::::
modified25

::::::
bedrock

::::
has

::::
been

:::::::
selected,

::
as

::::::::
indicated

:::
by

:::::
black

::::::
circles.

::::
This

::::::::
parameter

:::
set

:::
has

::::
been

:::::::
selected

:::
as

:
it
:::::::::
highlights

:::
the

:::::::::
limitations

::
of

::
the

::::::::::
calibration,

:::
but

:::
the

::::::
results

::
of

:::::
many

::::
other

::::::::
synthetic

::::::
model

::::
tests

:::
are

:::::
shown

::
in

:::
the

::::::::::
supplement.

:

12



Figure 3. Mean sea level contributions at end
::::::::
Likelihood

:
of 50 year model period as in Fig. 5. For each parameter combination (upper right

pannels) or single parameter value
::::::::::
combinations

::
of

:::::::
synthetic

:::
test

:::
case

:
(lines

::::::::
evaluations

::
of

:::::::
Equation

::
12).

:::::
Upper

::::
right

:::::
panels

::::
show

::::::::
likelihood

:::::
values

:::::::::
marginalized

::
to
::::
pairs

::
of

:::::::::
parameters,

:::::::::
normalized

:
to
:

the mean sea level contributions accross all other
:::::::
respective

::::::::
maximum

::
for

::::::
clarity.

:::::
Lower

:::
left

::::
panel

:::::
shows

::::::::
likelihood

:::::
values

::::::::::
marginalized

::
to

::::::::
individual

:
parameters is calculated using

::
for

:
the prior dirstibutions

::::
three

:::::
scalar

::::::::
parameters (i

:::
line

:::::
plots),

:::
and

:::::
sliding

:::
law

:::
and

:::::::
bedrock

::::::::
topography

::::
map

:::
(text

:::
and

:::::::
quotation

:::::::
within),

::::::::
normalized

::
to

::
an

::::::
integral

::
of

:::
one,

::::::::
consistent

:::
with

:::::::::
Probability

::::::
Density

::::::::
Functions. e

::
The

::::::
central

:::::
values

:::
for

:::::::
traction,

:::::::
viscosity

:::
and

:::::
ocean

:::
melt

:::
as

:::
well

::
as
::::::::

nonlinear
:::::
sliding

::::
and

:::::::
modified

::::::
bedrock

::
are

:::::
used.

:::
The

:::::::
parameter

:::::
values

:::
are

:::
also

::::::
shown

::
by

::
the

:::::
black

:::::
circles,

:::::
while

::
the

:::::
values

::
of
:::
the

::
set

::
of
:::::::::
parameters

:::
with

::::::
highest

::::::::
likelihood

::
are

:::::
shown

:::
by

::::
green

::::::
crosses.equal weights)

Figure 5
:
3
:
illustrates which parts of the model input space are most successful in reproducing the satellite

:::::::
synthetic

:
observa-

tions of surface elevation changes during the initial part of the simulation
:::::::::
calibration

:::::
period. For visualisation we collapse the

five dimensional space onto each combination of two parameters and show how they interact. For a likely (yellow) area in Fig.

5
:
3
:
it is not possible to see

:::::::
directly what values the other three parameters have, but very unlikely (black) areas indicate that no

combination of the remaining parameter values results in a good model configuration.5

The calibration has the strongest effect on selecting the bedrock topography map and sliding law exponent. We find that the

modified bedrock from Nias et al. (2016) produces much more realistic surface elevation changes than the original Bedmap2

topography (Fig. 5) , and the linear sliding law is more successful than the non-linear (m= 1
3 ) . We find the most likely fields

of basal traction and velocity are the default values (i.e. scaling factor of 0.5)inferred by (Nias et al., 2016) from inversion from

surface ice speeds; this confirmation through two independent datasets suggests good model consistency. The sub-shelf melting10

field is constrained the least (all values of the scaling factor are similarly likely), probably due to the short calibrationperiod,

but higher melt rates are found to be slightly more likely than lower rates. Nias et al. (2016) find the model sensitivity to ocean

melt to be considerably smaller than to viscosity and traction , in particular for the large Thwaites Glacier. The parameter

combination with the highest likelihood has values of 0.43 for basal traction , 0.53 for viscosity
::
As

::::
can

::
be

::::
seen

:::::
from

::::::
Figure

::
3,

:::::::
marginal

::::::::::
likelihoods

::
of

:::
our

:::::::::
calibration

::::::::
approach

::::
can

:::::
favour

::::::
linear

::::::
sliding

::::
even

::
if

:::
the

::::::::
synthetic

::::::::::
observations

::::
use

::::::::
nonlinear15
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::::::
sliding.

::
In

::::::::
addition,

:::
the

:::::
ocean

::::
melt

::::::::
parameter

::
is

:::::
often

::::::
weakly

::::::::::
constrained

::
or,

::
as

::
in

::::
this

::::
case,

::::::
biased

::::::
towards

:::::
small

::::
melt

:::::::
factors.

::
In

:::::::
contrast,

:::
the

:::::
basal

:::::::
traction

::::::::
coefficient

::::
and

::::::::
viscosity

::::::
scaling

::::::
factors

::::
have

::
a
:::::
strong

:::::
mode

:::
at,

::
or

:::::
close

::
to,

:::
the

:::::::
correct

::::
value

:::
of

:::
0.5

:::
and

:::
the

::::::
correct

:::::::
bedrock

:::::
map

:::
can

::::::
always

:::
be

::::::::
identified

::::::
(Figure

::
3
::::
and

:::::::::::
supplement).

::::::::
Different

:::::
values

:::
of

::::
basal

:::::::
traction

::::
and

:::::::
viscosity

::::
have

:::::
been

:::::
tested

::
in

:::::::::::
combination

::::
with

::::
both

:::::::
bedrock

:::::
maps

:::
and

:::::
show

::::::
similar

:::::::::::
performance

::::
(see

::::::::::
supplement).

::::
The

::::
fact

:::
that

:::
the

::::::::
parameter

:::::
setup

::::
used

:::
for

:::
the

::::
test

:
is
:::::::::
attributed

:::
the

:::::::
maximal

:::::::::
likelihood

:::::
(green

:::::
cross

::
on

::::
top

::
of

:::::
black

:::::
circle)

::::::::
supports

:::
our5

:::::::::
confidence

::
in

:::
the

:::::::::::::
implementation

::
as

:::
the

:::
real

:::::::::
parameter

:::
set

:
is
:::::::::
identified

:::::::
correctly

::
as

::::
best

:::
fit.

:::::::
Relative

::::::::
ambiguity

::::
with

:::::::
respect

::
to

:::::
sliding

::::
law

:::
and

:::::
ocean

::::
melt

::::::::
overrules

:::
the

:::::
weak

:::::::::
constraints

::
on

:::::
these

:::::::::
parameters

::
in

:::
the

:::::::::::
marginalized

::::::::::
likelihoods.

:::
The

::::::
higher

::::
total

::::::::
likelihood

::
of

::::::
linear

::::::
sliding

:::
can

::
be

::::::
traced

::::
back

::
to
::

a
::::::
higher

::::::
density

::
of

::::::
central

:::::::::
ensemble

:::::::
members

:::
for

::::::
linear

::::::
sliding.

:::::::::
Nonlinear

:::::
sliding

::::::::
produces

:::::
more

:::::::
extreme

:::
ice

:::::
sheet

:::::::::
simulations

:::
as

:::
fast

::::::::::
simulations

::::
will

::::
have

:::::::
reduced

:::::::::
(compared

::
to

:::::
linear

:::::::
sliding)

:::::
basal

::::
drag

:::
and

:::::::
become

::::
even

:::::
faster

::::
(and

::::
vice

:::::
versa

:::
for

::::
slow

:::::::::::
simulations).

::::
The

:::::::::
frequency

:::::::::
distribution

:::
of

::::
total

:::
sea

::::
level

:::::::::::
contribution10

:::
and

:::::
basis

::::::::::::
representation

:::
are

::::::::
therefore

:::::
wider

:::
for

::::::::
nonlinear

::::::
sliding

::::::::::::
(supplement).

::::
The

:::::::
relative

::::::
density

::
of

:::::::::
ensemble

::::::::
members

::::::
around

:::
the

:::::
mode

::
of

:::
the

:::::::::
frequency

::::::::::
distribution

::::
can,

::
as
::::

for
:::
this

::::
test

::::
case,

::::::
cause

:
a
:::::::
smaller

::::::::
marginal

::::::::
likelihood

:::
for

:::::::::
nonlinear

:::::
sliding

:::::::::
compared

::
to

:::::
linear

::::::
sliding

:::::
(28%

::
to

:::::
72%).

:

:::
But

::::
why

:
is
:::
the

:::::
signal

::
of
::::::
sliding

::::
law

:::
and

:::::
ocean

::::
melt

:::
not

:::::
strong

::::::
enough

::
to
:::::::::
adequately

::::::::
constrain

:::
the

:::::::::
calibration, and

::::
even

::::::
though

::::
both

:::::::::
parameters

:::
are

::::::
known

:::::::::::::::::::::::::::::::::::::::::
(Arthern and Williams, 2017; Joughin et al., 2019)

::
to

::::
have

:
a
::::::

strong
::::::
impact

:::
on

:::::
model

:::::::::::
simulations?15

::::
This

:
is
::::::

likely
::::::
related

::
to

:::
the

:::::::
delayed

::::::
impact

::
of

:::::
those

:::::::::
parameters

::::::::
compared

:::
to

:::
the

::::::
others.

:::
The

:::::::::::
perturbation

::
of

:::::
ocean

::::
melt

:::::
from

::
the

::::
start

:::
of

:::
the

:::::
model

::::::
period

:::
has

::
to

::::::::::
significantly

:::::::
change

:::
the

::
ice

:::::
shelf

::::::::
thickness

:::::
before

:::
the

:::
ice

::::::::
dynamics

::::::::
upstream

:::
are

::::::::
affected.

:::
The

:::::
fields

::
of

:::::
basal

::::::
traction

:::::::::
coefficient

:::
are

:::::::
adjusted

::
to

:::
the

::::::
sliding

:::
law

:::
by

:::
the

::::::::
inversion

::
of

::::::
surface

:::
ice

::::::::
velocities

::
so

::::
that

:::
the

:::::
initial

::::
basal

::::
drag

::
τb::

is
::::::::::::
approximately

:::
the

:::::
same

:::
for

::::
both

::::::
sliding

::::
laws

::::
with:

:

τb = Cm(x,y) · |v(x,y, t)|m−1 · v(x,y, t)
::::::::::::::::::::::::::::::::

(13)20

:::::
where

::::::::
Cm(x,y)

::
is

:::
the

::::::
spatial

:::::
basal

::::::
traction

:::::::::
coefficient

:::
for

::::::
sliding

::::
law

::::::::
exponent

::
m

::::::
(m= 1

:::
for

::::::
linear,

::::::::
m= 1/3

:::
for

::::::::
nonlinear

::::::
sliding)

::::
and

:::::::
v(x,y, t)

:::::
being

:::
the

:::::
basal

:::
ice

:::::::
velocity.

:::
As

::::::::
Cm(x,y)

::::::::::
compensates

:::
for

:::::::::::::
|v(x,y, t)|m−1

::
at

:::
the

::::::::
beginning

::
of

:::
the

::::::
model

::::::
period,

:
it
::
is
::::
only

:::::
after

:::
the

:::
ice

::::::::
velocities

::::::
change

::::
that

:::
the

::::::
sliding

:::
law

:::
has

::::
any

::::::
impact

::
on

:::
the

:::::::::::
simulations.

::
A

::::::
change

::
in

::::::::
bedrock,

::::
basal

:::::::
traction

::
or

::::::::
viscosity

:::::
have,

::::::::
however,

:
a
:::::
much

:::::
more

:::::::::
immediate

:::::
effect

:::
on

:::
the

:::
ice

::::::::
dynamics

::::
and

:::
are

::::::::
therefore

::::::::
expected

::
to

:::::::
dominate

:::
the

:::::::::
calibration

:::
on

::::
short

::::
time

::::::
scales.

:
25

::::
From

::::
this

:::
test

:::
we

::::::::
conclude

:::
that

:::::
basal

::::::
sliding

:::
law

::::
and

:::::
ocean

::::
melt

::::::
scaling

::::::
cannot

:::
be

::::::
inferred

:::::
from

:::
this

:::::::::
calibration

:::::::::
approach.

:::
We

:::
will

::::::::
therefore

::::
only

::::::::
calibrate

:::
the

:::::::
bedrock

::
as

:::::
well

::
as

:::::
basal

::::::
traction

::::
and

::::::::
viscosity

::::::
scaling

:::::::
factors.

::::::
Several

::::::
studies

:::::
used

:::
the

:::::::
observed

:::::::::
dynamical

:::::::
changes

:::
of

::::
parts

::
of

:::
the

:::::
ASE

::
to

:::
test

::::::::
different

::::::
sliding

:::::
laws.

::::::::::::::::::::::
Gillet-Chaulet et al. (2016)

::::
find

:
a
:::::
better

:::
fit

::
to

:::::::
evolving

:::::::
changes

::
of

::::
Pine

:::::
Island

:::::::
Glacier

::::::
surface

::::::::
velocities

:::
for

::::::
smaller

:::
m,

:::::::
reaching

:
a
:::::::::
minimum

::
of

:::
the

:::
cost

:::::::
function

:::::
from

::::::
around

:::
m=1(maximum) for ocean melt factor, with a linear sliding law

::
/5

:::
and

:::::::
smaller.

::::
This

::
is

::::::::
supported

:::
by

:::::::::::::::::
Joughin et al. (2019)

::::
who30

:::
find

::::::
m=1/8

::
to

::::::
capture

:::
the

::::
PIG

:::::
speed

::
up

::::
from

:::::
2002

::
to

::::
2017

::::
very

:::::
well,

:::::::
matched

::::
only

::
by

:
a
::::::::::
regularized

::::::::
Coulomb

::::::::
(Schoof-)

::::::
sliding

:::
law.

::
It

::::::
further

::
is

:::::::::
understood,

::::
that

::::
parts

::
of

:::
the

:::::
ASE

:::
bed

::::::
consist

::
of

::::::::::::
sediment-free,

::::
bare

:::::
rocks

::
for

::::::
which

:
a
:::::
linear

:::::::::
Weertman

::::::
sliding

:::
law

::
is

:::
not

:::::::::
appropriate

::::::::::::::::::
(Joughin et al., 2009).

::::
We

:::::::
therefore

:::::
select

::::::::
nonlinear

::::::
sliding

:::
by

:::::
expert

::::::::
judgment

::::
and

:::
use

:
a
:::::::
uniform

:::::
prior

::
for

:::
the

:::::
ocean

::::
melt

:::::::
scaling.

:

14



3.2
::::::::::

Comparison
::::
with

:::::
other

::::::::::
calibration

::::::::::
approaches

::
To

:::
put

:::
the

:::::::::
likelihood

::::::::::
distribution

::::
from

::::::
Figure

::
3
::::
into

:::::::
context,

:::
we

:::
try

:::
two

:::::
other

:::::::::
methodical

::::::::
choices.

::::
First

:::
we

:::::::
calibrate

:::
in

:::
the

:::::
spatial

:::::::
domain

::::
after

:::::::::::
re-projecting

::::
from

:::
the

::::::::
emulator

::::::
results.

y′(θ) = B′ω(θ)
::::::::::::::

(14)

:::::
where

::::::
y′(θi):::

are
:::
the

::::::::::
re-projected

:::
ice

::::
sheet

::::::
model

::::::
results

::::
after

::::::::
truncation

:::
for

:::::::::
parameter

::::
setup

::
θ.

::::
We

::
set

:::
the

::::::
model

::::::::::
discrepancy5

::
to

::::
twice

:::
the

::::::::::::
observational

:::::::::
uncertainty

:::
σ2
e ::

so
:::
that

:::
the

:::::::::::
re-projected

::::::::
likelihood

:::::
L(xy)::::::::

simplifies
:::
to:

:

L(xy)(z(xy)|θ)∝
m∏
i=1

exp

[
− 1

2

(y′(θ)i− z(xy)i)2

3σ2
e

]
:::::::::::::::::::::::::::::::::::::::::

(15)

:::::::
Another

:::::::
approach

::
is

::
to

:::
use

:::
the

:::
net

:::::
yearly

:::
sea

::::
level

:::::::::::
contribution

::::
from

:::
the

::::::::::
observations

:::::::::::
SLC(z(xy)):::

and
::::::
model

::::::::::::
SLC(y′(θi))

::
for

::::::::::
calibration,

::
as

::::
done

::
in
::::
e.g.

::::::::::::::
Ritz et al. (2015).

:

LSLC(z(xy)|θ)∝ exp
[
− 1

2

(SLC(y′(θ))−SLC(z(xy)))
2

3σ2
SLC

]
::::::::::::::::::::::::::::::::::::::::::::::::::

(16)10

:::::
Again,

:::
we

:::
set

:::
the

::::::
model

::::::::::
discrepancy

::
to

:::::
twice

:::
the

:::::::::::
observational

::::::::::
uncertainty

:::::
which

:::
we

::::
find

::::
from

::::
the

:::::::
variance

::
of

:::
the

::::::
yearly

:::
sea

::::
level

:::::::::::
contributions

:::
for

:::
the

::
14

::::::::
bi-yearly

:::::::
satellite

:::::::
intervals.

::::::::::::::::::::::::::::::::::::::::::
σ2
SLC = V AR(SLC(z(xy))) = 0.0352[mmSLE2

year2 ].

:::
The

:::::::::
calibration

::
in

::::
(x,y)

::::::::::::
representation

:::::::
(Figure

:::
4a)

:::::::
behaves

:::::::
similarly

::
to

:::
the

:::::
basis

:::::::::::
representation

:::::::
(Figure

::
3)

::
in

:::
that

::::::
sliding

::::
law

:::::::
exponent

::::
and,

::
to

::
a

:::::
lesser

::::::
degree,

::::
basal

::::
melt

:::
are

:::::::
weakly

:::::::::
constrained

:::::
while

:::
the

:::::::::
confidence

::
in

:::
the

::::::::
correctly

::::::::
identified

::::::
traction

::::
and

:::::::
viscosity

::::::
values

::
is

::::
even

::::::
higher.

::::::
Using

::::
only

:::
the

:::
net

:::
sea

::::
level

::::
rise

::::::::::
contribution

:::::::::
constrains

:::
the

:::::::::
parameters

:::::::
weakly;

::
it
::::::
shares

:::
the15

:::::::::
limitations

::
of

:::
not

::::::::::
constraining

::::
the

:::::
ocean

::::
melt

:::
and

:::::::::
favouring

:::::
linear

::::::
sliding

:::
but

::
in

::::::::
addition,

:
a
:::::

wide
:::::
range

::
of

:::::::::::::::
traction-viscosity

:::::::::::
combinations

:::::::
perform

:::::::
equally

::::
well

:::
and

:::::
there

::
is

:::
no

::::::::
constraint

:::
on

:::::::
bedrock

:::::::
(Figure

::::
4b).

:::::::::::
Furthermore,

:::
the

::::::
model

:::
run

::::
used

:::
as

:::::::
synthetic

:::::::::::
observations

:
is
:::
not

::::::::
identified

::
as

:::
the

::::
most

:::::
likely

:::::
setup

::
in

:::::
Figure

:::
4b.

::::
This

:::::::::::
demonstrates

:::
the

:::::
value

::
of

:::
the

::::
extra

::::::::::
information

:
-
:::
and

:::::::
stronger

:::::::::
parameter

:::::::::
constraints

:
-
::::::::
provided

::
by

:::
the

:::
use

::
of

::::::::::::::
two-dimensional

:::::::::::
observations.

:

4
::::::
Results20

::::::::
Following

:::
the

::::::::
synthetic

:::::
model

::::
test,

:::
we

::::
now

:::::::
calibrate

:::::::
traction,

::::::::
viscosity

:::
and

:::::::
bedrock

::::
with

:::
the

:::::::
satellite

::::
data.

:

:::
The

:::::::::
calibration

:::::
finds

::::
that

:::
the

::::::::
modified

::::::::
bedrock

::::
from

:::::::::::::::
Nias et al. (2016)

::::::::
produces

:::::
much

:::::
more

:::::::
realistic

:::::::
surface

::::::::
elevation

::::::
changes

:::::
than

:::
the

:::::::
original

::::::::
Bedmap2

::::::::::
topography

:::::
(Fig.

:::
5a).

::::
The

::::::::
weighted

:::::::
average

:::
of

:::::
basal

::::::
traction

::::
and

:::::::
velocity

::::::::::
parameters

::
are

:::::
0.47

:
and the modified bedrock topography. However, for probabilistic predictions we do not focus on just this one

parameter configuration but use the whole input space weighted by probability.
::::
0.45,

:::::::::::
respectively,

::::::
which

::
is

::::::
slightly

:::::::
smaller25

::
the

:::::::
default

:::::
values

:::::
(0.5).

::::
This

::::::::
amounts

::
to

:
a
:::::

3.5%
::::
and

::::
7.2%

:::::::::
reduction

::
in

::::::::
amplitude

:::::::::
compared

::
to

:::
the

:::::::::
optimized

:::::
fields

::::
from

:::
by

::::::::::::::
(Nias et al., 2016)

:
.
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Figure 4.
::::::::
Likelihood

::
of

::::::::
parameter

::::::::::
combinations

::
of

:::::::
synthetic

::::
test

:::
case

:::
for

:::::::::
reprojected

:::::::
emulator

:::::::
estimates

::::
(top,

::
a;
:::::::

Equation
:::

15)
::::

and
:::
sea

:::
level

::::
rise

:::::::::
contribution

::::::::
calibration

:::::::
(bottom,

::
b;

:::::::
Equation

:::
16).

:::::
Upper

::::
right

:::::
panels

::::
show

::::::::
likelihood

:::::
values

::::::::::
marginalized

::
to

::::
pairs

::
of

:::::::::
parameters,

::::::::
normalized

::
to

:::
the

::::::::
respective

:::::::
maximum

:::
for

::::::
clarity.

:::::
Lower

:::
left

::::
panel

:::::
shows

::::::::
likelihood

:::::
values

::::::::::
marginalized

::
to

::::::::
individual

::::::::
parameters

:::
for

:::
the

::::
three

::::
scalar

:::::::::
parameters

::::
(line

:::::
plots),

:::
and

:::::
sliding

:::
law

::::
and

::::::
bedrock

:::::::::
topography

:::
map

::::
(text

:::
and

::::::::
quotation

::::::
within),

::::::::
normalized

::
to
:::

an
::::::
integral

::
of

:::
one,

::::::::
consistent

:::
with

:::::::::
Probability

::::::
Density

::::::::
Functions.

:::
The

:::::
central

:::::
values

:::
for

::::::
traction,

:::::::
viscosity

:::
and

:::::
ocean

::::
melt

::
as

:::
well

::
as

:::::::
nonlinear

::::::
sliding

:::
and

::::::
modified

:::::::
bedrock

::
are

:::::
used.

:::
The

::::::::
parameter

:::::
values

::
are

::::
also

:::::
shown

::
by

:::
the

::::
black

::::::
circles,

::::
while

:::
the

:::::
values

::
of

:::
the

::
set

::
of

::::::::
parameters

::::
with

::::::
highest

:::::::
likelihood

:::
are

:::::
shown

::
by

:::::
green

::::::
crosses.

4.1 Sea Level Contribution Projection

We use the calibration
:
in
:::::

basis
::::::::::::
representation

::::::::::
(likelihood shown in Fig. 5

::
a)

::
as

::::
well

::
as

:::
the

::::::::::
reprojected

:::::
(x,y)

:::
and

:::::
SLC

:::::
based

:::::::::
calibrations

:
to update the predictions

:::::::::
projections

:
of sea level contribution and grounding line retreat after 50 years . Total sea

level contribution from the Amundsen Sea Embayment after 50 years. The full (shaded) and probability weighted (intense

16



Figure 5.
:

a:
::::::::
Likelihood

::
of

::::::::
parameter

::::::::::
combinations

::
in
::::
basis

:::::::::::
representation

::::
from

::::::
satellite

::::::::::
observations

:::::::::
(evaluations

::
of

:::::::
Equation

::::
12).

:::::
Upper

:::
right

:::::
panels

:::::
show

:::::::
likelihood

:::::
values

::::::::::
marginalized

::
to

::::
pairs

::
of

:::::::::
parameters,

::::::::
normalized

::
to
:::
the

::::::::
respective

:::::::
maximum

:::
for

:::::
clarity.

:::::
Lower

:::
left

:::::
panel

::::
shows

::::::::
likelihood

:::::
values

::::::::::
marginalized

::
to

::::::::
individual

::::::::
parameters

:::
for

:::
the

:::
two

::::
scalar

:::::::::
parameters

::::
(line

::::
plots)

:::
and

:::::::
bedrock

::::::::
topography

::::
map

::::
(text

:::
and

:::::::
quotation

::::::
within),

:::::::::
normalized

::
to

::
an

::::::
integral

::
of

:::
one

::
in

:::
the

::::
style

::
of

:::::::::
Probability

::::::
Density

::::::::
Functions.

:::::
Values

::
of

:::
the

::
set

:::
of

::::::::
parameters

::::
with

:::::
highest

::::::::
likelihood

::
are

::::::
shown

::
by

::::
green

::::::
crosses.

::
b:

:::::::
Projected

:::
sea

::::
level

:::
rise

::::::::::
contributions

:
at
:::
the

:::
end

::
of

:::::
model

:::::
period

::
for

::::::::::
uncalibrated

::::::::
BISICLES

:::
runs

::::::
(brown

::::::
shades),

:::::::::
uncalibrated

:::::::
emulator

::::
calls

:::::
(Grey

:::::
shade)

:::
and

::::::
different

:::::::::
calibration

::::::::
approaches

:::::::
(colored

::::
lines).

:

colors) emulated ensemble distributions are shown.
:
in

::::::
Figure

:::
5b.

:::
As

:::
can

::
be

::::
seen

:::::
from

:::
the

::::
Grey

:::
and

::::::
Brown

::::::
shaded

::::::::::
histograms

::
in

:::::
Figure

:::
5b

::::::::
(emulated

::::
and

::::::
original

::::::::::
BISICLES

::::::::
ensemble)

:::
the

:::::::::
emulation

::::
helps

::
to
:::::::::
overcome

:::::::::
challenges

::
of

::::::
limited

::::::
sample

::::
size.

:

The calibrated prediction distribution is centred around the mode of the uncalibrated distribution, but sharper (i.e. reduced

uncertainty) and much more symmetric (Fig. ?? and Table 1) . This is most striking at the upper end of the distribution: the

95th percentile decreases from 78.2 to 23.3 mm SLE. We can also essentially rule out (<5%) negative sea level contributions.5

The tail is mostly rejected by downweighting of model simulations in which both the basal traction and basal viscosity scaling
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Table 1. Total sea level contribution
::::
after

::
50

::::
years

:
in mm SLE: (weighted) mean, most likely model configuration

:::::::::
contribution

:
and per-

centiles; with and without calibration
::::::::
calibrations.

Mean Mode max(L(z = ẑ|θ)) 5% 25% 50% 75% 95%

Prior year 50 25.6
:::
Prior

:
9.6

::::
30.6 —

:::
-3.3

:
-5.9

:::
-8.4

:
6.8

::
4.2

:
20.2

:::
23.1 37.9

:::
51.3 78.2

:::
94.5

Posterior year 50
::::
basis 11.4

:::
19.1 10.4

:::
18.4

::::
13.9

:::
16.7

: :::
18.9

: :::
21.4

: :::
24.8

:

:::::::
Posterior

::::
(x,y) 19.2 0.6

::::
18.4 6.3

:::
16.7 11

::::
17.7 16.1

:::
18.6 23.3

:::
21.1

:::
22.2

:

:::::::
Posterior

:::
SLC

: :::
16.8

: :::
17.5

: ::
7.7

: :::
13.2

: :::
16.8

: :::
20.3

: :::
25.6

:

factors are small, because these give unrealistically large surface elevation decreases (compare Fig. 5and ??). The second most

important factor is the preference for the linear sliding law; again,
::::
three

:::::::::
calibration

::::::::::
approaches

:::
are

::::::::
consistent

::::::
(large

:::::::
overlap)

:::
wile

:::::
using

:::
the

::::::::::
reprojection

::::::::
approach

:::::
leads

::
to the power law tends to give greater ice thinning rates than linear sliding. Bedrock

topography is less important than the sliding law but the use of the modified bedrock in the uncalibrated distribution reduced

the mean sea level contribution nevertheless by about 20% (Fig. ??; Nias et al., 2016).5

The
::::
most

::::::
narrow

::::
SLC

::::::::::
distribution

::::::
(Figure

::::
5b),

::
as

::::
was

::::::::
indicated

::
by

:::
the

:::::::
findings

::
of

:::::::
Section

:::
3.2.

::::::::::
Calibration

:::
on

:::
the

::::
total sea

level contribution from the best (maximum likelihood) ensemble member over the 50 year period is 19.2 mm, notably higher

than the distribution mean, mode and median ( 10-11 mm SLE). This ensemble member has the highest possible value for the

ocean melt factor (1) . This causes more ensemble members to have smaller rather than larger sea level contributions hence

influencing the mean and median in this direction.
::::
leads

::
to

::
a
:::::
wider

::::::::::
distribution

::::
with

:::
the

:::::
lower

:::::
bound

:::
of

:::::::::
projections

::
(5

::::::
%-ile)10

::::
being

:::::
more

::::
than

::
6
:::::::
mmSLE

:::::::
smaller

::::
than

:::
for

:::
the

::::
two

::::
other

:::::::::::
approaches.

:::
All

::
of

:::::
them

:::::::
strongly

::::::
reduce

:::::::::
projection

:::::::::::
uncertainties

::::::::
compared

::
to

:::
the

::::::::::
uncalibrated

:::::
prior

:::::::::
distribution

:::::::
(Figure

::
5b

::::
and

:::::
Table

::
1)

4.1 Grounding line retreat probabilities

Figure ?? shows the probabilities of regions to become ungrounded for the prior (uncalibrated ) and posterior (calibrated)

distributions. The area potentially affected by a grounding line retreat is considerably smaller after calibration, which is15

consistent with the reduced upper tail of total sea level contribution in Fig. ??. In other words, substantial grounding line

retreat is simulated with low basal traction and viscosity, or a power law basal sliding law, but these are found to be much less

consistent with recent surface elevation observations. However, all glaciers (Pine Island, Thwaites and Smith/Pope) retreat to

some degree, and the farthest retreat is ≈ 28 km for Smith Glacier.

Probability density estimates of grounding line retreat after 50 years, uncalibrated (left) and calibrated (right). Labeled20

glaciers include Pine Island (PI) and Thwaites (TH). Initially ungrounded areas are masked in gray to highlight retreat, black

lines show estimates of the grounding line and ice cliffs (MODIS Mosaic of Antarctica 2009 (Scambos et al., 2007)).
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5 Discussion

In general, previous Antarctic ice sheet model uncertainty studies have either focused on parameter inference (Chang et al.,

2016a, b; Pollard et al., 2016), or made projections that are not calibrated with observations (Nias et al., 2016; Schlegel et al.,

2018; Bulthuis et al., 2019; Cornford et al., 2015), with the remaining probabilistic calibrated projections being based on simple

(fast) models using highly aggregated observations and some relying heavily on expert judgment (Ruckert et al., 2017; Ritz5

et al., 2015; Little et al., 2013; Levermann et al., 2014; DeConto and Pollard, 2016; Edwards et al., 2019). Here we perform

statistically-founded parameter inference using spatial observations to calibrate high resolution(
:
, grounding line resolving )

model predictions of both sea level contribution and grounding-line retreat
::
ice

:::::
sheet

:::::
model

:::::::::
projections.

Our Bayesian calibration of the sliding law with surface elevation changes is consistent with the Bayesian calibration with

ASE mass loss of (Ritz et al., 2015), who find that the linear sliding law is more likely to produce mass loss rates consistent10

with observed than nonlinear and plastic laws. However, Joughin et al. (2009) find a linear law underestimates sensitivity to

basal traction.

The modified bedrock removes a topographic rise near the initial grounding line of Pine Island Glacier which could be

caused by erroneous observations (Rignot et al., 2014). This rise, if present, would have a stabilizing effect on the grounding

line and simulations without it can result in more than twice the predicted sea level contribution from Pine Island Glacier for15

some sliding laws (Nias et al., 2018). Here we find the modified bedrock topography
:
to

:::::::
produce

::
a
::::::
spatial

:::::::
response

:
far more

consistent with observed surface elevation changes than
:::
for the original Bedmap2 bedrock (Fig. 5) while acalibration with

total mass loss alone cannot distinguish between the two (see Figure 2 of Nias et al. (2016)). Calibrated predictions for this

region based on Bedmap2 are likely to either be compensating the overly-stabilising bedrock with underestimated viscosity

and/or traction coefficients, or underestimating the sea level contribution altogether. Note that the
::
a).

::::
The

:
modified bedrock20

has been derived by reducing clearly unrealistic behaviour of the same ice sheet model, a better calibration performance is
:::
was

therefore to be expected. However, no satellite observations have been used for the bedrock modification, nor has there a been

a quantitative probabilistic assessment.

:::
The

::::::::::
non-spatial

:::::::::
calibration

::
on

:::::
total

:::
sea

::::
level

::::::::::
contribution

:::::
alone

::::::
cannot

::::::::::
distinguish

:::::::
between

:::
the

::::
two

:::::::
bedrocks

:::::::
(Figure

::::
4b).

:::::::::
Projections

:::
for

:::
this

::::::
region

:::::
based

::
on

:::::::::
Bedmap2,

::::::::
calibrated

:::
on

::
the

:::::
SLC

::
are

:::::
likely

:::
to

:::::
either

::
be

:::::::::::
compensating

:::
the

:::::::::::::::
overly-stabilising25

::::::
bedrock

:::::
with

::::::::::::
underestimated

::::::::
viscosity

::::::
and/or

::::::
traction

::::::::::
coefficients,

:::
or

:::::::::::::
underestimating

:::
the

:::
sea

::::
level

:::::::::::
contribution

:::::::::
altogether.

::
In

:::::::
addition

::
to

::
the

::::::::::::
unconstrained

:::::::
bedrock,

:::
the

::::
SLC

:::::::::
calibration

:::::::
permits

:
a
::::
wide

:::::
range

::
of

:::::::
traction

:::
and

::::::::
viscosity

::::::::::
coefficients,

::::::::
including

:::::
values

:::
far

::::
from

:::
the

:::::::
correct

:::
test

::::::
values

::::::
(Figure

::::
4b).

::::
This

::::::
shows

:::
that

::::
the

::::
SLC

:::::::::
calibration

:::::::
permits

::::
more

::::::
model

::::
runs

::::::
which

:::
are

::::
right

:::
for

:::
the

:::::
wrong

:::::::
reasons;

::::
they

:::::
have

::::::::::::
approximately

:::
the

::::
right

:::
sea

::::
level

::::
rise

::::::::::
contribution

::
in

:::
the

:::::::::
calibration

::::::
period

:::
but

:::
can

::::
still

::
be

::::
poor

:::::::::::::
representations

::
of

:::
the

::::::
current

::::
state

::
of

:::
the

:::
ice

:::::
sheet.

:
30

:::
The

:::::::::
extremely

:::::
small

:::
area

:::
of

:::::
likely

::::
input

::::::::::
parameters

:::
for

:::
the

:::::::::
reprojected

:::::
(x,y)

:::::::::
calibration

::::::
(Figure

:::
4a

:::
and

:::::::::::
Supplement)

:::::
could

::::::
indicate

:::::::::::::
overconfidence

::
in

:::
the

:::::::
retrieved

:::::::::
parameter

::::::
values,

:::
but

:::::
could

::::
also

::::
mean

::::
that

:::
the

:::::::
available

::::::::::
information

::
is
::::::::
exploited

:::::
more

::::::::
efficiently.

::::::
Using

::::::::::
subsections

::
of

:::
the

::::::::::
calibration

:::::
period

::::
has

:
a
:::::

small
:::::::

impact
::
on

:::::
basis

::::
and

::::
SLC

::::::::::
calibration.

::::::::
However,

:::
for

::::
one

::
of

:::
the

::::::::::
sub-periods

::::
with

::::::::::
reprojected

:::::::::
calibration

:::
the

:::::::::
probability

:::::::
interval

::::
does

:::
not

:::::::
overlap

::::
with

:::
the

::::::
results

::
of

:::
the

::::::
whole

::
7

::::
year
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:::::::::
calibration

:::::
period

::::::
(Table

::
1

::
in

:::
the

:::::::::::
Supplement).

:::::
Since

:::
the

:::::::::
sub-period

::
is
::::
part

::
of

:::
the

::
7
::::
year

::::::
period

::
we

::::::
would

::::::
expect

:::
the

::::::
results

::
to

::
be

:::::::::::::::
non-contradictory,

:::::::::
indicating

:::
that

:::
the

::::::::::
probability

:::::::
intervals

:::
are

:::
too

::::::
narrow

::::
and

:::::
hence

:::
the

::::::::
approach,

::
as

:::::::::::
implemented

:::::
here,

::::
being

::::::::::::
overconfident.

::::
The

:::::::
different

:::::
ways

::
of

::::::::
handling

:::::
model

::::::::::
discrepancy

::::::::
influence

:::::
width

::
of

:::
the

:::::::::
probability

::::::::
intervals.

:

Satellite-based estimates for the Amundsen Sea Embayment of 0.33 mm SLE per year (McMillan et al., 2014) from 2010-2013

are higher than the mode of our sea level contribution distribution of about 0.21 mm SLE per year but similar to the 75th5

percentile.

Even though the most extreme retreat scenarios are essentially ruled out by the calibration
:::
The

::::::
average

:::
sea

:::::
level

::::::::::
contribution

::::
from

:::
the

::::::::::
observations

::::
used

::::
here

::
is

::::
0.36

:::
mm

::::
SLE

:::
per

:::::
year,

::::::::
consistent

::::
with

::::::::
estimates

::::
form

:::::::::::::::::::
McMillan et al. (2014)

::
of

::::::::::
0.33± 0.05

:::
mm

::::
SLE

:::
per

::::
year

:::
for

:::
the

:::::::::
Amundsen

::::
Sea

::::::::::
Embayment

:::::
from

:::::::::
2010-2013.

:::::::::
Calibrated

:::::
rates

::
in

:::
the

::::::::
beginning

::
of
:::

the
::::::

model
::::::
period

::
are

::::
very

::::::
similar

::::::
(0.335, we see several locations with high probability to become ungrounded. Most prominent is the retreat of10

Smith Glacier (Fig. ??). Previous studies have shown how far the grounding line could retreat for different model ensembles

and climate scenarios (Nias et al., 2016; Bulthuis et al., 2019; Ritz et al., 2015), but only (Ritz et al., 2015) provide calibrated

probabilistic estimates to compare with here. The resolution of their model is far lower (15 km), but the pattern approximately

corresponds to their 95% probability contour by 2100 for Pine Island and Thwaites Glacier. Comparison with present day

observations of grounding line retreat for Thwaites Glacier (for 2018; Milillo et al., 2019) and the Pope/Smith/Kohler region15

(for 2014; Scheuchl et al., 2016) show good agreement of the locations of retreat (e.g. far retreat at Smith with minimal retreat

of Kohler glacier). However,large parts of the retreat predicted in this study for
:::::
0.327

:::
and

:::::
0.363

::::
mm

::::
SLE

:::
for

:::::
basis,

::::
(x,y)

::::
and

::::
SLC,

::::::::::::
respectively).

:::
For

:::::
(x,y)

:::
and

:::::
basis

:::::::::
calibration

:::
the

:::::
rates

:::::::
increase

::::
over

:
the 50 year period (starting somewhere between

year 2000 and 2010) has been reached already. There are two possible explanations for this: the grounding line has reached

a new stable location supported by topographic features (which are visible in Milillo et al. (2019) and Scheuchl et al. (2016)20

)
:::::
while

:::
the

:::
rate

:::
of

::::
mass

::::
loss

:::::::
reduces

::
for

::::
the

::::
SLC

:::::::::
calibration

:::
(50

::::
year

:::::::
average

::::
SLC

:::::
rates:

:::::
0.382, where it will remain for the

next decades, or else we underestimate the rate of retreat and with it potentially the rate of mass loss
:::::
0.384

:::
and

:::::
0.336

::::
mm

::::
SLE

:::
per

::::
year

:::
for

:::::
basis,

::::
(x,y)

::::
and

:::::
SLC„

::::::::::::
respectively).

::::
The

:::
fact

::::
that

:::
the

:::::
SLC

:::::::::
calibration

:::::
starts

::::
with

:::
the

::::::
largest

:::::
rates

::
of

:::
sea

:::::
level

::::::::::
contribution

:::
but

::
is

:::
the

::::
only

::::::::
approach

:::::
seeing

::
a
::::::::
reduction

::
in

:::::
those

::::
rates,

:::
in

::::::::::
combination

::::
with

:::
the

:::::
above

:::::::::
mentioned

:::::::::
suspicion

::
of

:
it
::::::::
allowing

::::::::
unrealistic

::::::
setups,

:::::
raises

:::::::::
questions

::::
about

::::
how

:::::::
reliable

::::::::::
calibrations

::
on

::::
total

:::
sea

:::::
level

::::::::::
contribution

:::::
alone

:::
are.25

The ice sheet model data used here is not based on a specific climate scenario but instead projects the state of the ice

sheet under current conditions into the future
::::
(with

::::::::
imposed

::::::::::::
perturbations).

::::::::::::::::::
Holland et al. (2019)

::::::
suggest

::
a
::::

link
::::::::

between

:::::::::::
anthropogenic

::::::::::
greenhouse

:::
gas

::::::::
emissions

::::
and

::::::::
increased

::::::::
upwelling

::
of

:::::
warm

::::::::::
circumpolar

:::::
deep

:::::
water,

:::::::::
facilitating

::::
melt

::
at

:::
the

::::
base

::
of

:::::::::
Amundsen

:::
sea

::
ice

:::::::
shelves.

::::
This

::::::
would

:::::
imply

:
a
:::::::
positive,

::::::
climate

:::::::
scenario

:::::::::
dependent

:::::
trend

::
of

:::::
ocean

::::
melt

::
for

:::
the

::::::
model

::::::
period,

:::::::::::
superimposed

:::
by

::::::
strong

:::::::
decadal

:::::::::
variability

::::::::::::::::::::::::::::::::::
(Holland et al., 2019; Jenkins et al., 2016). Warmer ocean and air temperatures30

would enhance melt and accelerate the dynamic response. Neither do the
::::
used

:
simulations carry the countervailing predicted

increase of surface accumulation in a warmer climate (Lenaerts et al., 2016). Edwards et al. (2019); Golledge et al. (2019)

found
::::::::::::::::::
Edwards et al. (2019)

:::
and

::::::::::::::::::
Golledge et al. (2019)

::::
find that the Antarctic ice sheet response to very different greenhouse

gas emissions scenarios starts to diverge from around 2060-2070, indicating that scenario
:::::
while

:::::::::::::
Yu et al. (2018)

:::
find

::::::
ocean
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::::
melt

::
to

::::
have

::
a

::::::::
negligible

::::::
impact

:::
for

:::
the

::::
first

:::
30

::::
years

:::
for

:::::
their

::::::::::
simulations

::
of

::::::::
Thwaites

::::::
glacier.

::::::::::
Combined,

:::
this

::
is

:::::::::
indicating

:::
that

::::::
climate

::::::::
scenarios

:
would have a small net impact on our 50-year projections.

The theoretical basis for most of the methodology used here has been laid out in Higdon et al. (2008), including the principal

component decomposition, emulation and model calibration in the PC space. This calibration in basis (PC) representation has

been adapted and tested for general circulation (climate) and ocean models Sexton et al. (2012); Chang et al. (2014); Salter et al. (2018); Salter and Williamson (2019)5

. By combining this approach with a simple but robust discrepancy representation, we attempt to bridge the gap between the

demanding mathematical basis and practical applications in geoscience. Our method is novel because we calibrate a grounding

line resolving ice sheet model in the PC space, to avoid the assumption that the difference between observation and calibration

model are spatially uncorrelated (e.g. Chang et al., 2016b)). In comparison with studies that use highly aggregated quantities

(like total sea level contribution (e.g. Ritz et al., 2015)), we are able to exploit more of the available observational information10

to add further constraints to the input parameters and sharpen the posterior distribution. Appendix B shows a calibration

with total sea level contribution: the parameters are less constrained, particularly the bedrock topography and the allowable

combinations of basal traction and viscosity

:::::::
Relating

::::::
climate

::::::::
scenarios

:::
to

::::
local

:::
ice

::::
shelf

:::::
melt

::::
rates

::
is

:::::::::
associated

::::
with

::::
deep

:::::::::::
uncertainties

:::::
itself.

:::::::
CMIP5

::::::
climate

:::::::
models

::
are

:::::::::::
inconsistent

::
in

:::::::::
predicting

::::::::
Antarctic

:::::
shelf

:::::
water

:::::::::::
temperatures

:::
so

:::
that

::::
the

:::::
model

::::::
choice

::::
can

:::::
make

::
a

:::::::::
substantial

:::::::
(>50%)15

::::::::
difference

::
in

:::
the

::::::::
increase

::
of

:::::
ocean

::::
melt

:::
by

:::::
2100

:::
for

:::
the

::::
ASE

:::::::::::::::::::
(Naughten et al., 2018)

:
.
::::
Melt

:::::::::::::::
parameterisations,

:::::::
linking

:::::
water

::::::::::
temperature

:::
and

:::::::
salinity

::
to

:::
ice

::::
melt

:::::
rates,

:::
can

:::
add

:::::::::
variations

::
of

:::::::
another

::::
50%

::
in

::::
total

::::
melt

::::
rate

:::
for

:::
the

:::::
same

:::::
ocean

:::::::::
conditions

::::::::::::::::
(Favier et al., 2019).

::::
The

:::::::
location

::
of

:::::
ocean

::::
melt

:::
can

::
be

::
as

::::::::
important

:::
as

::
the

:::::::::
integrated

::::
melt

::
of

::
an

:::
ice

::::
shelf

:::::::::::::::::::
(Goldberg et al., 2019)

:
.
:::
The

:::::::::
treatment

::
of

::::
melt

:::
on

::::::::
partially

::::::
floating

::::
grid

:::::
cells

::::::
further

:::::::
impacts

:::
ice

:::::
sheet

::::::
models

:::::::::::
significantly,

:::::
even

:::
for

::::
fine

::::::
spatial

:::::::::
resolutions

::
of

::::
300

::
m

::::::::::::::
(Yu et al., 2018).

::
It
::
is

::::::::
therefore

::::
very

::::::::::
challenging

::
to
:::::

make
::::::

robust
:::::::
climate

:::::::
scenario

:::::::::
dependent

:::
ice

:::::
sheet20

:::::
model

::::::::::
predictions.

::::::
Instead

:::
we

:::
use

::::::::::
projections

::
of

:::
the

::::::
current

:::::
state

::
of

:::
the

::::
ASE

:::
for

:
a
::::

well
:::::::

defined
:::
set

::
of

::::::::::
assumptions

:::
for

::::::
which

::::::
climate

::::::
forcing

::::::::::
uncertainty

:
is
::::::
simply

::::::::::
represented

:::
by

:
a
:::::::
halving

::
to

:::::::
doubling

::
in

:::::
ocean

::::
melt.

The truncation of a principal component decomposition can cause or worsen problems related to the observations not being in

the analyzed model output space (see difference in Fig
:::::
Figure2). This can mean that there is no parameter configuration θ which

is a good representation of the observations. Basis rotations have been proposed to reduce this problem (Salter et al., 2018);25

however, here we use only the portions of the observations which can be represented in the reduced PC space (Fig.
::::::
Figure 2b)

and argue that configurations which are able to reproduce those portions are likely to be better general representations than those

configurations which cannot. We further include a discrepancy variance for each PC to account for systematic observation-

model differences, including PC truncation effects
:::
and

:::::::
perform

:::
an

::::::
initial

::::::
history

::::::::
matching

::
to
::::::

ensure
::::

the
:::::::::::
observations

:::
are

:::::::::
reasonable

::::
close

::
to

::::::
model

:::::
results.30

:::
The

::::::
model

::::::::::
perturbation

:::
has

::::
been

:::::
done

::
by

:::::::::
amplitude

::::::
scaling

::
of

:::
the

::::::::
optimized

:::::
input

:::::
fields

:::::
alone,

:::::
other

::::::::
variations

::
to

:::
the

:::::
input

::::
fields

:::::
could

::::::::::
potentially

:::::::
produce

:::::
model

::::::
setups

::::
with

:::::
better

:::::::::
agreement

::
to

:::
the

:::::::::::
observations

::::::::::::::::::::::::::::::
(Petra et al., 2014; Isaac et al., 2015)

:
.
::::::::
However,

::::::::::::
computational

::::
and

:::::::::::::
methodological

:::::::::
challenges

:::::
make

::::::
simple

:::::::
scaling

::::::::::
approaches

::::
more

:::::::
feasible

::::
and

:::
the

::::
use

::
of

::
a

::::::::
published

::::::
dataset

::::
bars

::
us

:::::
from

:::::
testing

:::::::::
additional

:::::
types

::
of

::::::::::::
perturbations.

::::::::::
Probabilistic

::::::::::
calibrations

:::
are

:::
an

:::::::::
assessment

::
of

::::::
model
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:::::
setups

::
to

:::
be

:::
the

:::
best

:::
of

::
all

:::::
tested

::::::
cases.

::
It

:::
has

::
to

::
be

:::::
clear

:::
that

::::
this

::
is,

:::::::
despite

:::::::::
emulation,

:
a
::::
vast

:::::::::::
simplification

:::
in

::::::::
searching

:::
for

::
the

::::
best

::
of

:::
all

:::::::
possible

:::::
model

::::::
setups

::::::::::
imaginable.

:::
The

:::::::::
theoretical

::::
basis

:::
for

:::::
most

::
of

::
the

:::::::::::
methodology

:::::
used

:::
here

::::
has

::::
been

:::
laid

:::
out

::
in

:::::::::::::::::
Higdon et al. (2008),

::::::::
including

:::
the

::::::::
principal

:::::::::
component

:::::::::::::
decomposition,

::::::::
emulation

::::
and

:::::
model

:::::::::
calibration

::
in

:::
the

:::
PC

::::::
space.

::::
This

:::::::::
calibration

::
in

::::
basis

::::::::::::
representation

:::
has

:::::
been

::::::
adapted

:::
and

::::::
tested

::
for

:::::::
general

::::::::
circulation

::::::::
(climate)

:::
and

:::::
ocean

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sexton et al., 2012; Chang et al., 2014; Salter et al., 2018; Salter and Williamson, 2019)5

:
.
::
By

::::::::::
combining

:::
this

::::::::
approach

::::
with

::
a

:::::
simple

::::
but

:::::
robust

::::::::::
discrepancy

:::::::::::::
representation,

:::
we

::::::
attempt

::
to

::::::
bridge

:::
the

:::
gap

::::::::
between

:::
the

:::::::::
demanding

:::::::::::
mathematical

:::::
basis

:::
and

::::::::
practical

::::::::::
applications

::
in

::::::::::
geoscience.

:::
We

::::::::
compare

:
a
:::::
novel

::::::::::
calibration

::
of

:
a
:::::::::
grounding

::::
line

:::::::
resolving

:::
ice

:::::
sheet

:::::
model

::
in

:::
the

:::
PC

:::::
space

::::
with

:
a
:::::::::
reprojected

:::::::::
calibration

:::::
which

::::::::
assumes

:::
that

:::
the

::::::::
difference

:::::::
between

:::::::::::
observations

:::
and

:::::::::
calibration

::::::
model

:::
are

:::::::
spatially

:::::::::::
uncorrelated

::::::::::::::::::::::::
(like e.g. Chang et al., 2016b)

:
.
::
In

::::::::::
comparison

::::
with

::::::
studies

::::
that

::::::::
calibrate

:::
the

::::
total

:::
sea

::::
level

::::::::::
contribution

:::::::::::::::::::::
(like e.g. Ritz et al., 2015)

:
,
:::
we

:::
are

:::
able

::
to
::::::
exploit

:::::
more

::
of

:::
the

::::::::
available

:::::::::::
observational

::::::::::
information

::
to10

:::
add

::::::
further

:::::::::
constraints

::
to

:::
the

:::::
input

:::::::::
parameters

:::
and

:::::::
sharpen

:::
the

::::::::
posterior

:::::::::
distribution

:::::::
(Figure

:
4
::::
and

:::
5b).

:

:
A
:::::::::
combined

:::::::
temporal

:::
and

::::::
spatial

:::::::::
calibration

:::::
could

::::
help

::
to

:::
use

::::
even

::::
more

::
of

:::
the

::::::::
available

:::::::::
information

::::::::
captured

::
by

::::::::::
observations

::
in

::::::
regions

::::
like

:::
the

:::::
ASE

:::::
where

::::::::
dynamic

:::::::
changes

:::
in

:::
the

:::
ice

:::::
sheet

:::::
have

::::
been

:::::::::
observed.

::::
The

:::::::
temporal

::::::::::
component

:::::
could

:::
in

::::::::
particular

::::
help

::
to

:::::::
constrain

:::
the

:::::
basal

::::::
sliding

:::
law

::::::::
exponent

::::
and

:::::
ocean

::::
melt

::::::
scaling.

:

6 Conclusions15

We present probabilistic estimates of the dynamic contribution to sea level of the Amundsen Sea Embayment in West Antarctica

over the next 50 years using
::::
from

:
a grounding line resolving ice sheet model. We performed a Bayesian calibration of a

published ice sheet model ensemble with satellite measurements of surface elevation changes from 1992-2015, using spatial

decomposition to increase the amount of information used from the observations and emulation techniques to search the

parameter space more thoroughlyand estimate the probability distribution for sea level.20

We find that the modified bedrocktopography derived by Nias et al. (2016) results in quantitatively far more consistent model

representation of the Amundsen Sea Embayment than Bedmap2
:::
The

:::::::::
calibration

:::
has

:::::
been

:::::
tested

::
on

::::::::
synthetic

:::
test

:::::
cases

:::
and

::::
can

::::::
reliably

::::::::
constrain

:::
the

::::::::
bedrock,

::::
basal

:::::::
traction

::::
and

:::
ice

:::::::
viscosity

::::::::::
amplitudes. Identifying the most successful basal sliding law

and ocean melt rate is more challenging
:
, probably due to their slow impact on ice sheet behaviour and

::::::::
compared

::
to

:
the short

calibration timescale. Nevertheless, we find the calibration favours higher melt rates than those derived by Nias et al. (2016) in25

model initialisation and a linear sliding law.

The calibration leads to a substantial reduction in the upper tail of the probability distribution of
:::
The

::::
use

::
of

:::
net

:
sea level

contribution , leading to quite a symmetric distribution. The predicted
:::::
alone

:::::
allows

::
a
::::
wide

:::::
range

:::
of

::::::::
parameter

::::::
setups,

::::::
which

::::
share

:::
the

::::::
initial

:::
net

:::::
mass

::::
loss.

::::
This

:::::::::
ambiguity

::::::
(weak

:::::::::
constraint)

::::
also

::::::
results

::
in

:::::::
relative

:::::
wide sea level contribution within

the next 50 years from the Amundsen Sea Embayment will most likely be between 0.6 and 23.3 mm SLE (90% probability30

interval) with the median and most likely model parameter configurations predicting 11.0 and 19.2 mm SLE, respectively. The

calibration limits the predicted extent of grounding line retreat for Pine Island and Thwaites Glaciers, but predicts up to 28 km

retreat for Smith Glacier.
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7 Emulator regression and validation

We use Gaussian Process (GP) models for emulation and train a separate GP model for each Principal Component (PC) and

time period. We use a Matern ( 52 ) covariance function, with the covariance function (hyper-) parameters being optimized on

the marginal likelihood with five repetitions using the Python GPy module. The nugget term is set to zero, forcing the emulator

to predict the exact values at training points, reflecting the deterministic nature of the
:::::::::
probability

:::::::::::
distributions.

::::
The

:::::
extra5

:::::::::
information

:::::
from

:::
the

:::
use

:::
of

::::::::::::::
two-dimensional

::::::::::
calibrations

::::
adds

:::::::
stronger

:::::::::
parameter

:::::::::
constrains,

:::::::
showing

::::
that

::::
this

::::::
method

::::
can

::
be

::::
used

::
to

::::::
reduce

:::::::::::
uncertainties

::
in ice sheet model . A constant mean function with N(0,0.5) prior is used, accounting for the

initial centering of Ỹ
:::::::::
projections.

::::
We

:::::::
compare

:::
and

:::::::
discuss

:::::
spatial

::::::::::
calibrations

::
in

:::::
both,

::::
basis

::::
and

:::::::::
reprojected

::::::::::::
representation.

The first 4 PCs are emulated for the calibration (first 7 years of model period) and 5 PCs are emulated for the predictions (after

:::::
Using

:::::::
satellite

::::::::::
observations

:::
we

::::
find

:::
the

::::::::
modified

:::::::
bedrock

:::::::::
topography

:::::::
derived

::
by

:::::::::::::::
Nias et al. (2016)

::
to

:::::
result

::
in

::::::::::::
quantitatively10

::
far

:::::
more

::::::::
consistent

::::::
model

::::::::::::
representation

::
of

:::
the

:::::::::
Amundsen

::::
Sea

::::::::::
Embayment

::::
than

:::::::::
Bedmap2.

:::::::::
Compared

::
to

::::
prior

:::::::::
estimates,

:::
the

:::::::::
calibrations

::::
lead

::
to
::

a
::::::
drastic

::::::::
reduction

::
in

:::
the

:::::::::
projection

::::::::::
uncertainty

::
by

:::::
more

::::
than

:::::
80%.

::::::
Within

:::
the

:
50 years). This choice is

based on the different decline in variance represented by PCs and ensures that 90% of the variance is covered in bothcases

(Fig. ??)
::::
year

:::::
model

::::::
period

:::
the

:::::::::
Amundsen

::::
Sea

::::::::::
Embayment

::
is

::::::::
expected

::
to

:::::::::
contribute

:::::::
between

::::
13.9

::::
and

::::
24.8

::::
mm

::::
SLE

:::::
(90%

:::::::::
probability

:::::::
interval)

::::
with

:
a
:::::
most

:::::
likely

:::::
global

:::
sea

:::::
level

::::::::::
contribution

::
of

::::
18.4

::::
mm

::::
SLE.15

Variance in model ensemble ice thickness change fields explained by PCs after 7 (left) and 50 years (right). The illustrated

variance scales with the eigenvalues of corresponding PCs which are the squared singular values (diagonal entities of S).

In the following we will illustrate the emulator performance by a leave-one-out (LOO) cross-validation scheme. For this we

repeat all steps of the the emulator setup for subsets of all but one of the full ensemble, and use that emulator to predict the PC

scores of the left-out ensemble member. These are compared with the actual ice sheet model values to validate the emulator.20

This process is repeated until each ensemble member is left out once.

Code availability. Code can be accessed at https://github.com/Andreas948

Figure ?? shows the ice sheet model PC scores versus the LOO emulator prediction of the same quantity. We see an

overall good correlation without serious outliers. The emulator uncertainty is assessed as well in Table ??. Around 90% of

the differences between emulator and ice sheet model are within the two σω emulator uncertainty intervals, i.e. approximately25

as expected (95% ) for a normal distribution. The emulator performance is uniform within the parameter space (not shown).

Leave-one-out emulator validation plot for year 7 (left) and year 50 (right). Grey error bars represent 3 σω , i.e. emulator

uncertainties. All k = 4 (left) and k = 5 (right) PC scores of each LOO repetition are shown together.

Emulator validation metricsYear 7 Year 50 RMSE (predicted-simulated) 3.07 4.76 RMSE (predicted-simulated)/range 0.70%

0.73% Pearson’s r 0.998 0.997 Spearman’s rho 0.998 0.993 Kendall tau 0.970 0.940 Fraction in 95% range 89.1% 90.5%30
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Appendix A: Net sea level contribution calibration

Likelihood evaluations as in Fig. 5 but using exclusively the seven-year mean rate of sea level rise contribution from the

observed area for likelihood calculations. The observational uncertainty is based on the variance among the 14 observational

periods and the model discrepancy σ2
ε is set to twice the observational variance while emulator uncertainty is neglected here

Figure ?? shows the result of calibrating with total sea level rise contribution of 0.33 mm SLEper year (McMillan et al., 2014)5

, instead of two-dimensional surface elevation changes in the PC space as in the main analysis (Fig. 5). The parameter space is

less constrained, particularly for bedrock topography, where neither choice is strongly preferred, and the combination of basal

traction and viscosity, where more combinations are allowed. However, the two calibrations do not contradict each other, as

there is a considerable amount of intersection in the estimates of likely parameter combinations. This demonstrates the value

of the extra information - and stronger parameter constraints - provided by the use of two-dimensional observations.10
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