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Abstract. The friction coefficient and the base topography of a stationary and a dynamic ice sheet are perturbed in two models

for the ice: the full Stokes equations and the shallow shelf approximation. The sensitivity to the perturbations of the velocity and

the height at the surface is quantified by solving the adjoint equations of the stress and the height equations providing weights

for the perturbed data. The adjoint equations are solved numerically and the sensitivity is computed in several examples in two

dimensions. A transfer matrix couples the perturbations at the base with the perturbations at the top. Comparisons are made5

with analytical solutions to simplified problems. The sensitivity to perturbations depends on their wavelengths and the distance

to the grounding line. A perturbation in the topography has a direct effect at the ice surface above it while a change in the

friction coefficient is less visible there.

1 Introduction

The output of isothermal simulations of large ice sheets depends on the ice model, the topography, and the parametrization of10

the conditions at the base of the ice. The models are systems of partial differential equations (PDEs) for the velocity, pressure,

and height of the ice. The boundary conditions of the PDEs are given by the topography and the friction model with its

parameters. Of particular interest in the simulation of ice is the horizontal velocity and the height at the ice surface. In the

inverse problem, the parameters at the base are inferred from data at the surface by solving adjoint equations and minimizing

the difference between given data and simulated results. In this paper, we estimate the sensitivity of the surface observations15

to changes in the basal conditions by solving the adjoint equations to the full Stokes (FS) equations and the shallow shelf (or

shelfy stream) approximation (SSA), see Greve and Blatter (2009); MacAyeal (1989). The advantage of solving the adjoint

equations in a variational control method is that the effect of many perturbations of the parameters at the bottom is obtained

for one observation at one point of the surface at a certain time point. If there are many observations and only one perturbation,

then it is more efficient to compute the sensitivity by solving the forward model PDEs twice in a direct method, firstly with20

the unperturbed parameters, secondly with the perturbed parameters, and then take the difference between the solutions. The

direct method has the advantage that there is no need to implement a solver for the adjoint equations.

We are interested in the effect of perturbations of the topography and the slipperiness at the ice base on the velocity of the ice at

the surface and its height. By solving the adjoint equations, we quantify the sensitivity to perturbations close to the grounding

line and of different wavelengths. The sensitivity at the upper surface to perturbations in the basal topography and friction are25
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different and the separation of the two contributions appears to be difficult. The transfer functions between the perturbations

at the base and the surface observations are more or less well behaved. A related problem is to infer the basal geometry and

friction coefficients from observational data by inversion using the adjoint solution.

Most methods for inversion of ice surface data to compute parameters in the models at the ice base rely on a solution of the

adjoint stress equation with a given fixed geometry of the ice as in MacAyeal (1993) for SSA and in Petra et al. (2012) for FS,5

where the time dependent height equation for the moving upper surface is not included in the inversion. The stationary basal

friction coefficients have been derived from satellite data in this way for many glaciers and continental ice sheets using velocity

data in e.g. Gillet-Chaulet et al. (2016); Isaac et al. (2015); Schannwell et al. (2019); Sergienko and Hindmarsh (2013).

The conditions between the ice and the bedrock vary in time and sometimes the friction parameter varies several orders of

magnitude in a decade, see e.g. Jay-Allemand et al. (2011). In addition, there are variations on seasonal and diurnal time scales10

with examples in Schoof (2010); Shannon et al. (2013); Vallot et al. (2017). Other time dependent forces are considered in

Seddik et al. (2019). The effect of a seasonal variation of the lubrication at the base of the ice is studied in Shannon et al.

(2013) for the Greenland ice sheet by solving the FS and other high order equations. Fast temporal variations in the meltwater

under the ice drive the ice flow in the analysis in Schoof (2010). The spatial and temporal variations of the basal conditions

are inferred from satellite data in Larour et al. (2014) with an inverse method for SSA and automatic differentiation. Based15

on observations, the conclusion in Sole et al. (2011) is also that the annual change of the water drainage under the ice affects

the sliding and the acceleration and deceleration of the ice. Transient data are included in Goldberg et al. (2015) to find time

dependent basal parameters by inversion, where the sensitivity is determined by automatic differentiation. The results differ

if the time evolution of the equations is taken into account or not. The shallow ice approximation (SIA) is the ice model in

Monnier and des Boscs (2017) to determine the basal properties with time dependent surface data. Here, we solve the adjoint20

equations to both the stress equation and the time dependent height equation in FS and SSA to examine how the dynamics

of the models change the sensitivity to the base parameters. The adjoint equations are derived and analytical solutions are

found to simplified equations in a companion paper by Cheng and Lötstedt (2019). The influence of the dynamics of the basal

conditions is different on the velocity and the height observations.

The forward advection equation for the height and the stress equations for the velocity for FS are here solved numerically in25

two dimensions (2D) with Elmer/Ice (Gagliardini et al. (2013); Gillet-Chaulet et al. (2012)). The solver of the adjoint stress

equation in Elmer/Ice is amended by the adjoint height equation. The forward and adjoint SSA equations are solved for a

vertical ice in 2D by a finite difference method. The perturbations are observed in the velocity and the height at certain points

in space and time. Comparisons are made for steady state and time dependent problems between a direct calculation of the

change at the ice surface and using the control technique with the adjoint solution. Simplified adjoint stress equations have30

been proposed and used in Martin and Monnier (2014); Morlighem et al. (2013); Mosbeux et al. (2016). The sensitivity in the

SSA model is evaluated in this paper for such simplifications in the adjoint SSA equations. The sensitivity in the numerical

solutions is also compared to the analytical formulas in Cheng and Lötstedt (2019). It is observed in Durand et al. (2011)

that the sensitivity to changes at the base increases closer to the grounding line in the coastal regions. The basal topography
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is inferred from the height data in van Pelt et al. (2013) without solving the adjoint equations. The reason for the increased

sensitivity and why the height method works are explained by our analytical solutions to the adjoint SSA equations.

There is a transfer matrix between the perturbations in the parameters at the base and the observations at the surface. Analytical

expressions for time dependent transfer functions for FS and SSA are derived in Gudmundsson (2003, 2008) by linearizing,

freezing coefficients, and applying Fourier analysis and the Laplace transform. The properties of the transfer matrix are eval-5

uated here to see which combinations of perturbations and observations are well and ill-conditioned. In an ill-conditioned

problem, the sensitivity is low at the surface to perturbations at the base. This matrix can also be used to quantify the uncer-

tainty in the ice flow due to uncertainties in the model parameters, see e.g. Bulthuis et al. (2019); Schlegel et al. (2018); Smith

(2014). Perturbations at the ice base with short wave length are propagated to the surface with a weaker effect on the height

and velocity compared to long wave lengths in Gudmundsson (2003, 2008). These are the conclusions in calculations with FS10

in Kyrke-Smith et al. (2018), where it is difficult to separate the contribution from the friction and the bed topography from

each other. These effects are confirmed in our analysis.

The structure of the paper is as follows. The ice equations and the corresponding adjoint equations for FS and SSA are presented

in Sect. 2. The computed sensitivities are compared between the direct method and the control method in Sect. 3 for steady

state and time dependent problems in 2D. The ice configuration is taken from the MISMIP benchmark project in Pattyn et al.15

(2012). The results are discussed and conclusions are drawn in Sections 4 and 5. Formulas from Cheng and Lötstedt (2019) are

found in Appendix A.

Vectors and matrices are written in bold as a and A. The operations⊗, :, and ? on vectors a and c, matrices A and C, and four

index tensors A are defined by

(a⊗ c)ij = aicj , a : c = a · c =
∑
i aici,

(A⊗C)ijkl =AijCkl, A : C =
∑
ijAijCij , (A ?C)ij =

∑
klAijklCkl.

(1)20

The definition of a norm of a vector a is ‖a‖= (a ·a)1/2.

2 Ice models

The equations of two ice models and their adjoint equations are stated in this section. The FS equations are considered to be an

accurate model of ice sheets and the SSA equations are an approximation of the FS equations suitable e.g. for fast flowing ice

on the ground and ice floating on water, see Greve and Blatter (2009).25

2.1 Full Stokes equations

The FS equations are a system of PDEs for the velocity of the ice u(x, t) = (u1,u2,u3)T , the pressure p(x, t), and the height

h(x,y, t) with the coordinates x = (x,y,z) and time t. There is a stress equation satisfied by u and p and an advection equation

for h. The adjoint equation of the stress equation is derived in Petra et al. (2012) and the adjoint equations of the stress and the

height equations are found in Cheng and Lötstedt (2019). The sensitivity of observations of the velocity and the height of the30

ice surface is derived for perturbations in the friction coefficient at the ice base.
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The domain of the ice is Ω with boundary Γ in three dimensions (3D). The boundary consists of the ice surface at the upper

boundary Γs, the lower boundary at the ice base Γb and Γw, and the vertical, lateral boundaries Γu and Γd where Γu is the

upstream boundary with n ·u≤ 0 and Γd is the downstream boundary with n ·u> 0. The normal of Γ pointing outward is

denoted by n. The projection of Γs and Γb on the horizontal x− y plane is ω and the projections of Γu and Γd are γu and γd,

respectively. The z coordinate of the grounded base Γb is the topography and the bathymetry b(x,y). The grounding line γGL5

separates Γb on ω from Γw floating on water with a moving z-coordinate zb(x,y, t). Formal definitions of these domains are

Ω = {x|(x,y) ∈ ω, b(x,y)≤ z ≤ h(x,y, t)},
Γs = {x|(x,y) ∈ ω, z = h(x,y, t)},
Γb = {x|(x,y) ∈ ω, z = b(x,y),x < xGL(y)},
Γw = {x|(x,y) ∈ ω, z = zb(x,y, t),x > xGL(y)},
Γu = {x|(x,y) ∈ γu, b(x,y)≤ z ≤ h(x,y, t)},
Γd = {x|(x,y) ∈ γd, b(x,y)≤ z ≤ h(x,y, t)}.

(2)

Let I be the identity matrix. The projection of a vector on the tangential plane of Γb is denoted by T = I−n⊗n as in Petra

et al. (2012). In 2D, x = (x,z)T , ω = [0,L], γu = 0, and γd = L.

2.1.1 Forward equations10

The definitions of the strain rate D and the viscosity η of the ice are

D = 1
2 (∇u +∇uT ), η(u) = 1

2A
− 1

n (trD2(u))ν , ν = 1−n
2n . (3)

The trace of D2 is trD2 and the rate factor A depends on the temperature of the ice, here assumed to be constant in isothermal

flow. The material constant n > 0 is given in Glen’s flow law. Then the stress tensor is

σ(u,p) = 2ηD(u)− pI. (4)15

Let ρ be the density of the ice, g be the gravitational acceleration and a be the accumulation/ablation rate on the surface Γs.

The notation is simplified with the slope vectors h = (hx,hy,−1)T in 3D and h = (hx,−1)T in 2D. A subscript x,y,z, or t

on a variable denotes a partial derivative such that e.g. hx = ∂h/∂x. Then the forward FS equations for h,u, and p are

ht + h ·u = a, on Γs,

h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
−∇ ·σ(u,p) =−∇ · (2η(u)D(u)) +∇p= ρg, ∇ ·u = 0, in Ω(t),

σn = 0, on Γs,

Tσn =−Cf(Tu)Tu, n ·u = 0, on Γb.

(5)

The initial data for h are h0(x) and hγ(x, t) is specified on the inflow boundary γu. The expressionCf(Tu) defines the friction20

law with variable coefficient C(x, t) and a function f(·) of the projected velocity Tu, e.g. as in Weertman (1957) where

f(u) = ‖u‖m−1, m > 0. (6)
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The Dirichlet boundary conditions of u on Γu and Γd are set to be uu and ud.

2.1.2 Adjoint equations

We observe a quantity

F =

T∫

0

∫

Γs

F (u,h)dxdt (7)

at the surface Γs when t ∈ [0,T ]. For example, if the ice is in the steady state and F (u) = u1δ(x−x∗) with the Dirac delta δ5

then the observation is the x component of u at x∗

F =

∫

Γs

F (u)dx = u1(x∗).

If F (h) = hδ(x−x∗) then the height is observed

F =

∫

Γs

F (h)dx = h(x∗).

The adjoint equations depend on the first variations Fu and Fh of F (u,h) with respect to u and h. In the first example above,10

Fu = (δ(x−x∗),0,0)T and Fh = 0 and in the second example Fu = 0 and Fh = δ(x−x∗).

The adjoint FS equations form a system of PDEs for the adjoint height ψ, the adjoint velocity v, and the adjoint pressure q.

There is an advection equation for ψ and an adjoint stress equation for v and q such that

ψt +∇ · (uψ)−h ·uzψ = Fh +Fu ·uz, on Γs,

ψ(x,T ) = 0, ψ(x, t) = 0, on Γd,

−∇ · σ̃(v, q) =−∇ · (2η̃(u) ?D(v)) +∇q = 0, ∇ ·v = 0, in Ω(t),

σ̃(v, q)n =−(Fu +ψh), on Γs,

Tσ̃(v, q)n =−Cf(Tu)(I + Fb(Tu))Tv, on Γb,

n ·v = 0, on Γb,

(8)

where the adjoint viscosity, adjoint stress, and linearized friction law in Eq. (8) are according to Petra et al. (2012)15

η̃(u) = η(u)
(
I + 1−n

nD(u):D(u)D(u)⊗D(u)
)
,

σ̃(v, q) = 2η̃(u) ?D(v)− qI,
Fb(Tu) = m−1

Tu·Tu (Tu)⊗ (Tu).

(9)

The tensor I with four indices ijkl is 1 when i= j = k = l and 0 otherwise.

The perturbation of the observation in Eq. (7) with respect to a perturbation in the friction coefficient C is

δF =

T∫

0

∫

Γb

f(Tu)Tu ·Tv δC dxdt (10)
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involving the tangential projections of the forward and adjoint velocities Tu and Tv at the grounded ice base Γb. This expres-

sion is derived in Cheng and Lötstedt (2019) and Petra et al. (2012) via the perturbation of the Lagrangian of the system of

equations and evaluating it at the forward and adjoint solutions.

Only perturbations in C are considered here for the FS model. Via the Lagrangian, the result of perturbations δb in the topog-

raphy can be derived but the complexity of the adjoint Eq. (8) would increase considerably.5

2.2 Shallow shelf approximation

In the shallow shelf approximation of the FS equations, the velocity is constant in the vertical direction and the pressure is

given by the cryostatic approximation (Greve and Blatter (2009); MacAyeal (1989)). The sensitivity of observations of the

velocity at the surface and the height to perturbations in friction coefficients and the base topography is quantified for the SSA

model.10

2.2.1 Forward equations

It is sufficient to solve for the horizontal velocity u = (u1,u2)T when x = (x,y) ∈ ω thus simplifying the 3D FS problem

Eq. (5) considerably. The viscosity in the SSA is

η(u) =
1

2
A−

1
n

(
u2

1x +u2
2y +

1

4
(u1y +u2x)2 +u1xu2y

)ν
=

1

2
A−

1
n

(
1

2
B : D

)ν
, (11)

where B(u) = D(u) +∇ ·uI. The stress tensor ς(u) in SSA is defined by15

ς(u) = 2HηB(u). (12)

Let n be the outward normal vector of the boundary γ, t the tangential vector such that n · t = 0, and H = h− b the thickness

of the ice. The friction law is defined as in the FS case in Eq. (6) where the basal velocity is replaced by the horizontal velocity

since the vertical variation is neglected in SSA. Under the floating ice shelf on Γw, C = 0 in the friction law.

The ice dynamics system is20

ht +∇ · (uH) = a, 0≤ t≤ T, x ∈ ω,
h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
∇ · ς −Cf(u)u = ρgH∇h, x ∈ ω,
n ·u(x, t) = uin(x, t),x ∈ γu, n ·u(x, t) = uout(x, t),x ∈ γd,
t · ςn =−Cγfγ(t ·u)t ·u, x ∈ γg, t · ςn = 0, x ∈ γw,

(13)

where uin ≤ 0 and uout > 0 are the inflow and outflow normal velocities on γu and γd of the boundary γ = γu∪γd. The friction

on the lateral side of the ice γ = γg ∪ γw depends on the tangential velocity t ·u there. The friction law Cγfγ(t ·u) on γg is

not necessarily the same as Cf(u) on ω.

The structure of the SSA system Eq. (13) is similar to the FS equations in Eq. (5). However, the velocity u is not divergence25

free in SSA and B 6= D due to the cryostatic approximation.
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2.2.2 Adjoint equations

The adjoint SSA equations are derived in Cheng and Lötstedt (2019) as in Sect. 2.1.2 by forming the Lagrangian and partial

integration using the forward equations and the boundary conditions in Eq. (13). The adjoint viscosity η̃ and adjoint stress ς̃

are defined by

η̃(u) = η(u)
(
I + 1−n

nB(u):D(u)B(u)⊗D(u)
)
,

ς̃(v) = 2Hη̃(u) ?B(v),
(14)5

cf. η̃ and σ̃ in Eq. (9). The adjoint SSA equations are

ψt + u · ∇ψ+ 2ηB(u) : D(v)− ρgH∇ ·v + ρgv · ∇b= Fh, in ω,

ψ(x,T ) = 0, in ω, ψ(x, t) = 0, on γw,

∇ · ς̃(v)−Cf(u)(I + Fω(u))v−H∇ψ =−Fu, in ω,

t · ς̃(v)n =−Cγfγ(t ·u)(1 +Fγ(t ·u))t ·v, on γg, t · ς̃(v)n = 0, on γw,

n ·v = 0, on γ.

(15)

Compared to Eq. (8), the advection equation depends on v and the influence of ψ in the stress equation is different in Eq. (15).

With a Weertman friction law Eq. (6), the terms Fω and Fγ in the adjoint basal friction and the lateral friction in Eq. (15) are

Fω(u) =
m− 1

u ·u u⊗u, Fγ =m− 1.10

The friction coefficients on the base and the lateral sides are perturbed by δC and δCγ and the topography is perturbed by δb

in the SSA model. Then the perturbation δF in the observation F in Eq. (7) is (Cheng and Lötstedt (2019))

δF =

T∫

0

∫

ω

(2ηB(u) : D(v) + ρgv · ∇h+∇ψ ·u)δb− f(u)u ·vδC dxdt

−
T∫

0

∫

γg

fγ(t ·u)t ·ut ·vδCγ dsdt.

(16)

2.2.3 Forward and adjoint SSA in 2D

In the 2D model, u2 = 0, derivatives with respect to y vanish, and the lateral friction force is neglected, Cγ = 0. The ice15

domains are the grounded and floating parts Γb = [0,xGL] and Γw = (xGL,L] where xGL is the position of the grounding

line. The friction coefficient C is positive on Γb and C = 0 on Γw. The forward and adjoint equations in 2D are derived from

Eq. (13) and Eq. (15) by letting H and u1 be independent of y and taking u2 = 0. The notation is simplified if we let u= u1

and v = v1. The forward equations follow from Eq. (13)

ht + (uH)x = a, 0≤ t≤ T, 0≤ x≤ L,
h(x,0) = h0(x), h(0, t) = hL(t),

(Hηux)x−Cf(u)u− ρgHhx = 0, 0≤ x≤ L,
u(0, t) = uL(t), u(L,t) = uc(t).

(17)20
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Assume that u > 0 and ux > 0. There is an inflow of ice with speed uL to the left and a calving rate uc at x= L. The viscosity

in Eq. (11) is simplified to η = 2A−1/nuνx. The friction term is Cf(u)u= Cum with the Weertman law in Eq. (6).

The adjoint variables v and ψ satisfy the adjoint equations in 2D

ψt +uψx + (ηux− ρgH)vx + ρgbxv = Fh,

0≤ t≤ T, 0≤ x≤ L,
( 1
nHηvx)x−Cmf(u)v−Hψx =−Fu,
ψ(x,T ) = 0, ψ(L,t) = 0, v(0, t) = 0, v(L,t) = 0,

(18)

obtained from Eq. (14) and Eq. (15) or derived from Eq. (17) with equal result.5

Perturbations δb and δC in the topography and the friction coefficient propagate to the surface as in Eq. (16)

δF =

T∫

0

L∫

0

(ψxu+ vxηux + vρghx)δb− vf(u)uδC dxdt. (19)

2.2.4 Discretized relations in 2D

In order to simplify the notation, only a 2D steady state problem for the SSA model is considered here but the analysis is

applicable to 3D steady state problems as well as time-dependent problems with the FS or SSA models.10

The time independent perturbation of F in Eq. (19) for the steady state solution is rewritten with Fu = δ(x−x∗) and weights

wub and wuC

δu(x∗) = δF =

L∫

0

wubδb+wuCδC dx,

wub(x∗,x) = ψxu+ vxηux + vρghx, wuC(x∗,x) =−vf(u)u.

(20)

The weights wub and wuC in Eq. (20) depend on both x∗ and x. When h is observed the perturbation is

δh(x∗) =

L∫

0

whbδb+whCδC dx, (21)15

where the weights whb and whC have the same form as in Eq. (20) but with different ψ and v.

The relation is discretized by observing u at equidistant x∗i, i= 1,2, . . . ,M, with x∗,i+1−x∗i = ∆x∗ and perturbing b and C

at xj , j = 1,2, . . . ,N, with xj+1−xj = ∆x. The integral in Eq. (20) is computed by the trapezoidal rule to have

δu(x∗i) =

N∑

j=1

µj(wub(x∗i,xj)δb(xj) +wuC(x∗i,xj)δC(xj))∆x,

µ1 = 0.5, µj = 1, j = 2,3, . . . ,N − 1, µN = 0.5,

(22)

or in matrix form20

δu = Wubδb + WuCδC, (23)
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with the matrix elements

Wubij = µjwub(x∗i,xj), WuCij = µjwuC(x∗i,xj),

i= 1,2, . . . ,M, j = 1,2, . . . ,N.

In the same manner, there are matrices Whb and WhC connecting δh with δb and δC

δh= Whbδb + WhCδC. (24)

The sensitivity of u to changes in b and C on ω is given by the singular value decomposition (SVD) of Wub and WuC (Golub5

and Van Loan (1989)) defined by

Wub = UubΣubV
T
ub, WuC = UuCΣuCVT

uC ,

where Uub and UuC are of size M ×M and Vub and VuC are of size N ×N . A summary of the properties of the SVD are

found in the Appendix.

Consider the case when δb= 0 in (23). The relation between δu and δC is well behaved in Eq. (23) if all the singular values10

σuCi of WuC are of similar size, but if some of them are much smaller than the other ones with σCi� σC1, i= J,J +

1, . . . ,min(M,N), then the relation is ill-conditioned. A large perturbation in C may then result in a hardly visible perturbation

at the surface and a small observed perturbation in u may correspond to a large perturbation at the base. The same conclusions

apply to Wub and σubi in the relation between δu and δb and to the sensitivity matrices Whb and WhC when Fh = δ(x−x∗).

The transfer functions in Gudmundsson (2003, 2008) between perturbations in b and C at the base and the observations u and15

h at the top are determined by linearization and Fourier transformation in a slab geometry. The transfer function for different

wave numbers corresponds to the singular values in our analysis.

2.2.5 Relation to the inverse problem

The sensitivity problem and the inverse problem are related. Assume that there are M observations of the velocity uobs at the

surface of the ice at xi and we want to derive the corresponding friction coefficient C at j locations. With C we observe u at20

the top at the same coordinates. Then we seek a correction δC of C at N points such that u + δu approaches uobs. By (23),

u−uobs = δu = WuCδC, (25)

and δC is chosen such that ‖u−uobs‖ is minimized. This problem is a linear least squares problem. Expressed with the SVD

and the generalized inverse Σ−1
uC , the solution is

δC = VuCΣ−1
uCUT

uC(u−uobs), (26)25

see Golub and Van Loan (1989) and the Appendix. The solution can be improved iteratively with updates of C and u by

Ck+1 = Ck + δC and uk+1 = uk + δu, computing a new WuC and so on.

9



The relation between the transfer matrix and the inversion problem is illustrated by (26) but a more efficient optimization

method is based on the gradient of the objective function ‖u−uobs‖. It is the standard method for inversion in e.g. Gillet-

Chaulet et al. (2016); Isaac et al. (2015); Petra et al. (2012) and the gradient is computed using the adjoint solution with

F (u) = ‖u−uobs‖2.

3 Results5

In the numerical experiments we use a 2D constant downward-sloping bed with an ice profile from the MISMIP benchmark

project in Pattyn et al. (2012). The bedrock elevation in meters is given as

b(x) = 720− 778.5× x

7.5× 105
. (27)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

x (m) ×106

−1000

0

1000

2000

3000

4000

z
(m

)

Figure 1. The initial ice geometry with height h (blue), ice base b (orange), and ocean bathymetry (black). The domains in Eq.(2) are the

ice domain Ω between the blue and orange curves, the upper surface Γs in blue, the lower boundary on the bedrock Γb and on water Γw in

orange, Γu at x= 0 and Γd at x= L= 1.6× 106 m.

The initial configuration of the ice is a steady state solution achieved by the FS model using Elmer/Ice (Gagliardini et al. (2013))

with A= 1.38×10−24 s−1Pa−3 with a grounding line position at xGL = 1.053×106 m shown in Fig. 1. The Weertman type10

friction law in Eq. (6) in the forward problem has the exponent m= 1/3 and a constant friction coefficient C0 = 7.624×
106 m−1/3s1/3Pa. The remaining physical parameters are given in Table 1.

Without losing the generality in the friction law and to investigate the relation between the basal velocity and the stress,

the friction law exponent in the adjoint problem is assumed to be m= 1 and the coefficient is calculated from the forward

steady state solution by C(x) = C0‖u‖−2/3. The resulting friction law becomes Cf(u) = C(x) which can be viewed as a15

linearization of the friction law at the steady state.
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Parameter Quantity

ρw = 1000 kg m−3 Water density

ρi = 900 kg m−3 Ice density

g = 9.8 m s−2 Acceleration of gravity

n= 3 Flow-law exponent

a= 0.3 m year−1 Accumulation rate
Table 1. The physical parameters of the ice.

3.1 Full Stokes model

A vertically extruded mesh is constructed for the given geometry with mesh size ∆x=1 km yielding equidistant nodes in the

horizontal direction. The number of vertical layers is set to 20 in the whole domain. Only the grounded ice is considered in the

adjoint problem and Dirichlet boundary conditions on u are used for the lateral boundaries Γd and Γu at the grounding line

x= xGL and the ice divide x= 0.5

The forward and adjoint FS problems are solved using the finite element code Elmer/Ice (Gagliardini et al. (2013)) with P1-P1

quadrilateral element and Galerkin Least Squares stabilization for the Stokes equation and a bubble stabilization (Baiocchi

et al. (1993)) for the adjoint advection equation. The feature to solve the adjoint time dependent equations has been added to

Elmer/Ice. The Dirac delta is approximated by a linear basis function with the amplitude 1/∆x.

The time stepping scheme for the forward and adjoint transient problems is the implicit Euler method with a constant time10

step ∆t= 1 year. The adjoint equation is solved backward in time from the final time t= T to t= 0. The steady state of the

adjoint equations is computed by neglecting the time derivative term in the adjoint surface equation Eq. (8) and solving the

corresponding linear system of equations for ψ and v.

Both transient and steady state simulations are run with pointwise observations of the horizontal velocity u1 and surface

elevation h at different x∗ positions on the top surface. The time interval for the transient solutions is [0,1] covered by one15

forward timestep ∆t from 0 to 1 and one backward timestep from 1 to 0.

The multiplier ψ only acts as the amplitude of the external force on Γs and h is an approximate normal vector pointing inward

on Γs in the adjoint FS equation Eq. (8). The size of ψh is several orders of magnitude smaller than 1, the coefficient in front of

δ(x−x∗) in Fu. Consequently, in the u1-response case, the adjoint solution v is mainly influenced by the observation function

Fu. However, in the h-response case with Fu = 0, the adjoint solution v is determined by ψh and the solution would be v = 020

if we did not solve the adjoint advection equation for ψ.

The adjoint solutions v1 at Γb of all the four cases are concentrated at the observation points. The vertical component v2 shares

the same feature as v1 due to the boundary condition n ·v = 0 on Γb. Therefore, the weights Tu ·Tv in Fig. 2 are also confined

to the neighborhood of x∗. The negative weights obtained in the u1-response cases imply that an increase in the basal friction

coefficient results in a decrease of the surface velocity. The amplitude of the weights grows rapidly toward the grounding line25

11
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Figure 2. Comparison of the weights Tu·Tv in Eq. (10) for perturbations δC at different observation points x∗ = 0.25×106,0.5×106,0.7×

106 and 0.9× 106 (blue, orange, green, and pink).Upper panels: transient simulations; lower panels: steady states. Left panels: wuC with

pointwise u response; right panels: whC with pointwise h response.

in all four cases in the figure. In fact, the contribution of the weight function to the observed variables u1 can be viewed as a

convolution of the perturbation in C(x) with a narrow Gaussian wuC(x∗,x) in Eq. (20) after a proper scaling in the left panels

of Fig. 2.

The amplitude of the perturbation at the surface depends on the wavelength λ of the perturbation at the base. The shorter λ

is, the smaller the amplitude is. Introduce a stationary perturbation δC(x) = εC0 cos(2π(x−x∗)/λ) with a constant C0 and a5

small ε� 1. Then the change in the steady state solution u1 at the surface is according to Eq. (10)

δu1(x∗,λ) =

L∫

0

εC0Tu ·Tvcos(
2π(x−x∗)

λ
) dx. (28)

The same relation holds for δh(x∗) but with a different v. Let % be a measure of the width of the weight function for the steady

state in Fig. 2 which is about 105. When λ is large compared to % then

δu1(x∗,λ)≈ δu1,∞(x∗) = lim
λ→∞

δu1(x∗,λ) = εC0

L∫

0

Tu ·Tv dx, (29)10
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which is a constant value for long λ, and the perturbation can be observed at the surface. If the wavelength of the basal

perturbation is short compared to %, then it is damped before it reaches the surface and the effect of δC on u1 and h is small.

In Fig. 3, δu1(x∗,λ) and δu1,∞(x∗) are compared at x∗ = 0.9×106. When λ > % then δu1(x∗,λ)≈ δu1,∞(x∗). Suppose that

λ= 2× 104. Then δu1(x∗,λ) is about 0.02δu1,∞(x∗) and probably hard to observe and δh(x∗,λ)≈ 0.2δh∞(x∗). Similar

conclusions are drawn theoretically in Gudmundsson (2003, 2008) using Fourier analysis and experimentally in Sun et al.5

(2014).
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Figure 3. The response at Γs with different wavelengths λ in the perturbation of C in Eq. (28). Left panel: δu1(x∗,λ)/δu1,∞(x∗); right

panel: δh(x∗,λ)/δh∞(x∗).

We perform a pair of experiments to compare the results from perturbing the forward equation and the prediction by the adjoint

solutions. A relative 1% perturbation δC(x) is added at x ∈ [0.9,1.0]× 106 m to the friction coefficient C(x). The differences

between the forward FS solutions with and without the perturbation after one year are shown in Fig. 4 marked as ’perturbed’.

The ’predicted’ perturbations are computed from the solutions of the adjoint equation by varying x∗ along the x-axis and10

inserting into Eq. (10). Each red dot in Fig. 4 corresponds to one single observation at x∗. Both the u1 and h predictions are in

good agreement with the forward perturbations.

3.2 SSA

The same MISMIP benchmark experiment as in Sect. 3.1 is solved by the SSA on a one dimensional uniform grid with mesh

size ∆x= 1 km using standard finite difference methods implemented in MATLAB. The time derivatives are discretized by15

the implicit Euler method with a constant time step ∆t= 1 year as in Sect. 3.1. An upwind scheme is used for the spatial

derivatives in the forward and adjoint advection equations to stabilize the numerical solutions. Replacing the Dirac delta with a

Gaussian a few grid points wide in order to smoothen the observation function and avoid numerical oscillations in the solution

has no major effect on the solutions.

The numerical solution of the forward SSA equations Eq. (17) is compared to the analytical approximations in the Appendix20

Eq. (A1) in Fig. 5. The detailed derivation of the analytical solutions in the Appendix are found in Cheng and Lötstedt (2019).
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Figure 4. The changes on the horizontal velocity u1 (upper panel) and surface elevation h (lower panel) in FS after one year with 1%

perturbation on C(x) at x ∈ [0.9,1.0]× 106 m. Solid lines are the differences between the steady state and perturbed transient solutions in

Eq. (5). Red dots are the estimated perturbation using Eq. (10).

The analytical approximation of u is poor to the right of xGL for the floating ice in Fig. 5 but we are only interested in the

solution for the grounded ice. The reason for the error in the analytical solution of u is that H is assumed to be constant for

x > xGL. The analytical solution for H catches the fast decrease when x approaches xGL from the left. Another solution for

x > xGL is found in Greve and Blatter (2009) assuming that the thickness depends linearly on x.

The weight functions wuC and whC in Fig. 6 have the same non-zero pattern as v since they are equal to −vum in Eq. (20).5

Each one of these weights wuC or whC corresponds to the sensitivity of the observation at x∗ with respect to the change

in C(x) which is one row in the weight matrices WuC or WhC in Eq. (23) and Eq. (24). The analytical weight functions

in Eq. (A3) and Eq. (A5) at x∗ = 0.7× 106 m are included in the steady state figures for comparison. In the transient SSA

simulations, the sensitivity is similar to those in the adjoint FS solutions in Fig. 2 increasing towards the grounding line. Such

an increased sensitivity is also noted in Kyrke-Smith et al. (2018); Leguy et al. (2014). However, in the steady state cases,10

the weight functions indicate only an upstream effect of C(x). In other words, the perturbation in C(x) at point x can only

influence the steady state solutions to the left of this point. This is true as long as the effect of the grounding line migration is

neglected. The δC weights for u responses are all negative implying that an increase of C leads to decrease of u, but the steady

14



0.00 0.25 0.50 0.75 1.00 1.25 1.50

x (m) ×106

0

1

2

3

u
(m

ye
ar

−
1
)

×103

Analytical

Numerical

0.00 0.25 0.50 0.75 1.00 1.25 1.50

x (m) ×106

0

1

2

3

4

H
(m

)

×103

Analytical

Numerical

Figure 5. Comparison of the steady state numerical solutions of the SSA velocity u and the thickness H in Eq. (17) (orange) and the

analytical solutions in Eq. (A1) (blue).

state surface elevation h rises when C is increased. The weights for the transient problem have similar shape for the FS and

SSA models in Figs. 2 and 6.

The weight functionswub andwhb for δb are localized at the observation position x∗ in all the four cases in Fig. 7 which implies

that the inverse problems may be well posed. The black dashed lines in the two lower panels are the analytical expressions of

the weight functions at x∗ = 0.7×106 m in Eq. (A3) and Eq. (A5) with a hat function of width 2∆x at the base to approximate5

the Dirac delta. The analytical solutions almost coincide with the numerical solutions. The steady state weight functions are

non-zero to the right of x∗ corresponding to the integral in (A5). There is a detailed view of the steady state δb weights for

x > x∗ in Fig. 8. The weights of δb have similar structures as the δC weights. The analytical solutions in Eq. (A3) and Eq. (A5)

suggest that wub/wuC ≈ whb/whC ≈ (m+ 1)C/H for x 6= x∗.

The same perturbation on C(x) as in Fig. 4 is imposed in the SSA simulations. The perturbed solutions after one year and10

15,000 years (which is close to a steady state) are computed with the forward equations and then the reference solutions at the

steady state without any perturbation are subtracted. This difference is compared to the perturbations obtained with the adjoint

equations as in Fig. 4. In the one year perturbation experiment in Fig. 10, the transient weight functions in the upper panels in

Fig. 6 are used for the sensitivity estimates. The weight functions in the upper panels of Fig. 7 predict the response in Fig. 11.

The corresponding comparisons for the steady state problem are made in Figs. 12 and 13 with the weights in the lower panels15

of Figures 6 and 7. The analytical solutions of the steady state perturbations from (A3) and (A5) are shown with black dashed

lines in these two figures.

The rapid change of δh in Figs. 10 and 11 is explained by the shape of the weight functions in the upper right panels of Figs. 6

and 7. The weights can be approximated by −θ(x,t)δ′(x−x∗) for some θ > 0. Then the surface response will be

δh(x∗) =

T∫

0

L∫

0

−θ(x,t)δ′(x−x∗)δC(x) dxdt=

T∫

0

(θδC)′(x∗, t) dt,20

15
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Figure 6. Comparison of the weights wuC and whC for SSA in Eq. (19) for perturbations δC with m= 1 at different observation points

x∗ = 0.25×106,0.5×106,0.7×106 and 0.9×106 (blue, orange, green, and pink). The black dashed line in the lower panels are wuC and

whC computed from the analytical solutions of u in Eq. (A1) and v in Eq. (A2) and Eq. (A4) at x∗ = 0.7× 106. Upper panels: transient

simulations; lower panels: steady states. Left panels: wuC for pointwise u response; right panels: whC for pointwise h response.

where δC jumps discontinuously at x= 0.9×106 and x= 1.0×106. The same phenomenon is found for FS in Fig. 4 with an

explanation in Fig. 2.

The perturbations δu and δh in the steady state in Fig. 12 have discontinuous derivatives δux and δhx where δC has jumps.

This is explained by the integral terms in (A3) and (A5). The discontinuities in the upper panel of Fig. 13 are caused by the

jumps in δb at 0.9× 106 and 1.0× 106 and the first term in (A3). The jumps in δh in the lower panel of Fig. 13 are due to the5

first term in (A5).

All the predicted solutions from the adjoint SSA are in good agreement with the forward perturbation.

The inverse problem of the steady state for the friction coefficient may not be well-posed since the weights are all positive

from x∗ to xGL. This is verified by checking the singular values of the sensitivity matrices WuC and WhC in Fig. 9 where the

largest and smallest singular values of ΣuC are 10−4 and 10−12 with a large quotient σuC1/σuCN and the span of the singular10

values of ΣhC is from 10−4 to 10−8 (which is better).

The singular values of the sensitivity matrices Wub and Whb in Fig. 9 are in the interval 10−4 to 10−7 from large to small.

They are better conditioned than the sensitivity matrices forC. In particular, Σhb (in pink) in the h-response case has the lowest
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Figure 7. Comparison of the weights wub and whb for SSA in Eq. (19) for perturbations δb at different observation points x∗ = 0.25×

106,0.5× 106,0.7× 106 and 0.9× 106 (blue, orange, green, and pink). The black dashed line in the lower panels are the weights of δb in

Eq. (A3) and Eq. (A5) at x∗ = 0.7× 106. Upper panels: transient simulations; lower panels: steady states. Left panels: wub for pointwise u

response; right panels: whb for pointwise h response.
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Figure 8. A close-up view of the steady state weights in the lower panels of Fig. 7.
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variation of the singular values. The inverse problem of solving for the topography b from the surface elevation h in the steady

state setup is a well-posed problem compared to inferring C from u.
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Figure 9. The singular values of the transfer matrices WuC , WhC , Wub and Whb.

Good approximations of the sensitivity matrices WuC , WhC , Wub and Whb are found in (A3) and (A5) at given x∗i and xj

as in (23). If the basal topography is unperturbed at the same x coordinate as the observation point such that δb∗ = 0, then the

contributions of δb and δC cannot be separated since they are both multiplied by the same weight except for a different scaling5

factor. This is in agreement with numerical investigations in Kyrke-Smith et al. (2018). It is shown in Cheng and Lötstedt (2019)

that the perturbation in δu is proportional to the wavelength of δC. Perturbations with short wavelengths will not reach the

surface. These conclusions are also drawn in numerical solutions of FS in Kyrke-Smith et al. (2018) and with transfer functions

in the frequency space in Gudmundsson (2008). The perturbation in u due to δC increases with increasing u and decreasing

H . The sensitivity of δu and δh behaves in a better way if the observation at x∗ is above the perturbation at x in the topography10

in (A3) and (A5). Then δb and its derivative directly affect the perturbations at the top of the ice. This is in agreement with the

computed singular values in Fig. 9. This property is utilized in van Pelt et al. (2013) when the bottom topography is inferred

from height data. Inferring the geometry of the base from such data is easier than inferring the slipperiness and C because of

the first term in (A5) and whb in the right column of Fig. 7.

The solution of the adjoint equations is simplified in the comparison in Fig. 14. In MacAyeal (1993), two simplifications are15

made. Firstly, the adjoint viscosity η̃ in Eq. (14) is approximated by the forward viscosity η in Eq. (11). The factor 1/n in the

viscosity in the 2D stress equation Eq. (18) is then replaced by 1. Secondly, the thickness H is fixed and the advection equation

for ψ is not solved, which is equivalent to ∇ψ = 0 in the adjoint stress equation in Eq. (15). Perturbations are introduced

in C and u is observed for the transient case as in Fig. 10. The perturbed forward solutions are compared to the predicted

perturbations by the simplified adjoint SSA systems in Fig. 14, where the forward viscosity η is used in both cases. In the20
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Figure 10. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel) for SSA after one year with 1%

perturbation ofC(x) in x ∈ [0.9,1.0]×106 m. Solid lines are the differences between the steady state and the perturbed solutions in Eq. (13).

Red dots represent the estimated perturbation using Eq. (15).

upper panel of Fig. 14, the two equations of ψ and v are solved. In the lower panel, the advection equation of ψ is excluded

from the system. The differences are small in this case compared to the full adjoint solution used in Fig. 10. The reason is that

ψ,ψx, and Hηux are small in Eq. (18).

The singular values of the transfer matrices corresponding to the two simplifications are displayed in Fig. 15 where the two

transfer matrices are denoted by W̃uC for the system coupling ψ and v and by ŴuC for the adjoint equation without ψ with5

a fixed H . The singular values in Σ̃uC are similar to those in ΣuC in Fig. 9 since the influence of the adjoint viscosity on

the system is almost negligible. The transfer matrix ŴuC has a better conditioning than W̃uC , although it is still worse than

the best cases in Fig. 9. This implies that the inversion of steady state SSA without the height coupling may be an ill-posed

problem. Regularization is necessary penalising oscillatory behavior at the base as in Gagliardini et al. (2013); Petra et al.

(2012).10

4 Discussion

A few issues are discussed here related to the control method for estimating the parameter sensitivity.
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Figure 11. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel) for SSA after one year with 0.01 m

perturbation of b(x) in x ∈ [0.9,1.0]×106 m. Solid lines are the differences between the steady state and the perturbed solutions in Eq. (13).

Red dots represent the estimated perturbation using Eq. (15).

We solve the FS adjoint problem only one step backward in time to verify the numerical method due to limitations of the

current framework of Elmer/Ice. It is possible but more complicated and expensive to solve the adjoint problem numerically

for a large number of time steps K. This requires storing all the forward solutions (ui,pi,hi), i= 1,2, . . . ,K, to be able to

compute the adjoint solutions (vi, qi,ψi), i=K,K − 1, . . . ,1, which may be prohibitive in 3D. Since the data to be stored in

the SSA model is one dimension lower, we are able to solve the adjoint problem backward in time for any number of K. For a5

fair comparison, we show the results for one time step with SSA in this paper.

The equations for the adjoints of FS and SSA in (8) and (15) are generally valid for an ice sheet in 3D and have to be solved

numerically. The problem with the storage of the forward solution is the same as in adaptive mesh refinement where the

timestep and the mesh are adapted to satisfy bounds on the numerical error. Selected forward solutions in time are saved for

the adjoint solution to reduce the storage requirements. Missing values are interpolated in time and the sensitivity integral in10

(10) and (16) is computed successively when the adjoint solution is advanced backward in time.

The solutions of the horizontal velocity u and the height h with perturbations in C in the transient FS and SSA models are

similar in Figures 4 and 10. The weights in the upper panels in Figures 2 and 6 are similar, too. The solutions to the forward

equations are also close in the chosen MISMIP configuration. The reason is that the sliding on the ground in the FS model is

considerable, making SSA a good approximation of FS.15
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Figure 12. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel) for SSA after 15000 years (close to

the steady state) with 1% perturbation of C(x) in x ∈ [0.9,1.0]× 106. Solid lines are the differences between the steady state and perturbed

solutions in Eq. (13). Red dots represent the estimated perturbation using Eq. (15).

There are many discussions regarding the choice of friction laws, see e.g. Gladstone et al. (2017); Tsai et al. (2015); Brondex

et al. (2017). However, assuming a spatial variability of the friction coefficient C(x) with a linear relation between the basal

stress and velocity makes this numerical study independent of the friction law. The friction coefficient can be viewed as a

linearization of the friction law and a post-processing procedure can retrieve the corresponding friction law.

The transfer relation WuC between small perturbations of the friction coefficient C at the ice base and the perturbation of the5

horizontal velocity u at the ice surface is given by Eq. (23) with δb= 0. The singular values of WuC in Fig. 9 tell how sensitive

u is to changes in C. The transfer relation also describes how the uncertainty in C is propagated to uncertainty in the velocity

at the surface and how uncertainty δu in measurements of u appear as uncertainty δC in C Eq. (26), see Smith (2014).

The transfer relation is computed by solving the forward problem once and then the adjoint problem for each one of the M

observations. An alternative would be to solve the forward equations first for the unperturbed solution and then perturb C10

by δCj and solve the forward equations again N times and subtract to find the relation between δu and δCj . It is usually

more expensive to solve the nonlinear forward equations than the linear adjoint equations. Suppose that the computational

work to solve the forward problem isWF and the adjoint problem isWA. If the forward and adjoint equations are in similar

form, such as the FS or SSA problem, and solving the nonlinear forward problem requires k iterations where every nonlinear
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Figure 13. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel) for SSA after 15000 years (close

to the steady state) with 0.01 m perturbation of b(x) in x ∈ [0.9,1.0]× 106. Solid lines are the differences between the steady state and

perturbed solutions in Eq. (13). Red dots represent the estimated perturbation using Eq. (15).

iteration has the same computational cost as solving the linear adjoint problem, then WA/WF ≈ 1/k. The quotient between

the work to determine the transfer relation involving the adjoint equations and the work only based on the forward equation is

(1+MWA/WF )/(1+N). Since k ≥ 1, it is advantageous to choose the approach involving the adjoint ifM < kN . Otherwise,

solve N + 1 forward problems to compute WuC . In the inverse problem to find C given observations of u,h, the functions Fu

and Fh are smooth and M = 1 in the iterative procedure to compute C with a gradient method. Solving the adjoint equations5

is then always favorable.

5 Conclusions

The perturbations δu and δh in the velocity u and the height h at the ice surface are caused by perturbations δb and δC in

the topography of the ice base b and the basal friction coefficient C. The sensitivities δu and δh to δb and δC are evaluated in

2D by first solving the adjoint equations of the FS and SSA models including the advection equation for the height derived in10

Cheng and Lötstedt (2019). Then weight or transfer functions are determined for the relation between δu and δh at the surface

and δb and δC at the base. The predictions of δu and δh with the weights are compared to explicit calculations of perturbed
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Figure 14. The changes in the horizontal velocity u for SSA after one year with 1% perturbation of C(x) in x ∈ [0.9,1.0]× 106 m. Solid

lines are the differences between the steady state and the perturbed solutions in Eq. (13). Red dots represent the estimated perturbation using

Eq. (15). Upper panel: forward viscosity. Lower panel: without advection equation.
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Figure 15. The singular values of the transfer matrices of SSA with simplifications from MacAyeal (1993). Σ̃uC corresponds to the forward

viscosity case and Σ̂uC is from the adjoint SSA without coupling to the ψ equation.
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u and h at the surface with good agreement. It is shown in Cheng and Lötstedt (2019) that if the base perturbations are time

dependent then it is necessary to have time dependent weight functions to obtain the correct behavior at the top of the ice.

Both the height and the stress equations and their adjoints are solved to find the weight functions here. The inverse problem at

steady state to infer C from observations of u is usually solved for a fixed ice geometry and with only the stress equation and

its adjoint, see e.g. MacAyeal (1993); Petra et al. (2012). This is possible since the adjoint height ψ is small when the horizontal5

part of u is observed and has little influence on δu. On the contrary, if h is observed then there is an important effect of ψ on

δh in FS and SSA. The magnitudes of ψ are different depending on whether u or h is observed. Simplifications of the SSA

adjoint in the steady state by using the forward viscosity or ignoring the adjoint height equation have minor consequences for

the predictions of u with a perturbed C in Fig. 14.

The sensitivity to perturbations δb and δC is quantified for steady state and time dependent problems with the FS and SSA10

models. It increases as the observation point x∗ approaches the grounding line. This is explained by analytical expressions for

SSA where the sensitivity is proportional to the velocity u and inversely proportional to the ice thickness H(x∗). The closer

we are to the grounding line the higher the requirements are on the resolution of the topography and the friction coefficient to

obtain accurate solutions of u and h there. This is observed numerically in Durand et al. (2011).

A weight is local if its extension in space is close to the observation point. The weights on δC at the ice base are local for the15

steady state and time dependent FS model. They are also local for the time dependent SSA model and the transfer from δb to

δu and δh in the steady state. The sensitivity of δu and δh in the steady state of SSA depends on δC from a larger domain. It

is difficult to observe a perturbation δC with a short wavelength on u and h. In the example in Fig. 3, a spatial perturbation

wavelength λ= 2× 104 m (about 10H) in C is damped by 0.2 in δh and 0.02 in δu compared to a wavelength λ > 105 where

there is no damping due to λ. This is in agreement with the theory in Gudmundsson (2008).20

The perturbations in u and h in the steady state of the SSA model consists of a direct effect from δb at the observation point,

and a non-local effect of δb and δC in Figures 6 and 7. It follows from the analytical solution in Eq. (A3) that we cannot

distinguish between the non-local contributions of δb and δC in the integral to δu. The same conclusion about the non-local

perturbations holds for δh in Eq. (A5). This is also an observation in Kyrke-Smith et al. (2018).

The transfer matrices from δb and δC to δu and δh are examined by the singular value decomposition. If the quotient between25

the largest and the smallest singular values of the matrix is large then it is ill-conditioned and if it is small (but ≥ 1) then the

problem is well-conditioned. In an ill-conditioned problem, some perturbations at the base will be barely visible at the surface

and a small perturbation at the top may correspond to a large perturbation at the bottom. In a well-conditioned problem, all

perturbations at the base have a measurable effect at the surface. The ranking of the conditioning of the transfers in Fig. 9 from

the best to the worst is30

1. δb→ δh, 2. δb→ δu, 3. δC→ δh, 4. δC→ δu.

In the past, the coupling between δu and δC is most frequently used for inference of C from velocity data but adding height

data would improve the robustness of the inference. The approximated analytical transfer functions for SSA, yielding explicit
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dependence of the parameters, have the same properties as above that the observed velocity u and height h are more sensitive

to perturbations δb than δC.
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Appendix A: Some equations

Detailed derivations of the formulas are found in Cheng and Lötstedt (2019). A variable with index ∗ is evaluated at x∗.

A1 The forward steady state SSA solution

The analytical steady state solution to the forward Eq. (17) without considering the viscosity terms is15

H(x) =

(
Hm+2
GL +

m+ 2

m+ 1

Cam

ρg
(xm+1
GL −xm+1)

) 1
m+2

, 0≤ x≤ xGL,

H(x) =HGL, xGL < x < L,

u(x) =
ax

H
, 0≤ x≤ xGL, u(x) =

ax

HGL
, xGL < x < L,

(A1)

where HGL is the thickness of the ice at the grounding line xGL.
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A2 The adjoint steady state SSA solutions

The analytical steady state solutions of the SSA adjoint Eq. (18) with observation of u at x∗ is

ψ(x) =
Camx∗
ρgHm+3

∗
(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− 1

H∗
+

Camx∗
ρgHm+3

∗
(xmGL−xm∗ ), 0≤ x < x∗,

v(x) =
ax∗

ρgHm+3
∗

Hm, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗,

(A2)

where H∗ is the thickness of the ice at x∗. The corresponding perturbation δu∗ in Eq. (20) has the weights for δC and δb as

δu∗ =

xGL∫

0

(ψxu+ vxηux + vρghx)δb− vum δC dx

=
u∗
H∗

δb∗−
u∗
H∗

xGL∫

x∗

C(ax)m

ρgHm+1
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx,

(A3)5

If h is observed at x∗, then

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm∗ )− δ(x−x∗)η∗
nρgH∗

, 0≤ x≤ x∗,

v(x) =− Hm

ρgHm+1
∗

, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗.

(A4)

The weights for δC and δb in Eq. (19) for the perturbation on h∗ is

δh∗ =
η∗

nρgH∗
(uδb)x(x∗) +

xGL∫

x∗

C(ax)m

ρgHm+1
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx, (A5)

A3 The singular value decomposition (SVD)10

The SVD factorizes a matrix A in the following way, see Golub and Van Loan (1989),

A = UΣVT . (A6)

If A is an M ×N matrix then U is an M ×M matrix, Σ an M ×N matrix, and V an N ×N matrix. The singluar values σi

are non-negative and ordered from large to small for increasing i and i= 1,2, ...,min(M,N). They form the diagonal of the

diagonal matrix Σ with Σii = σi. The other two matrices are orthogonal satisfying UTU = I and VTV = I. The generalized15

inverse Σ−1 of Σ is an N ×M matrix with σ−1
i (if σi is positive) on the diagonal and 0 elsewhere.
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