
Response to Anonymous Referee #1

December 27, 2019

The authors consider a very important and interesting problem, ie the (in-
verse) problem of estimating the sensitivity of basal flow parameters to surface
date. In fact, this is such an interesting question that it has been addressed
many times in many publications in glaciology before. I have a positive view
of this work. However, I think the best approach forward is to ask the authors
to rework their manuscript and provide much better context and comparison of
their work with previous work. Below I give some references to papers that the
authors might find useful in this respect.

Response: The new references suggested by the reviewer have been added
and more comparisons are made with earlier work in the Introduction and at
other places in the paper.

The formulation of the adjoint equations for the time depended SSA case is,
I believe, done here for the first time. I found it next to impossible to follow
the derivations in the paper. However, reading (Cheng & Ltstedt, 2019) this all
became much easier to understand. I wonder if it might not be a good idea to
focus the paper more on the relevant message to the glaciological community
and either offload some more of the technical details to appendixes or just refer
to the arXiv manuscript.

Response: More discussion and conclusions are found in the final two sec-
tions. The description of the SVD is moved to a subsection in the Appendix.

I found it very nice how wub and wuC are determined from the solutions of
the adjoint problem φ and v. This is actually a straightforward application of
the adjoint method, but at least in glaciology I have not seen this done so often,
although possibly (Martin & Monnier, 2014; Monnier & des Boscs, 2017) may
have done this already. This is a clever way of estimating the sensitivity of, for
example, velocities at one given location to any perturbation in C. (But are not
a brackets missing in Eq. 20 and 21?). I suspect that this can easily be done
in any modern ice-flow model by just modifying the cost function to include
surface data from only one location at a time.

Response: Yes, the weights can be computed for any ice model not just
FS and SSA. We discuss the mentioned papers and do not think that Monnier
et al did it in this way. The convention is sometimes that the brackets are not
needed around a sum in the integral.

I found the transfer matrix approach also to be very interesting. As this
approach has been used before by (Gudmundsson, 2008; Gudmundsson & Ray-
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mond, 2008; Pralong & Gudmundsson, 2011; Thorsteinsson et al., 2004) it would
have been valuable for the reader to be able to understand to what the differ-
ences are with respect to those previously published studies. Since the authors
mostly consider the case m = 1 they can compare this with previously published
analytical transfer functions (note that the m > 1 solutions by (Gudmundsson,
2008) contain an error, but the m = 1 case is OK). It appears that the main
differences are that this study is numerical and the sensitivity matrices Qub

and WuC evaluated numerically. This gives great flexibility, but makes it more
difficult to arrive at general conclusions. The work seems related to (Martin &
Monnier, 2014) who also used a purely numerical approach.

Response: The transfer matrices are evaluated both numerically and ana-
lytically for SSA. We have written a paragraph in the Result section about the
interpretation of the formulas in the Appendix.

The authors state that previously ‘The time dependent height equation for
the moving upper surface is not included in the inversion.’ While this may be
true for some inverse models, there are a number of publications that use ds/dt
(s being the upper surface) information in the inversion. This has been done
for example by using the kinematic boundary condition at the upper surface
or the vertically integrated mass conservation equations. To my knowledge, all
the modern ice-flow models (i.e. ISSM, Wavy, Ua, BISICLES, Elmer/Ice) allow
for this option. The dh/dt (h ice thickness) is, for example, used to determine
ice thickness in BISICLES and ISSM and when solving for basal slipperiness
and ice rheology parameters in Wavy and Ua. See for example (Kyrke-Smith et
al., 2018; Monnier & des Boscs, 2017). However, the authors are I think right
in stating that the adjoint equations have not been derived for the transient
SSA equation before. However, I believe that in effect Dan Golberg has done
so previously using automated differentiation (Goldberg et al., 2015).

Response: Goldberg’s work is discussed. It uses autometic differentiation,
numerical approximation in time, and transient data but the analytical adjoint
is not derived. The analytical adjoint equations allow us to draw conclusions
about the solutions for FS and SSA (e.g. in the Appendix) and the sensitivity
in the more theoretical paper in arXiv by the authors and in a new paragraph
in Section 3.2. Another conclusion is that the adjoint height equation and its
solution is important for height perturbations but not for velocity perturbations
(see e.g. Conclusions). Yes, time dependent data are permitted in modern
codes but without including the time derivative of the height in the differential
equation. For instance, in Monnier and des Boscs for the extended SIA model
dh/dt is subtracted from the surface mass balance and a stationary problem is
solved (7).

I must confess that I found most of the conclusions and the points addressed
in the discussions rather weak. It is always going to be difficult to make any
general statements about parameter sensitivity using a numerical approach.
I think the approach the authors use is excellent if looking at some specific
domains and for some specific model studies. I could for example imagine this
to be a useful exercise when looking at particular parts of, for example, the
West Antarctic Ice Sheet.
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Response: Numerical evaluations of the transfer matrices are the only pos-
sible option for complicated geometries and nonlinear equations. Under certain
assumptions, the analytical expressions for SSA in the Appendix tell how the
sensitivity varies with u, h, C, and b. More discussion and conclusions have been
included in the new version of the paper regarding this issue.

A side issue that I have with the general approach is that an inverse problem
never explicitly defined. Often in inverse theory one states that the objective is,
for example, to evaluate to conditional probability P (C|u) . This then allows one
to define all kinds of clearly defined properties such as the number of resolved
model parameters as function of the number of measurements and measurements
errors, etc. etc. I understand that the authors are here only interested in
parameter sensitivity, but this somewhat narrow viewpoint of an inverse problem
makes the findings arguably less interesting.

Response: The relation to the inverse problem is discussed in the new
Section 2.2.5 now. There is also a discussion of this matter in the arXiv paper.

Overall, I have a very positive view of this work. It is highly competent
and I enjoyed reading the paper. I would suggest making more references and
links to existing work. Also, consider taking some of the technical aspect and
put them into appendixes. Especially since the computations cannot really be
understood without reading authors previous paper on this subject.

Response: Thank you for the review. More references have been added
and discussed and the SVD account is now in the Appendix.
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Response to Referee #2

December 27, 2019

I find this manuscript very relevant to TC. It presents interesting results
from a new inversion comparing Full Stokes and SSA models. Nonetheless, I
believe the manuscript requires significant revision before publication.

Motivation: The manuscript does not give the reader a sense of why this
study is necessary or important. This is particularly true for the Introduction,
where it should be made clear why this exercise is undertaken and what can be
expected as an advance compared to previous work.

Response: The second paragraph in Introduction is now a motivation.
Language: There are not so many grammatical mistakes, but nonetheless,

phrasing choices used her make it somewhat difficult to follow the text. I suggest
the authors ask an independent reviewer to help improve this aspect of the
manuscript.

Response: The language has been revised here and there.
Conclusions (and Discussion): I would like to see somewhat more general

extractions from the work to make it more broadly applicable. How would this
method work on a more realistic domain? What would it take to make the
approach work for real data? Do you believe the last conclusion (ranking of the
conditioning of transfers) is general for any problem?

Response: The Discussion and the Conclusions have been extended with
more results from the numerical experiments and the analytical solutions. The
method is general and would work in 3D with some simplifications based on
ideas in adaptive mesh refinement. Real data for u and h may be used for
inversion to find C and b at the base. The relation between the inverse problem
and the sensitivity is mentioned now in Section 2.2.5.

Specific comments

1. Abstract: Please add a sentence or two specifically reporting the important
results found from this exercise.

Response: New sentences are now in the Abstract summarizing some of
the conclusions

2. Paragraph starting P1L20: This review needs revising. Aside from the
references, as mentioned by reviewer 1, this paragraph does not leave the
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reader with a clear idea of which study addressed which issue, and why.
Please carefully improving phrasing.

Response: Parts of the Introduction have been rewritten with more ref-
erences and a description of the work there.
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Abstract. The friction coefficient and the base topography of a stationary and a dynamic ice sheet are perturbed in two models

for the ice: the full Stokes equations and the shallow shelf approximation. The sensitivity to the perturbations of the velocity and

the height at the surface is quantified by solving the adjoint equations of the stress and the height equations providing weights

for the perturbed data. The adjoint equations are solved numerically and the sensitivity is computed in several examples in two

dimensions.
::
A

::::::
transfer

::::::
matrix

:::::::
couples

:::
the

:::::::::::
perturbations

::
at

:::
the

::::
base

:::::
with

:::
the

:::::::::::
perturbations

::
at

:::
the

::::
top. Comparisons are made5

with analytical solutions to simplified problems.
:::
The

:::::::::
sensitivity

::
to

:::::::::::
perturbations

:::::::
depends

::
on

::::
their

::::::::::
wavelengths

::::
and

:::
the

:::::::
distance

::
to

:::
the

:::::::::
grounding

::::
line.

::
A

::::::::::
perturbation

::
in
::::

the
:::::::::
topography

::::
has

:
a
:::::
direct

::::::
effect

::
at

:::
the

:::
ice

::::::
surface

::::::
above

:
it
::::::

while
:
a
::::::
change

:::
in

:::
the

::::::
friction

:::::::::
coefficient

::
is

:::
less

::::::
visible

:::::
there.

1 Introduction

The result of isothermal simulations of large ice sheets depends on the ice model, the topography, and the parametrization of10

the conditions at the base of the ice. The models are systems of partial differential equations (PDEs) for the velocity, pressure,

and height of the ice. The topography and the friction model with its parameters determine the horizontal velocity and the

height at the ice surface in the computations. In the inverse problem, the parameters at the base are inferred from data at the

surface by solving adjoint equations and minimizing the difference between given data and simulated results. In this paper, we

estimate the sensitivity of the surface observations to changes in the basal conditions by solving the adjoint equations to the full15

Stokes (FS) equations and the shallow shelf (or shelfy stream) approximation (SSA), see Greve and Blatter (2009); MacAyeal

(1989). The advantage of solving the adjoint equations in a variational control method is that the effect of many perturbations

of the parameters at the bottom is obtained for one observation at one point of the surface at a certain time point. If there are

many observations and only one perturbation, then it is more efficient to compute the sensitivity by solving the forward model

PDEs twice in a direct method, firstly with the unperturbed parameters, secondly with the perturbed parameters, and then take20

the difference between the solutions. The direct method has the advantage that there is no need to implement a solver for the

adjoint equations.

:::
We

:::
are

::::::::
interested

::
in

:::
the

:::::
effect

::
of

:::::::::::
perturbations

::
of

:::
the

:::::::::
topography

::::
and

::
the

::::::::::
slipperiness

::
at

:::
the

:::
ice

::::
base

::
on

:::
the

:::::::
velocity

::
of

:::
the

:::
ice

::
at

::
the

:::::::
surface

:::
and

:::
its

::::::
height.

::
By

:::::::
solving

:::
the

::::::
adjoint

:::::::::
equations,

::
we

::::::::
quantify

::
the

:::::::::
sensitivity

::
to

:::::::::::
perturbations

:::::
close

::
to

:::
the

:::::::::
grounding

:::
line

::::
and

::
of

:::::::
different

::::::::::::
wavelengths.

:::
The

:::::::::
sensitivity

::
at
:::

the
::::::

upper
::::::
surface

::
to
::::::::::::

perturbations
::
in

:::
the

:::::
basal

::::::::::
topography

:::
and

:::::::
friction25
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::
are

::::::::
different

:::
and

:::
the

:::::::::
separation

::
of

:::
the

::::
two

:::::::::::
contributions

::::::
appears

::
to
:::

be
:::::::
difficult.

::::
The

:::::::::::
combinations

::
of

:::::::
surface

::::::::::
observations

::::
and

:::::::::::
perturbations

:
at
:::
the

::::
base

:::
are

:::::
more

::
or

:::
less

::::
well

:::::::
behaved.

::
A
::::::
related

:::::::
problem

::
is

::
to

::::
infer

:::
the

:::::
basal

::::::::
geometry

:::
and

::::::
friction

::::::::::
coefficients

::::
from

:::::::::::
observational

::::
data

::
by

::::::::
inversion

:::::
using

:::
the

::::::
adjoint

::::::::
solution.

Most methods for inversion of ice surface data to compute parameters in the models at the ice base rely on a solution of the ad-

joint stress equation with a given fixed geometry of the ice as in MacAyeal (1993); Petra et al. (2012). The
:::::::::::::::::
MacAyeal (1993) for5

::::
SSA

:::
and

::
in

::::::::::::::::::
Petra et al. (2012) for

:::
FS,

::::::
where

:::
the time dependent height equation for the moving upper surface is not included

in the inversion. The stationary basal friction coefficients have been derived from satellite data in this way for many glaciers

and continental ice sheets using velocity data in e.g. Gillet-Chaulet et al. (2016); Isaac et al. (2015); Schannwell et al. (2019);

Sergienko and Hindmarsh (2013). The sensitivity to changes at the base increases closer to the grounding line in the coastal

regions in Durand et al. (2011). The base topography is inferred from height data in van Pelt et al. (2013) without solving the10

adjoint equations.

The conditions between the ice and the bedrock vary in time and sometimes the friction parameter varies several orders of

magnitude in a decadein
:
,
:::
see

::::
e.g. Jay-Allemand et al. (2011). In addition, there are variations on seasonal and diurnal time

scales with examples in Schoof (2010); Shannon et al. (2013); Vallot et al. (2017). Other time dependent forces are considered

in Seddik et al. (2019). The effect of a seasonal variation of the lubrication at the base of the ice is studied in Shannon et al.15

(2013) for the Greenland ice sheet by solving the FS and other high order equations. Fast temporal variations in the meltwater

under the ice drive the ice flow in the analysis in Schoof (2010). The spatial and temporal variations of the basal conditions

are inferred from satellite data in Larour et al. (2014) with an inverse method for SSA and automatic differentiation. Based

on observations, the conclusion in Sole et al. (2011) is also that the annual change of the water drainage under the ice affects

the sliding and the acceleration and deceleration of the ice.
::::::::
Transient

::::
data

:::
are

:::::::
included

::
in
:::::::::::::::::::::

Goldberg et al. (2015) to
::::
find

::::
time20

::::::::
dependent

:::::
basal

:::::::::
parameters

:::
by

::::::::
inversion,

::::::
where

:::
the

:::::::::
sensitivity

::
is

:::::::::
determined

:::
by

:::::::::
automatic

::::::::::::
differentiation.

::::
The

::::::
results

:::::
differ

:
if
:::
the

:::::
time

::::::::
evolution

::
of

:::
the

::::::::
equations

::
is
:::::
taken

::::
into

:::::::
account

::
or

::::
not.

::::
The

::::::
shallow

:::
ice

:::::::::::::
approximation

:::::
(SIA)

::
is

:::
the

:::
ice

::::::
model

::
in

:::::::::::::::::::::::::::
Monnier and des Boscs (2017) to

::::::::
determine

:::
the

:::::
basal

::::::::
properties

::::
with

:::::
time

::::::::
dependent

:::::::
surface

::::
data.

:
Here, we solve the adjoint

equations to both the stress equation and the time dependent height equation in FS and SSA to examine how the dynamics

of the models change the sensitivity to the base parameters. The adjoint equations are derived and analytical solutions are25

found to simplified equations in a companion paper by Cheng and Lötstedt (2019).
:::
The

::::::::
influence

::
of

:::
the

::::::::
dynamics

::
of

:::
the

:::::
basal

::::::::
conditions

::
is
::::::::
different

::
on

:::
the

:::::::
velocity

:::
and

:::
the

::::::
height

:::::::::::
observations.

The forward advection equation for the height and the stress equations for the velocity for FS are here solved numerically in

two dimensions (2D) with Elmer/Ice (Gagliardini et al. (2013); Gillet-Chaulet et al. (2012)). The solver of the adjoint stress

equation in Elmer/Ice is amended by the adjoint height equation. The forward and adjoint SSA equations are solved in
::
for

::
a30

2D
::::::
vertical

:::
ice

:
by a finite difference method. The perturbations are observed in the velocity and the height at certain points

in space and time. Comparisons are made for steady state and time dependent problems between a direct calculation of the

change at the ice surface and using the control technique with the adjoint solution. Simplified adjoint stress equations have

been proposed and used in Martin and Monnier (2014); Morlighem et al. (2013); Mosbeux et al. (2016). The sensitivity in the

SSA model is evaluated here
:
in
::::

this
:::::
paper for such simplifications in the adjoint SSA equations. The numerical solutions are35
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::::::::
sensitivity

::
in

:::
the

::::::::
numerical

::::::::
solutions

::
is also compared to the analytical formulas in Cheng and Lötstedt (2019).

:
It
::
is

::::::::
observed

::
in

::::::::::::::::::::
Durand et al. (2011) that

:::
the

::::::::
sensitivity

::
to

:::::::
changes

::
at

:::
the

::::
base

::::::::
increases

:::::
closer

::
to

:::
the

:::::::::
grounding

:::
line

::
in

:::
the

::::::
coastal

:::::::
regions.

::::
The

::::
basal

::::::::::
topography

::
is

:::::::
inferred

::::
from

::::
the

:::::
height

::::
data

::
in
::::::::::::::::::::::::

van Pelt et al. (2013) without
:::::::

solving
:::
the

::::::
adjoint

:::::::::
equations.

::::
The

::::::
reason

::
for

:::
the

:::::::::
increased

::::::::
sensitivity

::::
and

::::
why

:::
the

::::::
height

:::::::
method

:::::
works

:::
are

:::::::::
explained

::
by

::::
our

::::::::
analytical

::::::::
solutions

::
to

:::
the

::::::
adjoint

:::::
SSA

::::::::
equations.

:
5

There is a transfer matrix between the perturbations in the parameters at the base and the observations at the surface.
:::::::::
Analytical

:::::::::
expressions

:::
for

::::
time

:::::::::
dependent

:::::::
transfer

::::::::
functions

:::
for

:::
FS

:::
and

:::::
SSA

:::
are

::::::
derived

:::
in

:::::::::::::::::::::::::
Gudmundsson (2003, 2008) by

::::::::::
linearizing,

:::::::
freezing

::::::::::
coefficients,

::::
and

::::::::
applying

::::::
Fourier

:::::::
analysis

::::
and

:::
the

::::::::
Laplace

:::::::::
transform. The properties of this

:::
the

:::::::
transfer

:
matrix

are evaluated
::::
here

:
to see which combinations of perturbations and observations that are well and ill-conditioned. In an ill-

conditioned problem, the sensitivity is low at the surface to perturbations at the base. This matrix can
:::
also be used to quantify10

the uncertainty in the ice flow due to uncertainties in the model parameters, see e.g. Bulthuis et al. (2019); Schlegel et al. (2018);

Smith (2014).
::::::::::
Perturbations

:::
at

:::
the

:::
ice

::::
base

::::
with

::::
short

:::::
wave

::::::
length

:::
are

:::::::::
propagated

:::
to

:::
the

::::::
surface

::::
with

::
a

::::::
weaker

:::::
effect

:::
on

:::
the

:::::
height

:::
and

:::::::
velocity

:::::::::
compared

::
to

::::
long

:::::
wave

::::::
lengths

::
in
::::::::::::::::::::::::

Gudmundsson (2003, 2008).
:::::
These

:::
are

:::
the

::::::::::
conclusions

:::
in

::::::::::
calculations

::::
with

::
FS

::
in

::::::::::::::::::::::
Kyrke-Smith et al. (2018),

:::::
where

::
it

::
is

::::::
difficult

:::
to

:::::::
separate

:::
the

::::::::::
contribution

::::
from

:::
the

::::::
friction

::::
and

:::
the

:::
bed

::::::::::
topography

::::
from

::::
each

:::::
other.

:::::
These

::::::
effects

:::
are

:::::::::
confirmed

::
in

:::
our

:::::::
analysis.

:
15

The
:::::::
structure

::
of

:::
the

:::::
paper

::
is

::
as

:::::::
follows.

::::
The ice equations and the corresponding adjoint equations for FS and SSA are given

::::::::
presented in Sect. 2. The computed sensitivities are compared for

::::::
between

:
the direct method and the control method in Sect. 3

for steady state and time dependent problems in 2D. The ice configuration is taken from the MISMIP benchmark project

in Pattyn et al. (2012). The results are discussed and conclusions are drawn in Sections 4 and 5. Formulas from Cheng and

Lötstedt (2019) are found in Appendix A.20

Vectors and matrices are written in bold as a and A. The operations⊗, :, and ? on vectors a and c, matrices A and C, and four

index tensors A are defined by

(a⊗ c)ij = aicj , a : c = a · c =
∑
i aici,

(A⊗C)ijkl =AijCkl, A : C =
∑
ijAijCij , (A ?C)ij =

∑
klAijklCkl.

(1)

The
:::::::
definition

::
of

::
a norm of a vector a is defined by ‖a‖= (a ·a)1/2.

2 Ice models25

The equations of two ice models and their adjoint equations are stated in this section. The FS equations are considered to be an

accurate model of ice sheets and the SSA equations are an approximation of the FS equations suitable e.g. for fast flowing ice

on the ground and ice floating on water, see Greve and Blatter (2009).

2.1 Full Stokes equations

The FS equations are a system of PDEs for the velocity of the ice u(x, t) = (u1,u2,u3)T , the pressure p(x, t), and the height30

h(x,y, t) with the coordinates x = (x,y,z) and time t. There is a stress equation satisfied by u and p and an advection equation
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for h. The adjoint equation of the stress equation is derived in Petra et al. (2012) and the adjoint equations of the stress and the

height equations are found in Cheng and Lötstedt (2019). The sensitivity of observations of the velocity and the height of the

ice surface is derived for perturbations in the friction coefficient at the ice base.

The domain of the ice is Ω with boundary Γ in three dimensions (3D). The boundary consists of the ice surface at the upper

boundary Γs, the lower boundary at the ice base Γb and Γw, and the vertical, lateral boundaries Γu and Γd where Γu is the5

upstream boundary with n ·u≤ 0 and Γd is the downstream boundary with n ·u> 0. The normal of Γ pointing outward is

denoted by n. The projection of Γs and Γb on the horizontal x− y plane is ω and the projections of Γu and Γd are γu and γd,

respectively. The z coordinate of the grounded base Γb is the topography and the bathymetry b(x,y). The grounding line γGL

separates Γb on ω from Γw floating on water with a moving z-coordinate zb(x,y, t). Formal definitions of these domains are

Ω = {x|(x,y) ∈ ω, b(x,y)≤ z ≤ h(x,y, t)},
Γs = {x|(x,y) ∈ ω, z = h(x,y, t)},
Γb = {x|(x,y) ∈ ω, z = b(x,y),x < xGL(y)},
Γw = {x|(x,y) ∈ ω, z = zb(x,y, t),x > xGL(y)},
Γu = {x|(x,y) ∈ γu, b(x,y)≤ z ≤ h(x,y, t)},
Γd = {x|(x,y) ∈ γd, b(x,y)≤ z ≤ h(x,y, t)}.

(2)10

Let I be the identity matrix. The projection of a vector on the tangential plane of Γb is denoted by T = I−n⊗n as in Petra

et al. (2012). In 2D, x = (x,z)T , ω = [0,L], γu = 0, and γd = L.

2.1.1 Forward equations

The definitions of the strain rate D and the viscosity η of the ice are

D = 1
2 (∇u +∇uT ), η(u) = 1

2A
− 1

n (trD2(u))ν , ν = 1−n
2n . (3)15

The trace of D2 is trD2 and the rate factor A depends on the temperature of the ice, here assumed to be constant in isothermal

flow. The material constant n > 0 is given in Glen’s flow law. Then the stress tensor is

σ(u,p) = 2ηD(u)− pI. (4)

Let ρ be the density of the ice, g be the gravitational acceleration and a be the accumulation/ablation rate on the surface Γs.

The notation is simplified with the slope vectors h = (hx,hy,−1)T in 3D and h = (hx,−1)T in 2D. A subscript x,y,z, or t20

on a variable denotes a partial derivative such that e.g. hx = ∂h/∂x. Then the forward FS equations for h,u, and p are

ht + h ·u = a, on Γs,

h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
−∇ ·σ(u,p) =−∇ · (2η(u)D(u)) +∇p= ρg, ∇ ·u = 0, in Ω(t),

σn = 0, on Γs,

Tσn =−Cf(Tu)Tu, n ·u = 0, on Γb.

(5)
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The initial data for h are h0(x) and hγ(x, t) is specified on the inflow boundary γu. The expressionCf(Tu) defines the friction

law with variable coefficient C(x, t) and a function f(·) of the projected velocity Tu, e.g. as in Weertman (1957) where

f(u) = ‖u‖m−1, m > 0. (6)

The Dirichlet boundary conditions of u on Γu and Γd are set to be uu and ud.

2.1.2 Adjoint equations5

We observe a quantity

F =

T∫

0

∫

Γs

F (u,h)dxdt (7)

at the surface Γs when t ∈ [0,T ]. For example, if the ice is in the steady state and F (u) = u1δ(x−x∗) with the Dirac delta δ

then the observation is the x component of u at x∗

F =

∫

Γs

F (u)dx = u1(x∗).10

If F (h) = hδ(x−x∗) then the height is observed

F =

∫

Γs

F (h)dx = h(x∗).

The adjoint equations depend on the first variations Fu and Fh of F (u,h) with respect to u and h. In the first example above,

Fu = (δ(x−x∗),0,0)T and Fh = 0 and in the second example Fu = 0 and Fh = δ(x−x∗).

The adjoint FS equations form a system of PDEs for the adjoint height ψ, the adjoint velocity v, and the adjoint pressure q.15

There is an advection equation for ψ and an adjoint stress equation for v and q such that

ψt +∇ · (uψ)−h ·uzψ = Fh +Fu ·uz, on Γs,

ψ(x,T ) = 0, ψ(x, t) = 0, on Γd,

−∇ · σ̃(v, q) =−∇ · (2η̃(u) ?D(v)) +∇q = 0, ∇ ·v = 0, in Ω(t),

σ̃(v, q)n =−(Fu +ψh), on Γs,

Tσ̃(v, q)n =−Cf(Tu)(I + Fb(Tu))Tv, on Γb,

n ·v = 0, on Γb,

(8)

where the adjoint viscosity, adjoint stress, and linearized friction law in Eq. (8) are according to Petra et al. (2012)

η̃(u) = η(u)
(
I + 1−n

nD(u):D(u)D(u)⊗D(u)
)
,

σ̃(v, q) = 2η̃(u) ?D(v)− qI,
Fb(Tu) = m−1

Tu·Tu (Tu)⊗ (Tu).

(9)
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The tensor I with four indices ijkl is 1 when i= j = k = l and 0 otherwise.

The perturbation of the observation in Eq. (7) with respect to a perturbation in the friction coefficient C is

δF =

T∫

0

∫

Γb

f(Tu)Tu ·Tv δC dxdt (10)

involving the tangential projections of the forward and adjoint velocities Tu and Tv at the grounded ice base Γb. This expres-

sion is derived in Cheng and Lötstedt (2019) and Petra et al. (2012) via the perturbation of the Lagrangian of the system of5

equations and evaluating it at the forward and adjoint solutions.

Only perturbations in C are considered here for the FS model. Via the Lagrangian, the result of perturbations δb in the topog-

raphy can be derived but the complexity of the adjoint Eq. (8) would increase considerably.

2.2 Shallow shelf approximation

In the shallow shelf approximation of the FS equations, the velocity is constant in the vertical direction and the pressure is10

given by the cryostatic approximation (Greve and Blatter (2009); MacAyeal (1989)). The sensitivity of observations of the

velocity at the surface and the height to perturbations in friction coefficients and the base topography is quantified for the SSA

model.

2.2.1 Forward equations

It is sufficient to solve for the horizontal velocity u = (u1,u2)T when x = (x,y) ∈ ω thus simplifying the 3D FS problem15

Eq. (5) considerably. The viscosity in the SSA is

η(u) =
1

2
A−

1
n

(
u2

1x +u2
2y +

1

4
(u1y +u2x)2 +u1xu2y

)ν
=

1

2
A−

1
n

(
1

2
B : D

)ν
, (11)

where B(u) = D(u) +∇ ·uI. The stress tensor ς(u) in SSA is defined by

ς(u) = 2HηB(u). (12)

Let n be the outward normal vector of the boundary γ, t the tangential vector such that n · t = 0, and H = h− b the thickness20

of the ice. The friction law is defined as in the FS case in Eq. (6) where the basal velocity is replaced by the horizontal velocity

since the vertical variation is neglected in SSA. Under the floating ice shelf on Γw, C = 0 in the friction law.

The ice dynamics system is

ht +∇ · (uH) = a, 0≤ t≤ T, x ∈ ω,
h(x,0) = h0(x), x ∈ ω, h(x, t) = hγ(x, t), x ∈ γu,
∇ · ς −Cf(u)u = ρgH∇h, x ∈ ω,
n ·u(x, t) = uin(x, t),x ∈ γu, n ·u(x, t) = uout(x, t),x ∈ γd,
t · ςn =−Cγfγ(t ·u)t ·u, x ∈ γg, t · ςn = 0, x ∈ γw,

(13)
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where uin ≤ 0 and uout > 0 are the inflow and outflow normal velocities on γu and γd of the boundary γ = γu∪γd. The friction

on the lateral side of the ice γ = γg ∪ γw depends on the tangential velocity t ·u there. The friction law Cγfγ(t ·u) on γg is

not necessarily the same as Cf(u) on ω.

The structure of the SSA system Eq. (13) is similar to the FS equations in Eq. (5). However, the velocity u is not divergence

free in SSA and B 6= D due to the cryostatic approximation.5

2.2.2 Adjoint equations

The adjoint SSA equations are derived in Cheng and Lötstedt (2019) as in Sect. 2.1.2 by forming the Lagrangian and partial

integration using the forward equations and the boundary conditions in Eq. (13). The adjoint viscosity η̃ and adjoint stress ς̃

are defined by

η̃(u) = η(u)
(
I + 1−n

nB(u):D(u)B(u)⊗D(u)
)
,

ς̃(v) = 2Hη̃(u) ?B(v),
(14)10

cf. η̃ and σ̃ in Eq. (9). The adjoint SSA equations are

ψt + u · ∇ψ+ 2ηB(u) : D(v)− ρgH∇ ·v + ρgv · ∇b= Fh, in ω,

ψ(x,T ) = 0, in ω, ψ(x, t) = 0, on γw,

∇ · ς̃(v)−Cf(u)(I + Fω(u))v−H∇ψ =−Fu, in ω,

t · ς̃(v)n =−Cγfγ(t ·u)(1 +Fγ(t ·u))t ·v, on γg, t · ς̃(v)n = 0, on γw,

n ·v = 0, on γ.

(15)

Compared to Eq. (8), the advection equation depends on v and the influence of ψ in the stress equation is different in Eq. (15).

With a Weertman friction law Eq. (6), the terms Fω and Fγ in the adjoint basal friction and the lateral friction in Eq. (15) are

Fω(u) =
m− 1

u ·u u⊗u, Fγ =m− 1.15

The friction coefficients on the base and the lateral sides are perturbed by δC and δCγ and the topography is perturbed by δb

in the SSA model. Then the perturbation δF in the observation F in Eq. (7) is (Cheng and Lötstedt (2019))

δF =

T∫

0

∫

ω

(2ηB(u) : D(v) + ρgv · ∇h+∇ψ ·u)δb− f(u)u ·vδC dxdt

−
T∫

0

∫

γg

fγ(t ·u)t ·ut ·vδCγ dsdt.

(16)

2.2.3 Forward and adjoint SSA in 2D

In the 2D model, u2 = 0, derivatives with respect to y vanish, and the lateral friction force is neglected, Cγ = 0. The ice20

domains are the grounded and floating parts Γb = [0,xGL] and Γw = (xGL,L] where xGL is the position of the grounding
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line. The friction coefficient C is positive on Γb and C = 0 on Γw. The forward and adjoint equations in 2D are derived from

Eq. (13) and Eq. (15) by letting H and u1 be independent of y and taking u2 = 0. The notation is simplified if we let u= u1

and v = v1. The forward equations follow from Eq. (13)

ht + (uH)x = a, 0≤ t≤ T, 0≤ x≤ L,
h(x,0) = h0(x), h(0, t) = hL(t),

(Hηux)x−Cf(u)u− ρgHhx = 0, 0≤ x≤ L,
u(0, t) = uL(t), u(L,t) = uc(t).

(17)

Assume that u > 0 and ux > 0. There is an inflow of ice with speed uL to the left and a calving rate uc at x= L. The viscosity5

in Eq. (11) is simplified to η = 2A−1/nuνx. The friction term is Cf(u)u= Cum with the Weertman law in Eq. (6).

The adjoint variables v and ψ satisfy the adjoint equations in 2D

ψt +uψx + (ηux− ρgH)vx + ρgbxv = Fh,

0≤ t≤ T, 0≤ x≤ L,
( 1
nHηvx)x−Cmf(u)v−Hψx =−Fu,
ψ(x,T ) = 0, ψ(L,t) = 0, v(0, t) = 0, v(L,t) = 0,

(18)

obtained from Eq. (14) and Eq. (15) or derived from Eq. (17) with equal result.

Perturbations δb and δC in the topography and the friction coefficient propagate to the surface as in Eq. (16)10

δF =

T∫

0

L∫

0

(ψxu+ vxηux + vρghx)δb− vf(u)uδC dxdt. (19)

2.2.4 Discretized relations in 2D

In order to simplify the notation, only a 2D steady state problem for the SSA model is considered here but the analysis is

applicable to 3D steady state problems as well as time-dependent problems with the FS or SSA models.

The time independent perturbation of F in Eq. (19) for the steady state solution is rewritten with Fu = δ(x−x∗) and weights15

wub and wuC

δu(x∗) = δF =

L∫

0

wubδb+wuCδC dx,

wub(x∗,x) = ψxu+ vxηux + vρghx, wuC(x∗,x) =−vf(u)u.

(20)

The weights wub and wuC in Eq. (20) depend on both x∗ and x. When h is observed the perturbation is

δh(x∗) =

L∫

0

whbδb+whCδC dx, (21)

where the weights whb and whC have the same form as in Eq. (20) but with different ψ and v.20

8



The relation is discretized by observing u at equidistant x∗i, i= 1,2, . . . ,M, with x∗,i+1−x∗i = ∆x∗ and perturbing b and C

at xj , j = 1,2, . . . ,N, with xj+1−xj = ∆x. The integral in Eq. (20) is computed by the trapezoidal rule to have

δu(x∗i) =

N∑

j=1

µj(wub(x∗i,xj)δb(xj) +wuC(x∗i,xj)δC(xj))∆x,

µ1 = 0.5, µj = 1, j = 2,3, . . . ,N − 1, µN = 0.5,

(22)

or in matrix form

δu = Wubδb + WuCδC, (23)5

with the matrix elements

Wubij = µjwub(x∗i,xj), WuCij = µjwuC(x∗i,xj),

i= 1,2, . . . ,M, j = 1,2, . . . ,N.

In the same manner, there are matrices Whb and WhC connecting δh with δb and δC

δh= Whbδb + WhCδC. (24)

The sensitivity of u to changes in b and C on ω is given by the singular value decomposition (SVD) of Wub and WuC (Golub10

and Van Loan (1989)) defined by

Wub = UubΣubV
T
ub, WuC = UuCΣuCVT

uC ,

where Uub and UuC are of sizeM×M and Vub and VuC are of sizeN×N . They are orthogonal matrices, e.g. UT
ubUub = I.

The diagonal matrices Σub and ΣuC are of size M ×N with non-negative singular values σubi and σuCi in the diagonals

ordered from large to small for increasing i= 1,2, ...,min(M,N)
:
A

::::::::
summary

::
of

:::
the

:::::::::
properties

::
of

:::
the

:::::
SVD

:::
are

:::::
found

:::
in

:::
the15

::::::::
Appendix.

Consider a case with δb = 0, the perturbation is simplified to δu = WuCδC. If M =N and the smallest singular value

σuCN = miniσuCi is positive then

δC = W−1
uCδu = VuCΣ−1

uCUT
uCδu.

If M >N with more observations of δui than discrete δCj , then δC for a given δu can be computed in the least squares sense20

by minimizing ‖δu−WuCδC‖ also with the solution

δC = VuCΣ−1
uCUT

uCδu,

where Σ−1
uC is the generalized inverse of ΣuC of dimension N ×M with elements σ−1

uCi on the diagonal and 0 elsewhere.

::
the

::::
case

:::::
when

::::::
δb= 0

::
in
:

(23)
:
. The relation between δu and δC is well behaved in Eq. and Eq. (23) if all the singular values

σuCi :
of

::::::
WuC :

are of similar size, but if some of them are much smaller than the other ones with σCi� σC1, i= J,J +25

9



1, . . . ,min(M,N), then the relation is ill-conditioned. A large perturbation in C may then result in a hardly visible perturbation

at the surface and a small observed perturbation in u may correspond to a large perturbation at the base. The same conclusions

apply to Wub and σubi in the relation between δu and δb and to the sensitivity matrices Whb and WhC when Fh = δ(x−x∗).

The transfer functions in Gudmundsson (2003)
:::::::::::::::::::::::
Gudmundsson (2003, 2008) between perturbations in b and C at the base and

the observations u and h at the top are determined by linearization and Fourier transformation in a slab geometry. The transfer5

function for different wave numbers corresponds to the singular values in our analysis.

2.2.5
:::::::
Relation

::
to

::::
the

::::::
inverse

::::::::
problem

:::
The

:::::::::
sensitivity

:::::::
problem

:::
and

:::
the

:::::::
inverse

:::::::
problem

:::
are

::::::
related.

:::::::
Assume

::::
that

::::
there

:::
are

:::
M

::::::::::
observations

:::
of

:::
the

:::::::
velocity

::::
uobs ::

at
:::
the

::::::
surface

::
of

:::
the

:::
ice

::
at

::
xi::::

and
:::
we

::::
want

::
to

::::::
derive

:::
the

:::::::::::
corresponding

:::::::
friction

:::::::::
coefficient

::
C

::
at

:
j
:::::::::
locations.

::::
With

::
C

:::
we

:::::::
observe

::
u

::
at

::
the

::::
top

::
at
:::
the

:::::
same

::::::::::
coordinates.

:::::
Then

:::
we

::::
seek

:
a
:::::::::
correction

:::
δC

::
of

::
C

::
at

::
N

::::::
points

::::
such

:::
that

:::::::
u + δu

:::::::::
approaches

:::::
uobs.:::

By (23)
:
,10

u−uobs = δu = WuCδC,
::::::::::::::::::::::

(25)

:::
and

:::
δC

::
is

::::::
chosen

::::
such

::::
that

:::::::::
‖u−uobs‖::

is
::::::::::
minimized.

::::
This

:::::::
problem

::
is

:
a
:::::
linear

::::
least

:::::::
squares

:::::::
problem.

:::::::::
Expressed

::::
with

:::
the

:::::
SVD

:::
and

:::
the

::::::::::
generalized

::::::
inverse

:::::
Σ−1
uC ,

:::
the

:::::::
solution

:
is
:

δC = VuCΣ−1
uCUT

uC(u−uobs),
::::::::::::::::::::::::::

(26)

:::
see

::::::::::::::::::::::::::
Golub and Van Loan (1989) and

:::
the

::::::::::
Appendix.

:::
The

::::::::
solution

:::
can

:::
be

::::::::
improved

:::::::::
iteratively

::::
with

:::::::
updates

:::
of

::
C

::::
and

::
u

:::
by15

:::::::::::::::
Ck+1 = Ck + δC

:::
and

::::::::::::::
uk+1 = uk + δu,

::::::::::
computing

:
a
::::
new

:::::
WuC :::

and
:::
so

:::
on.

:::
The

:::::::
relation

:::::::
between

:::
the

:::::::
transfer

::::::
matrix

::::
and

:::
the

::::::::
inversion

:::::::
problem

:::
is

::::::::
illustrated

:::
by

:
(26)

::
but

::
a
:::::
more

:::::::
efficient

:::::::::::
optimization

::::::
method

::
is

:::::
based

::
on

:::
the

:::::::
gradient

::
of

:::
the

:::::::
objective

:::::::
function

::::::::::
‖u−uobs‖.::

It
::
is

:::
the

:::::::
standard

::::::
method

:::
for

::::::::
inversion

:
in
::::
e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gillet-Chaulet et al. (2016); Isaac et al. (2015); Petra et al. (2012) and

::
the

:::::::
gradient

::
is
:::::::::
computed

:::::
using

::
the

:::::::
adjoint

::::::
solution

:::::
with

:::::::::::::::::
F (u) = ‖u−uobs‖2.

:

3 Results20

In the numerical experiments we use a 2D constant downward-sloping bed with an ice profile from the MISMIP benchmark

project in Pattyn et al. (2012). The bedrock elevation in meters is given as

b(x) = 720− 778.5× x

750 km
. (27)

The initial configuration of the ice is a steady state solution achieved by the FS model using Elmer/Ice (Gagliardini et al. (2013))

with A= 1.38×10−24 s−1Pa−3 with a grounding line position at xGL = 1.053×106 m shown in Fig. 1. The Weertman type25

friction law in Eq. (6) in the forward problem has the exponent m= 1/3 and a constant friction coefficient C0 = 7.624×
106 m−1/3s1/3Pa. The remaining physical parameters are given in Table 1.

Without losing the generality in the friction law and to investigate the relation between the basal velocity and the stress,

the friction law exponent in the adjoint problem is assumed to be m= 1 and the coefficient is calculated from the forward

10
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Figure 1. The initial ice geometry with height h (blue), ice base b (orange), and ocean bathymetry (black). The domains in Eq.(2) are the

ice domain Ω between the blue and orange curves, the upper surface Γs in blue, the lower boundary on the bedrock Γb and on water Γw in

orange, Γu at x= 0 and Γd at x= L= 1.6× 106 m.

Parameter Quantity

ρw = 1000 kg m−3 Water density

ρi = 900 kg m−3 Ice density

g = 9.8 m s−2 Acceleration of gravity

n= 3 Flow-law exponent

a= 0.3 m year−1 Accumulation rate
Table 1. The physical parameters of the ice.

steady state solution by C(x) = C0‖u‖−2/3. The resulting friction law becomes Cf(u) = C(x) which can be viewed as a

linearization of the friction law at the steady state.

3.1 Full Stokes model

A vertically extruded mesh is constructed for the given geometry with mesh size ∆x=1 km yielding equidistant nodes in the

horizontal direction. The number of vertical layers is set to 20 in the whole domain. Only the grounded ice is considered in the5

adjoint problem and Dirichlet boundary conditions on u are used for the lateral boundaries Γd and Γu at the grounding line

x= xGL and the ice divide x= 0.

The forward and adjoint FS problems are solved using the finite element code Elmer/Ice (Gagliardini et al. (2013)) with P1-P1

quadrilateral element and Galerkin Least Squares stabilization for the Stokes equation and a bubble stabilization (Baiocchi
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et al. (1993)) for the adjoint advection equation. The feature to solve the adjoint time dependent equations has been added to

Elmer/Ice. The Dirac delta is approximated by a linear basis function with the amplitude 1/∆x.

The time stepping scheme for the forward and adjoint transient problems is the implicit Euler method with a constant time

step ∆t= 1 year. The adjoint equation is solved backward in time from the final time t= T to t= 0. The steady state of the

adjoint equations is computed by neglecting the time derivative term in the adjoint surface equation Eq. (8) and solving the5

corresponding linear system of equations for ψ and v.

Both transient and steady state simulations are run with pointwise observations of the horizontal velocity u1 and surface

elevation h at different x∗ positions on the top surface. The time interval for the transient solutions is [0,1] covered by one

forward timestep ∆t from 0 to 1 and one backward timestep from 1 to 0.

The multiplier ψ only acts as the amplitude of the external force on Γs and h is an approximate normal vector pointing inward10

on Γs in the adjoint FS equation Eq. (8). The size of ψh is several orders of magnitude smaller than 1, the coefficient in front of

δ(x−x∗) in Fu. Consequently, in the u1-response case, the adjoint solution v is mainly influenced by the observation function

Fu. However, in the h-response case with Fu = 0, the adjoint solution v is determined by ψh and the solution would be v = 0

if we did not solve the adjoint advection equation for ψ.

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106

−4

−2

0

T
u
·T

v

×10−6 Transient: F (u, h) = u1δ(x− x∗)

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106

−4

−2

0

2

4
T
u
·T
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×10−6 Transient: F (u, h) = hδ(x− x∗)

0.0 0.2 0.4 0.6 0.8 1.0
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0

T
u
·T

v

×10−6 Steady: F (u, h) = u1δ(x− x∗)

0.0 0.2 0.4 0.6 0.8 1.0
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×10−4 Steady: F (u, h) = hδ(x− x∗)

Figure 2. Comparison of the weights Tu·Tv in Eq. (10) for perturbations δC at different observation points x∗ = 0.25×106,0.5×106,0.7×

106 and 0.9× 106 (blue, orange, green, and pink).Upper panels: transient simulations; lower panels: steady states. Left panels: wuC with

pointwise u response; right panels: whC with pointwise h response.
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The adjoint solutions v1 at Γb of all the four cases are concentrated at the observation points. The vertical component v2 shares

the same feature as v1 due to the boundary condition n ·v = 0 on Γb. Therefore, the weights Tu ·Tv in Fig. 2 are also confined

to the neighborhood of x∗. The negative weights obtained in the u1-response cases imply that an increase in the basal friction

coefficient results in a decrease of the surface velocity. The amplitude of the weights grows rapidly toward the grounding line

in all four cases in the figure. In fact, the contribution of the weight function to the observed variables u1 can be viewed as a5

convolution of the perturbation in C(x) with a narrow Gaussian wuC(x∗,x) in Eq. (20) after a proper scaling in the left panels

of Fig. 2.

The amplitude of the perturbation at the surface depends on the wavelength λ of the perturbation at the base. The shorter λ

is, the smaller the amplitude is. Introduce a stationary perturbation δC(x) = εC0 cos(2π(x−x∗)/λ) with a constant C0 and a

small ε� 1. Then the change in the steady state solution u1 at the surface is according to Eq. (10)10

δu1(x∗,λ) =

L∫

0

εC0Tu ·Tvcos(
2π(x−x∗)

λ
) dx. (28)

The same relation holds for δh(x∗) but with a different v. Let % be a measure of the width of the weight function for the steady

state in Fig. 2 which is about 105. When λ is large compared to % then

δu1(x∗,λ)≈ δu1,∞(x∗) = lim
λ→∞

δu1(x∗,λ) = εC0

L∫

0

Tu ·Tv dx, (29)

which is a constant value for long λ, and the perturbation can be observed at the surface. If the wavelength of the basal per-15

turbation is short compared to %, then it is damped before it reaches the surface and the effect of δC on u1 and h is small. In

Fig. 3, δu1(x∗,λ) and δu1,∞(x∗) are compared at x∗ = 0.9× 106. When λ > % then δu1(x∗,λ)≈ δu1,∞(x∗). Suppose that

λ= 2× 104. Then δu1(x∗,λ) is about 0.02δu1,∞(x∗) and probably hard to observe and δh(x∗,λ)≈ 0.2δh∞(x∗). Similar

conclusions are drawn theoretically in Gudmundsson (2003)
:::::::::::::::::::::::
Gudmundsson (2003, 2008) using Fourier analysis and experi-

mentally in Sun et al. (2014).20

We perform a pair of experiments to compare the results from perturbing the forward equation and the prediction by the adjoint

solutions. A relative 1% perturbation δC(x) is added at x ∈ [0.9,1.0]× 106 m to the friction coefficient C(x). The differences

between the forward FS solutions with and without the perturbation after one year are shown in Fig. 4 marked as ’perturbed’.

The ’predicted’ perturbations are computed from the solutions of the adjoint equation by varying x∗ along the x-axis and

inserting into Eq. (10). Each red dot in Fig. 4 corresponds to one single observation at x∗. Both the u1 and h predictions are in25

good agreement with the forward perturbations.

3.2 SSA

The same MISMIP benchmark experiment as in Sect. 3.1 is solved by the SSA on a one dimensional uniform grid with mesh

size ∆x= 1 km using standard finite difference methods implemented in MATLAB. The time derivatives are discretized by

the implicit Euler method with a constant time step ∆t= 1 year as in Sect. 3.1. An upwind scheme is used for the spatial30

13
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panel: δh(x∗,λ)/δh∞(x∗).

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106

−1.5

−1.0

−0.5

0.0

δu
1

u1(C + δC)− u1(C)

perturbed

predicted

0.0 0.2 0.4 0.6 0.8 1.0

x (m) ×106

−0.2

−0.1

0.0

0.1

δh

h(C + δC)− h(C)

perturbed

predicted

Figure 4. The changes on the horizontal velocity u1 (upper panel) and surface elevation h (lower panel)
:
in

:::
FS after one year with 1%

perturbation on C(x) at x ∈ [0.9,1.0]× 106 m. Solid lines are the differences between the steady state and perturbed transient solutions in

Eq. (5). Red dots are the estimated perturbation using Eq. (10).
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derivatives in the forward and adjoint advection equations to stabilize the numerical solutions. Replacing the Dirac delta with

a Gaussian of a few grid points wide in order to smoothen the observation function and avoid numerical oscillations in the

solution has no major effect on the solutions.

The numerical solution of the forward SSA equations Eq. (17) is compared to the analytical approximations in the Appendix

Eq. (A1) in Fig. 5. The detailed derivation of the analytical solutions in the Appendix are found in Cheng and Lötstedt (2019).5

The analytical approximation of u is poor to the right of xGL for the floating ice in Fig. 5 but we are only interested in the

solution on the ground
:::
for

:::
the

::::::::
grounded

:::
ice. The reason for the error in the analytical solution of u is that H is assumed to be

constant for x > xGL. The analytical solution for H catches the fast decrease when x approaches xGL from the left. Another

solution for x > xGL is found in Greve and Blatter (2009) assuming that the thickness depends linearly on x.
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Figure 5. Comparison of the steady state numerical solutions of the SSA velocity u and the thickness H in Eq. (17) (orange) and the

analytical solutions in Eq. (A1) (blue).

The weight functions wuC and whC in Fig. 6 have the same non-zero pattern as v since they are equal to −vum in Eq. (20).10

Each one of these weights wuC or whC corresponds to the sensitivity of the observation at x∗ with respect to the change

in C(x) which is one row in the weight matrices WuC or WhC in Eq. (23) and Eq. (24). The analytical weight functions

in Eq. (A3) and Eq. (A5) at x∗ = 0.7× 106 m are included in the steady state
:::::
figures

:
for comparison. In the transient SSA

simulations, the sensitivity is similar to those in the adjoint FS solutions in Fig. 2 increasing towards the grounding line. This

::::
Such

::
an

:
increased sensitivity is also noted in Kyrke-Smith et al. (2018); Leguy et al. (2014). However, in the steady state cases,15

the weight functions indicate only an upstream effect of C(x). In other words, the perturbation in C(x) at point x can only

influence the steady state solutions to the left of this point. This is true as long as the effect of the grounding line migration is

neglected. The δC weights for u responses are all negative implying that an increase of C leads to decrease of u, but the steady

state surface elevation h rises when C is increased. The weights for the transient problem have similar shape for the FS and

SSA models in Figs. 2 and 6.20

The weight functionswub andwhb for δb are localized at the observation position x∗ in all the four cases in Fig. 7 which implies

that the inverse problems may be well posed. The black dashed lines in the two lower panels are the analytical expressions of

15
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Figure 6. Comparison of the weights wuC and whC ::
for

::::
SSA

:
in Eq. (19) for perturbations δC with m= 1 at different observation points

x∗ = 0.25×106,0.5×106,0.7×106 and 0.9×106 (blue, orange, green, and pink). The black dashed line in the lower panels are wuC and

whC computed from the analytical solutions of u in Eq. (A1) and v in Eq. (A2) and Eq. (A4) at x∗ = 0.7× 106. Upper panels: transient

simulations; lower panels: steady states. Left panels: wuC for pointwise u response; right panels: whC for pointwise h response.

the weight functions at x∗ = 0.7×106 m in Eq. (A3) and Eq. (A5) with a hat function of width 2∆x at the base to approximate

the Dirac delta. The analytical solutions almost coincide with the numerical solutions. The steady state weight functions are

non-zero to the right of x∗ ::::::::::::
corresponding

::
to

:::
the

:::::::
integral

::
in

:
(A5). There is a detailed view of the steady state δb weights for

x > x∗ in Fig. 8. The weights of δb have similar structures as the δC weights. The analytical solutions in Eq. (A3) and Eq. (A5)

suggest that wub/wuC ≈ whb/whC ≈ (m+ 1)C/H for x 6= x∗.5

The inverse problem of the steady state for the friction coefficient may not be well posed since the weights are all positive

from x∗ to xGL. This is verified by checking the singular values of the sensitivity matrices WuC and WhC in Fig. 9 where the

largest and smallest singular values of ΣuC are 10−4 and 10−12 with a large quotient σuC1/σuCN and the span of the singular

values of ΣhC is from 10−4 to 10−8 (which is better).

The singular values of the sensitivity matrices Wub and Whb in Fig. 9 are in the interval 10−4 to 10−7 from large to small.10

They are better conditioned than the sensitivity matrices for C. In particular, Σhb (in pink-red) in the h-response case has the

lowest variation of the singular values. The inverse problem of solving for the topography b from the surface elevation h in the

steady state setup is a well-posed problem compared to inferring C from u.
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Figure 7. Comparison of the weights wub and whb:::
for

::::
SSA in Eq. (19) for perturbations δb at different observation points x∗ = 0.25×

106,0.5× 106,0.7× 106 and 0.9× 106 (blue, orange, green, and pink). The black dashed line in the lower panels are the weights of δb in

Eq. (A3) and Eq. (A5) at x∗ = 0.7× 106. Upper panels: transient simulations; lower panels: steady states. Left panels: wub for pointwise u

response; right panels: whb for pointwise h response.
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Figure 8. A close-up view of the steady state weights in the lower panels of Fig. 7.
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The singular values of the transfer matrices WuC , WhC , Wub and Whb.

The same perturbation on C(x) as in Fig. 4 is imposed in the SSA simulations. The perturbed solutions after one year and

15,000 years (which is close to a steady state) are computed with the forward equations and then the reference solutions at the

steady state without any perturbation are subtracted. This difference is compared to the perturbations obtained with the adjoint

equations as in Fig. 4. In the one year perturbation experiment in Fig. 10, the transient weight functions in the upper panels in5

Fig. 6 are used for the sensitivity estimates. The weight functions in the upper panels of Fig. 7 predict the response in Fig. 11.

The corresponding comparisons for the steady state problem are made in Figs. 12 and 13 with the weights in the lower panels

of Figures 6 and 7. The analytical solutions of the steady state perturbations from (A3) and (A5) are shown with black dashed

lines in these two figures.

The rapid change of δh in Figs. 10 and 11 is explained by the shape of the weight functions in the upper right panels of Figs. 610

and 7. The weights can be approximated by −θ(x,t)δ′(x−x∗) for some θ > 0. Then the surface response will be

δh(x∗) =

T∫

0

L∫

0

−θ(x,t)δ′(x−x∗)δC(x) dxdt=

T∫

0

(θδC)′(x∗, t) dt,

where δC jumps discontinuously at x= 0.9×106 and x= 1.0×106. The same phenomenon is found for FS in Fig. 4 with an

explanation in Fig. 2.

The perturbations δu and δh in the steady state in Fig. 12 have discontinuous derivatives δux and δhx where δC has jumps.15

This is explained by the integral terms in (A3) and (A5). The discontinuities in the upper panel of Fig. 13 are caused by the

jumps in δb at 0.9× 106 and 1.0× 106 and the first term in (A3). The jumps in δh in the lower panel of Fig. 13 are due to the

first term in (A5).

All the predicted solutions from the adjoint SSA are in good agreement with the forward perturbation.

:::
The

::::::
inverse

::::::::
problem

::
of

:::
the

::::::
steady

::::
state

:::
for

:::
the

:::::::
friction

:::::::::
coefficient

::::
may

:::
not

:::
be

:::::::::
well-posed

:::::
since

:::
the

:::::::
weights

:::
are

:::
all

:::::::
positive20

::::
from

::
x∗::

to
:::::
xGL.

::::
This

:
is
:::::::
verified

::
by

::::::::
checking

:::
the

:::::::
singular

::::::
values

::
of

:::
the

::::::::
sensitivity

::::::::
matrices

:::::
WuC :::

and
:::::
WhC::

in
::::
Fig.

:
9
::::::
where

:::
the

:::::
largest

::::
and

:::::::
smallest

:::::::
singular

:::::
values

::
of

:::::
ΣuC :::

are
::::
10−4

::::
and

:::::
10−12

::::
with

:
a
:::::
large

:::::::
quotient

::::::::::
σuC1/σuCN::::

and
:::
the

::::
span

::
of

:::
the

:::::::
singular

:::::
values

::
of

:::::
ΣhC ::

is
::::
from

:::::
10−4

::
to

::::
10−8

::::::
(which

::
is

::::::
better).

:

:::
The

:::::::
singular

::::::
values

::
of

:::
the

:::::::::
sensitivity

:::::::
matrices

:::::
Wub:::

and
:::::
Whb::

in
::::
Fig.

::
9

:::
are

::
in

:::
the

::::::
interval

:::::
10−4

::
to
:::::
10−7

:::::
from

::::
large

::
to

::::::
small.

::::
They

:::
are

:::::
better

::::::::::
conditioned

::::
than

:::
the

::::::::
sensitivity

:::::::
matrices

:::
for

:::
C.

::
In

::::::::
particular,

::::
Σhb:::

(in
::::
pink)

::
in

:::
the

:::::::::
h-response

::::
case

:::
has

:::
the

::::::
lowest25

:::::::
variation

::
of

:::
the

:::::::
singular

::::::
values.

::::
The

::::::
inverse

:::::::
problem

::
of

:::::::
solving

::
for

:::
the

::::::::::
topography

:
b
:::::
from

:::
the

::::::
surface

::::::::
elevation

:
h
::
in

:::
the

::::::
steady

::::
state

::::
setup

::
is
::
a

:::::::::
well-posed

:::::::
problem

::::::::
compared

::
to
::::::::
inferring

::
C

::::
from

:::
u.

::::
Good

::::::::::::::
approximations

::
of

:::
the

:::::::::
sensitivity

:::::::
matrices

::::::
WuC ,

::::::
WhC ,

:::::
Wub :::

and
:::::
Whb:::

are
:::::
found

::
in
:

(A3)
::
and

:
(A5)

::
at

:::::
given

:::
x∗i::::

and

::
xj::

as
:::

in (23).
::
If
:::

the
:::::

basal
::::::::::

topography
::
is
:::::::::::
unperturbed

::
at

:::
the

:::::
same

::
x

:::::::::
coordinate

::
as

:::
the

::::::::::
observation

:::::
point

:::::
such

:::
that

::::::::
δb∗ = 0,

:::
then

::::
the

:::::::::::
contributions

:::
of

::
δb

::::
and

::::
δC

::::::
cannot

::
be

:::::::::
separated

:::::
since

::::
they

:::
are

:::::
both

:::::::::
multiplied

:::
by

:::
the

:::::
same

::::::
weight

:::::::
except

:::
for30

:
a
::::::::
different

::::::
scaling

::::::
factor.

::::
This

::
is
:::

in
:::::::::
agreement

::::
with

:::::::::
numerical

::::::::::::
investigations

::
in

::::::::::::::::::::::
Kyrke-Smith et al. (2018).

::
It
::

is
::::::

shown
:::

in

:::::::::::::::::::::::::
Cheng and Lötstedt (2019) that

:::
the

::::::::::
perturbation

::
in

::
δu

::
is

::::::::::
proportional

::
to

:::
the

::::::::::
wavelength

::
of

:::
δC.

:::::::::::
Perturbations

::::
with

::::
short

:::::::::::
wavelengths

:::
will

:::
not

:::::
reach

:::
the

::::::
surface.

::::::
These

::::::::::
conclusions

::
are

::::
also

:::::
drawn

::
in
:::::::::
numerical

::::::::
solutions

::
of

::
FS

::
in

:::::::::::::::::::::::::
Kyrke-Smith et al. (2018) and

::::
with
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Figure 9.
:::
The

::::::
singular

:::::
values

::
of
:::
the

::::::
transfer

::::::
matrices

::::::
WuC ,

:::::
WhC ,

::::
Wub:::

and
:::::
Whb.

::::::
transfer

::::::::
functions

::
in

:::
the

:::::::::
frequency

:::::
space

::
in

::::::::::::::::::
Gudmundsson (2008).

::::
The

::::::::::
perturbation

:::
in

:
u
::::
due

::
to

:::
δC

::::::::
increases

::::
with

:::::::::
increasing

:
u
::::
and

:::::::::
decreasing

:::
H .

::::
The

::::::::
sensitivity

:::
of

::
δu

::::
and

:::
δh

:::::::
behaves

::
in

:
a
:::::
better

::::
way

::
if
:::
the

::::::::::
observation

::
at
:::
x∗::

is
:::::
above

:::
the

:::::::::::
perturbation

:
at
::
x
:::

in
:::
the

::::::::::
topography

::
in

:
(A3)

:::
and

:
(A5).

:::::
Then

:::
δb

:::
and

:::
its

::::::::
derivative

:::::::
directly

:::::
affect

::::
the

:::::::::::
perturbations

::
at

:::
the

::::
top

::
of

:::
the

::::
ice.

::::
This

::
is

::
in

:::::::::
agreement

::::
with

:::
the

::::::::
computed

:::::::
singular

::::::
values

::
in

::::
Fig.

::
9.

::::
This

::::::::
property

::
is

::::::
utilized

:::
in

::::::::::::::::::::::
van Pelt et al. (2013) when

:::
the

::::::
bottom

:::::::::
topography

::
is
:::::::
inferred

:::::
from

:::::
height

::::
data.

::::::::
Inferring

:::
the

::::::::
geometry

::
of

:::
the

:::::
base

::::
from

::::
such

::::
data

::
is

:::::
easier

::::
than

::::::::
inferring

:::
the5

:::::::::
slipperiness

::::
and

::
C

:::::::
because

::
of

:::
the

:::
first

:::::
term

::
in (A5)

:::
and

::::
whb::

in
:::
the

::::
right

:::::::
column

::
of

::::
Fig.

::
7.

The solution of the adjoint equations is simplified in the comparison in Fig. 14. In MacAyeal (1993), two simplifications are

made. Firstly, the adjoint viscosity η̃ in Eq. (14) is approximated by the forward viscosity η in Eq. (11). The factor 1/n in the

viscosity in the 2D stress equation Eq. (18) is then replaced by 1. Secondly, the thickness H is fixed and the advection equation

for ψ is not solved, which is equivalent to ∇ψ = 0 in the adjoint stress equation in Eq. (15). Perturbations are introduced10

in C and u is observed for the transient case as in Fig. 10. The perturbed forward solutions are compared to the predicted

perturbations by the simplified adjoint SSA systems in Fig. 14, where the forward viscosity η is used in both cases. In the

upper panel of Fig. 14, the two equations of ψ and v are solved. In the lower panel, the advection equation of ψ is excluded

from the system. The differences are small in this case compared to the full adjoint solution used in Fig. 10. The reason is that

ψ,ψx, and Hηux are small in Eq. (18).15

The singular values of the transfer matrices corresponding to the two simplifications are shown
::::::::
displayed

:
in Fig. 15 where the

two transfer matrices are denoted by W̃uC for the system coupling ψ and v and by ŴuC for the adjoint equation without ψ

with a fixed H . The singular values in Σ̃uC are similar to those in ΣuC in Fig. 9 since the influence of the adjoint viscosity on

the system is almost negligible. The transfer matrix ŴuC has a better conditioning than W̃uC , although it is still worse than

the best cases in Fig. 9. This implies that the inversion of steady state SSA without the height coupling may be an ill-posed20
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Figure 10. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel)
::
for

::::
SSA

:
after one year with 1%

perturbation ofC(x) in x ∈ [0.9,1.0]×106 m. Solid lines are the differences between the steady state and the perturbed solutions in Eq. (13).

Red dots represent the estimated perturbation using Eq. (15).

problem. Regularization is necessary penalising oscillatory behavior at the base as in Gagliardini et al. (2013); Petra et al.

(2012).

4 Discussion

A few issues are discussed here related to the control method for estimating the parameter sensitivity.

We solve the FS adjoint problem only one step backward in time to verify the numerical method due to limitations of the5

current framework of Elmer/Ice. It is possible but more complicated and expensive to solve the adjoint problem numerically

for a large number of time steps K. This requires storing all the forward solutions (ui,pi,hi), i= 1,2, . . . ,K, to be able to

compute the adjoint solutions (vi, qi,ψi), i=K,K − 1, . . . ,1, which may be prohibitive in 3D. Since the data to be stored

in the SSA model is one dimension lower, we are able to solve the adjoint problem backward in time for any number of K.

However, for
:::
For a fair comparison, we show the results for one time step with SSA in this paper.10

:::
The

::::::::
equations

:::
for

:::
the

:::::::
adjoints

::
of

:::
FS

::::
and

::::
SSA

::
in (8)

:::
and

:
(15)

::
are

::::::::
generally

:::::
valid

:::
for

::
an

:::
ice

:::::
sheet

::
in

:::
3D

:::
and

::::
have

:::
to

::
be

::::::
solved

::::::::::
numerically.

::::
The

:::::::
problem

:::::
with

:::
the

::::::
storage

:::
of

:::
the

:::::::
forward

:::::::
solution

::
is
:::

the
:::::

same
:::

as
::
in

::::::::
adaptive

:::::
mesh

:::::::::
refinement

::::::
where

:::
the

:::::::
timestep

:::
and

:::
the

:::::
mesh

:::
are

:::::::
adapted

::
to

::::::
satisfy

::::::
bounds

:::
on

:::
the

::::::::
numerical

:::::
error.

::::::::
Selected

:::::::
forward

:::::::
solutions

:::
in

::::
time

:::
are

:::::
saved

:::
for
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Figure 11. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel)
::
for

::::
SSA after one year with 0.01 m

perturbation of b(x) in x ∈ [0.9,1.0]×106 m. Solid lines are the differences between the steady state and the perturbed solutions in Eq. (13).

Red dots represent the estimated perturbation using Eq. (15).

::
the

:::::::
adjoint

:::::::
solution

::
to

::::::
reduce

:::
the

::::::
storage

::::::::::::
requirements.

:::::::
Missing

:::::
values

:::
are

::::::::::
interpolated

:::
in

::::
time

:::
and

:::
the

:::::::::
sensitivity

:::::::
integral

::
in

(10)
:::
and (16)

:
is
:::::::::
computed

::::::::::
successively

:::::
when

:::
the

::::::
adjoint

:::::::
solution

::
is

::::::::
advanced

::::::::
backward

::
in

:::::
time.

The solutions of the horizontal velocity u and the height h with perturbations in C in the transient FS and SSA models are

similar in Figures 4 and 10. The weights in the upper panels in Figures 2 and 6 are similar, too. The solutions to the forward

equations are also close in the chosen MISMIP configuration. The reason is that the sliding on the ground in the FS model is5

considerable, making SSA a good approximation of FS.

There are many discussions regarding the choice of friction laws, see e.g. Gladstone et al. (2017); Tsai et al. (2015); Brondex

et al. (2017). However, assuming a spatial variability of the friction coefficient C(x) with a linear relation between the basal

stress and velocity makes this numerical study independent of the friction law. The friction coefficient can be viewed as a

linearization of the friction law and a post-processing procedure can retrieve the corresponding friction law.10

The transfer relation WuC between small perturbations of the friction coefficient C at the ice base and the perturbation of the

horizontal velocity u at the ice surface is given by Eq. (23) with δb= 0. The singular values of WuC in Fig. 9 tell how sensitive

u is to changes in C. The transfer relation also describes how the uncertainty in C is propagated to uncertainty in the velocity

at the surface and how uncertainty δu in measurements of u appear as uncertainty δC in C Eq. (26), see Smith (2014).
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Figure 12. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel)
::
for

::::
SSA

:
after 15000 years (close to

the steady state) with 1% perturbation of C(x) in x ∈ [0.9,1.0]× 106. Solid lines are the differences between the steady state and perturbed

solutions in Eq. (13). Red dots represent the estimated perturbation using Eq. (15).

The transfer relation is computed by solving the forward problem once and then the adjoint problem for each one of the M

observations. An alternative would be to solve the forward equations first for the unperturbed solution and then perturb C

by δCj and solve the forward equations again N times and subtract to find the relation between δu and δCj . It is usually

more expensive to solve the nonlinear forward equations than the linear adjoint equations. Suppose that the computational

work to solve the forward problem isWF and the adjoint problem isWA. If the forward and adjoint equations are in similar5

form, such as the FS or SSA problem, and solving the nonlinear forward problem requires k iterations where every nonlinear

iteration has the same computational cost as solving the linear adjoint problem, then WA/WF ≈ 1/k. The quotient between

the work to determine the transfer relation involving the adjoint equations and the work only based on the forward equation is

(1+MWA/WF )/(1+N). Since k ≥ 1, it is advantageous to choose the approach involving the adjoint ifM < kN . Otherwise,

solve N + 1 forward problems to compute WuC . In the inverse problem to find C given observations of u,h, the functions Fu10

and Fh are smooth and M = 1 in the iterative procedure to compute C
:::
with

::
a

:::::::
gradient

::::::
method. Solving the adjoint equations

is then always favorable.
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Figure 13. The changes in the horizontal velocity u (upper panel) and surface elevation h (lower panel)
::
for

::::
SSA after 15000 years (close

to the steady state) with 0.01 m perturbation of b(x) in x ∈ [0.9,1.0]× 106. Solid lines are the differences between the steady state and

perturbed solutions in Eq. (13). Red dots represent the estimated perturbation using Eq. (15).

5 Conclusions

The perturbations δu and δh in the velocity u and the height h at the ice surface are caused by perturbations δb and δC in the

topography of the ice base b and the basal friction coefficient C. The sensitivities δu and δh to δb and dC
:::
δC are evaluated in

2D by first solving the adjoint equations of the FS and SSA models including the advection equation for the height derived in

Cheng and Lötstedt (2019). Then weight or transfer functions are determined for the relation between δu and δh at the surface5

and δb and δC at the base. The predictions of δu and δh with the weights are compared to explicit calculations of perturbed

u and h at the surface with good agreement. It is shown in Cheng and Lötstedt (2019) that if the base perturbations are time

dependent then it is necessary to have time dependent weight functions to obtain the correct behavior at the top of the ice.

– Both the height and the stress equations and their adjoints are solved to find the weight functions here. The inverse

problem at steady state to infer C from observations of u is usually solved for a fixed ice geometry and with only the10

stress equation and its adjoint, see e.g. MacAyeal (1993); Petra et al. (2012). This is possible since the adjoint height ψ

is small when the horizontal part of u is observed and has little influence on δu. On the contrary, if h is observed then

there is an important effect of ψ on δh in FS and SSA. The magnitudes of ψ are different depending on whether u or h
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Figure 14. The changes in the horizontal velocity u
::
for

::::
SSA

:
after one year with 1% perturbation of C(x) in x ∈ [0.9,1.0]× 106 m. Solid

lines are the differences between the steady state and the perturbed solutions in Eq. (13). Red dots represent the estimated perturbation using

Eq. (15). Upper panel: forward viscosity. Lower panel: without advection equation.
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Figure 15. The singular values of the transfer matrices
:
of

::::
SSA with simplifications from MacAyeal (1993). Σ̃uC corresponds to the forward

viscosity case and Σ̂uC is from the adjoint SSA without coupling to the ψ equation.
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is observed. Simplifications of the SSA adjoint in the steady state by using the forward viscosity or ignoring the adjoint

height equation have minor consequences for the predictions of u with a perturbed C in Fig. 14.

– The sensitivity to perturbations δb and δC is quantified for steady state and time dependent problems with the FS and

SSA models. It increases as the observation point x∗ approaches the grounding line. This is explained by analytical

expressions for SSA where the sensitivity is
::::::::::
proportional

::
to

:::
the

:::::::
velocity

::
u

:::
and

:
inversely proportional to the ice thickness5

H(x∗). The closer we are to the grounding line the higher the requirements are on the resolution of the topography and the

friction coefficient to obtain accurate solutions of u and h there.
::::
This

::
is

:::::::
observed

::
in
:::::::::::
numerically

::
in

:::::::::::::::::
Durand et al. (2011).

– A weight is local if its extension in space is close to the observation point. The weights on δC at the ice base are local

for the steady state and time dependent FS model. They are also local for the time dependent SSA model and the transfer10

from δb to δu and δh in the steady state. The sensitivity of δu and δh in the steady state of SSA depends on δC from a

larger domain. It is difficult to observe a perturbation δC with a short wavelength on u and h. In the example in Fig. 3, a

spatial perturbation wavelength λ= 2× 104 m (about 10H) in C is damped by 0.2 in δh and 0.02 in δu compared to a

wavelength λ > 105 where there is no damping due to λ.
:::
This

::
is
::
in
:::::::::
agreement

::::
with

:::
the

::::::
theory

::
in

::::::::::::::::::
Gudmundsson (2008).

:

– The perturbations in u and h in the steady state of the SSA model consists of a direct effect from δb at the observation15

point, and a non-local effect of δb and δC in Figures 6 and 7. It follows from analytical solution in Eq. (A3) that we

cannot distinguish between the non-local contributions of δb and δC in the integral to δu. The same conclusion about

the non-local perturbations holds for δh in Eq. (A5).
::::
This

::
is

::::
also

::
an

::::::::::
observation

::
in

:::::::::::::::::::::
Kyrke-Smith et al. (2018).

:

– The transfer matrices from δb and δC to δu and δh are examined by the singular value decomposition. If the quotient

between the largest and the smallest singular values of the matrix is large then it is ill-conditioned and if it is small20

(but ≥ 1) then the problem is well-conditioned. In an ill-conditioned problem, some perturbations at the base will be

barely visible at the surface and a small perturbation at the top may correspond to a large perturbation at the bottom.

In a well-conditioned problem, all perturbations at the base have a measurable effect at the surface. The ranking of the

conditioning of the transfers in Fig. 9 from the best to the worst is

1. δb→ δh, 2. δb→ δu, 3. δC→ δh, 4. δC→ δu.25

In the past, the coupling between δu and δC is most frequently used for inference of C from velocity data but height data

could
:::::
adding

::::::
height

::::
data

:::::
would

:
improve the robustness of the inference.

:::
The

::::::::::::
approximated

::::::::
analytical

:::::::
transfer

::::::::
functions

::
for

:::::
SSA,

:::::::
yielding

:::::::
explicit

:::::::::
dependence

:::
of

:::
the

:::::::::
parameters,

:::::
have

:::
the

::::
same

:::::::::
properties

::
as

:::::
above

::::
that

::
the

::::::::
observed

:::::::
velocity

::
u

:::
and

:::::
height

::
h
:::
are

:::::
more

:::::::
sensitive

::
to

:::::::::::
perturbations

::
δb

::::
than

::::
δC.

25



Code availability. The FS equations are solved using Elmer/Ice Version: 8.4 (Rev: f6bfdc9) with the scripts at https://github.com/enigne/

FS_Adjoint. The forward and adjoint SSA solvers are implemented in MATLAB. The code is available at https://github.com/enigne/SSA_

Adjoint.

Appendix A: Some equations

Detailed derivations of the formulas are found in Cheng and Lötstedt (2019). A variable with index ∗ is evaluated at x∗.5

A1 The forward steady state SSA solution

The analytical steady state solution to the forward Eq. (17) without considering the viscosity terms is

H(x) =

(
Hm+2
GL +

m+ 2

m+ 1

Cam

ρg
(xm+1
GL −xm+1)

) 1
m+2

, 0≤ x≤ xGL,

H(x) =HGL, xGL < x < L,

u(x) =
ax

H
, 0≤ x≤ xGL, u(x) =

ax

HGL
, xGL < x < L,

(A1)

where HGL is the thickness of the ice at the grounding line xGL.

A2 The adjoint steady state SSA solutions10

The analytical steady state solutions of the SSA adjoint Eq. (18) with observation of u at x∗ is

ψ(x) =
Camx∗
ρgHm+3

∗
(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− 1

H∗
+

Camx∗
ρgHm+3

∗
(xmGL−xm∗ ), 0≤ x < x∗,

v(x) =
ax∗

ρgHm+3
∗

Hm, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗,

(A2)

where H∗ is the thickness of the ice at x∗. The corresponding perturbation δu∗ in Eq. (20) has the weights for δC and δb as

δu∗ =

xGL∫

0

(ψxu+ vxηux + vρghx)δb− vum δC dx

=
u∗
H∗

δb∗−
u∗
H∗

xGL∫

x∗

C(ax)m

ρgHm+1
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx,

(A3)

If h is observed at x∗, then15

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm), x∗ < x≤ xGL,

ψ(x) =− Cam−1

ρgHm+1
∗

(xmGL−xm∗ )− δ(x−x∗)η∗
nρgH∗

, 0≤ x≤ x∗,

v(x) =− Hm

ρgHm+1
∗

, x∗ < x≤ xGL,

v(x) = 0, 0≤ x < x∗.

(A4)
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The weights for δC and δb in Eq. (19) for the perturbation on h∗ is

δh∗ =
η∗

nρgH∗
(uδb)x(x∗) +

xGL∫

x∗

C(ax)m

ρgHm+1
∗

(
(m+ 1)

δb

H
+
δC

C

)
dx, (A5)

A3
::::
The

:::::::
singular

:::::
value

:::::::::::::
decomposition

::::::
(SVD)

:::
The

:::::
SVD

::::::::
factorizes

:
a
::::::
matrix

::
A

::
in

:::
the

::::::::
following

:::::
way,

:::
see

:::::::::::::::::::::::
Golub and Van Loan (1989),

:

A = UΣVT .
:::::::::::

(A6)5

:
If
:::
A

:
is
:::
an

:::::::
M ×N

:::::
matrix

::::
then

:::
U

:
is
:::
an

:::::::
M ×M

::::::
matrix,

::
Σ

:::
an

::::::
M ×N

:::::::
matrix,

:::
and

::
V

:::
an

::::::
N ×N

::::::
matrix.

::::
The

:::::::
singluar

:::::
values

:::
σi

::
are

:::::::::::
non-negative

::::
and

:::::::
ordered

::::
from

:::::
large

::
to

:::::
small

:::
for

::::::::
increasing

::
i
:::
and

::::::::::::::::::::
i= 1,2, ...,min(M,N).

::::
They

:::::
form

:::
the

:::::::
diagonal

:::
of

:::
the

:::::::
diagonal

::::::
matrix

::
Σ

::::
with

::::::::
Σii = σi.:::

The
:::::
other

::::
two

:::::::
matrices

:::
are

:::::::::
orthogonal

::::::::
satisfying

:::::::::
UTU = I

:::
and

:::::::::
VTV = I.

::::
The

::::::::::
generalized

::::::
inverse

::::
Σ−1

::
of

::
Σ

::
is
:::
an

::::::
N ×M

::::::
matrix

::::
with

::::
σ−1
i ::

(if
:::
σi :

is
::::::::
positive)

::
on

:::
the

::::::::
diagonal

:::
and

::
0

::::::::
elsewhere.
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