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Ok, added “…in western High Mountain Asia,…” 
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the most important predictors of SWE. This is a bit hard to follow 
 
Ok changed to “For example, SWE climatology is the most important predictor in machine statistical 
models for this region” 
 

Line 70:   “at high elevation”  
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Line 72:   I see you point, but I don’t think ridges are appropriate locations for measuring snow. 

Ok changed to “…rather than on the mountains above…” 

Figure 1:   Please reword: “All of the stations in Pakistan are in basins that eventually flow…”  

Changed to “are in areas that eventually flow…” 

Line 98:  “high elevation stations”  
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Line 163:   “accurate snow depth measurements”  

Added “…snow depth…”. 

Line 171:   Suggest replacing “prediction” by “forecasting”. Prediction rather refers to date and 
location of single events.  
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Line 177:   “Swiss Snow and Avalanche Research Institute SLF”  
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Line 245:   I suggest introducing the abbreviation “WY” here, since you use it later on without 
introducing it (e.g. line 292).  

Ok, added “(WY)” 

Line 207:  “peak snow depth”  

Line 307? Changed. 

Line 218:  “in the top meter of the snowpack”  

Line 318? Changed. 

Line 322:  “using the threshold sum approach”  



Changed, added “sum” 

Line 323:   “about half of time to failure layers found in/with Compression Tests”  

Changed  

Line 335:  I suggest you introduce somewhere here the size of the study area, i.e. that your study 
area is covered with 13 times 13 pixels of 25 km (325 km times 325 km [= 106’000 km2]), 
something along these lines.  

Added “This yielded a study area of 105,625 km2 (13 x 13 pixels, each 25 km2 in area)” 

Figure 5:  I am not sure I understand, you mention: bias and error?  

 
Deleted “error” 
 
  Also: “at AKAH stations for the median peak SWE data”  
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Figure 6:  “study area … shown in Figure 1”  
 
Fixed “shown” 
 

Figure 7:   I suggest you refer here to the study area covered by 13 x 13 pixels of 25 km.  

Changed “region” to “study area” 

Line 325:  placing too little SWE? Please consider rewording.  

Changed “be placing” to “computing” 

Line 437:  “critical snowpack”  
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Line 438:  “potentially unstable snowpacks”  

Addded “potentially” 
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refer to the precipitation gradient with elevation. 
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ABSRACT: Ice and snowmelt feed the Indus and Amu Darya rivers in western High Mountain 15 
Asia, yet there are limited in situ measurements of these resources. Previous work in the region 16 
has shown promise using snow water equivalent (SWE) reconstruction, which requires no in situ 17 
measurements, but validation has been a problem. However, recently we were provided with daily 18 
manual snow depth measurements from Afghanistan, Tajikistan, and Pakistan by the Aga Khan 19 
Agency for Habitat (AKAH). To validate SWE reconstruction,  at each station, accumulated 20 
precipitation and SWE were derived from snow depth using the numerical snow cover model 21 
SNOWPACK. High-resolution (500 m) reconstructed SWE estimates from the ParBal model were 22 
then compared to the modeled SWE at the stations. The Alpine3D model was then used to create 23 
spatial estimates at 25 km resolution to compare with estimates from other snow models. 24 
Additionally, the coupled SNOWPACK and Alpine3D system has the advantage of simulating 25 
snow profiles, which provide stability information. The median number of critical layers and 26 
percentage of faceted layers across all of the pixels containing the AKAH stations was computed. 27 
For SWE at the point scale, the reconstructed estimates showed a bias of -42 mm (-19%) at peak 28 
SWE. For the coarser spatial SWE estimates, the various models showed a wide range, with 29 
reconstruction being on the lower end. A heavily faceted snowpack was observed in both years, 30 
but 2018, a dry year, according to most of the models, showed more critical layers that persisted 31 
for a longer period.  32 
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1 INTRODUCTION 45 

There are many parts of the world where little is known about the snowpack. This lack of 46 
knowledge presents a challenge for water managers and for avalanche forecasters. Afghanistan is 47 
particularly austere in this respect, as there have been no snow measurements available since the 48 
early 1980s. This lack of information about the snowpack potentially creates a humanitarian crisis, 49 
as snowmelt fed streams run dry in the fall without warning (USAID, 2008). Accurate historical 50 
estimates of basin-wide snow water equivalent (SWE) are crucial for creating a baseline of 51 
climatological conditions, which can then aid in predicting today’s SWE. For example, SWE 52 
climatology is the most important predictor in machine learning statistical models for this region 53 
(Bair et al., 2018b). 54 
To improve our knowledge about the snowpack in these areas, we have developed an approach 55 
that requires no in situ measurements. Using satellite-based estimates of the fractional snow-56 
covered area (fSCA) and downscaled forcings in an energy balance model, we build up the 57 
snowpack in reverse, from melt out to its peak, using a technique called SWE reconstruction 58 
(Martinec and Rango, 1981). This technique has been shown to accurately estimate SWE in 59 
mountain ranges across the world, including: the Sierra Nevada USA (Bair et al., 2016; Rittger et 60 
al., 2016); the Rocky Mountains USA (Jepsen et al., 2012; Molotch, 2009); and the Andes of South 61 
America (Cornwell et al., 2016)–all areas with relatively abundant independent ground validation 62 
measurements. For the so called Third Pole of High Mountain Asia, and especially the 63 
northwestern parts of this region, e.g. Afghanistan, Tajikistan, and Pakistan, ground-based 64 
validation is challenging. 65 

2 AGA KHAN AGENCY FOR HABITAT (AKAH) STATIONS 66 

In 2017, we received daily manual snow depth and other meteorological measurements from 67 
nearly 100 stations (Figure 1) in an operational avalanche network (Chabot and Kaba, 2016). These 68 
stations are funded by the Aga Khan Agency for Habitat (AKAH) and are the first snowpack 69 
measurements available, at least that we are aware of, in Afghanistan in nearly 40 years. Hence, 70 
we refer to the region as the AKAH study region and the weather stations as the AKAH stations. 71 
The AKAH stations contain manual daily snow depth (also called height of snow), height of new 72 
(24-hr) snow, daily high and low air temperature, instantaneous wind speed/direction, rainfall, and 73 
some text fields on weather and avalanche conditions. For mountainous areas, precipitation is the 74 
most uncertain term in the water balance (Adam et al., 2006; Milly and Dunne, 2002) because it 75 
exhibits high spatial variability and is difficult to measure with traditional gauges. Measuring snow 76 
on the ground has many advantages compared to using precipitation gauges, which suffer from 77 
undercatch, especially in the windy and treeless areas (Goodison et al., 1998; Kochendorfer et al., 78 
2017; Lehning et al., 2002a) typical of this part of the world. Likewise, a strength of the SWE 79 
reconstruction technique is that it does not depend on precipitation measurements to build the 80 
snowpack. 81 
Additionally, many of the AKAH stations are at high elevation, with 64 stations above 2500 m 82 
and 17 stations above 3000 m. Unfortunately, most of these stations are located in deep valleys, 83 
where the villages are, rather than on the mountains above and the daily resolution is too coarse to 84 
use in a snow model without temporal interpolation. Additionally, many of the stations are near 85 
glacierized areas which complicates spatially interpolated snow estimates, as some of the snow is 86 
on top of ice. The area covered by glaciers in Figure 1 is 7.8%. 87 
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  95 
Although there have been a large number of studies examining the glaciers of High Mountain Asia, 96 
there are fewer studies examining snowfall in High Mountain Asia, which is odd since 97 
hydrologically in this region, snow on land melt provides the vast majority of runoff compared to 98 
snow on ice and melting glacier ice (Armstrong et al., 2018). Many of these studies are focused on 99 
the region to the east of the AKAH study area shown in Figure 1. To our knowledge, there have 100 
been no studies on snowpack stratigraphy in the AKAH study area and we were unable to obtain 101 
any snow pit measurements from this area. 102 

3 LITERATURE REVIEW 103 

A few studies have specifically examined snowfall in larger regions that include some of the 104 
AKAH stations, mostly for stations in the southern basins that flow into the Indus River; that is all 105 
of the stations in Pakistan. The rest of the stations in Afghanistan and Tajikistan are in basins that 106 
flow into the Amu Darya River. The most comparable study (Shakoor and Ejaz, 2019) examines 107 
the Passu catchment in the Hunza River Basin, to the east of Figure 1. As in this study (Section 108 
5.1), Shakoor and Ejaz (2019) also use the SNOWPACK and Alpine3D models. Model parameters 109 
were calibrated using a single weather station, Urdukas at 3926 m elevation near the Baltoro glacier 110 

 
Figure 1 Study region with AKAH stations (green dots) overlaid on a MODIS true color image from 
13 April 2018. Also shown are the country boundaries (red) and glacierized areas (light blue) from 
the Global Land Ice Measurement from Space dataset (Raup et al., 2007). All of the stations in 
Afghanistan and Tajikistan are in areas that eventually flow into the Amu Darya River. All of the 
stations in Pakistan are in areas that eventually flow into the Indus River. 
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(Ev-K2-CNR, 2014), with one year of precipitation measurements, using snow depth for 113 
validation. The authors report overestimation of the measured snow depth at the calibration station, 114 
even after questionable adjustments to the snow albedo and other model parameters. For example, 115 
the snow and ice albedo is given as 0.20 to 0.30 (Table 3, Shakoor and Ejaz, 2019), which would 116 
make it 0.10 to 0.20 lower than some of the lowest measured broadband albedo values for dirty 117 
snow (Bair et al., 2019; Skiles and Painter, 2016). They attribute the overestimation to problems 118 
with the precipitation measurements, common for high elevation stations. One problem with the 119 
Urdukas station in particular is that the tipping bucket precipitation gauge is unheated, making it 120 
unusable for measuring solid precipitation. Temperatures at this station were well below freezing 121 
for the winter and most of the spring, which explains why no precipitation was recorded from 122 
January until sometime in March during 2012, the calibration year. 123 
Viste and Sorteberg (2015) study several gridded precipitation products throughout High Mountain 124 
Asia, including the Indus River Basin. They report that while total precipitation was similar across 125 
the products–including MERRA (Rienecker et al., 2011), APHRODITE (Yatagai et al., 2012), 126 
TRMM (Huffman et al., 2007), and CRU (Harris et al., 2014)–the total snowfall varied by a factor 127 
of 2 to 4. Smith and Bookhagen (2018) used 24 years (1987 to 2009) of satellite-based passive 128 
microwave SWE estimates to examine trends throughout High Mountain Asia, including the Amu 129 
Darya and Indus Basins. Their SWE estimates show most 25 km pixels in this region in the 50-130 
100 mm range for December through February, with a few over 100 mm in the Amu Darya (i.e. 131 
all the AKAH stations in Afghanistan and Tajikistan) and none over 100 mm in the Indus (i.e. all 132 
the AKAH stations in Pakistan), likely too low by an order of magnitude for some pixels given our 133 
previous reconstructed SWE values and limited climate measurements in Afghanistan (Bair et al., 134 
2018b). 135 
For the AKAH stations in Tajikistan, the most comprehensive snow measurements come from 136 
Soviet snow surveys (mostly depth, but with some SWE and density measurements) that have been 137 
digitized (Bedford and Tsarev, 2001). Most of these measurements begin in the late 1950s and end 138 
around the fall of the Soviet Union, in either 1990 or 1992, making them useful for climatological 139 
studies, but not for validation of modern satellite-based estimates. 140 
The sole source of snow measurements in Afghanistan that were accessible to us was a table of 141 
outdated WMO monthly climatological data from Kabul (el. 1791 m) and North Salang (el. 3366 142 
m), showing the maximum monthly snow depth and the mean number of days with snow (Table 1 143 
in Bair et al., 2018b). Again, these measurements are not useful to validate more modern snow 144 
estimates. 145 
There have been many other studies that have attempted to estimate basin-wide precipitation 146 
(including snowfall) for larger areas that include the AKAH region, especially in the Indus. Several 147 
climate studies of the Indus have focused on using lower elevation precipitation gauges, which are 148 
then used to spatially interpolate basin-wide precipitation. Dahri et al. (2016) and Dahri et al. 149 
(2018) have assembled perhaps the largest collection of climatological measurements covering the 150 
AKAH region, mostly based on gauge measurements, as part of a study on the hydrometeorology 151 
of the Indus Basin. Using undercatch corrections based on wind, often from reanalysis, they 152 
increased precipitation estimates by 21% on average throughout the Indus Basin (Dahri et al., 153 
2018). For example, in the Gilgit sub-basin, they find an unadjusted precipitation estimate of 582 154 
mm/year, adjusted to 787 mm/year, a 35% increase. Although some of the measurements are taken 155 
from publicly available sources, as with most publications for this region, the comprehensive data 156 
used are not publicly accessible. 157 

Deleted: altitude 158 



 6 

A similar but less sophisticated approach was used by Lutz et al. (2014), who used a constant 159 
increase of 17% across the APHRODITE precipitation dataset which covers all of High Mountain 160 
Asia. Immerzeel et al. (2015) used glacier mass balance estimates with streamflow measurements 161 
as validation to show that high-altitude precipitation in the upper Indus Basin is 2	to	10 × what is 162 
shown using gridded precipitation products like APHRODITE. Bookhagen and Burbank (2010) 163 
estimate that snowmelt contributes 66% of annual discharge to the Indus, and averages 424 mm 164 
across the basin. 165 
In summary, quite a few studies have produced varying precipitation and snowfall estimates for 166 
the AKAH region, with no recent in situ snow measurements from Afghanistan or Tajikistan. 167 

4 PREVIOUS WORK WITH AKAH SNOW MEASUREMENTS 168 

Our previous work (Bair et al., 2018b) used a simple density model (Sturm et al., 2010) based on 169 
snow climatology (Sturm et al., 1995) and day of year  to model SWE from the manual snow depth 170 
measurements. The density model itself has -12 to 26% bias in predicting SWE. When taking into 171 
account geolocational uncertainty of the reconstructed SWE estimates and uncertainty in the 172 
density model, errors are on the order of 11-13% Mean Absolute Error (MAE) and -2 to 4% bias, 173 
depending on the date. However, we only examined one year of the AKAH station data (2017) 174 
and the high uncertainty in the density model itself begs a more sophisticated approach. 175 
From recent work (Bair et al., 2018a), we have shown that the SNOWPACK (Bartelt and Lehning, 176 
2002; Lehning et al., 2002a; Lehning et al., 2002b) model is capable of accurate SWE prediction 177 
when supplied only with snow depth for precipitation, as well as the other requisite forcings (i.e. 178 
radiation, snow albedo, temperatures, and wind speed). Over a 5-year period using hourly in situ 179 
measured energy balance forcings and a snow pillow for validation at a high elevation site in the 180 
western US, the numerical snow cover model SNOWPACK modeled SWE showed a bias of -17 181 
mm or 1% (Bair et al., 2018a). Likewise, the success of the Airborne Snow Observatory (Painter 182 
et al., 2016) has demonstrated that given accurate snow depth measurements, SWE can be well 183 
modeled. 184 

5 METHODS 185 

Our modeling approach consisted of: a) downscaling forcings in ParBal and reconstructing SWE; 186 
b) combining the downscaled forcings for each AKAH station with temporally interpolated manual 187 
snow measurements; c) running SNOWPACK for each of the AKAH stations with the downscaled 188 
and interpolated measurements from a) and b); and d) running Alpine3D using the output from 189 
SNOWPACK, notably the hourly precipitation. In addition to predicting SWE, the 190 
SNOWPACK/Alpine3D coupled model also predicts stratigraphic parameters useful for avalanche 191 
forecasting, thereby giving us an idea of the layering and stability in this region. For comparison, 192 
we also ran the NOAH-MP land surface model over the region with widely-used forcings. We also 193 
compared spatial estimates of SWE from GLDAS-2. Methods are summarized in Table 1 and 194 
explained below, with more detail provided in Appendix A. 195 

5.1 SNOWPACK and Alpine3D 196 

SNOWPACK and Alpine3D are freely available (https://models.slf.ch) point and spatially 197 
distributed snow models, courtesy of the Swiss Snow and Avalanche Research Institute SLF. 198 

Deleted: prediction199 

Deleted: Federal Snow Institute200 



 7 

SNOWPACK is the older of the two and uses finite elements to model all of the layers in a 201 
snowpack at a point.  202 
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Forcings Output 

ParBal √ √ 1.0 CERES 4a (radiation); 
GLDAS-2 
(meteorological); 
MODSCAG/MODDRFS 
(snow surface properties) 

Daily reconstructed 
SWE at 500 m; hourly 
downscaled forcings 
at 500 m, both for 
entire AKAH study 
area 

SNOWPACK  √  3.5 AKAH station snow 
measurements; 
downscaled forcings from 
ParBal 

Hourly SWE, 
precipitation, and 
other forcings for 
each AKAH station 

Alpine3D  √ 3.1 AKAH station output 
from SNOWPACK 

Daily SWE at 25 km 
for entire AKAH 
study area 

NOAH MP  √ 3.6 MERRA-2 Daily SWE at 25 km 
for entire AKAH 
study area 

GLDAS  √ NOAH 
2.1 

various Daily SWE at 25 km 
for entire AKAH 
study area 

Table 1 Summary of models used. See Section 5 and Appendix A for an explanation of acronyms and further 203 
details. 204 
SNOWPACK has shown promising results in both operational (e.g. Lehning et al., 1999; 205 
Nishimura et al., 2005) and research applications (e.g. Bellaire et al., 2011; Hirashima et al., 2010). 206 
Previous results with SNOWPACK (Bair et al., 2018a) show high model sensitivity to 207 
precipitation, but only a 1% error in modeled SWE when using snow depth only (not total 208 
precipitation) as a forcing. Thus, given reliable snow depth measurements at each AKAH station 209 
(see Section 5.5), modeled SWE during the accumulation season is treated as having negligible 210 
uncertainty. During the ablation season (after peak SWE), uncertainty is higher. Unlike during 211 
snow accumulation events, SNOWPACK does not force its modeled snow ablation to match the 212 
measured snow depth decreases. Uncertainty in SWE during the ablation season is then largely 213 
dependent on radiative forcings (Marks and Dozier, 1992) and the broadband snow albedo (Bair 214 
et al., 2019). Here, 5% uncertainty is used, based on the MAE from SWE reconstructions using 215 
the same remotely-sensed forcings at a continental sub-alpine site (Bair et al., 2019). In the same 216 
study, a small (3%) bias in SWE was also found, but this is likely due to shortcomings with the 217 
reconstruction method and not applicable to SWE modeled with SNOWPACK. Thus, the small 218 

Deleted: 5.4219 



 8 

bias was ignored. We acknowledge that these uncertainty estimates are themselves uncertain, e.g. 220 
the reanalysis forcings could be especially poor for this region compared to those available in the 221 
western US. 222 
Alpine3D (Lehning et al., 2006) is essentially a spatially-distributed version of SNOWPACK with 223 
a number of additional modules including: terrain-based radiation modeling, blowing snow, and 224 
hydrologic modeling. Integral to Alpine3D is SNOWPACK, which is run for each pixel, as well 225 
as the MeteoIO library (Bavay and Egger, 2014), which provides a large number of temporal and 226 
spatial interpolation functions that can be used on forcings for Alpine3D and SNOWPACK. 227 

5.2 The Parallel Energy Balance Model 228 

The Parallel Energy Balance Model (ParBal) was created at UC-Santa Barbara and designed for 229 
reconstruction of SWE. It is also publicly available 230 
(https://github.com/edwardbair/ParBal/releases/tag/v1.0). Currently, ParBal is designed to use: 231 
downscaled temperature, pressure, and humidity from version 2 of the Global or National Land 232 
Data Assimilation System (GLDAS-2/NLDAS-2, Rodell et al., 2004; Xia et al., 2012); shortwave 233 
and longwave radiation from edition 4a of the Clouds and the Earth’s Radiant Energy System 234 
(CERES, Rutan et al., 2015) SYN product; and time-spaced smoothed (Dozier et al., 2008; Rittger 235 
et al., in press) snow surface properties from MODIS Snow Covered Area and Grain Size 236 
(MODSCAG, Painter et al., 2009) and MODIS Dust and Radiative Forcing in Snow (MODDRFS, 237 
Painter et al., 2012). ParBal is run hourly at 500 m spatial resolution and forcings are adjusted for 238 
terrain and elevation. The main output is the residual energy balance term, which is assumed to go 239 
into melt when positive during the ablation phase after cold content is overcome (Jepsen et al., 240 
2012). This residual melt term is then summed in reverse during periods of contiguous snow cover 241 
and multiplied by the fSCA to spread the snow spatially. The errors in SWE from ParBal are 242 
mostly from fSCA and the radiative forcings. Errors and details on ParBal are covered extensively 243 
in Bair et al. (2016) and Rittger et al. (2016). In the supplement for Bair et al. (2018b), the errors 244 
arising from using GLDAS-2 and CERES 4a (available worldwide but at coarser spatial resolution) 245 
vs. NLDAS-2 are specifically evaluated. Using three years of basin-wide SWE estimated by the 246 
Airborne Snow Observatory in the upper Tuolumne Basin, California USA, the MAE for ParBal 247 
was 25 mm or 26% (Bair et al., 2018b). 248 

5.3 Global Data Assimilation System 2 (GLDAS-2) 249 

For comparison, we also include the SWE estimates from GLDAS-2 (Noah). SWE from GLDAS-250 
2 has been shown to be comparable to estimates from other reanalysis datasets, but negatively 251 
biased by about 60% in comparison to higher spatial datasets with assimilation from snow station 252 
measurements (Broxton et al., 2016). 253 

5.4 NOAH Multi-Parameterization (MP) 254 

The NOAH-MP v3.6 (Ek et al., 2003; Niu et al., 2011) land surface model, forced using MERRA-255 
2 (Gelaro et al., 2017), was used to simulate the hydrologic cycle over the study area and provide 256 
SWE estimates for comparison with ParBal and the Alpine3D output. NOAH-MP was selected 257 
due to its detailed representation of the snowpack relative to other land surface models. The model 258 
subdivides the snowpack into up to three layers with associated liquid water storage and 259 
melt/refreeze capability (Niu and Yang, 2004; Yang and Niu, 2003). It incorporates the exchange 260 
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of heat and moisture through the snowpack between the land surface and the atmosphere. In a 261 
model intercomparison study using a 2 km spatial resolution regional climate model for forcings, 262 
Chen et al. (2014) show that NOAH-MP modeled peak SWE at SNOTEL sites in Colorado, USA 263 
with a -7% bias. 264 

5.5 Use of AKAH station measurements 265 

We modeled daily SWE at the AKAH stations during the 2017 and 2018 water years (WY) 266 
primarily using the manually measured height of snow (HS), also called snow depth, combined 267 
with our downscaled energy balance parameters (for downscaling methodology see Bair et al., 268 
2018b; Bair et al., 2016; Rittger et al., 2016). To our knowledge, no quality control was performed 269 
on the AKAH station measurements before we received them. We choose the manual HS and new 270 
(24-hr) snow (HN) as the only variables to use from the AKAH stations. The HS appeared to be 271 
the most reliably measured, as that only requires reading a value from a master snow depth stake. 272 
Apart from spurious drops or missing values (see below), the HS measurement appeared consistent 273 
and believable at most of the stations, implying an accurate snow depth record. The HN was used 274 
to correct a data entry problem in 2017 that we discuss below. The reliability of the other 275 
measurements (instantaneous wind speed/direction, maximum/minimum temperature, and 276 
rainfall) was questionable. For example, we were not provided with sensor or measurement 277 
metadata, e.g. sensor make/model, measurement height, and whether or not the temperature sensor 278 
was shielded from shortwave radiation. These other measurements taken daily were also of limited 279 
value for interpolation to hourly values (see item 3 below). Thus, these other measurements were 280 
not used.  281 
The AKAH dataset had a number of shortcomings that we list here along with how we addressed 282 
them. 283 
1) Some of the stations recorded no snow at all, especially in the dry 2018 year, or had obvious 284 

problems, such as weeks of missing measurements, so they were excluded. For 2017, 52 (54%) 285 
of stations were used. For 2018, 41 (46%) stations were used. 286 

2) There were spurious drops in the HS measurements. The drops were clearly cases of missing 287 
values being filled with zeros. These measurements were manually flagged and converted to 288 
null values for interpolation, see below. 289 

3) The daily measurements had to be interpolated to hourly values. For the most part we used 290 
linear interpolation, although this is not ideal during snow accumulation since it’s almost never 291 
the case that snowfall is uniform over a 24-hr period. This is a problem that affects the accuracy 292 
of snow settlement estimated by SNOWPACK. There were two cases where other interpolation 293 
methods were used. If there were several days of missing values, we used a nearest neighbor 294 
interpolation to fill in the missing daily values, followed by a linear interpolation from daily to 295 
hourly measurements such that we assumed all the new snow fell in a 24-hr period. The other 296 
case was for days where the linear interpolation would yield a value below the minimum 297 
threshold hard coded into SNOWPACK (0.5cm/hr) for the first accumulating snowfall on bare 298 
ground. In this case, a previous neighbor interpolation was used in such a way that the entire 299 
snowfall occurred in the last hr prior to the next day’s measurement. 300 

4) We found the AKAH stations suitable for snow on the ground measurements, but not for 301 
rainfall or total (solid+liquid) precipitation. This was only an issue for the Alpine3D snow 302 
modeling, as snow measurements were being extrapolated to higher elevations than the AKAH 303 
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stations (Section 6.2), thus at these higher elevations, snow accumulated earlier and melted 304 
later than at the lower AKAH stations. 305 

Given the near total lack of canopy cover in the region, we suspected substantial undercatch from 306 
rain gauges. Using the wind speed, an undercatch correction would have been possible given more 307 
information on the gauges (e.g. orifice opening diameter and whether or not a shield was present), 308 
however this instrument metadata was not available to us. Likewise, we did not know if the gauges 309 
were heated or not. 310 
Further, the time period for recording measurements from the stations was not consistent. In WY 311 
2017, measurements began being reported on 10 November 2016 and were reported until 24 312 
November 2017. However, in WY 2018, measurements weren’t reported until 1 December 2017 313 
and no station measurements were reported past 1 April 2017. The reporting period likely covered 314 
all the snowfall events, but not all the precipitation events. 315 
To address the rainfall measurement and reporting issues, we used GLDAS NOAH v2.1 (Rodell 316 
et al., 2004) rainfall + snowfall from the nearest grid cell (1/4º spatial / 3 hr temporal resolution) 317 
to fill in precipitation prior to the first measurements in each water year, and after 4-1 for both 318 
water years. We did not account for rain from 10 November 2016 to 1 April 2017 and from 1 319 
December 2017 to 1 April 2018; instead we relied on the modeled precipitation from SNOWPACK 320 
using snow depth. The AKAH station observations show that rain during this time period was rare. 321 
5) A database problem prevented snow heights > 100 cm from being entered into the database for 322 

a few days in 2017. This problem became apparent during February 2017, when the Nuristan 323 
avalanches took place (United Nations, 2017), as that is the first time that most stations 324 
recorded values > 100 cm. Values were shown as 100 cm on multiple days followed by values 325 
> 100 cm. To address this issue, we flagged all the values equal to 100 cm prior to peak snow 326 
depth in 2017, then marked those as null values. We then filled those null values using the 327 
cumulative sum of new snow during that time. 328 

5.6 Analysis of modeled snow profiles 329 

For holistic measures of the snow profiles modeled in Alpine3D, we used two metrics from 330 
Bellaire et al. (2018): 1) fraction of facets and 2) number of critical layers. Fraction of facets is the 331 
height of all the layers containing faceted crystals, i.e. International Classification for Seasonal 332 
Snow on the Ground primary codes FC, DH, and SH (Fierz et al., 2009), divided by the height of 333 
the snowpack. The number of critical layers was computed using a threshold sum approach 334 
(Schweizer and Jamieson, 2007) with modifications for simulated profiles (Monti et al., 2014 335 
Table 1). In each profile, 6 different variables (grain size, difference in grain size, hardness, 336 
difference in hardness, grain type, and depth) in the top meter of the snowpack (from the surface) 337 
were checked against threshold values. Layers exceeding 5 or more thresholds were classified as 338 
critical. 339 
The fraction of facets metric does not have a validation study, but faceted layers are a weak crystal 340 
form and are responsible for 43% (Bair et al., 2012) to 67% (Schweizer and Jamieson, 2001) of 341 
investigated avalanches. Layers classified as critical using the threshold sum approach above 342 
corresponded to failure layers about half of the time to failure layers found with Compression Tests 343 
(Monti et al., 2014), an in situ snowpack stability test (Jamieson, 1999; van Herwijnen and 344 
Jamieson, 2007). 345 
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5.7 Spatial scale for comparisons 350 

Because ParBal is the only model run at 500 m spatial resolution and all the other models were run 351 
at ~ 25 km, it is the only model appropriate for point comparisons, although point to area problems 352 
are still an issue. To address the geolocational uncertainty for the gridded MODIS products, which 353 
can be up to one ~500 m pixel (Tan et al., 2006; Xiaoxiong et al., 2005) and spatial variability of 354 
the snow, we used a 9-pixel neighborhood centered on each AKAH station and chose the best fit 355 
to the SNOWPACK modeled SWE. This approach has been used in previous work (Bair et al., 356 
2018b; Rittger et al., 2016). We also include the high and low SWE values in that surrounding 9-357 
pixel neighborhood to bound the uncertainty. 358 
For all of the other model comparisons, we resampled all of the model output to a UTM (Zone 359 
43S) grid with 25 km pixels, close to the native resolution of the NOAH-MP and GLDAS2 grid 360 
used (0.25º). This yielded a study area of 105,625 km2 (13 x 13 pixels, each 25 km2 in area). The 361 
ParBal output had to be significantly upscaled from 500 m to 25 km using Gaussian Pyramid 362 
reduction (Burt and Adelson, 1983) in steps with bilinear interpolation for the final step. 363 

6 RESULTS AND DISCUSSION 364 

The relationships between the components are summarized in Figure 2. The results discussed 365 
below are comparisons of: 1) SWE and 2) snow stratigraphy across a) all of the AKAH stations 366 
(points) and b) the entire study region. 367 

 368 

6.1 Point comparisons between SNOWPACK and reconstructed SWE 369 

A first step for any SWE reconstruction comparison is to determine when the ablation season starts. 370 
This varies for different years and at different sites (e.g. Margulis et al., 2016). Using the 371 

 
Figure 2 Summary of relationships between the various components. Forcings are shown in red, models 
and selected outputs are shown in blue, and the comparisons discussed below are shown in green. The 
black arrows show the direction of inputs. 
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SNOWPACK modeled SWE, we can examine the peak SWE dates for both years for all of the 373 
AKAH stations (Figure 3ab). Peak SWE dates vary across the stations and years, but the median 374 
values between years are a week apart, 19 February 2017 and 26 February 2018. Thus, we use 375 
those dates for our comparisons. 376 

  377 
To create a holistic comparison for all the stations across the ablation period, mean SWE values 378 
were computed and plotted for each day during the ablation season (Figure 4). For the 379 
reconstructed SWE on 19 February 2017, the bias is -77 mm (-28%). For the reconstructed SWE 380 
on 26 February 2018, the bias is -6 mm (-9%). Thus, together these biases average to -42 mm (-381 
19%). The high/low values in the 9-pixel neighborhood show the wide spatial variation in SWE 382 
estimates, and are to be expected in these deep valley sites (Section 6.2). The increases in 383 
reconstructed SWE during the ablation season are caused due to differences in how melt is summed 384 
for any given pixel. In ParBal, melt is only summed during periods of contiguous snow cover. This 385 
means that if a pixel containing an AKAH station has no snow on it at some point during the 386 
ablation season, but then snow is detected, it causes an increase in the mean SWE. This is called 387 
an ephemeral snow event, i.e. snow that disappears and reappears. For a more in depth examination 388 
of the error at individual stations, a box plot is shown for the median peak SWE dates for both 389 
years (Figure 5). The median bias of the reconstructed SWE is -11 mm (-14%). 390 

 
Figure 3 Peak SWE dates, modeled by SNOWPACK for 2017 (a) and 2018 (b) for each of the AKAH 
stations. The median peak SWE dates are 19 February 2017 and 26 February 2018. N=52 and 41 
AKAH stations used for 2017 and 2018. 
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 393 
 394 

 
Figure 4 Mean SWE for 2017 (a) and 2018 (b) modeled at all of the AKAH stations using SNOWPACK 
(blue lines) compared to reconstructed SWE from ParBal using a best of 9-pixel approach (red lines). 
Also plotted is the median peak SWE date. The hi/lo bounds (filled areas) represent uncertainty. For 
ParBal, uncertainty is expressed as the range of values in the 9 pixel neighborhood. For SNOWPACK, 
uncertainty is 5% of the modeled SWE during the ablation season. See Sections 5.1 and 5.2 for details. 
The modeled SWE values end abruptly on 1 April 2018 because the AKAH stations stopped reporting 
due to drought conditions. The number of stations used is the same as in Figure 3. Deleted: Figure 3
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  395 

6.2 Four model spatial comparisons 396 

The AKAH stations are lower than the average elevation for the region. The average elevation of 397 
the AKAH stations is 2619 m (1735 to 3410 m). But when the 500 m DEM is upscaled to 25 km, 398 
the average elevation of the pixels containing the AKAH station is 3858 m with a range of 2517 399 
to 4764 m. This has two important implications: 1) much of the higher elevation snowfall is being 400 
extrapolated and 2) the higher elevation causes the peak SWE date to move forward in time. The 401 
median peak SWE dates for the (N=169) 25 km pixels encompassing the study area are 5 May 402 
2017 and 3 May 2017. Thus, we use the median of the two to compare our reconstructed SWE 403 
values (Figure 6ab, Figure 7a-d, and supplementary video). 404 
Striking is the range between models. NOAH-MP has the highest peaks (562 mm in 2017 and 331 405 
mm in 2018), but is among the first to melt out. The reconstructed SWE from ParBal only shows 406 
minor variation between the 2017 peak (240 mm) and the 2018 peak (206 mm). ParBal and 407 
GLDAS-2 melt snow out latest in both years. This is especially true for ParBal in 2017, where the 408 
supplementary video shows that ParBal has snow cover over more pixels that persists for longer 409 
into the melt season, but is lower in SWE than the other models. The Alpine 3D model shows the 410 
second highest peak SWE in 2017 (469 mm), but the lowest peak (165 mm) in 2018. The 411 
comparatively higher values from NOAH-MP could result from relatively high precipitation 412 
estimates from its MERRA2 precipitation forcings. Similarly, Viste and Sorteberg (2015) report 413 
that MERRA (version 1) showed higher snowfall in the Indus Basin than any other reanalysis or 414 
observation-based forcings dataset. 415 

 
Figure 5 Bias (a) and relative bias (b) for ParBal reconstructed SWE vs Alpine 3D modeled SWE at 
AKAH stations on the median peak SWE date for both years, where bias here is ParBal SWE – Alpine 
3D SWE. 
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 416 

 
Figure 6 Time series of mean SWE for four snow models across the study area (13x13x25 km pixels) 
shown in Figure 1 for 2017 (a) and 2018 (b). The reconstructed SWE from ParBal (yellow) goes back 
to 4 May, the median peak SWE date for both years, since reconstruction is only valid during the 
ablation season. 
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417 
Since Alpine3D is relying heavily on extrapolation of SWE, we suggest its mean SWE values 418 
plotted in Figure 6 could have higher uncertainty than some of the other models. For example, the 419 
Alpine3D pixels seem to melt out early compared to the other models, especially ParBal, which is 420 
the only model relying on satellite-based estimates of fSCA (see supplementary video). Thus, 421 
Alpine3D may computing too little SWE in cold, high elevation areas that melt slowly. These 422 
problems are all indicative of stations that are located in valley bottoms and that only cover the 423 
lowest elevations across these 25 km pixels. 424 
 425 

 
Figure 7 Four model (a-d) spatial comparison for the study area on 4 May 2018. The white letters are: 
AFG–Afghanistan; TJK–Tajikistan; and PAK–Pakistan. Also shown in (a) are the locations of the 
AKAH stations (orange points). This is a frame from a video sequence available as supplementary 
material. 
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The ParBal results are confounding given that the agreement between the modeled SWE from 427 
ParBal and SNOWPACK at individual AKAH stations (Figure 4ab) is much better for both 2017 428 
and 2018.  429 
For insight into potential biases in the modeled spatial SWE from ParBal, we carefully studied the 430 
snow-covered area (SCA, not just for 2017 & 2018, but since 2001), the potential melt (i.e. the 431 
melt if a pixel were 100% snow covered), and the melt from glacierized areas (light blue in Figure 432 
1). We did not find any errors in the model, its parameters, or its forcings. Thus, it is possible that 433 
the ParBal SWE is low-biased in 2017 for reasons that we could not discern, or that the other 434 
models are high biased. Of note is that the 2017 & 2018 SCA (Figure 8 purple and orange) is very 435 
similar for both years during the ablation period, especially at the end of the ablation season. 436 

 437 
Since pixels do not contribute uniformly to melt, SCA alone cannot be used to predict SWE, but 438 
in general years with less snow have lower SCA values towards the end of the ablation season. 439 
Figure 8 shows that 2017 and 2018 were similar in terms of SCA from April through melt out. 440 
Thus, the large difference between 2017 and 2018 for the AKAH station SWE, but small 441 
differences in SCA and spatially-averaged reconstructed SWE, suggest that 2017 may have been 442 
a larger snow year at the lower elevations where the AKAH stations are, but similar to 2018 at the 443 
higher elevations. 444 

6.3 Stratigraphy and stability 445 

The simulated snow profiles from the AKAH stations (Figure 9ab) and the 25 km pixels containing 446 
the AKAH stations (Figure 10ab) show very different snowpacks. Because of the induced increase 447 
in elevation from scaling (e.g. from an average of 2619 m to 3858 m, Section 6.2), the 25 km pixels 448 
show a deeper, but more faceted snowpack with critical layers that persist for a month or longer. 449 
In 2017, for the median AKAH station values, the snowpack reaches a maximum of 76% facets 450 

 
Figure 8 Time series of snow covered area from spatially and temporally interpolated MODSCAG 
(Rittger et al., in press), an input for ParBal, for four selected years across the region. Years 2008 and 
2009 had the lowest and highest values on July 1 over the period of record from 2001 to 2018, while 
2017 and 2018 comprise the AKAH station study period. 
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on January 21 (Figure 9a). In 2018, the snowpack reaches a maximum of 71% facets (Figure 9b). 453 
There were no critical layers simulated. In contrast, for the median values in the 25 km pixels for 454 
both years, the height of snow (HS) is approximately 2 × that for the stations (Figure 10ab). The 455 
snowpack reaches a maximum of 94% facets in 2017, with one critical layer persisting for 35 days 456 
(Figure 10a). The snowpack in 2018 reaches 95% facets with 1 or 2 critical layers persisting for 457 
80 days (Figure 10b). During the Nuristan avalanches on 4 February to 7 February 2017 that killed 458 
over 100 people (United Nations, 2017), the AKAH stations show the largest 3-day snowfall of 459 
the study period (Figure 9a) and the results for the 25 km pixels show that large snowfall occurring 460 
on top of the only critical layer of the season (Figure 9b). That is a classic avalanche scenario, i.e. 461 
a large snowfall on a weak snowpack. 462 
In lieu of any type of snow profile from this region, these profiles paint the best picture of the snow 463 
conditions available. A relatively stable snowpack seems to be present in the valleys, where the 464 
AKAH stations are located. But at the higher elevations, the simulated profiles show a more critical 465 
snowpack. This is especially serious considering these villages are in the runout zones of these 466 
potentially unstable snowpacks. In some cases, several thousand meters of vertical relief loom 467 
above the villages. For example, Yarkhun Lasht (36.795N 73.022E, el. 3249 m) in Pakistan is 468 
flanked by 6500 m peaks on both side of its valley. 469 

 470 

 
Figure 9 Stratigraphy summary of the AKAH stations for 2017 (a) and 2018 (b). Plotted are the median: 
height of snow (HS); fraction of the snowpack containing facets; and number of critical layers. The 
number of stations used to compute the medians varied due to snow coverage. 
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 472 

 473 

7 CONCLUSION 474 

Knowledge of the snowpack in northwestern High Mountain Asia is poor. This area is subject to 475 
droughts and threatened by snow avalanches. Both problems can be aided by improved knowledge 476 
of the snowpack. Thanks to a novel operational avalanche observation network, there are now 477 
daily snow measurements at a number of operational weather stations in this austere region. In this 478 
study, two years of daily snow depth measurements from these stations were combined with 479 
downscaled reanalysis and remotely-sensed measurements to force a point and spatially distributed 480 
snow model. Compared to a previous effort (Bair et al., 2018b), this study represents a substantial 481 
improvement in SWE modeling for the region, and a first attempt to characterize region-wide snow 482 
stratigraphy. At the point scale, SWE estimates from a reconstruction technique that does not use 483 
precipitation or in situ measurements compared favorably. At the regional scale, four models 484 
showed a wide spread in both peak SWE and melt timing. For the models that rely on in situ 485 
precipitation measurements, a major challenge is spatial extrapolation, as many of the stations are 486 
located in deep valleys. Adding measurements from the mountains above would facilitate more 487 
realistic lapse rates, but these measurements do not currently exist, although they would be 488 
beneficial both for operational avalanche safety and for scientific studies. 489 
In the regional comparison, SWE estimates from ParBal were on the low end, but given the model 490 
spread it is difficult to form a consensus estimate. We plan additional in situ validation at other 491 
sites in High Mountain Asia to continue to assess the performance of ParBal there. 492 
The simulated profiles showed very different snowpacks. At the point scale at lower elevations in 493 
the valleys, profiles showed fewer facets and almost no critical layers, while at the regional scale 494 

 
Figure 10 Stratigraphy summary of the (13x13) 25 km pixels containing AKAH stations for 2017 (a) 
and 2018 (b). Plotted are the median: height of snow (HS); fraction of the snowpack containing facets; 
and number of critical layers. 
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for higher elevations, the profiles showed heavily faceted snowpacks with critical layers that 495 
persisted throughout the winter and spring. 496 

8 CODE AND DATA AVAILABILITY 497 

The code for ParBal is accessible at: https://github.com/edwardbair/ParBal 498 

The code for MeteoIO, SNOWPACK, and Alpine3D are accessible at: https://models.slf.ch/ 499 
The code for NOAH-MP is accessible at: https://ral.ucar.edu/solutions/products/noah-500 
multiparameterization-land-surface-model-noah-mp-lsm 501 
The GLDAS-2 and MERRA-2 forcings are accessible at: https://disc.gsfc.nasa.gov/ 502 
The reconstructed SWE and melt cubes are accessible at: 503 
ftp://ftp.snow.ucsb.edu/pub/org/snow/products/reconstruction/h23v05/500m/ 504 
Unfortunately, the AKAH measurements are not publicly available due to security concerns. 505 
Requests for the dataset should be made through The Aga Khan Agency for Habitat 506 
(https://www.akdn.org).507 
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APPENDIX A Detailed model forcings and parameters 508 

PARBAL 509 

ParBal was configured and forced as described in Bair et al. (2018b); Bair et al. (2016). The model 510 
time step was 1 hr. The DEM used was the ASTER GDEM version 2 at 1 arc sec (NASA JPL, 511 
2011), while the canopy type and fraction were taken from the Global Land Survey at 30 m (USGS, 512 
2009). The shortwave and longwave forcings were downscaled from the CERES SYN edition 4a 513 
1º/1 hr product (Rutan et al., 2015), while the air temperature, specific humidity, air pressure, and 514 
wind speeds were downscaled from the GLDAS NOAH version 2.1 0.25º/3 hr product (Cosgrove 515 
et al., 2003). Time-space smoothed (Dozier et al., 2008; Rittger et al., in press) fSCA and grain 516 
size from MODSCAG (Painter et al., 2009) was combined with the visible albedo degradation 517 
from dust in MODDRFS (Painter et al., 2012) to produce snow hourly snow albedo. 518 

NOAH-MP 519 

NOAH-MP v3.6 was run in retrospective mode within the NASA Land Information System (LIS) 520 
framework. A state vector ensemble (total 30 replicates) was generated by perturbing the forcings 521 
to account for the state uncertainty during forward propagation of the model. MERRA-2 (Gelaro 522 
et al., 2017) forcings were utilized with bilinear spatial and linear temporal interpolation. The 523 
model was run on an equidistant cylindrical grid with 0.25º spatial resolution and a 15 min model 524 
timestep. The spin-up time extended from May 2002 to May 2016 while the study period was from 525 
June 2016 to October 2018. The number of maximum layers in the snowpack was 3. Table A1 526 
provides details of the NOAH-MP scheme options selected. Further details regarding each scheme 527 
and relevant references can be found at: https://ral.ucar.edu/solutions/products/noah-528 
multiparameterization-land-surface-model-noah-mp-lsm. 529 

Physical process/ parameter Scheme used 

Elevation data SRTM Native 

Landcover data  MODIS Native (IGBPNCEP) 

Slope, Albedo and Greenness data  NCEP Native 

Bottom temperature (lapse-rate 
correction)  ISLSCP1 

Vegetation dynamic 

Canopy stomatal resistance Ball-Berry 

Runoff and groundwater SIMGM 

Surface layer drag coefficient M-O (General Monin-Obukhov similarity theory) 

Supercooled liquid water and frozen 
soil permeability NY06 

Radiation transfer gap=F(3D;cosz) 

Snow surface albedo BATS (Biosphere-Atmosphere Transfer Scheme) 
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Rainfall and snowfall Jordan91 

Snow and soil temperature time semi-implicit 

Lower boundary of soil temperature Noah 

Table A1 Noah-MP v3.6 physical parametrization scheme options utilized in this study. 530 

SNOWPACK 531 

SNOWPACK v3.50 was run in research mode at a 15 min timestep with hourly outputs for each 532 
of the AKAH stations. Hourly forcings were computed by combining temporally interpolated snow 533 
depth from the AKAH manual measurements with: air temperature, incoming shortwave, reflected 534 
shortwave, incoming longwave, wind speed, and relative humidity from the downscaled ParBal 535 
outputs, as described in Section 5.2. SNOWPACK was only run for periods when measurements 536 
from the AKAH stations were available, Nov/Dec to April/May, depending on the year. 537 
Plots were assumed to be level, so forcings without terrain correction were applied except for 538 
shading when the sun was below the local horizon, e.g. a mountain blocking the sun (Dozier and 539 
Frew, 1990). The wind direction, which is not available in GLDAS-2, was fixed at the mean value 540 
from the daily AKAH instantaneous values. The ground temperature was set as the minimum of 541 
the air temperature or -1.5ºC when snow cover was present. 542 
Aside from setting required parameters and values for inputs and outputs, changes to default 543 
parameters that affected model output are provided in Table A2: 544 

Parameters Value Description 
TS_DAYS_BETWEEN 0.014666 days Output hourly values 
PRECIP_RATES FALSE Output is provided a 

summed precipitation over 
the output timestep (1 hr) 

SW_MODE BOTH Both incoming and 
reflected (incoming x 
albedo) are provided 

HEIGHT_OF_METEO_VALUES 2 m Height of meteorological 
measurements 

HEIGHT_OF_WIND_VALUE 2 m Height of wind 
measurements 

ENFORCE_MEASURED_SNOW_HEIGHTS TRUE Precipitation is calculated 
using HS 

ATMOSPHERIC_STABILITY NEUTRAL Neutral conditions are 
often present in moderate 
to high wind speeds for 
mountain terrain (Lehning 
et al., 2002a; Mitterer and 
Schweizer, 2013) 

MEAS_INCOMING_LONGWAVE TRUE Default is to estimate 
emissivity of the air and 
incoming longwave from 
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other measured parameters 
(FALSE). Here we provide 
longwave forcings 
(TRUE). 

Table A2 Model parameters for SNOWPACK 545 

ALPINE3D 546 

Alpine3D version 3.10 was run using with the outputs produced by SNOWPACK as forcings for 547 
each of the AKAH stations at 25 km resolution. The DEM and land cover (incorrectly labeled land 548 
use in the Alpine3D documentation) data were upscaled from the ParBal data. Alpine3D was run 549 
at an hourly timestep using hourly forcings, with daily outputs using the “enable-eb” switch. Other 550 
switches were set to off, the defaults. The “enable-eb” switch computes the terrain radiation with 551 
shading and terrain reflections (see Alpine 3D documentation at https://models.slf.ch for a 552 
description). 553 
To extend the length of the model runs, for each AKAH stations, GLDAS-2 precipitation was 554 
appended to periods prior to the first AKAH observation for the year and after the last, as described 555 
in Section 5.5. 556 
The forcings were hourly: incoming shortwave, incoming longwave, air temperature, relative 557 
humidity, wind speed, wind direction, reflected shortwave, accumulated precipitation, and ground 558 
temperature. 559 
Critical to Alpine3D are the interpolation methods from MeteoIO to spatially distribute 560 
precipitation and other forcings. We found the modeled SWE to be highly dependent on the spatial 561 
interpolation of precipitation. Our initial approach was to explore local (i.e. with a given radius 562 
from a station) and regional (i.e. all AKAH stations) lapse rates in the measured snow depth and 563 
modeled precipitation from SNOWPACK. We found almost no correlation in many of the 564 
measurements, not surprising given the complexity of the terrain and likely existence of 565 
microclimates with substantial influence on precipitation. Without having a good validation source 566 
for spatial precipitation (as is the case for all of High Mountain Asia), we selected an interpolation 567 
method that yielded relatively smooth results, but showed increases in precipitation with elevation. 568 
Ultimately, we decided to use an inverse distance weighting scheme with elevation detrending 569 
(IDW_LAPSE) and a multilinear option. For this method, the input data are detrended, then the 570 
residuals are spatially interpolated according to an inverse distance weighting scheme. The 571 
detrending uses a multiple linear regression with northing, easting, and altitude. The linear 572 
regression has an iterative method for removing outliers. Finally, values at each cell are retrended 573 
using the multiple linear regression and added to the interpolated residuals. 574 
A summary of the interpolation methods, all of which are defined in the MeteoIO documentation 575 
(Bavay and Egger, 2014), is given in Table A3. 576 

Forcing Spatial interpolation method Description and notes 

Air temperature IDW_LAPSE Inverse distance weighting 
with elevation detrending. 
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Accumulated 
precipitation 

IDW_LAPSE with multilinear option set 
to TRUE 

See notes above 

Relative Humidity  LISTON_RH  See Liston and Elder (2006) 

Precipitation phase PPHASE Simple splitting at 274.35K 

Wind speed IDW_LAPSE See above 

Incoming longwave 
radiation 

AVG_LAPSE Average filling with 
elevation lapse rate 

Wind direction CST Constant, fixed at average 
value from AKAH station 
instantaneous measurements 

Pressure STD_PRESS Standard atmospheric 
pressure with elevation 

Table A3 Spatial interpolation methods for Alpine3D 578 
The same parameters as in Table A2 for SNOWPACK were used in Alpine3D with changes shown 579 
in Table A4. Other parameters were defaults. 580 

Parameters Value Description 
CALCULATION_STEP_LENGTH 60 min 1 hr model timestep 
ENFORCE_MEASURED_SNOW_HEIGHTS FALSE Use accumulated 

precipitation estimate from 
SNOWPACK 

Table A4 Model parameter changes for Alpine3D from Table A2 581 
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