
We thank anonymous referee #1 for his or her comments, and for taking the time to review our 
manuscript. We’ve noticed discrepancies in line numbers and figure references, however we 
believe that we’ve identified all of places the referee is referring to. We’ve copied the referee’s 
comments in blue. Our responses are in red. 
 
update 11/13/2019 – we’ve added line numbers and references to the revision 

In this study, snow in the upper Amu Darya and Indus basins is modeled using multiple 
techniques and a newly available snow depth data record. These data and results provide 
insight into the likely range of snow depths and snowpack properties in a region where there 
was previously very limited understanding. The study is well researched and designed and the 
paper is well written. I think this is a good contribution to the snow research literature for HMA, 
and provides evaluation of some potential tools that could be used for avalanche prediction. I 
have some minor suggestions and comments for consideration.  

Line 87: Instead of “snow on land melt” use “terrestrial snow melt” 

We assume this is referring to l 87. The term used in cited Armstrong et al (2019) reference is 
“snow on land”, so we’d like to keep this as is for consistency. 

Line 143: Move the reference for APHRODITE to the earlier section (lines 110-111) where all 
the other global precipitation products are referenced. 

Again, the line reference appears transposed. We assume this is referring to l 134. And yes, we 
will move the Yatagai et al reference up. 

106 …APHRODITE [Yatagai et al., 2012] 

Table 1: It is not clear to me why Alpine3D and NOAH MP are run at 25km resolution. Why not 
run at a higher resolution for direct comparison?  

This was driven by the GLDAS and NOAHMP model resolution. GLDAS is available at 0.25º or 
27.7 km in the north-south direction. For NOAH MP, the forcings used were from MERRA-2 at 
0.625º x 0.5º. 25 km the highest resolution we felt comfortable comparing.  

Section 4.4 It’s not clear how the AKAH stations are combined with SNOWPACK. Are the 
observations directly inserted and the model is used to estimate other snow properties (i.e. 
density, grain size, etc)? Ok, I see in the appendix that it is used as precipitation. I think that 
should be mentioned in the paper. 

We assume you are referring to Section 5.4. In Table 1, under the SNOWPACK row, it says that 
the AKAH snow measurements were used as forcings along with downscaled forcings from 
ParBal. This is shown graphically in Figure 2. We will however, reiterate this in the text since it 
was not clear. 

184-198 Previous results with SNOWPACK [Bair et al., 2018] show high model sensitivity to 
precipitation, but only a 1% error in modeled SWE when using snow depth only (not total 
precipitation) as a forcing. Thus, given reliable snow depth measurements at each AKAH station 
(see Section 5.4), modeled SWE during the accumulation season is treated as having negligible 



uncertainty. During the ablation season (after peak SWE), uncertainty is higher. Unlike during 
snow accumulation events, SNOWPACK does not force its modeled snow ablation to match the 
measured snow depth decreases. Uncertainty in SWE during the ablation season is then largely 
dependent on radiative forcings [Marks and Dozier, 1992] and the broadband snow albedo [Bair 
et al., 2019]. Here, 5% uncertainty is used, based on the MAE from SWE reconstructions using 
the same remotely-sensed forcings at a continental sub-alpine site [Bair et al., 2019]. In the same 
study, a small (3%) bias in SWE was also found, but this is likely due to shortcomings with the 
reconstruction method and not applicable to SWE modeled with SNOWPACK. Thus, the small 
bias was ignored. We acknowledge that these uncertainty estimates are themselves uncertain, e.g. 
the reanalysis forcings could be especially poor for this region compared to those available in the 
western US. 

Line 266: should this date be “2018-4-1”? 

On l 264 and elsewhere throughout the manuscript we were asked to use the international date 
format by the Editor, which is “1 April 2017” for that date. 

Line 316: remove “are” after values, so it reads “median values between years are a week 
apart” 

Ah, thanks for spotting. We will remove the typo. 

348-349 … but the median values between years are a week apart 

Figure 3: I would be interested in seeing a spatial comparison of the individual stations, 
particularly in 2017. Are there certain stations where most of the disagreement occurs, or it is 
similarly biased at all stations?  

We are not clear about potential biases in this figure. Perhaps you are referring to Figures 4 & 5, 
not Figure 3? In any case, we didn’t find any spatial trends. Figure 5 summarizes the error 
distribution and shows that most stations are slightly negatively biased (blue box is 25th-75th 
percentile). 

Line 355-356: you say, “The ParBal results are confounding given that the agreement between 
the modeled SWE from ParBal and SNOWPACK at individual AKAH stations is much better for 
both 2017 and 2018.” The agreement for 2018 shown in Figure 3 is good, but in 2017 there is 
quite a large bias – similar to what is seen in Figure 5 for the whole study area. 

The differences between the four models in 2017 at 25 km shown in Figure 6 were much 
greater than the differences between ParBal and SNOWPACK at the point scale, shown in 
Figure 4.  In 2017, for the four models, NOAH MP showed 234% of ParBal, Alpine 3D showed 
195% of ParBal, and GLDAS-2 showed 146% of ParBal. In contrast, SNOWPACK showed 
128% of ParBal at the point scale in 2017. Thus, we still find that the agreement between 
ParBal and SNOWPACK at the point scale was much better than between ParBal and the other 
3 models at 25 km. 

Figure 6: The Alpine 3D images shows considerably less SCA than the ParBal estimate. Since 
the Alpine 3D estimate is using the gage data I assume where it shows no snow, the snow 
depth reported at those sites was zero. Is that correct? The ParBal estimate is using MODIS 



data, which is presumably showing snow in those areas on that date. I’m surprised there is such 
a large difference. In fact, looking at the movie there is consistently a large difference in snow 
extent between those two estimates, even at the lower elevations where there are more 
stations. Why do you think that is? 

We assume this is in reference to Figure 7. Because of the austerity of this region, none of 
these models use gauge data because it’s generally not available, hence all of the reanalysis-
based forcings. We agree that ParBal (the only model driven by remotely-sensed snow 
measurements) shows more SCA that persists longer into the melt season than Alpine3D. 
There are many factors that could cause this, but we suggest the most likely is inaccurate 
precipitation extrapolation, as we discuss on l 351-352. Thus, too much precipitation is placed in 
some cells, and too little in others. This extrapolation problem stems from the fact that all of 
these stations are located in valley floors, which are lower than the average grid cell elevations 
(l 333-335). 

393-398 For example, the Alpine3D pixels seem to melt out early compared to the other models, 
especially ParBal, which is the only model relying on satellite-based estimates of fSCA (see 
supplementary video). Thus, Alpine3D may be placing too little SWE in cold, high elevation 
areas that melt slowly. These problems are all indicative of stations that are located in valley 
bottoms and that only cover the lowest elevations across these 25 km pixels. 

Line 404: Is there a reference you can add for the statement “Compared to a previous effort. . 
.”? Not sure what this is referring to. 

Section 4 “PREVIOUS WORK WITH AKAH SNOW MEASUREMENTS” contains two 
paragraphs about this. 

 

Bair, E. H., R. E. Davis, and J. Dozier (2018), Hourly mass and snow energy balance 
measurements from Mammoth Mountain, CA USA, 2011–2017, Earth Syst. Sci. Data, 10(1), 
549-563, doi: 10.5194/essd-10-549-2018. 

Bair, E. H., K. Rittger, S. M. Skiles, and J. Dozier (2019), An Examination of Snow Albedo 
Estimates From MODIS and Their Impact on Snow Water Equivalent Reconstruction, Water 
Resources Research, 55(9), 7826-7842, doi: 10.1029/2019wr024810. 

Marks, D., and J. Dozier (1992), Climate and energy exchange at the snow surface in the alpine 
region of the Sierra Nevada, 2, Snow cover energy balance, Water Resources Research, 
28(11), 3043-3054, doi: 10.1029/92WR01483. 

Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh (2012), 
APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based 
on a Dense Network of Rain Gauges, Bulletin of the American Meteorological Society, 
93(9), 1401-1415, doi: 10.1175/bams-d-11-00122.1. 

 



We thank anonymous referee #2 for his or her comments, and for taking the time to review our 
manuscript. We’ve copied the referee’s comments in blue. Our responses are in red. 
 
update 11/13/2019 – we’ve added line numbers and references to the revision 

The authors present a study using three different models computing SWE for the Hindukush-
Pamir region, as well as snow stratigraphy for selected locations and are able to compare point 
scale simulations to large scale datasets. The topic is of great importance (as they point out, the 
region has seen very little attention in the direction of snow even though it is understood to be a 
major driver of streamflow and important to understand droughts/floods in both Pakistan and 
Afghanistan) and generally very little field data is available or accessible. The main 
advancement of the study is the availability of a large number of snow depth measurements 
from the region.  

I find the study (a) in general of great value for the community and The Cryophere in its 
proposed scope, (b) covering an area that desperately needs more data analysis and (c) 
generally clearly written and of solid scientific quality. However I would like to see my major 
concerns I detail below addressed before I find it acceptable for publication.  

Major concern:  

I appreciate that getting field data as shown here is very hard to collect and once stored by on 
site staff, often difficult to impossible to obtain. That the authors managed to do so is impressive 
and I know the general hesitation of local institutions to provide any such sets. However I fear 
that this does not absolve authors of scientific studies to (a) ascertain the data quality and (b) if 
not provide then visualize the data to the reader. The authors themselves are cautious with the 
data quality (L216: ‘appeared to be most reliable . . .’). This warrants an assessment of the 
quality, how that is assessed, what the ‘good’ data looks like (incl uncertainty) and eventually 
how this data quality affects model outcomes in ParBal/SNOWPACK. AKAH has excellent staff 
and can be considered among the most reliable institutes in this area, but many of the stations 
shown (like the one in the Little Wakhan or north of Ishkashem on the Afghan side) are in areas 
hardly accessible at all and I wonder how this data was recorded at daily intervals and quality 
checked internally. I have checked the earlier paper and the report on the avalanche program 
and equally fail to find details there. 

We agree that the AKAH measurement quality concerns are valid. We extensively discuss the 
quality of the manual daily AKAH snow depth measurements in Section 5.4 where we cover all 
of the quality issues. Thus, we have already addressed point a). Regarding point b), we find that 
plotting the errors in the AKAH snow depth is unnecessary, as they are extensively described. 
For example, one of the most common errors was spurious drops with zeros instead of null 
values (l 230-232). We do not agree that these need to be plotted for the reader to understand 
what we are referring to. In terms of internal quality checks from AKAH, as far as we are aware, 
there were none. We will state this in a revision of the manuscript. 

248-249 To our knowledge, no quality control was performed on the AKAH station 
measurements before we received them. 

Further, in a revision, we will expand on what is stated on l 217; that is when total snow depth 
measurements were recorded and did not show spurious drops (there were no spikes – 
consistent with manual vs. automated acoustic snow depth measurements), that the data quality 



is likely high and the snow depth is accurate at that point. The only likely error from manually 
reading a total depth stake measurement is a transcription error, which would show up as a 
drop or spike. 

184-188 Previous results with SNOWPACK [Bair et al., 2018a] show high model sensitivity to 
precipitation, but only a 1% error in modeled SWE when using snow depth only (not total 
precipitation) as a forcing. Thus, given reliable snow depth measurements at each AKAH station 
(see Section 5.4), modeled SWE during the accumulation season is treated as having negligible 
uncertainty. 

252-253 Apart from spurious drops or missing values (see below), the HS measurement appeared 
consistent and believable at most of the stations, implying an accurate snow depth record. 

We will emphasize in a revised manuscript that the errors in ParBal are completely independent 
of the manually measured AKAH snow depth, as ParBal does not use in situ measurements. 
The errors in ParBal are mostly based on the fractional snow covered area and radiative 
forcings, and are covered extensively in the cited prior publications [Bair et al., 2016; Rittger et 
al., 2016]. By “earlier paper”, perhaps the reviewer is citing Bair et al. [2018b], which focuses on 
the machine learning approach, but not on the sources of errors in the ParBal model ? 

218-224 The errors in SWE from ParBal are mostly from fSCA and the radiative forcings. Errors 
and details on ParBal are covered extensively in Bair et al. [2016] and Rittger et al. [2016]. In 
the supplement for Bair et al. [2018b], the errors arising from using GLDAS-2 and CERES 4a 
(available worldwide but at coarser spatial resolution) vs. NLDAS-2 are specifically evaluated. 
Using three years of basin-wide SWE estimated by the Airborne Snow Observatory in the upper 
Tuolumne Basin, California USA, the MAE for ParBal was 25 mm or 26% [Bair et al., 2018b]. 

We will add uncertainty bounds on the red and blue SWE curves shown in Figure 4 in a revised 
manuscript. The range of SWE in the 9-pixel neighborhood around each AKAH station (l 295-
297) will be used to create the bounds around the red ParBal curve. For the blue SNOWPACK 
curve, because we find the AKAH snow depth to be accurate (see above), we also find the 
accumulation season SWE modeled by SNOWPACK at that point to be accurate. We justify this 
assumption using results from Bair et al. [2018a] , where it is shown that the peak SWE 
modeled by SNOWPACK at a site with little melt during the accumulation season (which seems 
to be the case for the AKAH stations based on measured depth) is mostly dependent on the 
precipitation forcing. A similar result is shown in Bartelt and Lehning [2002]. 

For the ablation season, there is considerable uncertainty in the blue SNOWPACK curve 
caused by the radiative forcings and the snow albedo parameterization. Given a lack of 
knowledge of the uncertainties in the radiative forcings for this region, we will use the 4-6% 
RMSE and negligible bias reported for our remotely-sensed albedos reported in a recent study 
[Bair et al., 2019]. These errors led to a 5% mean absolute error and 3% bias in ablation 
season SWE for a continental site in CO USA [Bair et al., 2019]. 

184-198 Previous results with SNOWPACK [Bair et al., 2018a] show high model sensitivity to 
precipitation, but only a 1% error in modeled SWE when using snow depth only (not total 
precipitation) as a forcing. Thus, given reliable snow depth measurements at each AKAH station 
(see Section 5.4), modeled SWE during the accumulation season is treated as having negligible 



uncertainty. During the ablation season (after peak SWE), uncertainty is higher. Unlike during 
snow accumulation events, SNOWPACK does not force its modeled snow ablation to match the 
measured snow depth decreases. Uncertainty in SWE during the ablation season is then largely 
dependent on radiative forcings [Marks and Dozier, 1992] and the broadband snow albedo [Bair 
et al., 2019]. Here, 5% uncertainty is used, based on the MAE from SWE reconstructions using 
the same remotely-sensed forcings at a continental sub-alpine site [Bair et al., 2019]. In the same 
study, a small (3%) bias in SWE was also found, but this is likely due to shortcomings with the 
reconstruction method and not applicable to SWE modeled with SNOWPACK. Thus, the small 
bias was ignored. We acknowledge that these uncertainty estimates are themselves uncertain, e.g. 
the reanalysis forcings could be especially poor for this region compared to those available in the 
western US. 
332-333 We also include the high and low SWE values in that surrounding 9-pixel neighborhood 
to bound the uncertainty. 
356-357 The high/low values in the 9-pixel neighborhood show the wide spatial variation in SWE 
estimates, and are to be expected in these deep valley sites (Section 6.2). 

Revised Figure 4 

 

 
Figure 4 Mean SWE for 2017 (a) and 2018 (b) modeled at all of the AKAH stations using SNOWPACK 
(blue lines) compared to reconstructed SWE from ParBal using a best of 9-pixel approach (red lines). 
Also plotted is the median peak SWE date. The hi/lo bounds (filled areas) represent uncertainty. For 
ParBal, uncertainty is expressed as the range of values in the 9 pixel neighborhood. For SNOWPACK, 
uncertainty is 5% of the modeled SWE during the ablation season. See 5.1 and 5.2 for details. The 
modeled SWE values end abruptly on 1 April 2018 because the AKAH stations stopped reporting due 
to drought conditions. The number of stations used is the same as Figure 3. 



I also find it problematic to sell the story as a ‘validation of models with measurements’, as the 
snow depth measurements are used as an input for one model (ParBal, equally dependent on 
other remote sensing data but which I think is being understood as the ‘validation data’ here) 
that is then compared to another (SNOWPACK/ALPINE3D).  

As shown in [Bair et al., 2018a] and Bartelt and Lehning [2002], given accurate snow depth 
measurements, which we believe to be the case for the cleaned AKAH stations, the 
accumulation season SWE can be well modeled. For the SNOWPACK and ParBal 
comparisons, we consider the SNOWPACK modeled SWE as legitimate validation data 
because it is the snow depth, not its density, that drives the variability in SWE. This has been 
pointed out repeatedly in The Airborne Snow Observatory (ASO) project [Painter et al., 2016] 
who show that the CV for depth is ~ 3-4X that of density. This has led to many studies using the 
ASO data for SWE validation, despite using modeled density [e.g. Broxton et al., 2019; Margulis 
et al., 2019; Oaida et al., 2019]. 

Title change to “Comparison of modeled snow properties in Afghanistan, Pakistan, and 
Tajikistan” 

162-163 Likewise, the success of the Airborne Snow Observatory [Painter et al., 2016] has 
demonstrated that given accurate depth measurements, SWE can be well modeled. 

This makes it difficult to appreciate where the advancement via the new dataset is and whether 
the point measurements are not lost in the general uncertainty of the satellite data.  

The literature review contains all the relevant studies on snow for the region, and as we show, 
they show wide variation with little to no in situ data used for validation, unlike this study. We 
therefore suggest that our two take home points discussed below are advancements in snow 
study for the region. 

Additionally I find uncertainties of models inadequately addressed. 

We will add a reference about the uncertainty of GLDAS snow estimates.  

225-229 5.3 Global Data Assimilation System 2 (GLDAS-2) 

For comparison, we also include the SWE estimates from GLDAS-2 (Noah). SWE from GLDAS-
2 has been shown to be comparable to estimates from other reanalysis datasets, but negatively 
biased by about 60% in comparison to higher spatial datasets with assimilation from snow station 
measurements [Broxton et al., 2016]. 

For the other three models, we do not agree that model uncertainty is not addressed. We refer 
the referee to previous cited studies on the uncertainties in ParBal [Bair et al., 2016; Rittger et 
al., 2016] and on modeled SWE from depth in SNOWPACK  [Bartelt and Lehning, 2002; Bair et 
al., 2018a]. On l 208-210, we mention the results of Chen et al. [2014] who state that NOAH MP 
was able to model peak SWE in CO USA with a -7% bias. 

The stratigraphy is shown as a single mean figure for all stations, with no further consideration 
of the spatial variability or at least a mention of it and I wonder whether the one line as an 
aggregate over all station locations does provide a trustworthy result.  



Most of the spatial variability is caused by altitude, which is why we show two different plots for 
the AKAH stations (Figure 9ab) and the higher elevation 25 km pixel containing them (Figure 
10ab). The two figures show very different snowpacks. 

As a result the Conclusion becomes very brief and somehow lacking the essential take home 
message for further studies. 

We will add to the Conclusion. We will emphasize the two take home messages. 1) ParBal does 
an accurate job of modeling ablation season SWE at the AKAH stations, validated with in situ 
measurements; 2) at the coarser 25 km scale, there is wide spread in the SWE across models, 
with ParBal on the low end. 

445-447 Knowledge of the snowpack in northwestern High Mountain Asia is poor. This area is 
subject to droughts and threatened by snow avalanches. Both problems can be aided by improved 
knowledge of the snowpack. 

455-462 For the models that rely on in situ precipitation measurements, a major challenge is spatial 
extrapolation, as many of the stations are located in deep valleys. Adding measurements from the 
mountains above would facilitate more realistic lapse rates, but these measurements do not 
currently exist, although they would be beneficial both for operational avalanche safety and for 
scientific studies. 
In the regional comparison, SWE estimates from ParBal were on the low end, but given the model 
spread it is difficult to form a consensus estimate. We plan additional in situ validation at other 
sites in High Mountain Asia to continue to assess the performance of ParBal there. 

And while I appreciate that a number of models were utilized, I think a clearer Figure 2 plus a 
longer Conclusion on the usefulness of all datasets/models would be prudent.  

We will revise Figure 2 to be more clear, per the comments below. 

Revised Figure 2 



 

Minor comments:  

Figure 1: Here and in the text (L86) you write ‘stations flow into the Indus/Amu Darya’. I get the 
meaning but I doubt that is technically a sound expression. ‘Catchments including stations in 
xxx drain into the xxx . . .’  

Ok, we will correct.  

87-88 The rest of the stations in Afghanistan and Tajikistan are in basins that flow into the Amu 
Darya River. 

L93: ‘questionable’ – although I agree on the assessment, I think you need to explain your 
criticism rather than just throwing a lead without an argument if you want to mention this here  

Ok, we will elaborate. 

94-97 For example, the snow and ice albedo is given as 0.20 to 0.30 [Table 3, Shakoor and Ejaz, 
2019], which would make it 0.10 to 0.20 lower than some of the lowest measured broadband 
albedo values for dirty snow [Skiles and Painter, 2016; Bair et al., 2019]. 

L103: replace ‘x’ with ‘times’ or reword  

Ok. 

106-107 …a factor of 2 to 4. 

 
Figure 1 Summary of relationships between the various components. Forcings are shown in red, models 
and selected outputs are shown in blue, and the comparisons discussed below are shown in green. The 
black arrows show the direction of inputs. 
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L110: I don’t understand how limited climate data would explain why the remotely sensed data 
from Smith&Bookhagen2018 are too low. 

At Salang Pass, Afghanistan, the WMO reports up 198 cm of snow depth [Bair et al., 2018b] 
and we estimate up to 1000 mm of SWE [Figure S3, Bair et al., 2018b]. Thus < 100 mm of max 
SWE reported by Smith and Bookhagen is low by up to a factor of 10. 

L243: ‘hr’ to ‘hour’  

The Cyrosphere (https://www.the-cryosphere.net/for_authors/manuscript_preparation.html) 
requests that SI-accepted units (https://www.bipm.org/utils/common/pdf/si-brochure/SI-
Brochure-9-EN.pdf) be abbreviated in conjunction with numbers, which would be “h” according 
to the link above. We’ll wait for the Copy Editor to clarify. 

L269: the ‘Nuristan avalanche’ is not a commonly known event. You place a citation later in the 
text, consider placing that here instead with the description of the impact 

Ok 

L 305 …when the Nuristan avalanches took place [United Nations, 2017] 

Figure 2: I find the salad of arrows unnecessarily confusing – a number of them could be 
straight but have corners for no reason making it very hard to decide which path to follow to 
really get the main aim  

Ok, thanks! We were looking for a way to improve the readability. 

See revised Figure 2 

Figure 7: Remove ‘The white letters are . . . codes’. Just the acronyms plus actual names are 
fine. 

Ok. 

Figure 2 Four model (a-d) spatial comparison for the region on 4 May 2018. The white letters are: AFG–
Afghanistan; TJK–Tajikistan; and PAK–Pakistan. Also shown in (a) are the locations of the AKAH stations 
(orange points). This is a frame from a video sequence available as supplementary material. 

Figure 7: The video supplementary material is valuable, however I would also expect a 
discussion of the consistency/variability between the models in space, i.e. have a corresponding 
map that shows the average over the complete period or the total number of days the models 
actually simulate any SWE. 

Ok. As the other reviewer pointed out, there are significant differences in snow covered area 
between the models. We will discuss these differences further. We still find that the video itself 
is the best way to illustrate these differences, as they vary over space and time. 

393-398 For example, the Alpine3D pixels seem to melt out early compared to the other models, 
especially ParBal, which is the only model relying on satellite-based estimates of fSCA (see 



supplementary video). Thus, Alpine3D may be placing too little SWE in cold, high elevation 
areas that melt slowly. These problems are all indicative of stations that are located in valley 
bottoms and that only cover the lowest elevations across these 25 km pixels. 

Figure 9/10: It is explained in the text but I believe the Figure still needs a y-label  

Ok, we will insert a label with “HS/fraction of facets/# of critical layers” 

 

 
Figure 9 Stratigraphy summary of the AKAH stations for 2017 (a) and 2018 (b). Plotted are the median: 
height of snow (HS); fraction of the snowpack containing facets; and number of critical layers. The 
number of stations used to compute the medians varied due to snow coverage. 

H
S/

fra
ct

io
n 

of
 fa

ce
ts

/#
 o

f c
rit

ic
al

 la
ye

rs
 

 



 

 
Bair, E. H., R. E. Davis, and J. Dozier (2018a), Hourly mass and snow energy balance 

measurements from Mammoth Mountain, CA USA, 2011–2017, Earth Syst. Sci. Data, 10(1), 
549-563, doi: 10.5194/essd-10-549-2018. 

Bair, E. H., A. Abreu Calfa, K. Rittger, and J. Dozier (2018b), Using machine learning for real-
time estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 
12(5), 1579-1594, doi: 10.5194/tc-12-1579-2018. 

Bair, E. H., K. Rittger, S. M. Skiles, and J. Dozier (2019), An Examination of Snow Albedo 
Estimates From MODIS and Their Impact on Snow Water Equivalent Reconstruction, Water 
Resources Research, 55(9), 7826-7842, doi: 10.1029/2019wr024810. 

Bair, E. H., K. Rittger, R. E. Davis, T. H. Painter, and J. Dozier (2016), Validating reconstruction 
of snow water equivalent in California's Sierra Nevada using measurements from the NASA 
Airborne Snow Observatory, Water Resources Research, 52, 8437-8460, doi: 
10.1002/2016WR018704. 

Bartelt, P., and M. Lehning (2002), A physical SNOWPACK model for the Swiss avalanche 
warning: Part I: numerical model, Cold Regions Science and Technology, 35(3), 123-145, 
doi: 10.1016/s0165-232x(02)00074-5. 

Broxton, P. D., X. Zeng, and N. Dawson (2016), Why Do Global Reanalyses and Land Data 
Assimilation Products Underestimate Snow Water Equivalent?, J. Hydrometeorol., 17(11), 
2743-2761, doi: 10.1175/jhm-d-16-0056.1. 

Broxton, P. D., W. J. D. van Leeuwen, and J. A. Biederman (2019), Improving Snow Water 
Equivalent Maps With Machine Learning of Snow Survey and Lidar Measurements, Water 
Resources Research, 55(5), 3739-3757, doi: 10.1029/2018wr024146. 

Chen, F., et al. (2014), Modeling seasonal snowpack evolution in the complex terrain and 
forested Colorado Headwaters region: A model intercomparison study, Journal of 

 
Figure 10 Stratigraphy summary of the AKAH stations for 2017 (a) and 2018 (b). Plotted are the 
median: height of snow (HS); fraction of the snowpack containing facets; and number of critical layers. 
The number of stations used to compute the medians varied due to snow coverage. 
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ABSRACT: Ice and snowmelt feed the Indus and Amu Darya rivers, yet there are limited in situ 16 
measurements of these resources. Previous work in the region has shown promise using snow 17 
water equivalent (SWE) reconstruction, which requires no in situ measurements, but validation 18 
has been a problem until recently when we were provided with daily manual snow depth 19 
measurements from Afghanistan, Tajikistan, and Pakistan by the Aga Khan Agency for Habitat 20 
(AKAH). For each station, accumulated precipitation and SWE were derived from snow depth 21 
using the SNOWPACK model. High-resolution (500 m) reconstructed SWE estimates from the 22 
ParBal model were then compared to the modeled SWE at the stations. The Alpine3D model was 23 
then used to create spatial estimates at 25 km to compare with estimates from other snow models. 24 
Additionally, the coupled SNOWPACK and Alpine3D system has the advantage of simulating 25 
snow profiles, which provide stability information. Following previous work, the median number 26 
of critical layers and percentage of facets across all of the pixels containing the AKAH stations 27 
was computed. For SWE at the point scale, the reconstructed estimates showed a bias of -42 mm 28 
(-19%) at the peak. For the coarser spatial SWE estimates, the various models showed a wide 29 
range, with reconstruction being on the lower end. For stratigraphy, a heavily faceted snowpack is 30 
observed in both years, but 2018, a dry year, according to most of the models, showed more critical 31 
layers that persisted for a longer period.  32 
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1 INTRODUCTION 33 

There are many parts of the world where little is known about the snowpack. This lack of 34 
knowledge presents a challenge for water managers and for avalanche forecasters. Afghanistan is 35 
particularly austere in this respect, as there have been no snow measurements available since the 36 
early 1980s. This lack of information about the snowpack potentially creates a humanitarian crisis, 37 
as snowmelt fed streams run dry in the fall without warning (USAID, 2008). Accurate historical 38 
estimates of basin-wide snow water equivalent (SWE) are crucial for creating a baseline of 39 
climatological conditions, which can then aid in predicting today’s SWE. For example, 40 
climatological estimates of spatially-distributed SWE are the most important predictors in machine 41 
learning statistical models for this region (Bair et al., 2018b). 42 
To improve our knowledge about the snowpack in these areas, we have developed an approach 43 
that requires no in situ measurements. Using satellite-based estimates of the fractional snow-44 
covered area (fSCA) and downscaled forcings in an energy balance model, we build up the 45 
snowpack in reverse, from melt out to its peak, using a technique called SWE reconstruction 46 
(Martinec and Rango, 1981). This technique has been shown to accurately estimate SWE in 47 
mountain ranges across the world, including: the Sierra Nevada USA (Bair et al., 2016; Rittger et 48 
al., 2016); the Rocky Mountains USA (Jepsen et al., 2012; Molotch, 2009); and the Andes of South 49 
America (Cornwell et al., 2016)–all areas with relatively abundant independent ground validation 50 
measurements. For the so called Third Pole of High Mountain Asia, and especially the 51 
northwestern parts of this region, e.g. Afghanistan, Tajikistan, and Pakistan, ground-based 52 
validation is challenging. 53 

2 AGA KHAN AGENCY FOR HABITAT (AKAH) STATIONS 54 

In 2017, we received daily manual snow depth and other meteorological measurements from 55 
nearly 100 stations (Figure 1) in an operational avalanche network (Chabot and Kaba, 2016). These 56 
stations are funded by the Aga Khan Agency for Habitat (AKAH) and are the first snowpack 57 
measurements available, at least that we are aware of, in Afghanistan in nearly 40 years. Hence, 58 
we refer to the region as the AKAH study region and the weather stations as the AKAH stations. 59 
The AKAH stations contain manual daily snow depth (also called height of snow), height of new 60 
(24-hr) snow, daily high and low air temperature, instantaneous wind speed/direction, rainfall, and 61 
some text fields on weather and avalanche conditions. For mountainous areas, precipitation is the 62 
most uncertain term in the water balance (Adam et al., 2006; Milly and Dunne, 2002) because it 63 
exhibits high spatial variability and is difficult to measure with traditional gauges. Measuring snow 64 
on the ground has many advantages compared to using precipitation gauges, which suffer from 65 
undercatch, especially in the windy and treeless areas (Goodison et al., 1998; Kochendorfer et al., 66 
2017; Lehning et al., 2002a) typical of this part of the world. Likewise, a strength of the SWE 67 
reconstruction technique is that it does not depend on precipitation measurements to build the 68 
snowpack. 69 
Additionally, many of the AKAH stations are at high altitudes, with 64 stations above 2500 m and 70 
17 stations above 3000 m. Unfortunately, most of these stations are located in deep valleys, where 71 
the villages are, rather than on exposed mountain sides or ridges and the daily resolution is too 72 
coarse to use in a snow model without temporal interpolation. Additionally, many of the stations 73 
are near glacierized areas which complicates spatially interpolated snow estimates, as some of the 74 
snow is on top of ice. The area covered by glaciers in Figure 1 is 7.8%. 75 
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  76 
Although there have been a large number of studies examining the glaciers of High Mountain Asia, 77 
there are fewer studies examining snowfall in High Mountain Asia, which is odd since 78 
hydrologically in this region, snow on land melt provides the vast majority of runoff compared to 79 
snow on ice and melting glacier ice (Armstrong et al., 2018). Many of these studies are focused on 80 
the region to the east of the AKAH study area shown in Figure 1. To our knowledge, there have 81 
been no studies on snowpack stratigraphy in the AKAH study area and we were unable to obtain 82 
any snow pit measurements from this area. 83 

3 LITERATURE REVIEW 84 

A few studies have specifically examined snowfall in larger regions that include some of the 85 
AKAH stations, mostly for stations in the southern basins that flow into the Indus River; that is all 86 
of the stations in Pakistan. The rest of the stations in Afghanistan and Tajikistan are in basins that 87 
flow into the Amu Darya River. The most comparable study (Shakoor and Ejaz, 2019) examines 88 
the Passu catchment in the Hunza River Basin, to the east of Figure 1. As in this study (Section 89 
5.1), Shakoor and Ejaz (2019) also use the SNOWPACK and Alpine3D models. Model parameters 90 
were calibrated using a single weather station, Urdukas at 3926 m elevation near the Baltoro glacier 91 

 
Figure 1 Study region with AKAH stations (green dots) overlaid on a MODIS true color image from 
13 April 2018. Also shown are the country boundaries (red) and glacierized areas (light blue) from 
the Global Land Ice Measurement from Space dataset (Raup et al., 2007). All of the stations in 
Afghanistan and Tajikistan eventually flow into the Amu Darya River. All of the stations in Pakistan 
eventually flow into the Indus River. 
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(Ev-K2-CNR, 2014), with one year of precipitation measurements, using snow depth for 92 
validation. The authors report overestimation of the measured snow depth at the calibration station, 93 
even after questionable adjustments to the snow albedo and other model parameters. For example, 94 
the snow and ice albedo is given as 0.20 to 0.30 (Table 3, Shakoor and Ejaz, 2019), which would 95 
make it 0.10 to 0.20 lower than some of the lowest measured broadband albedo values for dirty 96 
snow (Bair et al., 2019; Skiles and Painter, 2016). They attribute the overestimation to problems 97 
with the precipitation measurements, common for high altitude stations. One problem with the 98 
Urdukas station in particular is that the tipping bucket precipitation gauge is unheated, making it 99 
unusable for measuring solid precipitation. Temperatures at this station were well below freezing 100 
for the winter and most of the spring, which explains why no precipitation was recorded from 101 
January until sometime in March during 2012, the calibration year. 102 
Viste and Sorteberg (2015) study several gridded precipitation products throughout High Mountain 103 
Asia, including the Indus River Basin. They report that while total precipitation was similar across 104 
the products–including MERRA (Rienecker et al., 2011), APHRODITE (Yatagai et al., 2012), 105 
TRMM (Huffman et al., 2007), and CRU (Harris et al., 2014)–the total snowfall varied by a factor 106 
of 2 to 4. Smith and Bookhagen (2018) used 24 years (1987 to 2009) of satellite-based passive 107 
microwave SWE estimates to examine trends throughout High Mountain Asia, including the Amu 108 
Darya and Indus Basins. Their SWE estimates show most 25 km pixels in this region in the 50-109 
100 mm range for December through February, with a few over 100 mm in the Amu Darya (i.e. 110 
all the AKAH stations in Afghanistan and Tajikistan) and none over 100 mm in the Indus (i.e. all 111 
the AKAH stations in Pakistan), likely too low by an order of magnitude for some pixels given our 112 
previous reconstructed SWE values and limited climate measurements in Afghanistan (Bair et al., 113 
2018b). 114 
For the AKAH stations in Tajikistan, the most comprehensive snow measurements come from 115 
Soviet snow surveys (mostly depth, but with some SWE and density measurements) that have been 116 
digitized (Bedford and Tsarev, 2001). Most of these measurements begin in the late 1950s and end 117 
around the fall of the Soviet Union, in either 1990 or 1992, making them useful for climatological 118 
studies, but not for validation of modern satellite-based estimates. 119 
The sole source of snow measurements in Afghanistan that were accessible to us was a table of 120 
outdated WMO monthly climatological data from Kabul (el. 1791 m) and North Salang (el. 3366 121 
m), showing the maximum monthly snow depth and the mean number of days with snow (Table 1 122 
in Bair et al., 2018b). Again, these measurements are not useful to validate more modern snow 123 
estimates. 124 
There have been many other studies that have attempted to estimate basin-wide precipitation 125 
(including snowfall) for larger areas that include the AKAH region, especially in the Indus. Several 126 
climate studies of the Indus have focused on using lower elevation precipitation gauges, which are 127 
then used to spatially interpolate basin-wide precipitation. Dahri et al. (2016) and Dahri et al. 128 
(2018) have assembled perhaps the largest collection of climatological measurements covering the 129 
AKAH region, mostly based on gauge measurements, as part of a study on the hydrometeorology 130 
of the Indus Basin. Using undercatch corrections based on wind, often from reanalysis, they 131 
increased precipitation estimates by 21% on average throughout the Indus Basin (Dahri et al., 132 
2018). For example, in the Gilgit sub-basin, they find an unadjusted precipitation estimate of 582 133 
mm/year, adjusted to 787 mm/year, a 35% increase. Although some of the measurements are taken 134 
from publicly available sources, as with most publications for this region, the comprehensive data 135 
used are not publicly accessible. 136 
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A similar but less sophisticated approach was used by Lutz et al. (2014), who used a constant 139 
increase of 17% across the APHRODITE precipitation dataset which covers all of High Mountain 140 
Asia. Immerzeel et al. (2015) used glacier mass balance estimates with streamflow measurements 141 
as validation to show that high-altitude precipitation in the upper Indus Basin is 2	to	10 × what is 142 
shown using gridded precipitation products like APHRODITE. Bookhagen and Burbank (2010) 143 
estimate that snowmelt contributes 66% of annual discharge to the Indus, and averages 424 mm 144 
across the basin. 145 
In summary, quite a few studies have produced varying precipitation and snowfall estimates for 146 
the AKAH region, with no recent in situ snow measurements from Afghanistan or Tajikistan. 147 

4 PREVIOUS WORK WITH AKAH SNOW MEASUREMENTS 148 

Our previous work (Bair et al., 2018b) used a simple density model (Sturm et al., 2010) based on 149 
snow climatology (Sturm et al., 1995) and day of year  to model SWE from the manual snow depth 150 
measurements. The density model itself has -12 to 26% bias in predicting SWE. When taking into 151 
account geolocational uncertainty of the reconstructed SWE estimates and uncertainty in the 152 
density model, errors are on the order of 11-13% Mean Absolute Error (MAE) and -2 to 4% bias, 153 
depending on the date. However, we only examined one year of the AKAH station data (2017) 154 
and the high uncertainty in the density model itself begs a more sophisticated approach. 155 
From recent work (Bair et al., 2018a), we have shown that the SNOWPACK (Bartelt and Lehning, 156 
2002; Lehning et al., 2002a; Lehning et al., 2002b) model is capable of accurate SWE prediction 157 
when supplied only with snow depth for precipitation, as well as the other requisite forcings (i.e. 158 
radiation, snow albedo, temperatures, and wind speed). Over a 5-year period using hourly in situ 159 
measured energy balance forcings and a snow pillow for validation at a high elevation site in the 160 
western US, the SNOWPACK modeled SWE showed a bias of -17 mm or 1% (Bair et al., 2018a). 161 
Likewise, the success of the Airborne Snow Observatory (Painter et al., 2016) has demonstrated 162 
that given accurate depth measurements, SWE can be well modeled. 163 

5 METHODS 164 

Our modeling approach consisted of: a) downscaling forcings in ParBal and reconstructing SWE; 165 
b) combining the downscaled forcings for each AKAH station with temporally interpolated manual 166 
snow measurements; c) running SNOWPACK for each of the AKAH stations with the downscaled 167 
and interpolated measurements from a) and b); and d) running Alpine3D using the output from 168 
SNOWPACK, notably the hourly precipitation. In addition to predicting SWE, the 169 
SNOWPACK/Alpine3D coupled model also predicts stratigraphic parameters useful for avalanche 170 
prediction, thereby giving us an idea of the layering and stability in this region. For comparison, 171 
we also ran the NOAH-MP land surface model over the region with widely-used forcings. We also 172 
compared spatial estimates of SWE from GLDAS-2. Methods are summarized in Table 1 and 173 
explained below, with more detail provided in Appendix A. 174 

5.1 SNOWPACK and Alpine3D 175 

SNOWPACK and Alpine3D are freely available (https://models.slf.ch) point and spatially 176 
distributed snow models, courtesy of the Swiss Federal Snow Institute. SNOWPACK is the older 177 
of the two and uses finite elements to model all of the layers in a snowpack at a point.  178 
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Forcings Output 

ParBal √ √ 1.0 CERES 4a (radiation); 
GLDAS-2 
(meteorological); 
MODSCAG/MODDRFS 
(snow surface properties) 

Daily reconstructed 
SWE at 500 m; hourly 
downscaled forcings 
at 500 m, both for 
entire AKAH study 
area 

SNOWPACK  √  3.5 AKAH station snow 
measurements; 
downscaled forcings from 
ParBal 

Hourly SWE, 
precipitation, and 
other forcings for 
each AKAH station 

Alpine3D  √ 3.1 AKAH station output 
from SNOWPACK 

Daily SWE at 25 km 
for entire AKAH 
study area 

NOAH MP  √ 3.6 MERRA-2 Daily SWE at 25 km 
for entire AKAH 
study area 

GLDAS  √ NOAH 
2.1 

various Daily SWE at 25 km 
for entire AKAH 
study area 

Table 1 Summary of models used. See Section 5 and Appendix A for an explanation of acronyms and further 180 
details. 181 
SNOWPACK has shown promising results in both operational (e.g. Lehning et al., 1999; 182 
Nishimura et al., 2005) and research applications (e.g. Bellaire et al., 2011; Hirashima et al., 2010). 183 
Previous results with SNOWPACK (Bair et al., 2018a) show high model sensitivity to 184 
precipitation, but only a 1% error in modeled SWE when using snow depth only (not total 185 
precipitation) as a forcing. Thus, given reliable snow depth measurements at each AKAH station 186 
(see Section 5.5), modeled SWE during the accumulation season is treated as having negligible 187 
uncertainty. During the ablation season (after peak SWE), uncertainty is higher. Unlike during 188 
snow accumulation events, SNOWPACK does not force its modeled snow ablation to match the 189 
measured snow depth decreases. Uncertainty in SWE during the ablation season is then largely 190 
dependent on radiative forcings (Marks and Dozier, 1992) and the broadband snow albedo (Bair 191 
et al., 2019). Here, 5% uncertainty is used, based on the MAE from SWE reconstructions using 192 
the same remotely-sensed forcings at a continental sub-alpine site (Bair et al., 2019). In the same 193 
study, a small (3%) bias in SWE was also found, but this is likely due to shortcomings with the 194 
reconstruction method and not applicable to SWE modeled with SNOWPACK. Thus, the small 195 
bias was ignored. We acknowledge that these uncertainty estimates are themselves uncertain, e.g. 196 
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the reanalysis forcings could be especially poor for this region compared to those available in the 197 
western US. 198 
Alpine3D (Lehning et al., 2006) is essentially a spatially-distributed version of SNOWPACK with 199 
a number of additional modules including: terrain-based radiation modeling, blowing snow, and 200 
hydrologic modeling. Integral to Alpine3D is SNOWPACK, which is run for each pixel, as well 201 
as the MeteoIO library (Bavay and Egger, 2014), which provides a large number of temporal and 202 
spatial interpolation functions that can be used on forcings for Alpine3D and SNOWPACK. 203 

5.2 The Parallel Energy Balance Model 204 

The Parallel Energy Balance Model (ParBal) was created at UC-Santa Barbara and designed for 205 
reconstruction of SWE. It is also publicly available 206 
(https://github.com/edwardbair/ParBal/releases/tag/v1.0). Currently, ParBal is designed to use: 207 
downscaled temperature, pressure, and humidity from version 2 of the Global or National Land 208 
Data Assimilation System (GLDAS-2/NLDAS-2, Rodell et al., 2004; Xia et al., 2012); shortwave 209 
and longwave radiation from edition 4a of the Clouds and the Earth’s Radiant Energy System 210 
(CERES, Rutan et al., 2015) SYN product; and time-spaced smoothed (Dozier et al., 2008; Rittger 211 
et al., in press) snow surface properties from MODIS Snow Covered Area and Grain Size 212 
(MODSCAG, Painter et al., 2009) and MODIS Dust and Radiative Forcing in Snow (MODDRFS, 213 
Painter et al., 2012). ParBal is run hourly at 500 m spatial resolution and forcings are adjusted for 214 
terrain and elevation. The main output is the residual energy balance term, which is assumed to go 215 
into melt when positive during the ablation phase after cold content is overcome (Jepsen et al., 216 
2012). This residual melt term is then summed in reverse during periods of contiguous snow cover 217 
and multiplied by the fSCA to spread the snow spatially. The errors in SWE from ParBal are 218 
mostly from fSCA and the radiative forcings. Errors and details on ParBal are covered extensively 219 
in Bair et al. (2016) and Rittger et al. (2016). In the supplement for Bair et al. (2018b), the errors 220 
arising from using GLDAS-2 and CERES 4a (available worldwide but at coarser spatial resolution) 221 
vs. NLDAS-2 are specifically evaluated. Using three years of basin-wide SWE estimated by the 222 
Airborne Snow Observatory in the upper Tuolumne Basin, California USA, the MAE for ParBal 223 
was 25 mm or 26% (Bair et al., 2018b). 224 

5.3 Global Data Assimilation System 2 (GLDAS-2) 225 

For comparison, we also include the SWE estimates from GLDAS-2 (Noah). SWE from GLDAS-226 
2 has been shown to be comparable to estimates from other reanalysis datasets, but negatively 227 
biased by about 60% in comparison to higher spatial datasets with assimilation from snow station 228 
measurements (Broxton et al., 2016). 229 

5.4 NOAH Multi-Parameterization (MP) 230 

The NOAH-MP v3.6 (Ek et al., 2003; Niu et al., 2011) land surface model, forced using MERRA-231 
2 (Gelaro et al., 2017), was used to simulate the hydrologic cycle over the study area and provide 232 
SWE estimates for comparison with ParBal and the Alpine3D output. NOAH-MP was selected 233 
due to its detailed representation of the snowpack relative to other land surface models. The model 234 
subdivides the snowpack into up to three layers with associated liquid water storage and 235 
melt/refreeze capability (Niu and Yang, 2004; Yang and Niu, 2003). It incorporates the exchange 236 
of heat and moisture through the snowpack between the land surface and the atmosphere. In a 237 
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model intercomparison study using a 2 km spatial resolution regional climate model for forcings, 241 
Chen et al. (2014) show that NOAH-MP modeled peak SWE at SNOTEL sites in Colorado, USA 242 
with a -7% bias. 243 

5.5 Use of AKAH station measurements 244 

We modeled daily SWE at the AKAH stations during the 2017 and 2018 water years primarily 245 
using the manually measured height of snow (HS), also called snow depth, combined with our 246 
downscaled energy balance parameters (for downscaling methodology see Bair et al., 2018b; Bair 247 
et al., 2016; Rittger et al., 2016). To our knowledge, no quality control was performed on the 248 
AKAH station measurements before we received them. We choose the manual HS and new (24-249 
hr) snow (HN) as the only variables to use from the AKAH stations. The HS appeared to be the 250 
most reliably measured, as that only requires reading a value from a master snow depth stake. 251 
Apart from spurious drops or missing values (see below), the HS measurement appeared consistent 252 
and believable at most of the stations, implying an accurate snow depth record. The HN was used 253 
to correct a data entry problem in 2017 that we discuss below. The reliability of the other 254 
measurements (instantaneous wind speed/direction, maximum/minimum temperature, and 255 
rainfall) was questionable. For example, we were not provided with sensor or measurement 256 
metadata, e.g. sensor make/model, measurement height, and whether or not the temperature sensor 257 
was shielded from shortwave radiation. These other measurements taken daily were also of limited 258 
value for interpolation to hourly values (see item 3 below). Thus, these other measurements were 259 
not used.  260 
The AKAH dataset had a number of shortcomings that we list here along with how we addressed 261 
them. 262 
1) Some of the stations recorded no snow at all, especially in the dry 2018 year, or had obvious 263 

problems, such as weeks of missing measurements, so they were excluded. For 2017, 52 (54%) 264 
of stations were used. For 2018, 41 (46%) stations were used. 265 

2) There were spurious drops in the HS measurements. The drops were clearly cases of missing 266 
values being filled with zeros. These measurements were manually flagged and converted to 267 
null values for interpolation, see below. 268 

3) The daily measurements had to be interpolated to hourly values. For the most part we used 269 
linear interpolation, although this is not ideal during snow accumulation since it’s almost never 270 
the case that snowfall is uniform over a 24-hr period. This is a problem that affects the accuracy 271 
of snow settlement estimated by SNOWPACK. There were two cases where other interpolation 272 
methods were used. If there were several days of missing values, we used a nearest neighbor 273 
interpolation to fill in the missing daily values, followed by a linear interpolation from daily to 274 
hourly measurements such that we assumed all the new snow fell in a 24-hr period. The other 275 
case was for days where the linear interpolation would yield a value below the minimum 276 
threshold hard coded into SNOWPACK (0.5cm/hr) for the first accumulating snowfall on bare 277 
ground. In this case, a previous neighbor interpolation was used in such a way that the entire 278 
snowfall occurred in the last hr prior to the next day’s measurement. 279 

4) We found the AKAH stations suitable for snow on the ground measurements, but not for 280 
rainfall or total (solid+liquid) precipitation. This was only an issue for the Alpine3D snow 281 
modeling, as snow measurements were being extrapolated to higher elevations than the AKAH 282 
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stations (Section 6.2), thus at these higher elevations, snow accumulated earlier and melted 285 
later than at the lower AKAH stations. 286 

Given the near total lack of canopy cover in the region, we suspected substantial undercatch from 287 
rain gauges. Using the wind speed, an undercatch correction would have been possible given more 288 
information on the gauges (e.g. orifice opening diameter and whether or not a shield was present), 289 
however this instrument metadata was not available to us. Likewise, we did not know if the gauges 290 
were heated or not. 291 
Further, the time period for recording measurements from the stations was not consistent. In WY 292 
2017, measurements began being reported on 10 November 2016 and were reported until 24 293 
November 2017. However, in WY 2018, measurements weren’t reported until 1 December 2017 294 
and no station measurements were reported past 1 April 2017. The reporting period likely covered 295 
all the snowfall events, but not all the precipitation events. 296 
To address the rainfall measurement and reporting issues, we used GLDAS NOAH v2.1 (Rodell 297 
et al., 2004) rainfall + snowfall from the nearest grid cell (1/4º spatial / 3 hr temporal resolution) 298 
to fill in precipitation prior to the first measurements in each water year, and after 4-1 for both 299 
water years. We did not account for rain from 10 November 2016 to 1 April 2017 and from 1 300 
December 2017 to 1 April 2018; instead we relied on the modeled precipitation from SNOWPACK 301 
using snow depth. The AKAH station observations show that rain during this time period was rare. 302 
5) A database problem prevented snow heights > 100 cm from being entered into the database for 303 

a few days in 2017. This problem became apparent during February 2017, when the Nuristan 304 
avalanches took place (United Nations, 2017), as that is the first time that most stations 305 
recorded values > 100 cm. Values were shown as 100 cm on multiple days followed by values 306 
> 100 cm. To address this issue, we flagged all the values equal to 100 cm prior to peak depth 307 
in 2017, then marked those as null values. We then filled those null values using the cumulative 308 
sum of new snow during that time. 309 

5.6 Analysis of modeled snow profiles 310 

For holistic measures of the snow profiles modeled in Alpine3D, we used two metrics from 311 
Bellaire et al. (2018): 1) fraction of facets and 2) number of critical layers. Fraction of facets is the 312 
height of all the layers containing faceted crystals, i.e. International Classification for Seasonal 313 
Snow on the Ground primary codes FC, DH, and SH (Fierz et al., 2009), divided by the height of 314 
the snowpack. The number of critical layers was computed using a threshold sum approach 315 
(Schweizer and Jamieson, 2007) with modifications for simulated profiles (Monti et al., 2014 316 
Table 1). In each profile, 6 different variables (grain size, difference in grain size, hardness, 317 
difference in hardness, grain type, and depth) in the top meter of height (from the surface) were 318 
checked against threshold values. Layers exceeding 5 or more thresholds were classified as critical. 319 
The fraction of facets metric does not have a validation study, but faceted layers are a weak crystal 320 
form and are responsible for 43% (Bair et al., 2012) to 67% (Schweizer and Jamieson, 2001) of 321 
investigated avalanches. Layers classified as critical using the threshold approach above 322 
corresponded to failure layers about ½ of the time (Monti et al., 2014) in Compression Tests 323 
(Jamieson, 1999; van Herwijnen and Jamieson, 2007), an in situ snowpack stability test. 324 
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5.7 Spatial scale for comparisons 325 

Because ParBal is the only model run at 500 m spatial resolution and all the other models were run 326 
at ~ 25 km, it is the only model appropriate for point comparisons, although point to area problems 327 
are still an issue. To address the geolocational uncertainty for the gridded MODIS products, which 328 
can be up to one ~500 m pixel (Tan et al., 2006; Xiaoxiong et al., 2005) and spatial variability of 329 
the snow, we used a 9-pixel neighborhood centered on each AKAH station and chose the best fit 330 
to the SNOWPACK modeled SWE. This approach has been used in previous work (Bair et al., 331 
2018b; Rittger et al., 2016). We also include the high and low SWE values in that surrounding 9-332 
pixel neighborhood to bound the uncertainty. 333 
For all of the other model comparisons, we resampled all of the model output to a UTM (Zone 334 
43S) grid with 25 km pixels, close to the native resolution of the NOAH-MP and GLDAS2 grid 335 
used (0.25º). The ParBal output had to be significantly upscaled from 500 m to 25 km using 336 
Gaussian Pyramid reduction (Burt and Adelson, 1983) in steps with bilinear interpolation for the 337 
final step. 338 

6 RESULTS AND DISCUSSION 339 

The relationships between the components are summarized in Figure 2. The results discussed 340 
below are comparisons of: 1) SWE and 2) snow stratigraphy across a) all of the AKAH stations 341 
(points) and b) the entire study region. 342 

 343 

6.1 Point comparisons between SNOWPACK and reconstructed SWE 344 

A first step for any SWE reconstruction comparison is to determine when the ablation season starts. 345 
This varies for different years and at different sites (e.g. Margulis et al., 2016). Using the 346 

 
Figure 2 Summary of relationships between the various components. Forcings are shown in red, models 
and selected outputs are shown in blue, and the comparisons discussed below are shown in green. The 
black arrows show the direction of inputs. 
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SNOWPACK modeled SWE, we can examine the peak SWE dates for both years for all of the 347 
AKAH stations (Figure 3ab). Peak SWE dates vary across the stations and years, but the median 348 
values between years are a week apart, 19 February 2017 and 26 February 2018. Thus, we use 349 
those dates for our comparisons. 350 

  351 
To create a holistic comparison for all the stations across the ablation period, mean SWE values 352 
were computed and plotted for each day during the ablation season (Figure 4). For the 353 
reconstructed SWE on 19 February 2017, the bias is -77 mm (-28%). For the reconstructed SWE 354 
on 26 February 2018, the bias is -6 mm (-9%). Thus, together these biases average to -42 mm (-355 
19%). The high/low values in the 9-pixel neighborhood show the wide spatial variation in SWE 356 
estimates, and are to be expected in these deep valley sites (Section 6.2). The increases in 357 
reconstructed SWE during the ablation season are caused due to differences in how melt is summed 358 
for any given pixel. In ParBal, melt is only summed during periods of contiguous snow cover. This 359 
means that if a pixel containing an AKAH station has no snow on it at some point during the 360 
ablation season, but then snow is detected, it causes an increase in the mean SWE. This is called 361 
an ephemeral snow event, i.e. snow that disappears and reappears. For a more in depth examination 362 
of the error at individual stations, a box plot is shown for the median peak SWE dates for both 363 
years (Figure 5). The median bias of the reconstructed SWE is -11 mm (-14%). 364 

 
Figure 3 Peak SWE dates, modeled by SNOWPACK for 2017 (a) and 2018 (b) for each of the AKAH 
stations. The median peak SWE dates are 19 February 2017 and 26 February 2018. N=52 and 41 
AKAH stations used for 2017 and 2018. 
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 366 
 367 

 
Figure 4 Mean SWE for 2017 (a) and 2018 (b) modeled at all of the AKAH stations using SNOWPACK 
(blue lines) compared to reconstructed SWE from ParBal using a best of 9-pixel approach (red lines). 
Also plotted is the median peak SWE date. The hi/lo bounds (filled areas) represent uncertainty. For 
ParBal, uncertainty is expressed as the range of values in the 9 pixel neighborhood. For SNOWPACK, 
uncertainty is 5% of the modeled SWE during the ablation season. See Sections 5.1 and 5.2 for details. 
The modeled SWE values end abruptly on 1 April 2018 because the AKAH stations stopped reporting 
due to drought conditions. The number of stations used is the same as in Figure 3. 
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  368 

6.2 Four model spatial comparisons 369 

The AKAH stations are lower than the average elevation for the region. The average elevation of 370 
the AKAH stations is 2619 m (1735 to 3410 m). But when the 500 m DEM is upscaled to 25 km, 371 
the average elevation of the pixels containing the AKAH station is 3858 m with a range of 2517 372 
to 4764 m. This has two important implications: 1) much of the higher elevation snowfall is being 373 
extrapolated and 2) the higher elevation causes the peak SWE date to move forward in time. The 374 
median peak SWE dates for the (N=169) 25 km pixels encompassing the study area are 5 May 375 
2017 and 3 May 2017. Thus, we use the median of the two to compare our reconstructed SWE 376 
values (Figure 6ab, Figure 7a-d, and supplementary video). 377 
Striking is the range between models. NOAH-MP has the highest peaks (562 mm in 2017 and 331 378 
mm in 2018), but is among the first to melt out. The reconstructed SWE from ParBal only shows 379 
minor variation between the 2017 peak (240 mm) and the 2018 peak (206 mm). ParBal and 380 
GLDAS-2 melt snow out latest in both years. This is especially true for ParBal in 2017, where the 381 
supplementary video shows that ParBal has snow cover over more pixels that persists for longer 382 
into the melt season, but is lower in SWE than the other models. The Alpine 3D model shows the 383 
second highest peak SWE in 2017 (469 mm), but the lowest peak (165 mm) in 2018. The 384 
comparatively higher values from NOAH-MP could result from relatively high precipitation 385 
estimates from its MERRA2 precipitation forcings. Similarly, Viste and Sorteberg (2015) report 386 
that MERRA (version 1) showed higher snowfall in the Indus Basin than any other reanalysis or 387 
observation-based forcings dataset. 388 

 
Figure 5 Bias (a) and relative bias (b) error for ParBal reconstructed SWE vs Alpine 3D modeled SWE 
at AKAH stations the median peak SWE date for both years, where bias here is ParBal SWE – Alpine 
3D SWE. 
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 390 

 
Figure 6 Time series of mean SWE for four snow models across the study area (13x13x25 km pixels) 
show in Figure 1 for 2017 (a) and 2018 (b). The reconstructed SWE from ParBal (yellow) goes back to 
4 May, the median peak SWE date for both years, since reconstruction is only valid during the ablation 
season. 
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391 
Since Alpine3D is relying heavily on extrapolation of SWE, we suggest its mean SWE values 392 
plotted in Figure 6 could have higher uncertainty than some of the other models. For example, the 393 
Alpine3D pixels seem to melt out early compared to the other models, especially ParBal, which is 394 
the only model relying on satellite-based estimates of fSCA (see supplementary video). Thus, 395 
Alpine3D may be placing too little SWE in cold, high elevation areas that melt slowly. These 396 
problems are all indicative of stations that are located in valley bottoms and that only cover the 397 
lowest elevations across these 25 km pixels. 398 
 399 

 
Figure 7 Four model (a-d) spatial comparison for the region on 4 May 2018. The white letters are: 
AFG–Afghanistan; TJK–Tajikistan; and PAK–Pakistan. Also shown in (a) are the locations of the 
AKAH stations (orange points). This is a frame from a video sequence available as supplementary 
material. 

Deleted:  the 3 letter ISO country codes (

Deleted: )



 17 

The ParBal results are confounding given that the agreement between the modeled SWE from 400 
ParBal and SNOWPACK at individual AKAH stations (Figure 4ab) is much better for both 2017 401 
and 2018.  402 
For insight into potential biases in the modeled spatial SWE from ParBal, we carefully studied the 403 
snow-covered area (SCA, not just for 2017 & 2018, but since 2001), the potential melt (i.e. the 404 
melt if a pixel were 100% snow covered), and the melt from glacierized areas (light blue in Figure 405 
1). We did not find any errors in the model, its parameters, or its forcings. Thus, it is possible that 406 
the ParBal SWE is low-biased in 2017 for reasons that we could not discern, or that the other 407 
models are high biased. Of note is that the 2017 & 2018 SCA (Figure 8 purple and orange) is very 408 
similar for both years during the ablation period, especially at the end of the ablation season. 409 

 410 
Since pixels do not contribute uniformly to melt, SCA alone cannot be used to predict SWE, but 411 
in general years with less snow have lower SCA values towards the end of the ablation season. 412 
Figure 8 shows that 2017 and 2018 were similar in terms of SCA from April through melt out. 413 
Thus, the large difference between 2017 and 2018 for the AKAH station SWE, but small 414 
differences in SCA and spatially-averaged reconstructed SWE, suggest that 2017 may have been 415 
a larger snow year at the lower elevations where the AKAH stations are, but similar to 2018 at the 416 
higher elevations. 417 

6.3 Stratigraphy and stability 418 

The simulated snow profiles from the AKAH stations (Figure 9ab) and the 25 km pixels containing 419 
the AKAH stations (Figure 10ab) show very different snowpacks. Because of the induced increase 420 
in elevation from scaling (e.g. from an average of 2619 m to 3858 m, Section 6.2), the 25 km pixels 421 
show a deeper, but more faceted snowpack with critical layers that persist for a month or longer. 422 
In 2017, for the median AKAH station values, the snowpack reaches a maximum of 76% facets 423 

 
Figure 8 Time series of snow covered area from spatially and temporally interpolated MODSCAG 
(Rittger et al., in press), an input for ParBal, for four selected years across the region. Years 2008 and 
2009 had the lowest and highest values on July 1 over the period of record from 2001 to 2018, while 
2017 and 2018 comprise the AKAH station study period. 
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on January 21 (Figure 9a). In 2018, the snowpack reaches a maximum of 71% facets (Figure 9b). 424 
There were no critical layers simulated. In contrast, for the median values in the 25 km pixels for 425 
both years, the height of snow (HS) is approximately 2 × that for the stations (Figure 10ab). The 426 
snowpack reaches a maximum of 94% facets in 2017, with one critical layer persisting for 35 days 427 
(Figure 10a). The snowpack in 2018 reaches 95% facets with 1 or 2 critical layers persisting for 428 
80 days (Figure 10b). During the Nuristan avalanches on 4 February to 7 February 2017 that killed 429 
over 100 people (United Nations, 2017), the AKAH stations show the largest 3-day snowfall of 430 
the study period (Figure 9a) and the results for the 25 km pixels show that large snowfall occurring 431 
on top of the only critical layer of the season (Figure 9b). That is a classic avalanche scenario, i.e. 432 
a large snowfall on a weak snowpack. 433 
In lieu of any type of snow profile from this region, these profiles paint the best picture of the snow 434 
conditions available. A relatively stable snowpack seems to be present in the valleys, where the 435 
AKAH stations are located. But at the higher elevations, the simulated profiles show a more 436 
dangerous snowpack. This is especially serious considering these villages are in the runout zones 437 
of these unstable snowpacks. In some cases, several thousand meters of vertical relief loom above 438 
the villages. For example, Yarkhun Lasht (36.795N 73.022E, el. 3249 m) in Pakistan is flanked by 439 
6500 m peaks on both side of its valley. 440 

 441 

 
Figure 9 Stratigraphy summary of the AKAH stations for 2017 (a) and 2018 (b). Plotted are the median: 
height of snow (HS); fraction of the snowpack containing facets; and number of critical layers. The 
number of stations used to compute the medians varied due to snow coverage. 
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 442 

 443 

7 CONCLUSION 444 

Knowledge of the snowpack in northwestern High Mountain Asia is poor. This area is subject to 445 
droughts and threatened by snow avalanches. Both problems can be aided by improved knowledge 446 
of the snowpack. Thanks to a novel operational avalanche observation network, there are now 447 
daily snow measurements at a number of operational weather stations in this austere region. In this 448 
study, two years of daily snow depth measurements from these stations were combined with 449 
downscaled reanalysis and remotely-sensed measurements to force a point and spatially distributed 450 
snow model. Compared to a previous effort (Bair et al., 2018b), this study represents a substantial 451 
improvement in SWE modeling for the region, and a first attempt to characterize region-wide snow 452 
stratigraphy. At the point scale, SWE estimates from a reconstruction technique that does not use 453 
precipitation or in situ measurements compared favorably. At the regional scale, four models 454 
showed a wide spread in both peak SWE and melt timing. For the models that rely on in situ 455 
precipitation measurements, a major challenge is spatial extrapolation, as many of the stations are 456 
located in deep valleys. Adding measurements from the mountains above would facilitate more 457 
realistic lapse rates, but these measurements do not currently exist, although they would be 458 
beneficial both for operational avalanche safety and for scientific studies. 459 
In the regional comparison, SWE estimates from ParBal were on the low end, but given the model 460 
spread it is difficult to form a consensus estimate. We plan additional in situ validation at other 461 
sites in High Mountain Asia to continue to assess the performance of ParBal there. 462 
The simulated profiles showed very different snowpacks. At the point scale at lower elevations in 463 
the valleys, profiles showed fewer facets and almost no critical layers, while at the regional scale 464 

 
Figure 10 Stratigraphy summary of the (13x13) 25 km pixels containing AKAH stations for 2017 (a) 
and 2018 (b). Plotted are the median: height of snow (HS); fraction of the snowpack containing facets; 
and number of critical layers. 
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for higher elevations, the profiles showed heavily faceted snowpacks with critical layers that 467 
persisted throughout the winter and spring. 468 

8 CODE AND DATA AVAILABILITY 469 

The code for ParBal is accessible at: https://github.com/edwardbair/ParBal 470 

The code for MeteoIO, SNOWPACK, and Alpine3D are accessible at: https://models.slf.ch/ 471 
The code for NOAH-MP is accessible at: https://ral.ucar.edu/solutions/products/noah-472 
multiparameterization-land-surface-model-noah-mp-lsm 473 
The GLDAS-2 and MERRA-2 forcings are accessible at: https://disc.gsfc.nasa.gov/ 474 
The reconstructed SWE and melt cubes are accessible at: 475 
ftp://ftp.snow.ucsb.edu/pub/org/snow/products/reconstruction/h23v05/500m/ 476 
Unfortunately, the AKAH measurements are not publicly available due to security concerns. 477 
Requests for the dataset should be made through The Aga Khan Agency for Habitat 478 
(https://www.akdn.org).479 
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APPENDIX A Detailed model forcings and parameters 480 

PARBAL 481 

ParBal was configured and forced as described in Bair et al. (2018b); Bair et al. (2016). The model 482 
time step was 1 hr. The DEM used was the ASTER GDEM version 2 at 1 arc sec (NASA JPL, 483 
2011), while the canopy type and fraction were taken from the Global Land Survey at 30 m (USGS, 484 
2009). The shortwave and longwave forcings were downscaled from the CERES SYN edition 4a 485 
1º/1 hr product (Rutan et al., 2015), while the air temperature, specific humidity, air pressure, and 486 
wind speeds were downscaled from the GLDAS NOAH version 2.1 0.25º/3 hr product (Cosgrove 487 
et al., 2003). Time-space smoothed (Dozier et al., 2008; Rittger et al., in press) fSCA and grain 488 
size from MODSCAG (Painter et al., 2009) was combined with the visible albedo degradation 489 
from dust in MODDRFS (Painter et al., 2012) to produce snow hourly snow albedo. 490 

NOAH-MP 491 

NOAH-MP v3.6 was run in retrospective mode within the NASA Land Information System (LIS) 492 
framework. A state vector ensemble (total 30 replicates) was generated by perturbing the forcings 493 
to account for the state uncertainty during forward propagation of the model. MERRA-2 (Gelaro 494 
et al., 2017) forcings were utilized with bilinear spatial and linear temporal interpolation. The 495 
model was run on an equidistant cylindrical grid with 0.25º spatial resolution and a 15 min model 496 
timestep. The spin-up time extended from May 2002 to May 2016 while the study period was from 497 
June 2016 to October 2018. The number of maximum layers in the snowpack was 3. Table A1 498 
provides details of the NOAH-MP scheme options selected. Further details regarding each scheme 499 
and relevant references can be found at: https://ral.ucar.edu/solutions/products/noah-500 
multiparameterization-land-surface-model-noah-mp-lsm. 501 

Physical process/ parameter Scheme used 

Elevation data SRTM Native 

Landcover data  MODIS Native (IGBPNCEP) 

Slope, Albedo and Greenness data  NCEP Native 

Bottom temperature (lapse-rate 
correction)  ISLSCP1 

Vegetation dynamic 

Canopy stomatal resistance Ball-Berry 

Runoff and groundwater SIMGM 

Surface layer drag coefficient M-O (General Monin-Obukhov similarity theory) 

Supercooled liquid water and frozen 
soil permeability NY06 

Radiation transfer gap=F(3D;cosz) 

Snow surface albedo BATS (Biosphere-Atmosphere Transfer Scheme) 
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Rainfall and snowfall Jordan91 

Snow and soil temperature time semi-implicit 

Lower boundary of soil temperature Noah 

Table A1 Noah-MP v3.6 physical parametrization scheme options utilized in this study. 502 

SNOWPACK 503 

SNOWPACK v3.50 was run in research mode at a 15 min timestep with hourly outputs for each 504 
of the AKAH stations. Hourly forcings were computed by combining temporally interpolated snow 505 
depth from the AKAH manual measurements with: air temperature, incoming shortwave, reflected 506 
shortwave, incoming longwave, wind speed, and relative humidity from the downscaled ParBal 507 
outputs, as described in Section 5.2. SNOWPACK was only run for periods when measurements 508 
from the AKAH stations were available, Nov/Dec to April/May, depending on the year. 509 
Plots were assumed to be level, so forcings without terrain correction were applied except for 510 
shading when the sun was below the local horizon, e.g. a mountain blocking the sun (Dozier and 511 
Frew, 1990). The wind direction, which is not available in GLDAS-2, was fixed at the mean value 512 
from the daily AKAH instantaneous values. The ground temperature was set as the minimum of 513 
the air temperature or -1.5ºC when snow cover was present. 514 
Aside from setting required parameters and values for inputs and outputs, changes to default 515 
parameters that affected model output are provided in Table A2: 516 

Parameters Value Description 
TS_DAYS_BETWEEN 0.014666 days Output hourly values 
PRECIP_RATES FALSE Output is provided a 

summed precipitation over 
the output timestep (1 hr) 

SW_MODE BOTH Both incoming and 
reflected (incoming x 
albedo) are provided 

HEIGHT_OF_METEO_VALUES 2 m Height of meteorological 
measurements 

HEIGHT_OF_WIND_VALUE 2 m Height of wind 
measurements 

ENFORCE_MEASURED_SNOW_HEIGHTS TRUE Precipitation is calculated 
using HS 

ATMOSPHERIC_STABILITY NEUTRAL Neutral conditions are 
often present in moderate 
to high wind speeds for 
mountain terrain (Lehning 
et al., 2002a; Mitterer and 
Schweizer, 2013) 

MEAS_INCOMING_LONGWAVE TRUE Default is to estimate 
emissivity of the air and 
incoming longwave from 
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other measured parameters 
(FALSE). Here we provide 
longwave forcings 
(TRUE). 

Table A2 Model parameters for SNOWPACK 517 

ALPINE3D 518 

Alpine3D version 3.10 was run using with the outputs produced by SNOWPACK as forcings for 519 
each of the AKAH stations at 25 km resolution. The DEM and land cover (incorrectly labeled land 520 
use in the Alpine3D documentation) data were upscaled from the ParBal data. Alpine3D was run 521 
at an hourly timestep using hourly forcings, with daily outputs using the “enable-eb” switch. Other 522 
switches were set to off, the defaults. The “enable-eb” switch computes the terrain radiation with 523 
shading and terrain reflections (see Alpine 3D documentation at https://models.slf.ch for a 524 
description). 525 
To extend the length of the model runs, for each AKAH stations, GLDAS-2 precipitation was 526 
appended to periods prior to the first AKAH observation for the year and after the last, as described 527 
in Section 5.5. 528 
The forcings were hourly: incoming shortwave, incoming longwave, air temperature, relative 529 
humidity, wind speed, wind direction, reflected shortwave, accumulated precipitation, and ground 530 
temperature. 531 
Critical to Alpine3D are the interpolation methods from MeteoIO to spatially distribute 532 
precipitation and other forcings. We found the modeled SWE to be highly dependent on the spatial 533 
interpolation of precipitation. Our initial approach was to explore local (i.e. with a given radius 534 
from a station) and regional (i.e. all AKAH stations) lapse rates in the measured snow depth and 535 
modeled precipitation from SNOWPACK. We found almost no correlation in many of the 536 
measurements, not surprising given the complexity of the terrain and likely existence of 537 
microclimates with substantial influence on precipitation. Without having a good validation source 538 
for spatial precipitation (as is the case for all of High Mountain Asia), we selected an interpolation 539 
method that yielded relatively smooth results, but showed increases in precipitation with elevation. 540 
Ultimately, we decided to use an inverse distance weighting scheme with elevation detrending 541 
(IDW_LAPSE) and a multilinear option. For this method, the input data are detrended, then the 542 
residuals are spatially interpolated according to an inverse distance weighting scheme. The 543 
detrending uses a multiple linear regression with northing, easting, and altitude. The linear 544 
regression has an iterative method for removing outliers. Finally, values at each cell are retrended 545 
using the multiple linear regression and added to the interpolated residuals. 546 
A summary of the interpolation methods, all of which are defined in the MeteoIO documentation 547 
(Bavay and Egger, 2014), is given in Table A3. 548 

Forcing Spatial interpolation method Description and notes 

Air temperature IDW_LAPSE Inverse distance weighting 
with elevation detrending. 
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Accumulated 
precipitation 

IDW_LAPSE with multilinear option set 
to TRUE 

See notes above 

Relative Humidity  LISTON_RH  See Liston and Elder (2006) 

Precipitation phase PPHASE Simple splitting at 274.35K 

Wind speed IDW_LAPSE See above 

Incoming longwave 
radiation 

AVG_LAPSE Average filling with 
elevation lapse rate 

Wind direction CST Constant, fixed at average 
value from AKAH station 
instantaneous measurements 

Pressure STD_PRESS Standard atmospheric 
pressure with elevation 

Table A3 Spatial interpolation methods for Alpine3D 549 
The same parameters as in Table A2 for SNOWPACK were used in Alpine3D with changes shown 550 
in Table A4. Other parameters were defaults. 551 

Parameters Value Description 
CALCULATION_STEP_LENGTH 60 min 1 hr model timestep 
ENFORCE_MEASURED_SNOW_HEIGHTS FALSE Use accumulated 

precipitation estimate from 
SNOWPACK 

Table A4 Model parameter changes for Alpine3D from Table A2 552 
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