Reply to the Comments by Referee #2 for Manuscript tc-2019-15

In this study, the authors tried to address the uncertainty in predicting the Eurasian snow by inter-
comparing the performances of four land surface models coupled to WREF. They have four goals to
achieve but the purpose of the work is not clearly articulated. The manuscript can be accepted to
be published only after some major concerns have been addressed:

= The authors appreciate the referee’s valuable comments on this study, which made signifi-
cant improvement in the manuscript. We have made our best effort to revise the manuscript
based on the referee’s comments and suggestions. In the following, we made an item-by-item
response to the specific comments by the referee.

(1) Many studies show errors in the input and validation data, rather than model formulation,
seem to be the greatest factor affecting model performance. The manuscript lacks of discussion
of the quality for those “observation” used to evaluate the model performance.

= We appreciate the referee pointing this out. We used these data because they have been
widely used for the validation purpose as seen in many studies. Thus we assume that we
can use these data without further quality check. We added a description on the quality
of observations used in our study, based on the followings:

1)

Cooper et al. (2018) assessed snow extent data sets including both CMC data and
MODIS Terra data by assuming the surface observations are truth. They com-
pared seven snow extent data sets — CMC, IMS, MATAC AQUA, MATAC TERRA,
MODIS AQUA, MODIS TERRA, and NISE. They found that CMC represented
strong agreement with in situ observations with F' score 0.81 while MODIS TERRA
represented medium agreement with F' score 0.54. More specifically, they calculated
accuracy, precision, recall, and F score as the following;:
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where T'P is true positive, T'IN is true negative, F'P is false positive, and F'N is false
negative. The assessment results are summarized in Table R1.

The Canadian Meteorological Centre (CMC) snow depth data is the most widely
used data in many model evaluation studies, being considered as the surface truth
value (e.g., Niu and Yang 2007; Reichle et al., 2011; Yang et al., 2011; Liu et al.,
2013; Kumar et al., 2014, 2015; Zhou et al., 2014; Dawson et al., 2016; Toure et al.,
2016).

The MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, Version 6 is
also very widely used data in validating many model outputs and improving model



Table R1. Evaluation of daily snow extent data set performance for 2015. The GHCN-D surface
observations are used as “truth”. All products are regridded to a common 4 km resolution. The highest
value for each metric is shown in bold. From Cooper et al. (2018).

Accuracy Precision Recall F
CMC 0.91 0.79 0.83 0.81
IMS 0.93 0.87 0.83 0.85
MAIAC AQUA 0.91 0.90 0.74  0.82
MAIAC TERRA 0.91 0.90 0.75  0.82
MODIS AQUA 0.76 0.51 0.43  0.46
MODIS TERRA 0.82 0.69 045 0.54
NISE 0.84 0.83 045 0.58

prediction skill (Drusch et al., 2004; Rodell and Houser, 2004; Parajka and Bloschl,
2008; Hall et al., 2010; Nester et al., 2012; Hancock et al., 2013; Zhou et al., 2014).

(2) Among four goals of this paper only the third one has been addressed sufficiently. The first
two haven’t been explained clearly. The reader can easily understand the difference between
four models if a table is used to show the different treatment of snow albedo, snow density,
snow compaction, snow interception, snow age, and etc. The authors need to make some
sensitivity tests like the different microphysics schemes to address and make any conclusion
on the last goal of this paper.

= We appreciate these valuable suggestions by the referee. Following the reviewer’s sug-
gestion, we have added a table in the revised manuscript to show the characteristics of
each model (see Table R2 below):

Table R2. The general feature of each LSM.

Snow Noah LSM Noah MP RUC LSM CLM4
(Liveh et al., 2010)  (Niu et al., 2010)  (Benjamin et al., 2004) (Oleson et al., 2010)
Layers 1 3 2 5
. . Calculates variable Calculates variable Calculates variable
Density Fixed . . .
snow density snow density snow density
Liquid X

= We have also followed the referee’s suggestion to do some sensitivity tests, e.g., using
different microphysics schemes, to address the last goal of this paper. Although we
could not perform extensive tests, we have done some sensitivity experiments using other
microphysics scheme. For example, the present study employed the WSM3 scheme, and
we conducted sensitivity experiments using the WSM6 scheme. The results indicated
that all the LSMs represented better performances with WSM6 than WSM3. We have
included such sensitivity results and discussions in the revised manuscript to address the
last goal of this study.

(3) For fair inter-comparison the forcing should be as close as possible. For snow predictions how
to differenciate snowfall or rainfall from the total precipitation is critical. This process should
be mainly determined by microphysics scheme. The authors should use the same MP for all
models to determine the amount of snowfall and rainfall rather than the empirical method by
each model.



= We agree with the referee on the statement “For snow predictions, how to differenciate
snowfall or rainfall from the total precipitation is critical”. But we cannot fully accept
the referee’s suggestion to use the same MP for all models to determine the amount
of snowfall/rainfall. We believe that each model has its own characteristics, including
the way to classify the total precipitation into liquid versus solid forms. Although these
schemes might be based on empirical methods, we believe that they are devised to
balance with other physical/dynamical processes in the model; thus, formulating their
own characteristic ways to calculate each process in the model. The referee’s speculation
may be right in terms of fair intercomparison; however, by doing so, we are afraid that
the model balance would be broken and/or the model characteristics might be lost.
Although we respect the referee’s suggestion, it is another important thing in this study
to examine the characteristic behavior of each model, when coupled to a regional climate
model; thus, we decided to use the MP as it is in each model.

(4) For the most part, snow models are built on similar principles. The greatest differences are
found in how each model parameterizes individual processes (e.g., surface albedo and snow
compaction). Parameterization choices naturally span a wide range of complexities. Ensemble
is a promising way to reduce these uncertainties. It would be greatly beneficial to the title of
this paper if the authors can also compare the performance of the ensemble mean of four
models.

= We agree to the referee’s comment. Due to the uncertainty involved in parameterizations,
it is desirable to employ an ensemble approach. On the other hand, we think that
the characteristics of each LSM, coupled to a regional climate model, may be better
understood through deterministic approach and various sensitivity experiments. The
referee’s suggestion on the ensemble approach is fantastic, but it is left for a further
study as the next step. We do appreciate this valuable advice by the referee.

(5) Noah MP itself has so many options to choose. Many of them can have significant impact
on the snow prediction. The authors should have optimal options before comparing it to the
other three models.

= We think the referee pointed out an important issue. As the referee mentioned, the Noah-
MP has many parameterization schemes in calculating leaf are index (dveg), surface
layer drag coefficient (opt_sfc), canopy stomal resistance (opt_crs), snow surface albedo
(opt_alb), frozen soil permeability (opt_inf), supercooled liquid water (opt_frz), radiation
transfer (opt_rad), partitioning of precipitation to snowfall and rainfall (opt_snf) and,
runoff and ground water (opt_run) (more details in the Noah-MP technical description
note, http://www. jsg.utexas.edu/noah-mp/files/Noah-MP_Technote_v0.2.pdf).

We have performed some preliminary tests with multiple scheme combinations —
3 options in dveg, 2 options in opt_rad, and 1 option in opt_alb. Table R3 summarizes
the best results from each scheme in terms of snow depth and RMSE. We noticed that
the accuracy of snow depth prediction is highly influenced by the vegetation option
compared to other options. Turning off the dynamic vegetation option and calculating
the vegetation fraction inside Noah-MP results in the highest accuracy in predicting the
Eurasian snow.

Note that finding the optimal scheme set requires an enormous amount of comput-
ing resources. The Noah-MP has 9 parameterization schemes, each having 2 4 options
— 4 schemes with 2 options, 3 schemes with 3 options and 2 schemes with 4 options —



a total of 6912 combinations. This implies that we should run the model 6912 times to
find the optimal set of parameterization schemes/options. In our study, as the Noah-MP
is coupled to WRF, the computation time will tremendously increase to find the optimal
scheme set, which is almost impossible. Therefore, we decided to adopt the default set
of parameterization schemes/options in Noah-MP by assuming that this default set is
the most general setting.

Table R3. The result of physical snow depth (m) and the RMSE of snow depth for each option. The
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name of options in this table “albedo”, “radiation”, “vegetation” mean that we modulated these options.

Default Albedo  Radiation Vegetation

Snow Depth [m] 20 0.203 0.193 0.193
P (£0.060) (40.062)  (+0.058)  (£0.058)
RMSE 0.173 0.174 0.166 0.165

(6) The quality of figure need to be improved. Some of them are very blurry and hard to read.
Like figure 4a only 6 curves can be seen.

= We appreciate the careful check and suggestion by the referee on the quality of figures.
We carefully checked all the figures and improved them by uploading the high-resolution
files.
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