
Dear Editor

We hereby submit the revised manuscript entitled “Towards a webcam-based 
snow cover monitoring network: methodology and evaluation” by Céline Portenier,
Fabia Hüsler, Stefan Härer, and Stefan Wunderle to be considered for publication 
as an article in The Cryosphere. We have considerably revised the paper in 
response to the constructive feedback of the two reviewers.

Our revised manuscript includes the following major changes:
• We added a new figure (Fig. 2) to present the image resolutions within our 

webcam archive.
• We extended the introduction with an overview about existing snow 

classification approaches and justified the selection of the two approaches.
• We explained the snow classification method by Härer et al. (2016) in more 

detail within the methods section. 
• The snow classification methods are compared in Fig. 10 and Fig. 12. We 

exchanged the example image in Fig. 10 and clarified which classification 
method is used for the examples in Fig. 11.

• We expanded the evaluation by discussing projection uncertainties. In 
addition, we provided a new figure (Fig. 13) to show an example of projected
pixel resolution. We added estimated uncertainties for Fig. 15 and clarified 
the relationship between projection uncertainty and registration accuracy.

• We extended the conclusions with an outlook.

Please find point-by-point answers for each referee attached to this letter followed
by all changes made in the original manuscript.

We hope that we have addressed all major and minor concerns. We thank you for 
considering the revised manuscript for publication and look forward to hearing 
from you.

Sincerely,

Céline Portenier, on behalf of the authors



Interactive comment on “Towards a webcam-based 
snow cover monitoring network: methodology and 
evaluation” by Céline Portenier et al.

Céline Portenier et al.

Yves Bühler (Referee)

We would like to thank Yves Bühler for this careful and detailed review that was helpful to improve 
the manuscript. 

Below we respond to all comments by Yves Bühler. The responses (normal font style) are following 
the referees’ comments (displayed in italic font style) directly. Note: New comments are marked in 
red.

The paper entitled “Towards a webcam-based snow cover monitoring network: methodology and 
evaluation“ by C. Portenier et al. presents an innovative and promising approach to exploit 
available webcam imagery for snow cover (SC) mapping in Switzerland. This is a first important 
step towards the combination of different sensors and platforms to monitor snow parameters over 
large regions with high temporal and spatial resolution. However, there are three main points I 
would like to see clarified and complemented before I can recommend the paper for publication:

1. Snow cover classification

Two quite simple methods are applied to classify snow covered areas in the webcam imagery 
(Salvatori et al. 2011 & Härer et al. 2016). This part is not complete in my opinion. The method by 
Härer et al. 2016 should be described in more detail, now there is just a reference to this paper. As
the authors state themselves in the discussion and conclusion, there is a big potential for 
improvement concerning this point. As the snow cover classification is an essential part of the 
entire processing chain, I recommend to invested some more time to look at different other 
options. Federov et al. 2016 and Rüfenacht et al. 2014 already tested more advanced 
classification methods. The authors have at least to test and discuss these options and justify why 
they select the other options. I also suggest to overwork Fig. 10 including the results from all 
classification algorithms so they get comparable visible in an example image. Now only one 
method is demonstrated and it is not clear which one.

We present an overall framework for the processing of webcam images with a snow classification 
module. We agree that snow classification is an essential part of our processing chain. We will 
include a more detailed description of the method by Härer et al. 2016 and discuss other methods 
used for RGB snow classification to give the reader a broader overview on existing snow 
classification approaches.

As stated in the work by Rüfenacht et al. (2014), their proposed method is not able to detect snow 
in shadowed areas of sunny scenes. The authors avoid this issue by explicitly excluding respective 
images from their analysis. We did therefore not consider applying their approach to our problem, 
since such situations often occur in our application. Hence, we leveraged the method proposed by 
Härer et al. (2016), since it is explicitly designed to work under such difficult conditions and is 
therefore a better fit for our application.

We agree that the method proposed by Fedorov et al. (2016) is a promising solution for our 
application and we will try to include a comparison to their method. Since they trained a machine 
learning model to obtain their snow classification framework, we find that it is not feasible to 
reproduce their model without having access to the respective training data. We contacted the 



authors in order to apply their learned model on our data, or to at least retrain their model with 
their respective training data.

We tried to contact R. Fedorov several times without success. Since we did not manage to get in 
contact with R. Fedorov, and neither the trained models nor the used training data is publicly 
available, we were not able to include a comparison to the method proposed in Fedorov et al. 
(2016).

It is correct that we emphasize the need for an improved classification, since we found that none 
of the existing methods work reasonably robust for our application, in particular the distinction 
between snow and clouds as well as snow classification under difficult illumination conditions. We 
consider to investigate this direction as future work.

2. Geolocation accuracy assessment

In my understanding the spatial resolution of the imagery and with it the achievable accuracy is 
very much dependent on the distance of the camera to the terrain. The spatial resolution in your 
imagery must vary a lot! You do not really address this point. In contrast, your results even 
suggest that the accuracies get better with distance (as this is the area close to the maintain 
ridges that you used to co-register the image to the DEM, Fig. 13). Here clarification is needed. I 
would be interested to read what the image resolutions ranges are for the different webcams and 
what problems the varying resolutions cause. How does the resolution problem relate to the 
accuracy values you calculate?

Thank you for pointing this out. We agree that the spatial resolution of a webcam image has an 
impact on the resulting snow cover map. Depending on the distance of the terrain to the webcam, 
image pixels of the webcam are either upsampled or downsampled to the DEM’s pixel resolution 
(2m). We will discuss this relationship in the text and provide an example for a typical webcam 
image where we estimate the resolution range of the projected image. In addition, we provide a 
histogram that shows the distribution of webcam image resolutions in our archive.

We will provide resulting uncertainties for Fig.10 that occur due to the above mentioned effect. 
However, the uncertainties do not change the overall picture (for instance, the uncertainty for the 
GCPs within a distance of 6-30km is ±5.6m).

3. Conclusions

The conclusions are too brief in my opinion. Here I would like to read a bit more of an outlook. How
does it go on? For what satellite products will it be applied? Is there the intention to go also to 
other countries with this method? Please extend the conclusions.

We agree that the conclusions are too brief. We will extend the conclusions with an outlook that 
provides further information on the potential application of our procedure. First, ESA CCI snow is 
using Sentinel-2 and Landsat data as validation source for MODIS and AVHRR snow cover fraction 
retrieval. To in turn evaluate the accuracy of Sentinel-2 and Landsat based products, our webcam-
based snow monitoring product can be applied. Second, our product can further be used to 
validate Sentinel-2 and Sentinel-1 based snow cover products generated  by Copernicus and Theia.
In fact, Theia is highly interested to use our product for an accuracy study of Sentinel-2 snow cover
maps. Third, our procedure, in particular the snow classification, could be improved to enable 
semi-operational processing for a NRT-service, which could support federal agencies (e.g. 
MeteoSwiss, WSL-SLF) for their weather forecast activities or avalanche warning.

Detailed comments:

P2L17: I would be careful to talk about very high spatial resolution monitoring. Only the regions 
close by the camera are highs spatial resolution (0.1 – 2 m). Further away it gets much coarser. 
Maybe you can define what you understand by very high spatio-temporal scales.



Thank you for pointing this out, we will clarify this in the text. As an example regarding the spatial 
resolution, a pixel of a comparably low resolution webcam image (640×480 pixels) imaging an 
area at 30km distance to the camera has a projected pixel size of less than 20m. This is 
comparable to e.g., Sentinel-2, thus we consider this high resolution. Moreover, since we know the 
distance to the camera on a per-pixel basis, we can even exclude areas that are too far away, 
which limits the worst case spatial resolution as desired. Regarding temporal resolution, most 
webcams record at least one image per hour, which we consider high temporal resolution. We will 
consistently replace the term ‘very high’ with ‘high’ in the text.

P2L19: You could be a bit more precise here, when there is fog there will be no information. What 
types of clouds will still be OK as also the contrast will be lowered by high clouds. I see the big 
benefit of the method for the evaluation of satellite products not only for complementation maybe 
you can add that.

We agree that our statement here is indistinct and we try to clarify hereby. As long as cloud cover 
and fog are above the mountain silhouette and therewith do not disturb the view on the ground, 
webcam images can potentially provide snow cover information. However, depending on the snow 
classification technique, reduced contrast due to overcast weather degrades classification 
accuracy. We think that more robust snow classification techniques can still be able to reliably 
classify snow under such conditions, and we consider investigating this in future work.

P3Fig1: Please be careful about the publication of swisstopo data. Do you have all necessary 
rights? If so you should have a specific contract number from swisstopo which allows you to 
publish it.

Thank you for pointing this out. We have the necessary rights and will recheck the correct 
indication of source.

P3L13: Only 57% of all cameras fulfill your conditions. Could you please explain a bit more here 
why? Are there options to increase that ratio?

We agree that this is not clearly stated in the text. Up to now, we estimated the locations of 297 
webcams and the number constantly increases. It is not that only those cameras fulfill our 
conditions, and we will explain this point clearer. For instance, for the webcams provided by 
kaikowetter.ch, about 70% of the cameras satisfy our conditions. The other 30% either do not 
feature  mountain silhouettes or the silhouettes are partially occluded by trees or buildings. Due to
the nature of our method, such cameras cannot be used. We will provide this information in the 
revised version of the manuscript.

P4L6: The current resolution of swissimage is now 10 cm in the lowlands and 25 cm in the Alps

Thank you for pointing this out, we will correct this within the revision.

P5L7: How do you estimate the accuracy of the location estimation?

We did not measure the ground truth location for our webcams, therefore a direct evaluation of the
estimated location is not possible. However, by leveraging the orthophoto SWISSIMAGE and prior 
knowledge about the approximate webcam location (for instance, mounted on a specific wall of a 
building), we could roughly estimate the accuracy. We will include these details in the revised text.

P9L22: why do cameras change their orientation? How often does that happen? Please explain



Most webcams are exposed to wind and therefore occasional tiny camera movements occur. 
Moreover, for few webcams major movements can occur due to human interaction, intentionally or
unintentionally. While small movements due to the first reason occur frequently, the second case 
is rare, at most monthly. We will add this to the text.

P11L32: How are “bad images” detected and eliminated? Is it done manually? If yes, would there 
be options to automatically detect “bad images”. This is an important point as there will be many 
images that should be removed in long timelines. I would like to see some more details on this 
point.

We remove “bad images” manually. Automatic snow/cloud distinction is still an unsolved problem, 
hence automatic detection of unusable images is difficult. Other automatic approaches based on 
temporal smoothing limit the temporal resolution, which we want to avoid. However, we consider 
investigating automatic techniques for future work. We will discuss this in the revised text.

P12Fig9: Here you choose a fully snow-covered scene as example. In my opinion it would be of 
much more interest for the readers to see this demonstration on a partially snow covered scene. 
Could you change that?

We will replace the example in Fig. 9.

P14L10: Here you state that the best accuracy is close to the mountain ridge. But these are the 
regions with low spatial resolution. How accurate are the other points (see my main point N°2).

As mentioned above (answer to main point N°2), the uncertainty indeed increases with increasing 
distance to the camera. However, as mentioned this uncertainty is still much lower than the 
difference in the estimated residuals, therefore the overall statement still holds.

P14L14: here you state “residuals generally decrease with the distance to the webcam”. From my 
understanding they should increase in that direction as it is much more difficult to find and set 
GCP’s far away on lower resolution imagery. Please clarify.

By leveraging the DEM, GCPs on the mountain ridge can actually be set quite accurately (modulo 
the distance dependent uncertainty discussed above). As promised in the answer to main point 
N°2, we will explain this much clearer in the text.

P16L24: Please explain a bit more what RANSAC is and how you apply it.

A detailed description of the RANSAC algorithm is provided within the methods section (Sect. 3.3, 
page 11).
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Interactive comment on “Towards a webcam-based 
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evaluation” by Céline Portenier et al.

Céline Portenier et al.

A.N. Arslan (Referee)

We thank A. N. Arslan for his valuable and constructive comments that were helpful to improve 
the manuscript.

Below we respond to all comments by A. N. Arslan. The responses (normal font style) are 
following the referees’ comments (displayed in italic font style) directly.

General comments:

The tc-2019-142 manuscript, entitled,” Towards a webcam-based snow cover monitoring 
network: methodology and evaluation” presents a semi-automatic approach procedure to derive 
snow cover maps. The semi-automatic approach procedure is consist of (1) automatic image to 
image alignment and (2) automatic image to DEM registration which are the contributions of the 
manuscript. In addition a snow classification method (two existing methods in literature 
presented) and a manual user input (for estimation webcam’s location) are needed for estimating
snow cover from a webcam image.

The purpose of the work is clearly articulated and the methodology and results are adequately 
presented.

Specific Comments:

There are following issues which I believe need more discussions such as

(1) webcam-based snow cover monitoring network

(2) Arbitrary images to generate snow cover maps

(3) Most of existing studies use single cameras and thus are limited in areal coverage. In 
particular, they either require known camera parameters (i.e., extrinsic and intrinsic camera 
parameters such as the camera orientation or the FOV of the camera) or require significant 
manual user input (e.g., ground control points (GCPs)) to georectify terrestrial photography

(4) Since camera parameters are not readily available for public webcams, and manually setting 
GCPs for a large number of cameras is time-consuming, these methods are of limited application 
for our purposes.

(1) webcam-based snow cover monitoring: This is very good concept. It is very good to explain 
this concept in more detail and how the proposed methodology can be applied and what current 
status of existing webcam networks is. What should be done apart from improving snow 
classification methods mentioned in the manuscript?

Thank you for pointing this out. We agree to add more details about the possible applications of 
using webcam images for snow cover monitoring. We will extend the discussion on possible 
applications and improvements of our methodology.



(2) I am not sure about arbitrary images as one should know the location of camera. May be this 
is a bit misleading?

We agree that this is a bit overstated. We will remove the word ‘arbitrary’ in the revision of the 
manuscript, and mention that the location must be estimateable. 

(3) It is not clear for me what differences are! In the proposed procedure in the manuscript one 
has to create “master image” How more easy and accurate is creating master image than 
procedures in the existing studies?

Selecting a single Master image per webcam is straightforward, the only assumption is that the 
daytime and weather conditions are such that the mountain silhouette is clearly visible. In 
contrast, having access to intrinsic and extrinsic camera parameters, or measuring these 
parameters using GCPs is infeasible for a reasonably large-scale camera network. Since our 
method computes these parameters using only the Master image and camera position estimation 
as input, it is feasible to compile a large-scale camera network with our approach. However, it is 
true that the accuracy of our image-to-DEM mapping is expected to be lower compared to 
approaches where ground truth camera parameters are available. We will discuss this in the 
revised text.

(4) How about camera locations? How do one get locations of webcams which are need as input 
in the proposed manuscript? As the objective is “towards webcam-based snow cover monitoring” 
why not setting GCPs for time-consuming. The creating an accurate master image is an essential 
part of the proposed work in the manuscript.How time consuming is creating a good master 
image? What is applicability of creating master image in various environment as silhouette 
extraction is based on the assumption that the mountain silhouette in the manuscript. How about
open and forested areas isn’t it big limitations of the method towards webcam-based snow cover 
monitoring network? That’s why all should be explained!

We manually estimate webcam locations by considering the position of objects visible in the 
webcam image, the orthophoto SWISSIMAGE, and additional information provided by the 
webcam owner. This can be, for example, the name of a restaurant (Section 3.1). It is correct that
webcams cannot be used by our approach if they do not feature mountain silhouettes due to open
or forested areas, or where the silhouette is partially occluded by trees or buildings. We will 
discuss this in the revised version of the manuscript.

There is an evaluation on the accuracy of the automatic image-to-DEM registration. There is no 
an evaluation of the proposed procedure, entitled, “a semi-automatic approach procedure”.

We agree that the main focus of our evaluation lies on the automatic image-to-DEM registration, 
which we consider our main contribution. We did not explicitly evaluate parts of our pipeline that 
we adopted. However, we provide a qualitative comparison of the leveraged snow classification 
techniques.

As it is mentioned at the end of the discussion in the manuscript “our webcam snow cover maps 
facilitate the gap filling of partly cloud-obscured satellite-based snow cover maps or improve 
snow classification in steep terrain or shadow-affected image scenes.” It would be good to see 
some evaluation of the proposed procedure supporting this statement.

We agree that it is an important further step to apply our proposed framework to perform such 
evaluations. However, this would be out of scope for the current work and we consider this as 
future work. We will mention this in the discussion section.



Technical Corrections:

In Figure 11: It is good to explain colors like red and blue; which one is Salvotori et.al method 
and etc.

Thank you for pointing this out. We will describe the color coding in the figure caption.
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Abstract. Snow cover variability has a significant impact on climate and environment and is of great socio-economic im-

portance for the European Alps. Terrestrial photography offers a high potential to monitor snow cover variability, but its

application is often limited to the small catchment scale
::::
small

:::::::::
catchment

:::::
scales. Here, we present a semi-automatic procedure

to derive snow cover maps from arbitrary webcam images. We use freely
:::::::
publicly available webcam images of

:
in
:

the Swiss

Alps and propose a procedure for the georectification and snow classification of such images. In order to avoid the effort5

of manually setting ground control points (GCPs) for each webcam, we implement a new
::::
novel

:
registration approach that

automatically resolves camera parameters (camera orientation, principal point, field of view (FOV)) by using an estimate of

the webcamsposition
:
’
::::::::
positions and a high-resolution digital elevation model (DEM). Furthermore,

::
we

:::::::
propose

::
an

:::::::::
automatic

:::::::::::::
image-to-image

::::::::
alignment

::
to
::::::
correct

:::::
small

:::::::
changes

:::
in

::::::
camera

:::::::::
orientation

::::
and

:::::::
compare

:::
and

:::::::
analyze

:
two recent snow classifi-

cation methodsare compared and analyzed. The resulting snow cover maps have the same spatial resolution as the DEM and10

indicate whether a grid cell
::::
DEM

::::
grid

:
is snow-covered, snow-free, or not visible from webcams’ positions. GCPs were

:::
are

used to evaluate our novel automatic image registration approach. The evaluation reveals in a root mean square error (RMSE)

of 14.1 m for standard lens webcams (FOV < 48◦) and a RMSE of 36.3 m for wide-angle lens webcams (FOV ≥ 48◦).
::
In

:::::::
addition,

:::
we

::::::
discuss

:::::::::
projection

::::::::::
uncertainties

::::::
caused

:::
by

:::
the

:::::::
mapping

::
of

:::
low

:::::::::
resolution

:::::::
webcam

::::::
images

::::
onto

:::
the

:::::::::::::
high-resolution

:::::
DEM.

:
Overall, our results highlight the potential of our method to built

::::
build

:
up a webcam-based snow cover monitoring15

network.

1 Introduction

Snow is an essential natural ressource
::::::
resource. Because snow has a much higher albedo compared to other natural land surfaces,

its areal extent plays an important role in the Earth’s energy balance. In alpine regions, snow plays a key role in the hydrologic

cycle. It acts as water storage and accounts for a substantial proportion
::::::
portion

:
of the total runoff. Information about spatial20

and temporal snow distribution is therefore essential for monitoring water ressources
:::::::
resources

:
and predicting runoff (Jonas

et al., 2009), and it is of crucial importance for water supply and hydropower production. In addition, seasonal snow cover not

only plays an important role for the development of ecosystems but has a high economic value for winter tourism as well.

1



Most commonly used methods to monitor snow cover variability are based on in situ measurements and satellite remote

sensing. In situ measurements, e.g., from ground-based monitoring networks, provide accurate and long time series of local

snow sites and can be used, for example, for long-term trend analyses (e.g., Laternser and Schneebeli, 2003; Marty, 2008;

Klein et al., 2016). These measurements, however, might not capture the spatial variability of snow cover. In contrast to in situ

measurements, remote sensing data can provide spatially comprehensive information on snow cover extent. In particular,
:
opti-5

cal remote sensing is widely used to study snow cover variability (e.g., Foppa and Seiz, 2012; Hüsler et al., 2012; Metsämäki

et al., 2012; Wunderle et al., 2016). The main limiting factor of optical remote sensing techniques is cloud coverage. According

to Dumont and Gascoin (2016), the yearly average of pixels hidden by clouds is about 50% for
::
in the Pyrenees and 60% in the

Austrian Alps. Large
::
In

:::::::
addition,

:::::
large uncertainties exist in shadowed or forested areas. Moreover, the sensor resolution (e.g.,

250 m or 1.1 km resolution of the MODIS and AVHRR sensor respectively) may limit the capture of small-scale variability10

of snow cover, especially in complex, mountainous terrain. The emergence of new techniques based on airborne digital pho-

togrammetry and terrestrial photography enables to extract snow cover information with high spatial and temporal resolutions.

Unmanned areal systems (UAS) enable the generation of high-resolution digital surface models that can be used to map the

small scale variability of snow depth (e.g., Bühler et al., 2016; De Michele et al., 2016). However, UAS are often associated

with high costs and its spatial coverage and temporal resolution is limited. In addition, weather constraints due to strong winds15

or precipitation can restrict the use of UAS, especially at high elevations.

In this work, we suggest the use of publicly available webcam images and present a semi-automatic procedure to generate

snow cover maps from such images. This work builds on and extends the Master’s thesis by Dizerens (2015). We focus on

the Swiss Alps, where several thousands of public outdoor webcams are readily available online, resulting in a relatively

dense sampling to study snow cover variability over a large area. Webcams are a cost-effective and efficient way to monitor20

snow cover variability in mountainous regions at very high spatio-temporal scales, and
:
.
::::
Most

::::::::
webcams

::::
offer

:::::::
images

:::::
within

::
a

:::::::::
one-hourly

::
to

:::::::::
10-minute

:::::::
interval.

:::
The

::::::
spatial

::::::::
resolution

:::::::
depends

:::
on

:::
the

:::::
image

:::::::::
resolution,

::
a

::::::::
webcam’s

::::
field

::
of

:::::
view

::::::
(FOV),

:::
the

:::::::
distance

::
of

:::
the

:::::
terrain

::
to

:::
the

::::::::
webcam,

::
as

::::
well

::
as

:::
the

:::::
slope

:::
and

:::::::::
orientation

::
of

:::
the

::::::
terrain

::::
(see

::::
Sect.

:
5
:::
for

:::
an

:::::::
in-depth

::::::::::
discussion).

::::::::
Webcams may offer detailed analyses of snow cover on steep slopes due to their oblique view on the mountains. Moreover,

webcams can provide snow cover information even under cloudy weather conditions , and therefore,
::
as

::::
long

::
as

:::::
cloud

::::
cover

::::
and25

:::
fog

::
do

:::
not

:::::::
disturb

:::
the

::::
view

:::
on

:::
the

::::::
ground.

:::::::::
Therefore,

:::::::::
webcams offer an unique potential for complementing

:
to

:::::::::::
complement

:::
and

:::::::
evaluate

:
satellite-derived snow information. The areal coverage, however, depends on the number of cameras used, their

field of view (FOV)
::::
FOV, and their positioning in the field.

::
In

:::::::
addition,

::::::
public

::::::::
webcams

::::::
provide

::::::
images

::
in

:::
the

::::::
visible

::::::::
spectrum

::::
only

:::
and

::::
with

::::::::
varying

:::::
image

::::::
quality,

::::::
which

:::::
makes

:::
an

:::::::
accurate

:::::::::::
classification

::
of

:::::
snow

:::::
cover

::::::::::
challenging.

Terrestrial photography is an increasingly used observation method in different research disciplines such as glaciology (e.g.,30

Corripio, 2004; Dumont et al., 2011; Huss et al., 2013; Messerli and Grinsted, 2015) and snow cover studies (e.g., Schmidt

et al., 2009; Farinotti et al., 2010; Härer et al., 2013; Pimentel et al., 2014; Härer et al., 2016; Liu et al., 2015; Fedorov et al.,

2016; Revuelto et al., 2016; Arslan et al., 2017; Millet et al., 2018). However, most of these studies use single cameras and

thus are limited in areal coverage. In particular, they either require known camera parameters (i.e., extrinsic and intrinsic

camera parameters such as the camera orientation or the FOV of the camera) or require significant manual user input (e.g.,35

2



ground control points (GCPs)) to georectify terrestrial photography. Since camera parameters are not readily available for

public webcams, and manually setting GCPs for a large number of cameras is time-consuming, these methods are of limited

application for our purposes. Therefore, we implement a processing scheme that minimizes manual user input by automation.

Our georectification approach registers a webcam image with a digital elevation model (DEM). This image-to-DEM reg-

istration automatically resolves the required webcam parameters, such as the camera’s orientation and its FOV by using an5

estimate of the webcams
::::::::
webcam’s

:
position only. Combined with existing snow classification approaches and our

::
In

::::::::
literature,

:::::
many

::::::::
different

::::
snow

::::::::::::
classification

:::::::::
techniques

::::
exist

::
to
::::::

detect
:::::
snow

:::::
cover

::
in

::::::::
terrestrial

:::::::
camera

:::::::
images.

:::::
Some

::::::
studies

::::::::
determine

:::
the

:::::
snow

:::::::
covered

::::
area

:::::
using

:::::::
manual

:::::::::::
interpretation

::::::::::::::::::::::::::::::::
(Farinotti et al., 2010; Liu et al., 2015)

::
or

:::
by

::::::::
manually

:::::::
selecting

::::::::::
appropriate

:::::::
threshold

::::::
values

:::
for

::::
each

:::::
single

:::::
image

::::::::::::::::::
(Schmidt et al., 2009)

::
or

:::
for

:
a
:::
set

::
of

::::::
images

::::::::::::::::::::
(Floyd and Weiler, 2008)

:
.
::
On

:::
the

:::::
other

::::
hand,

:::::
many

::::::::
automatic

::::::::::
approaches

:::::
exists

::
as

::::
well,

::::
such

::
as

:::::::
methods

::::::::
applying

:::::
image

::::::::
clustering

:::::::::
techniques

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Pimentel et al., 2014; Millet et al., 2018; Rüfenacht et al., 2014)10

:
,
::::
other

::::::::
statistical

:::::::
methods

:::::::::::::::::::::::::::::::::::::
(e.g. Salvatori et al., 2011; Härer et al., 2016),

::
or

:::::
using

:::::::::
supervised

:::::::
learning

::::::::
classifiers

::::::::::::::::::
(Fedorov et al., 2016)

::
to

:::::::::
distinguish

::::
snow

:::::
from

::::::::
snow-free

:::::
areas.

::::
The

::::
main

::::::::
challenge

::
of

:::::
these

:::::::
methods

::
is

::
to

:::::
detect

::::
snow

:::::
cover

::
in

:::::::::
shadowing

:::::
areas

::
or

::
to

::::::::::
differentiate

:::::::
between

::::
dark,

:::::::::
shadowed

::::
snow

::::
pixel

::::
and

::::
other

::::::
canopy

:::::
pixels

::::
such

:::
as

:::::
bright

::::
rock

:::::::
surfaces

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rüfenacht et al., 2014; Härer et al., 2016; Arslan et al., 2017; Manninen and Jääskeläinen, 2018)

:
.
:::
The

:::::
study

::
of

::::::::::::::::
(Härer et al., 2016)

:::::
takles

:::
the

:::::::
problem

::
of

:::::::::
undetected

::::
snow

:::::
cover

::
in

:::::::::
shadowing

:::::::
regions.

::::
They

:::::::
propose

::
to

:::::
apply

:::
the

:::
blue

:::::
band

:::::::::::
classification

::
by

::::::::::::::::::
Salvatori et al. (2011)

:::
and

:::::::::::
subsequently

:::
use

::::::::
principal

:::::::::
component

:::::::
analysis

::::::
(PCA)

::
to

:::::::
separate

::::::
shaded15

::::
snow

:::::
cover

:::::
from

:::::
sunlit

::::
rock

::::::::
surfaces.

::::::::
Recently,

::::::::::::::::::
Fedorov et al. (2016)

:::::::
propose

::
to

::::
train

::::::::
machine

:::::::
learning

:::::::
models

::
to

:::::::
classify

::::
snow

:::::
cover

::
in

:::::::::
terrestrial

::::::
camera

:::::::
images.

:::::
While

::::::::::::::::::
Fedorov et al. (2016)

:::::
report

:::::::
superior

:::::::::::
performance

::
to

::::::::::
handcrafted

:::::::
methods

:::
on

:::
data

::::
that

::
is

:::::::::
sufficiently

::::::
similar

::
to
:::
the

:::::::
training

::::
data,

:::::
such

::::::
models

:::
do

:::
not

::::::::
generalize

::::
well

::
to
::::
data

::::
that

:::::::
deviates

::::::::::
significantly

:::::
from

::
the

:::::::
training

::::
data.

:::::::::
Moreover,

::::::::
acquiring

::::
data

:::::::
suitable

::
for

:::::::
training

::::
such

:::::::
models

:
is
:::::::::
expensive,

:::::
since

:
it
:::::::
requires

::
to

:::::
label

::::
every

::::::
single

::::
pixel

::
in

::
a

::
set

:::
of

:::::::
training

::::::
images

::
by

:::::
hand.

:::
In

:::
this

:::::
study,

:::
we

::::
test

:::
and

::::::::
compare

:::
the

:::::
snow

:::::::::::
classification

:::::::::
approaches

::::::::
proposed

:::
by20

::::::::::::::::::
Salvatori et al. (2011)

:::
and

::::::::::::::::
Härer et al. (2016)

:::::
within

:::
our

:::::::::
framework.

:::::::::
Combined

::::
with

:::
an automatic image-to-image alignment ,

this
::
to

::::::
correct

:::::
small

:::::::
changes

::
in

:::
the

::::::
camera

::::::::::
orientation,

:::
our

:
procedure can be applied to arbitrary

:::::::
webcam

:
images to generate

snow cover maps with a minimal effort. To assess the accuracy of our automatic snow cover mapping, we analyze and evaluate

the components of the processing chain with a focus on automatic image-to-DEM registration, where manually selected GCPs

are used to analyze the mapping error.25

This work is organized as follows: in Section
::::
Sect. 2, the webcam data, DEM, and orthophoto used in this work are de-

scribed. In Section
:::
Sect.

:
3, we present the proposed methods of our procedure. Qualitative examples of snow cover maps and

a comparison of the applied snow classification methods are shown in Section
::::
Sect. 4, followed by a detailed evaluation of the

mapping accuracy in Section
::::
Sect.

:
5. Finally, we discuss the advantages and limitations of our procedure (Section

::::
Sect.

:
6),

before concluding in Section
:::
Sect.

:
7.30
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Figure 1. Locations of 297 webcams (red points) in the Swiss Alps. Background data: SWISSIMAGE and swissALTI3Dby swisstopo
:
,

:::::
source:

:::::
Swiss

::::::
Federal

:::::
Office

::
of

:::::::::
Topography.

2 Data

2.1 Webcam images

The website www.kaikowetter.ch offers a network of about 520 outdoor webcams observing the current snow conditions in

and around Switzerland. Most of these webcams were installed by mountain railway operators, restaurants, hotels, and private

citizens. They offer images within a one-hourly to 10-minute interval. Since November 2011, we are archiving one image per5

day of each webcam from this website and extend our archive continuously with webcam images from other web-sources. For

this study, we select
:::
To

::::
apply

::::
our

::::::::
procedure

::
to

::
a

::::
given

::::::::
webcam,

::::
two

::::::::::
requirements

:::::
have

::
to

::
be

:::::::
fulfilled:

:::
the

::::::::
mountain

:::::::::
silhouette

:::
has

::
to

::
be

::::::
visible

::
on

:::
the

:::::::
webcam

::::::
image,

::::
i.e.,

:
it
::
is

:::
not

::::::::
obscured

::
by

::::
trees

::
or

:::::::::
buildings.

:::::
About

::::
70%

::
of
:::
all

:::
the

::::::::
webcams

:::::::
provided

:::
by

::::::::::::
kaikowetter.ch

:::::
satisfy

::::
this

::::::::::
requirement.

::::
The

:::::
other

::::::::::::
approximately

::::
30%

:::
can

:::
not

:::
be

::::
used

:::
due

::
to

::::::::
obstacles

:::::::
between

::::::::
silhouette

::::
and

:::::::
webcams

:::
or

::::
since

:::
no

::::::::
mountain

::::::::
silhouette

::
is
::::::
visible

::
at

:::
all.

::
In
::::::::

addition,
:::
the

:::::::
location

::
of

::
a
:::::::
webcam

:::
has

::
to
:::
be

::::::
known.

:::
Up

::
to
:::::
now,10

::
we

::::
have

::::::::
manually

::::::::
estimated

:::
the

::::::::
locations

::
of

:
297 webcams located in the Swiss Alps

::::
(see

:::
Fig.

:::
1).

::::
They

:::
are

::::::
located

:
at elevations

ranging from 800 m to 3900 m a.s.l..
::::
The

::::
pixel

:::::::::
resolution

::
of

:::::
these

:::::::
webcam

::::::
images

::::::
ranges

:::::
from

::::::::
640×480

::
up

:::
to

::::::::::
1920×1080

:::::
pixels (see Fig. 1). All these webcams fulfill one main condition: the mountain silhouette is visible on the webcam image, i.e.,

it is not obscured by trees or buildings.
::
2).
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Figure 2.
:::::
Image

::::
pixel

:::::::
resolution

::
of
:::
the

::::::
selected

::::::::
webcams.

Image-to-DEM
registration
Section 3.2

Input images

Transformation
matrix

Image-to-image
alignment
Section 3.3

Snow classification
Section 3.4

SNOW COVER
MAPS

WEBCAM DEM

Preprocessing
Section 3.1

Master Image(s)

Image mask

Webcam location

Figure 3. Overview of the proposed procedure. It consists of four major steps: preprocessing, automatic image-to-DEM registration, auto-

matic image-to-image alignment, and automatic snow classification. Image-to-DEM registration results in a transformation matrix that is

used to project the snow-classified pixels onto a map.

2.2 Swiss geodata

We use the swissALTI3D DEM and the orthophoto SWISSIMAGE, produced by the Swiss Federal Office of Topography

(swisstopo, 2013a, b). The DEM covers Switzerland and Liechtenstein and has a spatial resolution of 2 m. It was created

using airborne laser scanning data (below 2000 m a.s.l.) or stereocorrelation of areal photographs (above 2000 m a.s.l.) and

features an accuracy of 0.5 m and 1 to 3 m on average, respectively. The orthophoto SWISSIMAGE is composed of digital5

aerial orthophotographs of Switzerland, featuring a spatial resolution of 0.25
:::
0.1

:
m in the Swiss Lowlands and 0.5

:::
0.25

:
m in

the Swiss Alps.
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3 Methods

The proposed procedure consists of four major steps: preprocessing, automatic image-to-DEM registration, automatic image-

to-image alignment, and automatic snow classification (see Fig. 3 for an overview). In the preprocessing step (Sect. 3.1),

manual user input is required to estimate the webcam’s location, to select a representative image for image-to-DEM registration

(hereafter referred as Master Image), and to provide an image mask. Second, the selected Master Image is automatically5

registered with the DEM to derive the unknown camera parameters, such as orientation and FOV of the webcam (Sect. 3.2).

Successful image-to-DEM registration results in a transformation matrix that relates each pixel of the Master Image to its 3D

coordinates. Since an image series of a webcam is usually not perfectly aligned, we automatically align images to the selected

Master Image (Sect. 3.3). This enables the use of the same transformation matrix for all webcam images. Finally, each image is

automatically snow-classified (Sect. 3.4). Using the transformation matrix, a georeferenced snow cover map can be generated.10

3.1 Preprocessing

First, a webcam’s location and its installation height above ground has to be
:
is

:
estimated manually. This is achieved by consid-

ering the position of objects visible in the webcam image, the orthophoto SWISSIMAGE, and additional information provided

by the webcam owner .
:::
(e.g.

:::
the

:::::
name

:::
of

:
a
:::::::::
restaurant

:::::
where

:::
the

::::::::
webcam

::
is

::::::::
mounted).

:
In some cases, touristic photographs

and images from Google Street View help to improve the location estimation. Up to now
::
As

:::::::::
mentioned

:::
in

::::
Sect.

::
2, we have15

estimated the locations of 297 webcams (see Fig. 1)with an estimated accuracy of about 5m.
:
. Next, at least one Master Image

per webcam is selected. This image has to be representative for all other images of the same webcam, and should feature

high contrast between the mountains and the sky for automatic image-to-DEM registration.
:::::
Under

:::::
clear

:::
sky

:::::::::
conditions,

:::::
most

:::::::
webcam

::::::
images

:::
are

:::::
suited

::
to
:::::
serve

::
as

::::::
Master

:::::::
Image. Finally, a

:::::::
so-called

:::::
input

:
mask can be prepared to define image regions

that should be ignored in the snow map generation procedure. Such regions can be trees, buildings, or other fixed infrastructure,20

and are defined on the Master Image.

3.2 Automatic image-to-DEM registration

The registration of an image with a DEM requires a common feature space. As in the study of Baboud et al. (2011) and Fedorov

et al. (2016), we make use of mountain silhouettes, which are among the most salient structural features in mountainous natural

environments. Gaussian filtering and Sobel edge detection are applied to the Master Image to reduce noise and extract the25

structural features from the images. Next, the mountain silhouette is automatically detected from the edge image (see Fig. 4).

Our silhouette extraction is based on the assumption that the mountain silhouette is the uppermost edge line that spans the full

width of the image. It starts at the top left pixel in the edge image and looks for the first edge pixel in the first column. Once a

pixel is found, the algorithm iteratively searches in a 7× 7 pixel neighborhood for other edge pixels until a continuous line is

found that spans the full width of the image. If no such edge line is found, the algorithm starts again at the next edge pixel in30

the first column of the image.

6



(a)

(b)

(c)

(d)

Figure 4. Examples
::::
Three

:::::::
examples

:
of automatic silhouette extraction. (a) Webcam images, (b) extracted edges using Sobel edge detection,

(c) detected mountain silhouettes, and (d) mountain silhouettes (red) superimposed on grayscale webcam images.

Figure 5. Sample rendering of a digital elevation model (DEM) using a pinhole camera model.

To derive the unknown camera parameters, the extracted mountain silhouette is registered with mountain silhouettes ex-

tracted from virtually rendered DEM images. These DEM images are generated by projecting the DEM point cloud from its

world coordinate system via a camera coordinate system to an image coordinate system (see Fig. 5 and 6) by using a pinhole

camera model. To reduce the computational complexity, only DEM points that are visible from the point of view of the web-

cam are considered. For this purpose, the viewshed generation module of the Photo Rectification And ClassificaTIon SoftwarE5

(PRACTISE V.1.0; Härer et al., 2013) is used to generate a 360◦ visibility map from the point of view of the webcam. The

7
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Figure 6. World, camera, and image coordinate systems and its transformations using camera matrix C, perspective projection matrix P,

and viewport matrix D.

projected DEM points p′ of the virtual DEM image are computed by multiplying the visible DEM points p by the inverse of a

camera matrix C, a perspective projection matrix P, and a viewport matrix D:

p′ =DPC−1p. (1)

The camera matrix C transforms from camera coordinates to world coordinates and is defined by extrinsic camera parame-

ters, i.e., the camera’s location and orientation with respect to the known world reference frame. It is given by5

C=

xc yc zc cop

0 0 0 1

 , (2)

where cop is the camera’s location and xc, yc, and zc are the three vectors of the camera coordinate system that define

its orientation, i.e., the roll, pitch, and yaw angle. The perspective projection matrix P transforms objects into canonic view

volume (i.e. a cube) so that the image points are normalized view coordinates in the range [−1,1]× [−1,1]× [−1,1]. It is

defined by intrinsic camera parameters and is given by10

P=


1

a·tan(FOV/2) 0 0 0

0 1
tan(FOV/2) 0 0

0 0 near+far
near−far

2·near·far
near−far

0 0 −1 0

 , (3)
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where a is the image aspect ratio and near and far are the distances to a near and a far plane that limit the infinite viewing

volume. To finally transform to pixel coordinates (xim,yim) ∈ [xo...x1]× [y0...y1], the viewport matrix, given by

D=


(x1−x0)/2 0 0 (x0−x1)/2

0 (y1− y0)/2 0 (y0− y1)/2
0 0 1/2 1/2

0 0 0 1

 (4)

has to be
::
is applied. It scales the projected pixels to a certain image size and translates them so

::::
such that the origin of the image

coordinate system is at the upper left corner. Since we use homogeneous coordinates, we apply perspective division to obtain5

pixel coordinates. Using this camera model, virtual DEM images can be generated by sampling the unknown parameters (i.e.,

the three orientation vectors xc, yc, and zc of the camera and the FOV).

To estimate the ground truth camera parameters, we propose a silhouette matching procedure. Similar to before, the mountain

silhouettes are extracted from the rendered DEM images using the method described above. Given two silhouettes, i.e., the

Master Image silhouette and a silhouette extracted from a sampled DEM rendering, we define a score function based on 2D10

cross-correlation to quantify how well the two silhouettes match:

score= α ·w1 +(1−α) ·w2 , (5)

where w1 is the normalized maximum response of cross-correlation, and w2 is the normalized image space offset defined by

the distance between the pixel location of the maximum response and the image center. The final score is the weighted sum

using a user-defined parameter α. To estimate the camera parameters, we seek for the parameters that maximize this score.15

To efficiently search for the best matching silhouette pair, silhouette matching is performed on multiple scales k. On each

scale, the algorithm rotates the camera coordinate system horizontally and vertically (see Fig. 7) and searches for the highest

score. On scale i, the estimated parameters of scale i− 1 are used as initialization and
:::
the

::::::
camera

:::::::::
coordinate

::::::
system is rotated

nx-times around the z-coordinate of the world coordinate system and ny-times around the x-axis of the camera coordinate

system. On scale k = 0, the parameters are initialized randomly. The horizontal and vertical rotation steps are called strides sx20

and sy respectively. On scale k = 0, we set an initial stride of sx = 360◦/nx (with nx = 20) and sy = 90◦/ny (with ny = 12).

For all scales k > 0, the horizontal and vertical strides are recursively defined by

sxi
=

3sxi−1

nx
and syi

=
3syi−1

ny
. (6)

To approximate the roll angle of the camera, we additionally rotate the x-coordinate of the camera matrix on each scalem= 5

times around the viewing direction once the image space offset w2 is smaller than 10 pixels. An initial stride of sm = 3◦/m is25

set and decreased each scale by

smk
=

3smk−1

m
. (7)
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Figure 7. Viewing directions (blue points) of a camera (asterisk) during image-to-DEM registration. The green dots indicate the viewing

directions with the best score, and the orange dots indicate the best viewing directions of the previous scale. An example is shown for vertical

and horizontal rotations from scale k = 0 to k = 3.

Instead of estimating the FOV manually, our procedure can also optimize the FOV of the webcam by first iterating the

horizontal FOV of 30◦ by 5◦ to a FOV of 90◦ in scale k = 0. The best matching silhouette pair defines the initial FOV estimate.

Once the image space offset w2 is smaller than 20 pixels, the FOV can be estimated more accurately by evaluating different

FOVs at each iteration: the FOV is iterated at each viewing direction f = 5 times around the initial FOV with an initial stride

sFOV = 2◦, decreasing each scale by5

sfk =
3sfk−1

f
. (8)

The weighting parameter α (Eq. 5) is a function of scale k. On scale k = 0, we set α= 1, such that the final score is mainly

determined by the maximum response of cross-correlation w1. The normalized image space offset w2 is ignored, since it would

mainly correspond to an offset of a wrongly matched silhouette pair. w2 becomes important for scales k > 0, once the viewing

direction estimate is reasonably accurate. The smaller the distance of the maximum response to the image center, the better the10

two silhouettes match. Therefore, α is set to a low value (0.1). Once the roll angle and FOV is resolved, both measures, w1 and

w2, are set equally (α= 0.5), since both the smallest offset and the highest response value have to be estimated.

To find the best score efficiently, the virtual DEM images are rendered with a lower resolution in the first scales. Starting

with a width of w = worig/8 and height of h= horig/8 in scale k = 0, the width and height are doubled until the original

image size is reached in scale k = 3. Experiments have shown that image-to-DEM registration requires around 12 scales until15

the best matching silhouette pair with an image space offset of 0 is found. This best matching sihouette
:::::::
silhouette

:
pair results

in a transformation matrix that relates each pixel of the Master Image to its real 3D coordinates.

10



Master Image Input image

Figure 8. SIFT features of a Master Image and an input image and corresponding matches between all features. To simplify the illustration,

we show a subset of 100 randomly selected SIFT features per image.

3.3 Automatic image-to-image alignment

::::
Most

::::::::
webcams

:::
are

:::::::
exposed

::
to
:::::

wind
::::
that

::::
may

::::
lead

::
to

:::::
small

:::::::
changes

::
in

:::
the

::::::
camera

::::::::::
orientation.

:::::::::
Moreover,

:::
for

:
a
::::
few

::::::::
webcams

:::::
major

::::::::
variations

::
in

::::::::::
orientation

:::
can

:::::
occur

::::
due

::
to

::::::
human

::::::::::
interaction,

::::::::::
intentionally

:::
or

:::::::::::::
unintentionally.

:::::
While

:::::
small

::::::::::
orientation

::::::
changes

::::
may

:::::
occur

:::::
every

::::
day,

:::
we

::::::
observe

::::::
major

::::::
camera

:::::::::
movements

::::::
rarely,

::
at

::::
most

::::::::
monthly. Because image-to-DEM registra-

tion is computationally expensive and mountain silhouettes cannot be detected on each webcam image due to cloud cover or5

low contrast conditions, each webcam image is automatically aligned to its Master Image by solving for a homography H. A

homography is a projective transformation between two images with the same camera position but different orientation and is

used to relate the two images so that they can be aligned.

We use the Scale Invariant Feature Transform (SIFT; Lowe, 2004) to detect structural features in a webcam image and its

corresponding Master Image. It transforms an image into a collection of local feature vectors that consist of a SIFT keypoint10

(image location) and a SIFT descriptor that is highly distinctive and invariant to illumination, position, and scale. After the

feature detection, the features are matched across the two images (see Fig. 8). The similarity between two feature vectors is

given by their Euclidean distance. Since the number of potential matching features can be quite large, we approximate this

distance using an algorithm called Best-Bin-First (see Lowe, 2004). We use the SIFT implementation from the open source

library VLFeat (Vedaldi and Fulkerson, 2010).15

A homography H is a 3× 3 matrix. Since scale is arbitrary, H has eight unknown parameters. Therefore, at least four point

correspondances
:::::::::::::
correspondences

:
(x/y image coordinates) are needed to solve for H. Since not all matched pairs are correct,

the homography is estimated using the best matching feature points. For this purpose, we use the robust fitting model RANdom

SAmple Consensus (RANSAC; Fischler and Bolles, 1981). RANSAC randomly selects four pairs of corresponding points

to calculate the homography, transforms all points from one image to the other using the found homography, and searches20
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Master Image Input image

Aligned input image

Figure 9. Example of an arbitrary input image that is aligned to a corresponding Master Image. The mountain silhouette extracted from the

Master Image is shown in red.

for the solution that has the best agreement with all remaining matching pairs. This best agreement is found by calculating

the mapping error between each transformed SIFT point of an input image and its corresponding SIFT point of the Master

Image. To eliminate the bias towards any particular set of points, the best matching image-to-image alignment is achieved

by recalculating the homography using all features with a small mapping error of the best homography found by RANSAC.

Figure 9 shows an example of an image that is aligned to a corresponding Master Image.5

3.4 Automatic snow classification

We perform experiments using two recent snow classification methods. The first

:::
We

:::::::
perform

::::
snow

:::::::::::
classification

:::::::::::
experiments

:::::
using

:::
the

:::::::
methods

::::::::
proposed

:::
by

::::::::::::::::::
Salvatori et al. (2011)

:::
and

:::::::::::::::
Härer et al. (2016)

:
.

:::
The

:
method by Salvatori et al. (2011) analyses the blue band

:::::
digital

::::::
number

:
frequency histogram to set a snow threshold . This

threshold is
::::
DNb.

:::::
First,

:::
the

::::::::
frequency

:::::::::
histogram

::
is

::::::::
smoothed

:::::
using

:
a
::::::
moving

:::::::
average

:::::::
window

::
of

::
5.

::::
The

::::
snow

::::::::
threshold

::
is

::::
then10

automatically selected at the histogram’s first local minimum above
::
or

:::::
equal

::
to

:
the intensity value 127. If no local minimum

is found, the snow threshold is set to the value 127. All pixel values equal or higher than this threshold value are classified as

snow, whereas lower values are classified as snow-free.

12



Input mask

Sky mask

Salvatori et al. (2011) Härer et al. (2016)

Input image

(a)

(b)

(c)

Figure 10. Example of a webcam image that is masked for subsequent snow classification using an input mask and a sky mask derived from

the extracted mountain silhouette
::
(a). Snow classification is applied using the methods by Salvatori et al. (2011) and Härer et al. (2016).

Detected snow is shown
::
(b)

:
in white in the binary output image (black: no snow or masked out) and a

::
(c)

::
as transparent green layer on the

original webcam image (white transparent layer: masked region).

The second method is a snow classification routine included in PRACTISE V.2.1 (Härer et al., 2016). Since the method

by Salvatori et al. (2011) works only
:::
only

::::::
works reasonably well for non-shadowing areas (Härer et al., 2016; Arslan et al.,

2017), this routine additionally detects snow in the shaded regions of an image. After applying the
::
As

::
a

:::
first

::::
step,

:::
the

:::::::
method

::
of

:::::::::::::::
Härer et al. (2016)

::::::
applies

:::
the blue-band classification proposed by Salvatori et al. (2011)

:
.
::
In

:
a
::::::
second

::::
step, Härer et al. (2016)

refine snow classification using principal component analysis (PCA )
::::
PCA

:
for separating shaded snow cover from sunlit5

rock surfaces. We refer to Härer et al. (2016) for more details.
:::::::::::
Standardized

:::::
RGB

:::::
values

::
in

:::::
PCA

:::::
space

:::
(PC

:::::
score

:::::::
matrix)

:::
are

::::::::
calculated

:::
by

:::::::::
multiplying

:::
the

:::::::::::
standardized

:::::
RGB

:::::
values

::::::
(mean

::
of

:
0
::::
and

:::::::
standard

::::::::
deviation

::
of

::
1)

::::
with

:::
the

::::::::
Principal

::::::::::
Component

::::
(PC)

:::::::::
coefficient

:::::
matrix

:::::::::
(calculated

:::::
using

:::::::
singular

:::::
value

:::::::::::::
decomposition).

:::
The

:::
PC

:::::
score

:::::
matrix

::
is
::::::::::
normalized

::
by

::::::
scaling

::
its

::::::
values

:::::::
between

:
0
::::
and

::
1.

::::
The

:::
first

:::
PC

::::::::
explains

:::
the

:::::
largest

::::::::
variance

::
in

:::
the

::::
data,

:::
but

:::
its

:::::::::
frequency

::::::::
histogram

::
is

:::::::::
essentially

::::::::
identical

::
to

::
the

:::::
blue

::::
band

:::::::::
frequency

:::::::::
histogram.

:::::::::
Therefore,

::::::::::::::::
Härer et al. (2016)

:::
use

:::
the

::::::::
frequency

::::::::::
histograms

::
of

:::
the

:::::::
second

:::
and

:::::
third

:::
PC10

:::::
(PC2:::

and
::::::
PC3)

:::
for

:::::::::
separating

::::::
shaded

::::
snow

:::::
cover

:::::
from

::::
other

::::::::
surfaces.

:::
The

::::::
pixels

:::
are

:::::::
classified

:::
as

::::
snow

::
if
:::
the

::::::::
following

::::
two

13



::::::::
conditions

:::
are

::::::::
fulfilled:

PC3 < PC2 and DNb ≥DNh ≥ 63 .
::::::::::::::::::::::::::::::::::

(9)

::::
DNh::

is
::
an

:::::::::
additional

::::::::
condition

::
to

::::::
exclude

::::
very

::::
dark

::::
pixel

::::::
values

::
in

:::
the

:::
blue

:::::
band

::::::
channel

::::::
(values

:::::
< 63)

:::::
since

::::::::::::::::
Härer et al. (2016)

::::::::
identified

::::
them

::
as

:::::
prone

::
to

::::
snow

:::::::::::::::
misclassification.

::::::::
Moreover,

:::::::::
blue-band

:::::
values

::::
with

:
a
::::::
higher

:::::
value

:::
than

:::::
DNb:::

are
:::
not

:::::::::
considered

:::::
either

::::
since

::::
they

:::::
have

::::
been

:::::::
already

::::::::
identified

::
as

:::::
snow

:::::
cover

:::
by

:::
the

:::::::::
blue-band

:::::::::::
classification

::
in

:::
the

::::
first

::::
step.

:::
As

::
a
::::
third

::::
and5

:::::
fourth

::::
step,

:::
the

:::::::
method

::::::::::
additionally

::::::::
identifies

:::::
sunny

:::::
rocks

::::
and

::::::::
calculates

:::::
snow

:::::::::
probability

::::::
values

:::
for

::
all

:::
the

::::::
pixels

:::
that

:::::
were

:::
not

:::::::
classified

:::
as

::::
snow

::
in
:::
the

::::
first

::::
three

:::::
steps.

:

:::
We

:::::
apply

:::
this

:::::
snow

:::::::::::
classification

:::
by

:::::::::
classifying

:::
all

::::::
pixels

:::::::
detected

::
in

:::
the

::::
first

::::
and

::::::
second

::::
step

::
as

::::::
’snow’

::::
and

:::::::::
remaining

::::
pixel

::::::
values

::
as

:::
’no

::::::
snow’.

::
A

::::
snow

:::::::::::
classification

:::::::
example

::
is
::::::
shown

::
in

::::
Fig.

:::
10. The snow classification takes as input a webcam

imageand the corresponding image ,
:::
the

::::::::::::
corresponding

:::::
input mask described in Section 3.1. Additionally,

::::
Sect.

::::
3.1,

:::
and

:
a
::::
sky10

::::
mask

::::::
where all sky pixels are automatically masked out using the mountain silhouette extracted from the Master Image . An

example of snow classification is shown in
::::
(see

:::
Fig.

:::
10

::::
(a)).

:::
The

:::::::
detected

:::::
snow

:::::
pixels

:::
by

:::
the

::::::
method

::
of

:::::::::::::::::::
Salvatori et al. (2011)

:::
and

::::::::::::::::
Härer et al. (2016)

::
are

::::::
shown

::
in

:::::
white

:
(Fig. 10.

:::
(b))

:::
and

:::
as

:::::
green

:::::::::
transparent

::::
layer

:::::
(Fig.

::
10

::::
(c)).

:

4 Snow cover maps

The transformation matrix found for each Master Image is used to project the snow-classified pixelsonto a georeferenced map.15

The resulting
:::::::
generate

::
a
:::::::
look-up

::::
table

::::
that

::::::
relates

:::
all

::::::
visible

:::::
DEM

::::
grid

::::
cells

::
to

:::
the

:::::::::
associated

::::::
image

:::::
pixel.

:::
For

:::::
each

:::::
DEM

:::
grid

::::
cell

::
in

::::
this

:::::::
look-up

:::::
table,

:::
the

:::::::::
associated

:::::::::::
classification

:::::
result

::::
(i.e.

::::::
’snow’

::
or

::::
’no

:::::
snow’

::
of
::::

the
::::::::
classified

:::::::
webcam

::::::
image

:::::
pixels)

::
is
:::
set,

::::::
which

::::::
results

::
in

:
a snow cover map has the same resolutionas the DEM

::
of

:
2
::
m
::::::
spatial

:::::::::
resolution. Figure 11 shows

two webcam images in the region of the Metschalp on 6 March and 5 May 2015
::::
three

:::::::
webcam

:::::::
images and resulting snow

cover maps .
:
in
:::
the

:::
(a)

:::::
Lenk,

:::
(b)

:::::::::::
Urnerboden,

:::
and

:::
(c)

:::::::::
Furkapass

:::::::
regions. These maps indicate for each grid cell whether it is20

snow-covered, snow-free, or not visible from webcam’s position.

Our procedure facilitates snow cover analyses using arbitrary terrestrial images
:::::
public

:::::::::
webcams,

::
as

::::
long

::
as

:::::::
location

:::
of

:::
the

::::::
camera

:::
can

:::
be

::::::::
estimated

:::
and

::
a
::::::::
mountain

::::::::
silhouette

::
is

::::::
visible

::
in

:::
the

::::::
image. Figure 12 reveals the percentage of snow covered

area on a mountain hill in the Furkapass region from 14 April to 28 August 2015 and three example images with applied

classifications. Webcam images containing fog or adverse cloud cover that impede the view were
::
on

:::
the

:::::
terrain

:::::
were

::::::::
manually25

removed before processing. The differences caused by the two classification methods are discussed in Sect. 6.

5 Evaluation

In this section, we present an evaluation of our automatic image-to-DEM registration. We
:
In

:::::
total,

:::
we apply image-to-DEM

registration on 50 Master Images
:::::::
webcams. Our silhouette extraction technique sucessfully

:::::::::
successfully

:
detects all 50 silhou-

ettes. For 5
:::
five webcams, automatic image-to-DEM registration fails to find the appropriate orientation of the camera. This30

failure is either caused by heavy lens distortions of the camera system or due to several excerpts of similar looking mountain

14
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Figure 11. Example webcam images and resulting snow cover maps of three webcams in the (a) Lenk, (b) Urnerboden, and (c) Furkapass

region
:::::
regions.

::::
Snow

::
is

:::::::
classified

::::
using

:::
the

::::::
method

:::::::
proposed

::
by

:::::::::::::::::
Salvatori et al. (2011).

:
The

::::
white

::::::::
transparent

:::::
layer

::
on

:::
the

::::::
webcam

::::::
images

::::
shows

:::
the

::::::
masked

::::::
regions.

:::
The

:
grayscale values of the snow cover maps shows

:::
show

:
the elevation values of the area that is not visible from

the webcam’s location.
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Figure 12. Percentage of snow covered area on a mountain hill in the Furkapass region from 14 April to 28 August 2015 using the snow

classification proposed by Salvatori et al. (2011)
::::
(blue

::::
line) and Härer et al. (2016)

:::
(red

::::
line).
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Figure 13.
:::::::
Example

::
of

:::::::
projected

::::
pixel

:::::::
resolution

:::
for

:
a
:::::::
webcam

:
at
:::::::::
Metschalp.

silhouettes that lead to a wrong orientation estimate on scale k = 0.
::
In

::::
this

::::::
section

:::
we

:::::::
evaluate

:::
the

::::::::
precision

::
of

:::
the

::::::::
mapping

:::::::
between

:::::::
webcam

:::::
image

:::::
pixel

::::::::::
coordinates

:::
and

:::::
DEM

::::::::::
coordinates,

::::::
which

::
we

::::
call

:::::::
mapping

::::::::
accuracy.

::::
This

::::::::
accuracy

:::::::
depends

:::
on

::
(1)

:::::::::::
uncertainties

::::::
caused

::
by

:::
the

:::::::::
projection

::
of

:::
low

:::::::::
resolution

:::::::
webcam

::::::
images

::
on

:
a
:::::::::::::
high-resolution

:::::
DEM

:::::::::
(projection

:::::::::::
uncertainty),

:::
and

:::
(2)

:::
the

:::::
ability

::
of

:::
the

::::::::::
registration

::::::::
approach

::
to

:::
find

:::
the

::::::
correct

:::::::::
silhouette

:::
pair

:::::::::::
(registration

::::::::
accuracy).

:

5.1
::::::::
Projection

:::::::::::
Uncertainty5
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:::::::::
Depending

::
on

::::
the

:::::::
distance

::
of

:::
the

::::::
terrain

::
to
::::

the
:::::::
webcam,

::::
the

::::
slope

::::
and

::::::
aspect

::
of

:::
the

:::::::
terrain,

:::
the

:::::::
webcam

::::::
image

:::::::::
resolution,

:::
and

::
its

:::::
FOV,

:::
an

:::::
image

:::::
pixel

::
is

:::::::
mapped

::::
onto

:::
one

::
or

:::::::
several

:::::
DEM

:::
grid

:::::
cells.

:::::::::
Therefore,

::::::
image

:::::
pixels

:::
are

:::::
either

:::::::::
upsampled

:::
or

:::::::::::
downsampled

::
to

:::
the

::::::
DEM’s

:::::
pixel

::::::::
resolution

:::::
(2m).

:::
An

::::::::::::
approximation

::
of

:::
the

::::::::
projected

::::::
image

::::
pixel

::::::::
resolution

::::
can

::
be

:::::::::
calculated

::
as

:::
root

:::
of

::
the

:::::::
number

::
of

:::::
DEM

:::::
grids

::
an

:::::
image

:::::
pixel

::
is

:::::::
mapped

::
on

:::::
times

:::
the

::::::::
resolution

:::
of

:::
the

::::
DEM

::::
(i.e.

::
2

:::
m),

::::::::
assuming

:::
that

:::
an

:::::
image

::::
pixel

::
is
:::::::
mapped

::::
onto

::
a
:::::::::
rectangular

::::::
region

::
of

:::::
DEM

:::::
grids.

::::::
Figure

:::
13

:::::
shows

:::
the

::::::::::::
approximated

::::::::
projected

::::
pixel

:::::::::
resolution5

::
of

::
an

:::::::
example

:::::::
webcam

::::::
image

::
at

:::::::::
Metschalp.

::::
The

:::::::
webcam

:::::
image

::::
has

::
an

:::::
image

:::::::::
resolution

::
of

:::
640

:::
×

:::
480

:::::
pixels

::::
and

:
a
:::::::::
horizontal

::::
FOV

::
of

::::
47◦.

:::
In

:::::::
general,

:::
the

::::::::
projected

:::::
pixel

::::::::
resolution

:::::
close

:::
to

:::
the

:::::::
webcam

::
is

::::
high

::::
and

::::::::
decreases

:::::
with

::::::::
increasing

::::::::
distance

::
to

:::
the

:::::::
webcam

:::::::
position.

:::::::::
Moreover,

:::
the

::::::::
projected

:::::
pixel

:::::::::
resolution

:::::::
depends

::
on

::::
the

:::::::::
orientation

::
of

:::
the

:::::
slope

::::
with

::::::
respect

:::
to

:::
the

::::::
viewing

:::::::::
direction.

::
It

::
is

::::
high

:::
for

::::::
slopes

:::::::::
orthogonal

::
to

:::
the

:::::::
viewing

::::::::
direction

::::
and

:::
low

:::
at

::::::
grazing

::::::
angles

::::
near

::::::::::
silhouettes.

::::
The

::::
mean

::::::::
projected

:::::
pixel

::::::::
resolution

::::::
found

::
for

:::
45

::::::::
webcams

::
is

:::
4.5

::
m

::::
with

:
a
::::::::

standard
::::::::
deviation

::
of

:::
4.4

:::
m.

:
If
:::::
only

:::::
DEM

::::
grids

::::::
within10

:
a
:::::::
distance

::
of
:::

20
:::
km

:::
to

:::
the

:::::::
webcam

:::
are

::::::::::
considered,

:::
the

:::::
mean

::::::::
projected

:::::
pixel

:::::::::
resolution

::::::::
increases

::
to

:::
2.9

::
m
:::::

with
:
a
::::::::
standard

:::::::
deviation

:::
of

:::
1.5

::
m.

:

5.2
::::::::::

Registration
::::::::
accuracy

To evaluate the accuracy of our automatic image-to-DEM registration, we select 20 webcams that comprise different areal

extents and lens characteristics. Depending on the presence of structural image content, we manually select 5 to 15 GCPs per15

webcam using the SWISSIMAGE orthophoto. For 142 GCPs in total, we calculate
:::::::
compute

::::::
relative

:::::
pixel

:::::
errors

::::::
(image

:::::
space

::::::::
distances)

:::
and

:
the root mean square error (RMSE) of the distance between the real and projected GCPs and its relative pixel

error in image space (percentage of image width/height) (see Table
:
in
::::::

world
::::::::::
coordinates

:::
(see

:::::
Table

:
1). We find a significant

difference in the mapping accuracy between webcams equipped with standard lenses
::::::::::
differentiate

:::::::
between

::::::::
standard

::::
lens

:::::::
webcams

:
(FOV < 48◦) and wide-angle lenses

:::
lens

::::::::
webcams

:
(FOV≥ 48◦). Our evaluation reveals an overall RMSE of 23.7 m,20

with a RMSE of 14.1 m for standard lens webcams and 36.3 m for wide-angle lens webcams
::::
The

::::::
relative

:::::
pixel

:::::
error

::
is

::::::::
calculated

:::
as

:::
the

:::::::
distance

:::::::
between

::::
the

::::
pixel

:::::::::
coordinate

:::
of

:
a
:::::

GCP
::::
and

::
its

:::::
pixel

:::::::::
coordinate

::::::::
predicted

:::
by

:::
the

:::::::::::::
transformation

::::::
matrix.

:::
We

:::::
report

::::
this

:::::::
distance

:::
as

:::::::::
percentage

::
of

::::::
image

::::::::
diagonal.

::
It

::
is

:
a
::::::::
measure

::
to

::::::::
calculate

:::
the

:::::::
accuracy

:::
of

:::
our

:::::::::
automatic

::::::::::::
image-to-DEM

:::::::::::
registration.

::::::
Results

:::::
show

::::
that

:::
the

:::::::
relative

::::
pixel

:::::
error

::
is

::::::
higher

:::
for

:::::
GCPs

:::
of

:::::::::
wide-angle

::::::::
webcams

:::::
than

:::
for

:::::
GCPs

::
of

:::::::
standard

::::
lens

::::::::
webcams

::::
(1%

::::
and

::::::
0.61%,

:::::::::::
respectively). This difference is mainly caused by lens distortions, which25

increase with a larger FOV and therewith lead to a discrepancy of the silhouette matching, mainly at the outer part of the im-

ages. This discrepancy is even more prominent when considering the relative pixel error by comparing GCPs at the mountain

silhouette, GCPs that are close to the image border (the outer 25% of the total image width/height), and the remaining GCPs

in the center region of the image (see Fig. 14). The
:::::
GCPs

::
at

:::
the

::::::::
silhouette

:::::::
indicate

::::
how

::::
well

:::
the

:::::::::::::
image-to-DEM

::::::::::
registration

:::::::
matches

:::
the

:::
two

::::::::::
silhouettes.

::::
The

::::::
further

::::
away

::::::
GCPs

:::
are

::::
from

:::
the

::::::::
silhouette

::::
and

:::
the

::::::
central

::::
part

::
of

:::
the

::::::
image,

:::
the

:::::
more

::::
they30

::
are

:::::::
affected

:::
by

:::
the

::::::
camera

:::::
model

:::::
used

::
for

:::::::::::::
image-to-DEM

::::::::::
registration.

:::::::::
Therefore,

:::::
GCPs

:::::
close

::
to

:::
the

:::::
image

::::::
border

:::
are

:::::::
affected

::
the

:::::
most

:::
by

::::::
effects

::
of

::::
lens

:::::::::
distortions.

::::
The

:
relative pixel error is notably higher for GCPs at the border of the images than

the remaining GCPs, especially for wide-angle lens webcams. Not suprisingly
::::::::::
surprisingly, smallest errors are found for GCPs

17



Table 1. Projection error of ground control points (GCPs) in standard lens (FOV < 48◦) and wide-angle lens (FOV ≥ 48◦) webcam images.

#cams #GCPs GCP

RMSE [m]

Minimum

residual [m]

Maximum

residual [m]

σ RMSE [m] Relative pixel

error [%]

All GCPs 20 142 23.70 2.00 98.48 17.06 0.74

GCPs standard lenses 14 96 14.10 2.00 34.97 8.67 0.61

GCPs wide-angle lenses 6 46 36.31 2.03 98.48 23.63 1.00
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Figure 14. Relative pixel error of ground control points (GCPs) of standard and wide-angle lens webcams. Results are grouped in GCPs

located at the mountain silhouette, the center region of the image, and the border region of the image (the outer 25 % of the total image width

and height).

located at the mountain silhouette, since this silhouette is used for image-to-DEM registration. This indicates the effectiveness

of our proposed silhouette-based image-to-DEM registration.

:::
The

::::
root

:::::
mean

::::::
square

::::
error

:::::::
(RMSE)

::
of
:::

the
::::::::

distance
:::::::
between

:::
the

:::
real

::::
and

::::::::
projected

:::::
GCPs

::
in

:::::
world

::::::::::
coordinates

::
is

::::::
shown

::
in

::::
Table

:::
1.

:::
We

::::
find

::::
again

::
a
:::::::::
significant

:::::::::
difference

::
in

:::
the

::::::::::
registration

:::::::
accuracy

::::::::
between

::::::::
webcams

::::::::
equipped

::::
with

:::::::
standard

::::::
lenses

:::
and

:::::::::
wide-angle

::::::
lenses.

:::::::::::
Registration

:::::::
accuracy

:::::::
reveals

::
an

::::::
overall

::::::
RMSE

:::
of

::::
23.7

::
m,

::::
with

::
a
::::::
RMSE

::
of

::::
14.1

:::
m

:::
for

:::::::
standard

::::
lens5

:::::::
webcams

::::
and

::::
36.3

::
m

:::
for

:::::::::
wide-angle

::::
lens

::::::::
webcams.

:::
We

::::::::
calculate

::
the

:::::
GCP

::::
error

:::::::
distance

::
in

:::::
world

::::::::::
coordinates

::
by

:::::::::
projecting

:::
the

::::::::
registered

:::::
pixels

::::
onto

:
a
::::
map

:::::
using

:::
the

::::::::::::
transformation

::::::
matrix.

:
In Fig. 15, box plots of the distance error

::::
error

::::::::
distances between

the real and projected GCPs are shown for standard and wide-angle lens webcams. Results are grouped into three categories

of GCPs within 0–2 km, 2–6 km, and 6–30 km distance to the webcam.
::::
Since

::
it

:
is
:::::
more

:::::::
difficult

::
to

:::
set

:::::
GCPs

::
in

:::
low

:::::::::
resolution

:::::::
webcam

::::::
images,

:::
we

:::
use

:::::
large

::::::::
structural

::::::
features

::::
such

:::
as

::::::::
mountain

:::::
peaks

::
to

::
set

:::::
GCPs

:::
far

:::::
away

::::
from

:::
the

::::::::
webcams.

::::
This

:::::::
ensures10

:::
that

:::
we

:::
can

:::::
select

:::
the

::::::::::
appropriate

:::::
pixel

:::::
where

:::
the

:::::
given

::::
GCP

::
is
:::::::
actually

:::::::
located.

:::
We

:::
use

:::
the

:::::::::::::
transformation

:::::
matrix

:::
to

::::::
project

:::
this

::::
pixel

::
to

:::::
world

::::::::::
coordinates

::::
and,

::::
thus,

:::
we

::::::
assume

::::
that

:::
this

::::
GCP

::
is

::::::
located

::
in

:::
the

:::::
center

::
of

:::
the

:::::
pixel.

::::::::
However,

:::
we

::::
have

::
to

::::
take

:::
into

:::::::
account

:::
that

::::
this

:
is
::::
not

:::::::::
necessarily

:::
the

:::
real

:::::::
position

::
of

:::
the

:::::
GCP

:::::
within

:::
the

::::::
image

::::
pixel.

:::
As

::::::
shown

::
in

::::
Sect.

::::
5.1,

::::
pixel

::::::
values

::
are

:::::::
mapped

::::
onto

::
a
::::::
certain

::::
area

::
on

::
a
::::
map.

:::::::::
Therefore,

:::
we

::::::::
calculate

:::
the

:::::::::
projection

:::::::::
uncertainty

:::
of

:
a
:::::
GCP

::
as

::
±

:::
the

:::::
radius

:::
of

:::
the

::::::::
bounding

::::::
volume

::
of

:::
the

:::::
DEM

::::
grids

:::::
where

:::
the

:::::::
selected

:::::
image

:::::
pixel

:
is
::::::::
projected

:::
on.

:::
We

:::
use

:::
the

::::::
median

::
to

:::::::
quantify

:::
the

:::::::::
projection15
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Figure 15. Distance error of the real and projected ground control points (GCPs) for standard and wide-angle lens webcams. Results are

grouped in GCPs within 0–2 km, 2–6 km, and 6–30 km distance to the webcam.
:::::
Median

::::::::
projection

::::::::::
uncertainties

::
are

:::::
shown

::
as

:::
red

:::::::
numbers

::
on

:::
top

:
of
:::

the
:::::
figure.

:::::::::
uncertainty

::
of

::
a

:::::
group

::
of

::::::
GCPs.

::::::
Median

:::::::::
projection

:::::::::::
uncertainties

:::
are

:::::
shown

::
as

:::
red

::::::::
numbers

::
on

:::
top

:::
of

:::
Fig.

:::
15.

:
It can be clearly

seen that the largest residuals
::::
error

::::::::
distances are caused by GCPs of wide-angle lens webcams that are located close to the

webcam (0–2 km) and that the residuals generally decrease with the distance to the webcam
:::::
errors

:::
are

::::::::
generally

:::::
lower

::::::
further

::::
away

:::::
from

:::
the

::::::::
webcams. For standard lens webcams, there is no considerable difference in the distance error

::::
error

:::::::
distance

between GPCs within 0–2 kmand
:
, 2–6 km

:
,
:::
and

::::
6–30

:::
km

:
distance to the webcam. For

::::
Even

::::::
though

::::::::
projection

:::::::::::
uncertainties

:::
are5

:::::
higher

:::
for

:::::
GCPs

:::::::
located

::::::
further

::::
away

:::::
from

:::
the

::::::::
webcams,

:::
for

:
both, standard lens and wide-angle lens webcams, the distance

error
:::::::
mapping

::::::::
accuracy

:
of GCPs that are more than 6 km away from the webcam is rather low (mean error distance

::::::::
distances

of 8.6 m and 10.2
::
m

::::
with

:::::::::::
uncertainties

::
of

::::
±6.4

::
m

::::
and

::::
±4.6

:
m, respectively) as most of these GCPs are located at the mountain

silhouette, which is used for image-to-DEM registration.
::
is

::::::::::
comparable

::
to

:::
the

:::::::
mapping

::::::::
accuracy

:::::
found

:::
for

:::::
GCPs

::::::
within

::::
0–6

:::
km

:::::::
distance

::
of

::::::
normal

::::
lens

::::::::
webcams

:::
and

:::::
GCPs

::::::
within

:::
2–6

:::
km

:::::::
distance

:::
of

:::::::::
wide-angle

::::
lens

::::::::
webcams.

:
10

6 Discussion

The performance of our automatic image-to-DEM registration procedure is promising. With marginal manual user input, we

can transform an arbitrary
::::::::
transform

::
a webcam image into a georeferenced map. With an overall RMSE of about 23.7 m, our

method is precise enough to validate or complement satellite-derived snow cover maps and offers snow cover analyses with a

high spatio-temporal resolution over a large area.
:::::::
However,

:::::::::
projection

::::::::::
uncertainties

:::::
have

::
to

::
be

:::::
taken

:::
into

:::::::
account

::
as

::::
well

:::::
since15

:::
they

::::
may

::::::
highly

:::::
differ

:::::::::
depending

::
on

:::
the

:::::::
selected

::::::::
webcam.

:::
We

::::::
expect

:
a
:::::
lower

:::::::::::
performance

::
of

:::
our

:::::::::::::
image-to-DEM

::::::::::
registration

::::::::
compared

::
to

:::::::::
approaches

::::::
where

::::::
camera

:::::::::
parameters

:::
are

:::::::
available

::
or

:::::
GCPs

:::
are

::::
used

::
to

:::::
align

::
an

:::::
image

::
to

::
a

:::::
DEM.

::::::::
However,

::::::
having

:::::
access

::
to

:::::::
intrinsic

::::
and

:::::::
extrinsic

:::::::
camera

:::::::::
parameters,

:::
or

:::::::::
measuring

::::
these

::::::::::
parameters

:::::
using

:::::
GCPs

::
is

::::::::
infeasible

:::
for

:
a
::::::::::

reasonably

:::::::::
large-scale

::::::
camera

::::::::
network. The large differences of RMSE between standard lens webcams and wide-angle lens webcams

suggest a further improvement of our camera model to account for lens distortions. Given the large amount of webcams, we20

can also exclude webcams equipped with wide-angle lenses from analyses to notably reduce mapping errors (RMSE of 14.1 m
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found for 14 webcams equipped with standard lenses, see Table 1). Another solution is to use only the central part of an image

if the FOV of the webcam is higher than a certain threshold.

Our method relies on a precise estimation of the webcam location. Especially when a decreasing slope is visible in the near

field of the webcam, significant mapping errors may occur. For example, a too low
:::::
lower

:
estimate of the installation height

may cause a pixel in 10 m distance to be mapped onto the counter slope 2 km away. Therefore, we recommend to mask out5

regions that are on the same slope as the webcam itself or areas close to edges with huge depth differences.
::::
Since

:::
we

::::
did

:::
not

:::::::
measure

:::
the

::::::
ground

:::::
truth

:::::::
location

::
of

:::
the

:::::::
selected

:::::::::
webcams,

:
a
:::::
direct

:::::::::
evaluation

::
of
::::

the
::::::::
estimated

:::::::
location

::::::::
accuracy

::
is

:::
not

:::::::
possible.

::::::::
However,

:::
we

:::::::
roughly

::::::::
estimate

::
an

::::::::
accuracy

:::
of

:::::
about

::
5

::
m

:::
by

:::::::::
leveraging

:::
the

:::::::::
orthophoto

:::::::::::::
SWISSIMAGE

::::
and

:::::
prior

:::::::::
knowledge

:::::
about

:::
the

::::::::::
approximate

:::::::
webcam

:::::::
location

::::
(for

:::::::
instance,

::::::::
mounted

::
on

::
a

::::::
specific

::::
wall

::
of

::
a
::::::::
building).

:

In general, we propose to mask out regions that are close to the webcam to avoid large mapping errors as shown in Figure 1510

for webcams with wide-angle lenses. These large mapping errors may be caused by an imprecise location estimation. However,

this effect was not observed for standard lens webcams. Hence, the large mapping errors close to the webcam can be attributed

to the fact that close GCPs are generally more often located at the outer part of the image where lens distortions increase.

In addition, areas closer to a webcam may generally have larger uncertainties
:
a
::::::
larger

:::::::
mapping

:::::
error as only the mountain

silhouette is used for the image-to-DEM registration. Therefore, we can conclude that the mapping error is smaller the closer15

::::
these

:::::
areas

:::
are

:::::::::::
additionally

:::::::
affected

:::
by

:::
the

:::::::
selected

:::::::
camera

:::::
model

:::::
used

:::
for

:::::::::::::
image-to-DEM

::::::::::
registration.

::::::::::::
Additionally,

:::
we

::::::
propose

::
to
:::::::
exclude

::::::
regions

::::
that

:::
are

:::
far

::::
away

:::::
from

:::
the

:::::::
webcam

::::
(i.e.

::
>

::
15

::
or

:::
20

::::
km)

::
to

::::
avoid

:::::
large

:::::::::
projection

::::::::::
uncertainties

::::
and

::
to

:::::
ensure

::
a

::::
high

:::::
spatial

:::::::::
resolution.

:::::::::
Moreover,

::
it

:::
has

::
to

::
be

:::::
taken

:::
into

:::::::
account

::::
that

::::::::
projection

:::::::::::
uncertainties

::::
may

:::::::
strongly

:::::::
increase

:
if
:::
the

:::::
slope

::::
and

::::::
aspect

::
of

:::
the

:::::
DEM

::::
grid

:::::
with

::::::
respect

::
to

::::
the

:::::::
viewing

:::::::
direction

:::
is

::::
high.

::::
For

:::::
single

::::::
image

::::::
pixels,

:::::::::
projection

:::::::::
uncertainty

:::
can

:::
be

::::::::
extremely

::::
high

::
if

:::
the

::::
pixel

::
is

::::::
mapped

::::
onto

:::::::
several

::::::::::
non-adjacent

:::::
DEM

:::::
grids

::::
(e.g.

:
if
:
a pixel is to the mountain20

silhouette
:::::::
projected

::::
onto

:::::
DEM

:::::
grids

::
on

::
a

:::
hill

::
or

::::
peak

::
as

::::
well

::
as
:::
on

:::
the

:::::
DEM

::::
grids

::::::
behind

:::
the

:::
hill

:::
on

:::
the

::::::
counter

::::::
slope).

For most webcams, an intentional, significant change in its orientation occurs only occasionally and therefore, a landscape

can be analyzed over a long time period in the case of an available image archive. Our image-to-image alignment enables

to precisely correct small changes in orientation of webcam images and works generally well for images with similar image

content. Alignment artifacts from e.g. logos in the image are eliminated by using RANSAC. Since some errors may occur if25

the image content differs too much, we propose not to align snowy winter images to snow-free images scenes and vice versa.

The snow classification method proposed by Salvatori et al. (2011) is frequently used and discussed in recent studies. Many

of these studies emphasize the problem of misclassifications
:::::::::::::
misclassification

:
due to snow in shadowing regions (e.g. Härer

et al., 2016; Arslan et al., 2017; Salzano et al., 2019). We have observed the same issue, especially for winter scenes with a low

solar zenith angle. The comparison with the snow classification method proposed by Härer et al. (2016) reveals a similar pattern30

for all the processed webcams. :
:
The method by Salvatori et al. (2011) is underestimating snow cover, mainly in shadowing

areas (see Fig. 12 for an example). For snowy winter scenes, the PCA method by Härer et al. (2016) performs excellent
::::
very

:::
well

:
and is able to correctly classify snow cover in shadowing areas. However, once less than about 50% of snow is present in

an image, the method overestimates snow cover and classifies rock, trees or grass as snow (see Fig. 12). This is often observed

when no shaded snow cover is present or in the case of strong illumination conditions. As shadows from structural terrain35
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become less in spring, the method of Salvatori et al. (2011) often only weakly underestimates the snow cover. For rare cases of

very low illumination conditions, both methods fail to correctly classify snow.

Currently
:
In

::::
our

:::::::::
framework, we use a combination of both methods to get the best possible snow classification result. How-

ever, there is a need for an improved snow classification method. This method should be able to classify snow under varying

illumination conditions and ideally can distinguish between snow and clouds or fog.5

The differentiation between snow, clouds, and fog currently remains an unsolved problem for RGB images. Even though

webcams are often located below the cloud cover, low clouds and fog in front of the landscape have to be removed manually
:::
are

:::::::
manually

::::::::
removed to not falsify snow classification. Whereas fog can be automatically detected for cases where it is covering

::::::
Images

:::::::::
containing

:::
fog

:::
and

::::::
clouds

::
on

:
a substantial part of the image

::::
could

:::
be

:::::::::::
automatically

:::::::
removed

:::
by

:::::::::
comparing

:::
the

:::::
edges

::
of

:
a
:::::
cloud

:::
free

::::::
image

::::
with

:::::
edges

::
of

:
a
:::::::::
potentially

:::::
cloud

:::::::
covered

:::::
image.

::::::::
However, clouds and fog that impede the view on a smaller10

part of the landscape are difficult to distinguish from snow.
:
A
:::::::
possible

:::::::
method

::
to

:::::::
remove

::::
such

:::::
cloud

:::::
cover

::
is,

:::
for

::::::::
example,

::
to

::::::::
aggregate

::
all

:::
the

::::::
images

::::::::
collected

::
by

::
a

:::::::
webcam

::
in

:
a
:::
day

::
as
::::::::
proposed

:::
by

:::::::::::::::::
Fedorov et al. (2016).

:::::::::
However,

::
the

::::::::::
aggregated

::::::
images

:::
may

:::::
loose

:::::::
contrast

::::
and

::::::
contain

::::::
mixed

::::
pixel

:::::::::::
information,

:::::
which

::
in

::::
turn

::::
will

:::::
affect

::::
snow

::::::::::::
classification.

:::::::::
Moreover,

::::::::::
long-lasting

:::::
cloudy

:::::::::
conditions

::::
may

::::::
remain

::::::::::
undetected

::
by

:::
this

::::::::
approach

::::
and

:::
the

::::::::::
aggregation

:::
will

:::::
lower

:::
the

::::::::
temporal

:::::::::
resolution.

:::::::::
Therefore,

::
we

::::::::
consider

::
to

:::::::::
investigate

:::::
cloud

:::
and

:::
fog

::::::::
detection

::
in

:::::::
webcam

::::::
images

:::
for

::::::
future

:::::
work.15

Since our approach
::::::::::::
image-to-DEM

::::::::::
registration requires a visible mountain silhouette, it is not suited for webcams that

observe flat areas. Moreover, there are geographical limitations since webcams might not be installed in very remote areas.

Generally, a large-scale coverage of a region might be only possible in developed countries
:::::::
countries

::::
with

::
a
:::::::::::::
well-developed

:::::::::::
infrastructure. Nevertheless, the high number of freely available webcams

:::::::::
worldwide

:::::::::
combined

::::
with

::::
our

:::::::::::::
semi-automatic

::::::::
procedure

:
offers a unique potential for complementing

::
to

::::::::::
complement

::::
and

:::::::
evaluate

:
satellite-derived snow cover informa-20

tion. For example, our webcam snow cover maps facilitate the gapfilling
:::
may

::::::::
facilitate

:::
the

:::::::::
gap-filling of partly cloud-obscured

satellite-based snow cover maps or improve snow classification in steep terrain or shadow-affected image scenes.

7 Conclusions

We present a semi-automatic procedure to derive snow cover maps from freely available webcam images in the Swiss Alps.

Our registration approach automatically estimates webcams’ parameters, which allows to relate pixels of a webcam image to25

their real-world coordinates. Additionally, we use a method for automatic image-to-image alignment and compare two recent

snow classification methods. A detailed evaluation of the automatic georectification is carried out and reveals in a RMSE of

23.7 m, with a RMSE of 14.1
:
m for webcams equipped with standard lenses and 36.3

:
m for webcams equipped with wide-angle

lenses. To the best of our knowledge, no other method is able to offer this accuracy on such a high spatio-temporal resolution

over a large area. Large accuracy differences between standard lens webcams and webcams equipped with wide-angle lenses30

suggest to improve our camera model to incorporate effects of lens distortions or to use only the central part of an image to

generate more accurate snow cover maps. However, an improvement of RGB snow classification is essential to automatically

derive snow cover maps, i.e. to avoid the manual removal of cloudy scenes. Nevertheless, our approach offers snow cover
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analyses with a high spatio-temporal resolution over a large area with a minimum of manual user input. Our webcam-based

snow cover monitoring network could not only serve as a reference for improved validation of satellite-based approaches, but

also complement satellite-based snow cover retrieval.
::
As

:::
an

:::::::
example,

:::::::::::::
webcam-based

::::
snow

:::::
cover

::::::::::
information

:::::
could

:::
be

::::
used

::
to

:::::::
improve

:::::::::
gap-filling

:::::::
methods

::
to

::::::::
eliminate

:::::
cloud

:::::
cover

::
in

::::::::::::
satellite-based

:::::
snow

:::::
cover

::::::::
products.

:::::::::
Especially

::
in

::::::
spring

::::::
during

:::
the

::::::::
snowmelt

::::::
period,

::::::::
webcams

:::::
could

::::
help

::
to

:::::
detect

:::::
snow

::::
that

::::
may

:::
fall

:::
and

::::
melt

::::::
within

::::::
several

::::
days

::::::
during

::::::
cloudy

::::::::::
conditions.

::
In5

:::::::
addition,

:::
our

:::::::::::::
webcam-based

:::::
snow

:::::
cover

::::::
product

::::
can

::
be

::::
used

:::
to

:::::::
validate

::::::::
Sentinel-2

::::
and

:::::::
Landsat

:::::
based

:::::
snow

:::::
cover

::::::::
products.

:::
We

:::
are

:::::::
therefore

::::::::
planning

::
to

::::::
extend

:::
our

:::::::
webcam

:::::::
archive

::::
with

::::::::
additional

::::::::
webcams

:::::::
located

::
in

:::
the

::::::::
European

:::::
Alps.

::::::
Finally,

::::
our

::::::::
procedure,

:::
in

::::::::
particular

:::
the

::::::::::
snow/cloud

::::::::::::
classification,

:::::
could

:::
be

::::::::
improved

::
to
::::::

enable
:::::::::::::::

semi-operational
:::::::::
processing

:::
for

::
a

::::
near

:::::::
real-time

:::::::
service,

::::::
which

:::::
could

::::::
support

::::::
federal

::::::::
agencies

::::
(e.g.

:::::::::::
MeteoSwiss,

::::::::::
WSL-SLF)

::
for

:::::
their

:::::::
weather

:::::::
forecast

:::::::
activities

:::
or

::::::::
avalanche

:::::::
warning.

:
10

Author contributions. Céline Portenier developed the code and performed the data analysis with advice from Fabia Hüsler and Stefan Wun-

derle. Stefan Härer provided matlab code of the software PRACTISE. Céline Portenier wrote the manuscript with contributions from all

co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The digital elevation model swissALTI3D and the orthophoto SWISSIMAGE were obtained from the Federal Office15

of Topography (swisstopo). The authors acknowledge Kai Kobler for providing updated webcam images on www.kaikowetter.ch and all

webcam owners that provide their images online, in particular Armin Rist and Sara Fischer. Further we gratefully acknowledge Simon

Gascoin and Tiziano Portenier for their constructive comments on the manuscript.

22



References

Arslan, A. N., Tanis, C. M., Metsämäki, S., Aurela, M., Böttcher, K., Linkosalmi, M., and Peltoniemi, M.: Automated Webcam Monitoring

of Fractional Snow Cover in Northern Boreal Conditions, Geosciences, 7, https://doi.org/10.3390/geosciences7030055, 2017.
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