
We thank all three reviewers for thorough and helpful reviews.  Although reviewers suggested major revisions, 
almost all suggestions focussed  on the presentation.  The reviewers' main commentsrequested a dedicated methods 
section, more description of the ConvNet method in the main text (as opposed to in the appendix), and more 
exposition of the ConvNet results.  We have modified the manuscript accordingly and reorganized the manuscript as 
follows:

(1) We have expanded the description of data processing methods in Section 2, and added dedicated methods section 
(Section 3) that describes briefly the linear fit approach, and an extensive description of the implementation of the 
ConvNet.  Much of the latter is information that has been moved from the appendix, which is now short. We have 
kept the data processing separate from the data analysis (ConvNet) methods, as the former describes processing of 
the data to provide accurate data, while the latter describes how the processed data are analyzed.
(2) We have moved much of the description of the ConvNet implementation from the appendix to the main text
(3) We have added an additional figure of ConvNet results. As suggested by review #1, this shows a 2D comparison of
both the linear fit and ConvNet ice thickness predictions to the original 2D mapped data.

In addition to suggested changes, we have removed the section on relationships between level ice thickness and ridge 
keel depths, as this was a diversion from the main results comparing simple linear and 1-D theoretical models with 
the ConvNet for estimation of ice thickness from surface topography, and not really connected with the main results. 
We have shortened the introduction accordingly (as also suggested by reviewer #1) to keep it focussed on the main 
thrust of the paper.

All reviewer comments are addressed inline below.

REVIEWER #1

General comments
This manuscript introduces estimating deformed sea ice thickness with in-situ data using simple
statistical methods and deep learning technique. Although I believe Convolutional Neural Network
(CNN) can be an alternative way to retrieve sea ice thickness without snow depth and densities,
the readability of this manuscript is low. I think major revisions are needed before publishing.

Specific comments
Introduction: the long introduction distracts the objective of this manuscript. The authors should
concise previous literatures in the introduction. The authors should focus on more the objective of
this study in the introduction.
The introduction has been shortened and as described above, we have removed much of the material relating to 
ridge morphology as that is not germane to the main results.

P2 L27: surface elevation normally means surface height with respect to Earth ellipsoid in the
altimetric study. Surface elevation and freeboard are used the same meaning in this manuscript,
which can confuse the reader. I would suggest change surface elevation to freeboard throughout
the manuscript.
We have changed surface elevation or snow elevation to “snow freeboard”, and freeboard (when referring to ice 
freeboard) to “ice freeboard” throughout. 

P2 L29: since the hydrostatic equilibrium equation depends on altimeter type (i.e., laser/radar) it
would be good to mention which one.
As presented here, this equation is used as the universal 1-D buoyancy equation, and is valid independent of 
measurement. While different forms are used for different altimeters, this is merely a rearrangement of the terms 
based on what is measured (snow freeboard, ice freeboard, or potentially some horizon in between)

P7: This manuscript majorly covers the methodology for estimating sea ice thickness. I believe
this manuscript should include method section in the main body for better understanding to readers.
This manuscript needs a method encompasses the entire manuscript. Particularly, as CNN is rather
highlighting in this manuscript CNN details should be in the body manuscript.
We have included a Methods section that includes both background for the linear fit analysis, and a more extensive 
description of the ConvNet method and implementation, which included moving much of the material from the 



appendix. Some of the technical ConvNet details are kept in the Appendix to not distract from the main points.   
Note, that the separate “Data and Processing” section describes the methods for acquisition and processing of the 
data. We have expanded this description, but kept it separate because it applies to all the subsequent analysis.  

Table 1: Please briefly explain in terms of sail angle.
Defined sail angle, and clarified with “and a range of slopes across the deformed surface are given”

P9 L7: There is no validation for the model in 3.1.1 and 3.1.2, which is not consistent throughout
the manuscript. Do authors have a specific meaning without the validation?
These sections were intended to compare our observations with prior studies, and because the fits are poor they are 
not validated. However, since section 3.1.1 (comparison between level ice thickness and keel depth) was not very 
relevant to other results of the paper we have removed this section along with much of the background information 
on ridge morphology to keep the paper focussed.  

Section 3.1.2 was intended to demonstrate potential relationships between surface roughness and ice thickness (as 
suggested by previous authors) to motivate the use of surface morphology to aid in ice thickness estimation.  This 
section has been shortened and moved to Section 3.2.3 where the incorporation of surface roughness is included in 
the linear fit analysis.

P12 L15: Please briefly explain in terms of drill lines.
This section has been removed as it is distracting from the key results in the paper, since drilling data are not used in 
the analysis. A short statement on the relative accuracy of drilling data has been added to clarify the corrections to 
the AUV data in the Data and Processing section (P7 L3-10)

P13 L17: Why this particular range? (2.9-6.1)
This comes from Table 2. We have added a note to refer to Table 2.  This section has been modified and moved to the 
discussion as it seeks to explain the differences between our fits and those of prior authors.

P13 L23: What is the basis for setting 5.9?
Following Fig. 10 (in new manuscript, 7 in old), this is the best fit line. As above, this section has been modified for 
clarity and moved to discussion. We have added a note to Fig 10.

P14 Figure 7: While freeboard (F) is mentioned in figure 7, surface elevation (F) is mentioned in
the caption, which is not consistent.
This has been changed to snow freeboard.

P14 L8-17: this paragraph should be in the discussion.
This has been moved to the Discussion.

P16 Table 2: Please briefly explain in terms of Akaike Information Criterion (AIC).
We have added a note that the AIC attempts to minimize information loss, and that we use the lowest AIC to 
perform model selection.

P17 Table 3: Why the authors separate linear model (i.e., without constant vs. with constant).
As noted in Stefan Kern’s review, the without-constant fit is an attempt to match physical conditions of hydrostatic 
equilibrium (and permit estimation of effective densities), whereas the with-constant fits are empirical and attempt 
to minimize fit error. The reorganization of the text separating out methods, results, and discussion should make this 
more clear. We use the fits with constant as a basis for comparison of how our ConvNet improves upon linear fits, 
and we use the fits without constant to estimate ice/snow densities in our data.

P17 L10-L18 - P18 L1-12: this part should be in the discussion.
We have kept part of this in the Results as it is reporting errors for some particular fit. As such, it is a result and fits 
best there, but we have moved the discussion of this to Discussion. 

P18 L13: It would be better the authors include the spatial distribution of sea ice thickness derived
by CNN with discussion.



This has been added to the manuscript as a new figure (Fig. 9) which shows that the the ConvNet prediction matches 
the spatial variability better than the linear fit (see below in response to Reviewer #2) for the figure) While we have 
produced this plot for each floe, we are electing to include one example as all floes show qualitatively similar results.

P18: the first paragraph of 3.3 should be in the methods.
The structure has been reworked as described above.

P19 L12: Normally this parameter setting is determined by trial and error.
There are several reasons for this choice. Our goal here is not to make the best possible network, but to make a good 
network that can be interpreted to physically justify why the network is working. Our method is predicated on the 
assumption that feature morphology is important to SIT prediction. Since our feature sizes are of similar scale, we 
felt this was a reasonable choice so that the ConvNet would learn features that are likely physically relevant to sea ice
thickness variability. With our limited dataset, we cannot use too large a window as this would lead to too few unique
samples; similarly, if we  use too small of a window,relevant physical  features would not be captured.  We have also 
tested the network by halving the window size (which has the danger of not capturing relevant physical feature 
scales), and by decreasing resolution, with no significant effect on performance as described in the text. Because of 
the limited size of the dataset, we cannot test this dependence further.

P20 Figure 9: Some part of the caption of figure 9 should be in the main body. (from we also to
the end).
Caption has been edited. We keep a reference to the linear fit as a description of what is in the figure.

P18-21: 3.3 predicting SIT with deep learning is quite mixed with methods, results, and discussion.
please reorganize 3.3.
We have reorganized as described above.

P25 L15: what is meant by Figure #0?
The text reads “Feature #0”, which is the first feature in the 8-bit vector, as shown in the referenced Figure. 

P26 L31: as the validation of this method is spatially limited, this sentence should be corrected.
This has been corrected to estimating SIT with “comparable morphology”

Technical corrections
P2 L9: wieth -> with
P7 L6: With -> with
P7 L7: need references. 
P9 L11: I don’t see ratio of keel depth and snow-sail height in the Table 1. This is Hs/Hk
P17 Table: replace “no constant” with “without constant”.
P19 L16: replace “CNN” with ConvNet.
P22 Figure 10: Figure 10 never mentioned before.
Thanks, these have been fixed.

Reviewer #2

Estimating Early-Winter Antarctic sea ice thickness from deformed ice morphology by Mei, J. M., et al.

General Comments: GC1: I note that a dedicated "Methods" section is missing completely. It is Data followed by Results. 
There are places where this seems ok for the flow of the manuscript but there are other places, e.g. Section 3.2 where this 
seems not to be optimal. The deeper I stepped into this section the more confused I got. At a certain point I got lost with 
density values and with regressions with or without intercepts or additional constants. This section would perhaps benefit 
from a clear up-front explanation of what you did / how you derived coefficients / which density values you choose (and 
why) / how you derive effective density values (and why)? Such an improvement in structure of the paper would possibly 
also reduce its length a bit here and there.
The paper has been restructured with the addition of a Methods section. The text and motivation for this analysis has
in particular been improved by separation into Methods, Results, and Discussion sections, so that the basis for 
comparison with ConvNet and previous results is more clear. We have also improved the discussion of regressions 
and derivation of density values (discussed more in response to the next comment)



GC2: You treat the hydrostatic equation as a form of a linear fit. While one can see this as such a fit it would be very 
important to mention (even more) that the coefficients as you call them are based on density values and are computed based 
on physics. This is an important difference to the empirical linear fits used by Xie et al. or Ozsoy-Cicek et al. which are 
purely mathematical. To my opinion it would add to the understanding of your paper if you would clarify this even better at 
an appropriate position in your paper. I’d think that interpreting the CNN results into the direction that effective densities 
can be derived is very hypothetical - especially given the unknown (and non-existing) relationship between sea-ice and 
snow densities which are both involved. I note in this context that the issue of negative ice freeboards has neither been 
mentioned nor discussed. I guess it would not hurt to get back to it given the results published in Ozsoy-Cicek et al. (2013) 
and Yi et al. (2011).
We interpret the hydrostatic equation as a linear fit solely to provide density estimates, which is only relevant for a 
dataset that has snow depth measurements. We now stress this more in the text. The ConvNet results do not derive 
any effective densities; we only suggest that the network may be accounting for different effective densities.  

Similarly, the one-variable fits to surface elevation (F) can be interpreted as (given some snow/ice density) an average
snow-to-ice ratio in the measured surface elevation. This again is not particularly prescriptive, as other datasets no 
doubt have different snow-ice ratios. However, when averaged over large enough areas, it is likely that the ice 
component in the measured surface elevation is low (and perhaps the snow = freeboard assumption is now 
reasonable in some, or many cases). This can be inferred from Xie/Ozsoy-Cicek’s fits as their coefficients of 2-3 are 
equivalent to assuming F=D in our Eq. 1. We stress this more in the text that these no-constant fits are intended to 
check why our coefficients may be different to Xie/Ozsoy-Cicek’s.

Also, we deliberately do not discuss negative freeboards in this case because in this dataset there are few negative 
freeboards sowhen averaged over 20m windows, our data have no negative freeboards (although at the 0.2m 
resolution there are some). and so they cannot be reasonably included in the article. Where they do exist, they are 
primarily on the flanks of ridges where their near-local effect will be negligible. We have added a sentence in the 
Data section to note that there were few negative freeboards.

Note, when applying either a linear fit or the ConvNet to surface topography data, we cannot know whether there 
are negative freeboards; as such these methods account for it only implicitly, with a linear fit effectively assuming 
that a similar percentage of freeboards will be negative. This may contribute to errors when trying to apply a specific
linear fit to a new dataset. A ConvNet could conceivably do better here, in that significant negative freeboard is likely
to matter most when there is deep snow, which might have recognizable surface morphology, although this is quite 
speculative. We have added a note about potential effects of negative freeboards in the discussion (P 20 L3-7).

GC3: I am missing the presentation / discussion of more results of the ConvNet approach. What a reader might have loved 
to see is profiles of sea-ice thickness computed from the draft-snow depth-surface elevation measurements (your 
benchmark)and of the sea-ice thickness estimated with your approach. Ideally you are able to  show at least one 
representative profile of each PIP used here. That way one will get a better handle on the actually estimated sea-ice 
thickness distribution compared to the measured one - in addition to the histograms shown.
This has been added to the manuscript. It is also shown here, using PIP8 as the test set. This plot requires 
considerable oversampling (here, it is oversampled at 4x, i.e. using a shift of 0.25 * window size of 20m), otherwise 
there are not enough points to make a useful visualization. The mean relative error of the ConvNet (trained on PIP 4,
7, 9) applied to this test set (PIP8) is 23%, vs. 31% for the linear fit (fitted to PIP 4, 7, 9) applied to this test set 
(PIP8). It shows that the ConvNet is better generalized to new datasets, and also shows the considerable biases that a 
linear fit can have when applied to a new dataset, presumably due to a varying snow/ice ratio.  We have generated 
these for each floe, but choose to include one example in the manuscript as all are qualitatively similar.



 

GC4: ICESat-2 is up since September last year. After having read the paper I am wondering what the ultimate goal of your 
work is. Is it to create high-resolution validation data sets of the sea-ice thickness which are spatially distributed? Or is it to 
develop an algorithm which potentially could be applied to ICESat-2 data. For both cases, I believe the authors could stress 
the main motivation and future use of their work and product.
This is a good point, and we have added to the text in the introduction to better state the goal of the paper. The long-
term goal here is to improve on ice thickness algorithms for ICESat-2. However, our results are not directly 
transferable as ICESat-2 only maps a straight line (well, the 3 beams are not quite enough to form a 2D surface). As 
such, the ConvNet approach is not appropriate. While there are also non-convolutional deep neural networks that 
could work on such data, although one would need to test whether ICESat-2 can sufficiently capture morphological 
features that are related to ice thickness.

An alternative approach is then to use other more extensive 3D-datsets and use the technique to identify what 
morphological metrics are best predictors for a variety of types (which is much of the reason for our investigation of 
possible physical basis for the ConvNet features).  For example, with IceBridge data one could use this method to 
predict radar snow depth.  Alternatively, additional datasets (for example more coincident AUV and surface 
topography, or coincident scanning LIDAR and EM-bird observations) could be used to relate these identified 
metrics directly to ice thickness. Then it may be possible to relate ConvNet metrics that are good predictors of 
thickness to analytical metrics, then the results could be used to optimize algorithms for ICESat-2

Our goal in the paper was to demonstrate (1) to show that sea ice surface morphology contains information that can 
be related to ice thickness so that linear fits can be improved upon, (2) deep learning has the potential to use this 
information to provide “optimal” predictions of ice thickness, and (3) these deep learning techniques respond to 
features that are likely physically meaningful and hence there is scope to use this physical information to provide 
better ice thickness predictions. We acknowledge that our particular deep learning architecture is not necessarily 
what would eventually be used in practice.

This was only briefly touched on in the Dicussion and Conclusion before, so we have expanded this discussion to 
better suggest a viable strategy. 

Page 2, Line 14: I suggest to cite the paper by Behrendt et al., 2013, Sea ice draft in the Weddell Sea, Earth System Science 
Data, 5, measured by upward looking sonars to underline that also this ULS data is a valuable source - even though you 
write "sporadic"
Added, thanks. 

Page 3, Line 1-9: I guess it would not hurt to perhaps again refer back to Kern and



Spreen (2015) who dedicated some work on the uncertainty analysis for ICESat sea-
ice thickness retrieval and to Kern et al., 2016, Antarctic sea-ice thickness retrieval
from ICESat: Inter-comparison of different approaches, Remote Sensing, 8(7), who
inter-compared a number of sea-ice thickness retrieval approaches for the Antarctic
and on which results the Li et al. (2018) paper cited is based upon. I am tempted to
say that the fits used by Li et al. (2018) are based on the work of Ozsoy-Cicek et al.
solely and not on the work of Xie et al. (2011).
Thank you for the correction on Li (2018). This and the additional references have been added to the introduction
 
Line 14: "do not yet understand the distribution" –> I am inclined to say that we do
understand the physical mechanisms forcing the snow depth distribution around ridges
very well. What we cannot yet do is, however, to measure this distribution accurately
over an large enough area.
Changed to “we do not yet know the statistical distribution”

Line 10-19: In this paragraph, the work of Weissling and Ackley, 2011, Antarctic sea-
ice altimetry: scale and resolution effects on derived ice thickness distribution, Ann.
Glaciol. 52(57) might fit as well.
Thanks, added.

Lines 16/18: This is perhaps a good place to refer to the work of Hutchings et al., 2015,
Comparing methods of measuring sea ice density in the East Antarctic, Ann. Glaciol.,
56(69)
Thanks, added.

Lines 20-22: I agree that the unknown snow depth is one factor here. But isn’t the fact
that we don’t know the keel morphology and distribution relative to what we see from
above with a LIDAR contributing much more to a potential bias in estimated sea-ice thickness?
Yes, this is a good point, and we have clarified this in the text.

Line 23-27: As far as I know, Kern and Spreen (2015) focused quite a bit on ICESat
and the uncertainties involved. I doubt, however, that this is the correct citation for the
AMSR-E snow depth bias issue. I’d say the first to report this issue were Worby et al.,
2008, Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in
situ measurements and aerial photography, J. Geophys. Res., 113. Their work was
followed later by Ozsoy-Cicek et al., 2011, Intercomparison of Antarctic sea ice types
from visual ship. RADARSAT-1 SAR, Envisat ASAR, QuikSCAT, and AMSR-E satellite
observations in the Bellingshausen Sea, Ann. Glaciol., 52(57) or Kern et al., 2011,
An intercomparison between AMSR-E snow depth and satellite C- and Ku-band radar
backscatter data for Antarctic sea ice, Ann. Glaciol. 52(57). In the same Ann. Glaciol.
volume you also find the paper by Markus et al., 2011, Freeboard, snow depth and sea-
ice roughness in East Antarctica from in situ and multiple satellite data, Ann. Glaciol.,
52(57). Another paper about the deficiencies of the AMSR-E snow depth product could
be this one: Kern and Ozsoy-Cicek, 2016, Satellite Remote Sensing of snow depth on
Antarctic sea ice: An inter-comparison of two empirical approaches, Remote Sensing,
8(6).
Thank you for the detailed notes; text and citation has been amended.

Line 33: "fewer such datasets exist" –> This applies to the Antarctic and I would men-
tion this accordingly. In the Arctic there are way more draft measurements available
and these have actually been used to develop draft-based sea-ice thickness estima-
tion tools.
Fixed.

Figure 1: I love this figure. It could be even a tiny bit more realistic if the ice floe or
sheet would not be continuous in the ridge / keel area.
This is fixed.



Page 4: Lines 3-12: I am wondering whether in the context of this discussion the work
of Goebell, 2011, Comparison of coincident snow-freeboard and sea ice thickness
profiles derived from helicopter-borne laser altimetry and electromagnetic induction
sounding, J. Geophys. Res., 116 should be mentioned as well?
Thank you for this reference, though it is added a bit later for discussing the coefficients for T vs F in later sections. 

Page 6: I suggest to mention / give answers to the following questions here: - Water
depth in which the AUV was operating - How many AUV scans per "cake" were stitched
together? - If multiples scans: Were all scans carried out into the same direction? Or
parallel to each other in opposite directions? X-ing? - Did I understand correctly that
per "cake" 4 surface elevation scans were carried out, each from one side of a 100
m x 100 m grid? Or did you actually fly over the area? - I assume the snow depth
measurements were the last measurements carried out –> although it is logical it is
worth to mention this. - It is not entirely clear how the about 2000 measurements per
"cake" are distributed across the "cake" area and how this was technically realized. I
assume that the measurements were carried out along parallel transects across the
cake with a fixed transect-to-transect distance and that only the sampling along each
single transect varies between 5 m and 0.1 m. - How is the reference sea-surface
height computed and how accurate is it?
Added to text.
The AUV survey was done following Williams et al (2014), at a depth of 15-20m in a lawnmower pattern (equally 
spaced passes under the ice in alternating directions). Adjacent passes were spaced to provide approximately 50% 
overlap in consecutive swaths, with at least one pass across the grid in the transverse direction to allow corrections 
for sonar orientation in the stitching together of the final sonar map.
 The snow depth was indeed done last. Your description of the snow sampling is mostly correct, the sampling along a 
transect is not purely 1D, as we could not necessarily walk over a ridge, and instead would walk around it, sampling 
the snow distribution at high resolution. 

Line 29: "The ice thickness can ..." –> so there were no drillings?
There was one drilling line done per floe with 50 points at 2m resolution along the edge of the lidar scan. This was 
used for calibration purposes using the level ice. This is described in the Data section.  An example of the comparison
is shown below, but is not included in the manuscript for brevity. The freeboard measurements (middle panel) have 
poor agreement due to sampling bias (often, when drilling near a ridge, the most accessible point to drill is the lowest
elevation). The error bars here refer to the max/min MagnaProbe/Lidar/AUV measurement in a +-1m range. The 
drilled draft measurements do not necessarily match the AUV measurements in ridges because there may be biases 
in drilling through thick ice, slight differences in location when thickness variability is extreme, and may tend to miss
deeper loose blocks. The AUV will tend to detect the full draft, and samples at the sonar footprint resolution (as 
opposed to at a 2 inch drill hole point)

Figure 5: Readability of this figure would improve with an increase of its size.
Fixed 

Page 11:
Line 18: "very similar value of 1.3" –> This very similar value needs two standard



deviations (2 time 0.1) to include that 1.5 values from other studies. Perhaps "similar"
would do it?
Fixed

Figure 6: - See comment to Figure 5. - In the caption I would call the black line dashed
rather than dotted.
Enlarged and fixed.

Page 12:
Line 11: "The lidar and AUV data were corrected by ..." –> I don’t understand what
needs to be corrected here. Is there a way you specify better what you did? Why is
this a "correction"?
The correction is a simple offset to the entire lidar or AUV survey that is applied to account for the uncertainty in the
AUV trim (which may cause slight depth offsets for different surveys) and the depth sensor, and lidar referencing to 
the sea surface (linked to your earlier comment). This has been clarified in the Data section.

Page 13: Line 12: "snow = surface elevation assumption" –> I recommend to mention that this is a strong assumption, that it
applies to thin, perhaps medium thick first-year ice only (possibly only to the kind grown under quiescent conditions, i.e. 
not originating  from the pancake-ice cycle), that it requires a certain snow load to be present, and that such an assumption 
can only be made if one is not interested in a really exact sea-ice thickness estimate.

This has been clarified so that it is clear this is a lower bound, and that in our case it does occur for the thinner, level 
ice.  

However, we note that this is quite often close to being true, at least for regional means such that the large-scale error
is small. Based on our own observations in the field over many cruises, it is broadly true for much first-year ice, and 
even can be reasonable for very thick ice where positive freeboard and negative freeboards cancel.  While this is 
often reasonable on a regional scale, we agree it is not a good assumption at smaller scales, and presumably what 
creates much of the scatter in linear fits.  Incidentally, this also suggests why using surface morphology may help 
improve predictions – even where a linear fit is accurate in the mean, it cannot capture this variability, while surface 
morphology may be suggestive of variations in the snow/ice freeboard ratio.

Line 17: "All our coefficients" –> Would you mind to refer to the place where you already
mentioned these coefficients?
Added.

Line 21: "2.2-3.1 in Ozsoy-Cicek et al (2013)" –> I tried to figure out how you ended up
with this range and potentially misunderstood something. If I check that paper, then - in
Figure 5, which is possibly the one you got these numbers from, - I find regression lines
with a considerable intercept between 10 cm and 30 cm, depending on the region,∼10 cm and ∼30 cm, depending on the region, ∼10 cm and ∼30 cm, depending on the region,
paired with this range in factor of F of 2.2 - 3.1. But these values are valid for positive
ice freeboards only. When taking all ice freeboards into account, then the black lines
(and numbers) in that Figure 5 apply. In addition to that: I could make sense to focus
only on the Ross Sea results from that paper?
We used the positive freeboard regressions because all our 20m-averaged freeboards have no negative freeboards 
(although there are individual negative freeboard values at 0.2m resolution).  If we take the ‘all freeboards’ 
coefficients, the range is 2.4-3.5, which does not affect our analysis. However, if we just take the Ross Sea coefficients 
then the range is 2.4-3.1, which again does not change the analysis. So we will just use 2.4-3.5 as our analysis would 
apply to both cases. 

Lines 30-32: "This means that assuming ..." –> So what you state here basically is,
that the linear regression approaches developed by Xie et al. and Ozsoy-Cicek et al.
are of limited value? If so you could mention this and also refer to Kern et al. (2016)
in Remote Sensing, where it is layed out that the linear regression approaches fail to
provide a meaningful circum-Antarctic sea-ice thickness distribution.
Added. However, the approach of Xie et al and Ozsoy-Cicek et al may be reasonable at larger scales, and this is 
described in the text. We now state that such relationships should be used with caution.



Figure 7 - Some data points are annotated "snowy" –> I did not find an explanation of
what this is in the text or in the caption. Where is the distinction between "snowy" and
"ridged"? - caption: The ice density value given in line 4 of the caption differs from the
one given in the text on page 13, line 25.
Density value changed. ‘Snowy’ surfaces are manually classified as those that have snow features (likely originating 
at the ridge, but the ridge is not in the window).  The classification is purely meant for the feature analysis in the 
Discussion.  This is described in the text, but now we also added “manually classified” to the caption.

Page 14: Line 3: "T = 2.45F + 0.21" –> is modified from Ozsoy-Cicek et al., now using
unit meters instead of centimetres, correct? "for a winter Ross Sea" –> according to
Ozsoy-Cicek et al. (2013) this is data from just one cruise in Sep./Oct. = much later in the season than PIPERS. In that sense
your statement in Line 6 "same region/season"
should perhaps be changed? Also the spatial overlap (see Ozsoy-Cicek et al., 2013,
Figure 1) is quite small.
Yes, we converted the equation to meters. Merging with your below comment for lines 15-17, we have removed 
“same season/region”, and now point out that the proportion of deformed ice is varying and perhaps causes linear 
fits to not generalize well.

Line 4: So your intercept is -0.73 meters or -73 cm? That is quite large.
Yes; we discuss the reasons for this in the text (P19 L10-15).

Line 7: "nonzero freeboard" –> "nonzero ice freeboard"
OK, changed

Lines 15-17: Yes, I agree with your interpretation. However, it might make sense to also
mention that the Ross Sea data used in Ozsoy-Cicek et al. (2013) was from a different
part of the Ross Sea and from a different season and to my opinion indeed exhibits a
totally different characteristics than the PIPERS data set collected 3-4 months earlier.
Yes, see 3 comments before this for summarized changes.

Page 15: Line 6: "additive constant" –> I don’t understand what you mean by this. Did
you add an intercept?
Yes, changed this to “we fit a linear regression both with and without a constant term” - we don’t want to use 
‘intercept’ as this only has meaning for a one-variable fit.

Lines 7 & 8: Isn’t it surprizing that the coefficient for F fitted over all four PIPs of 10.4
is so close at the upper range of 10.6 for individual PIP fitting? Also: The range for
the coefficient for D of the individual PIPs does not include the value found over all four
PIPs. Is this logical?
The answer to both of these questions is that the multilinear fit fits both variables simultaneously, and so the fit for 
all floes combined is not a weighted average of each individual fit (your intuition would be correct for a one-variable 
fit – and indeed it is, the F-only, no intercept fits have coefficients of 6.5, 6.4, 4.8, 4.1 and the overall fit coefficient is 
5.8)

Lines 9-12: - Your measured snow densities are considerably lower than those given
by Sturm et al. (1998). Could it be that the latter were obtained in late winter / spring?
- While I understand the concept behind the effective sea-ice density (voids filled with
water included in the density estimate) I have problems to understand the concept of an
effective snow density. What is this? In this context, I find your effective snow density
value to be quite high. - I guess it would be good to learn how you ended up with the
density values reported in Line 10. When I tried to insert your range for the factor for
F (7.9 to 10.6) into an equation where D is zero, then I end up with densities between
897.9 and 931.0 kg/mˆ3. But of course, without further information from your side I
cannot reproduce your numbers. - I find it quite surprizing that the standard error for
the effective sea-ice density is so low compared to that of the effective snow density.
Sturm includes 2 Ross Sea cruises, one in May-July 1995 and one in Aug-Sept 1995, with snow densities of 350 and 
390 kg/m3 respectively, although the May-July cruise would have somewhat older snow than in our case (due to 



somewhat earlier dates and a later freeze-up for PIPERS)The snow does not have an “effective density” and this has 
been corrected in the text. 
 The standard errors are computed using the standard error of the linear regression and propagating them. This 
should not really be interpreted as an uncertainty value for the sea ice density, as it just means the multilinear fit has 
a (relatively) low error for the F coefficient (sea ice density variability can still contribute to displacement of any 
given point from the fit line) This has been clarified in the text.

You use a water density value which differs from those given at the beginning of this
paragraph. Why? Where does this value originate from?
The water density of 1028 comes from CTD casts from PIPERS, whereas 1027 comes from Worby (2011). The 
difference is minor, but have added that this came from onboard measurements. 

Lines 15-18: Please check these sentences. There is some repetition first and then
something is missing.
Fixed

Lines 20-22: "For example, ..." –> Just to understand this: What you write here in the
text is the comparison between using coefficients of ONE of the PIPs to estimate sea-
ice thickness in another PIP while in Table 3 you show the comparison between using
a joint coeffient of THREE PIPs to estimate sea-ice thickness in the remaining PIP. I
just got confused a bit about why you write different things in the text than you actually
show in Table 3 (and refer to in the subsequent sentence).
You are right. We had listed the results of using each ONE of the PIPs to show that the average error was not 
dominated by one particularly bad one, but you are right, it is better just to show the average of the THREE PIP fit 
applied to the fourth PIP.

Table 2: - "no int." means what? - Are you sure the AIC is a monotonic function even
on the negative value range? I am just wondering whether the "smallest" AIC criterion
does not need to be applied to absolute values? Could it be that these negative values
have no proper meaning in case that the correlations are so low? - The subscript "adj"
stands for "adjunct"? "adjusted"? If the latter adjusted to what? - What is the unit of
the constant? It seems to be in meters?
No int. means the forced fit through the origin with no intercept. This has been added to the caption and we now 
refer to “F, D” and “F, D, Constant” fits for clarity.

The AIC is not dependent on the absolute measurement, and rather the difference between AIC values can be 
interpreted as a relative likelihood, e.g. if two models have AIC values A and B, with A<B, then the second model is 
exp(A-B) times as likely to minimize the information loss. This has been added to the text.

Adj stands for adjusted, and it is adjusted to account for varying sample sizes. This is mentioned in the caption.

The constant is in meters and this has been added to the column.

Page 17: Table 3, caption, last line: "zero freeboard = zero thickness condition"? Do
you refer to ice freeboard here? Do you perhaps mean "zero snow depth"?
This has been deleted from the caption, as we now include the fit with constant term.

Line 1: This equation is something you could use in a "Methods" section (should you
include one) to tackle my general comment GC1. I note however, that seemingly with
this equation one can explain only parts of the entries in Table 2; the c3 times sigma
part is not represented in Table 2.

The fit with sigma is only mentioned to show that it does not improve the fit (likely because sigma is itself highly 
correlated with mean surface elevation). It is not an important result by itself, and also would not fit into Table 2. 
The equation will be moved to the new  Methods section.

Lines 5-9: It is still not clear to me how you discriminate between "snowy" and "level".
Please add.



This is manually done based on whether the majority of the image was level or contained a visible snow feature in 
the lidar window. We acknowledge that this classification can be arbitrary, and use this method only to show that 
different surface types should be treated differently, but a manual classification does not help much: this motivates 
the use of a deep neural network in the next section. 

Page 18: Lines 3-6: I can in principle follow your argumentation that zero surface el-
evation (= zero snow depth) means zero sea-ice thickness. I would sign this if we consider larger scales. But on the scales 
investigated with the PIPs this is not necessarily true because under cold conditions and hence impermeable sea ice there 
will be many places with a negative ice freeboard. Even if we assume for simplicity that most of these will have a snow 
cover and hence potentially have a non-zero surface elevation, it is still likely that especially in the vicinity of ridges and/or 
where the ice is under lateral stress - at the scales of your measurements - you will have surface elevations
close to zero or even negative ones paired with a non-zero sea-ice thickness. - This
paragraph is again a good place to comment and/or underline the difference between
the physically based coefficients used by Zwally et al. and similar papers and the em-
pirically based coefficients used by Xie et al and similar papers. One could argue that
the physically-based coefficients are more dependent on the validity of the hydrostatic
assumption while the empirically based ones are not ... but I am not sure this holds.
On the scale of the actual linear regressions (20m), there are no negative (mean) surface elevations. However, we 
have decided to scrap the requirement of zero S.E. = zero thickness, as our ConvNet performs better than a linear fit 
with constant anyway. As stated above, the use of no constant is now only used to compare to the theoretical fit and 
estimate densities.

Page 19: Line 13/14: "20% of the data ..." –> this refers to the randomly selected data?
If so, please stress so in the text.
This has been clarified.

Line 13 vs. Line 16 and remainder of the text: Please check your usage of "floe". From
the text until here I got the impression that the PIPs are subsets of one floe. Here I
get the impression that PIPs comprise several floes out of which a few are selected.
Please clarify your terminology here.
Each PIP is sampled from a different floe, but is nevertheless a subset of that floe (i.e. only a portion of the floe is 
sampled. This has been clarified in the text. 

Line 20: You state PIP8 here but in Figure 9 it seems you refer to PIP9. Please check.
Fig. 9 should read PIP8, thanks for noticing this.

Line 24: "epoch 881" –> does it make sense to refer to the Appendix here? Otherwise
this information is perhaps a bit out of context.
Ok, this has been moved. Note that most of the appendix is now in the Methods section, in response to other 
reviewers and to not repeat information from the Methods.

Line 31: "are all negative" –> except for level ice.
Fixed

Line 33-35 and beyond: I doubt that this comparison should be presented as is. Aren’t
these data sets quite different? I wrote about the sub-set of data for the Ross Sea
used in Ozsoy-Cicek et al. (2013) already. In Li et al. (2018), the data basis is ICESat
footprint-scale estimates of the freeboard - hence we talk about one value for one footprint of which we do not know how 
well it covers how many different surfaces. The
data set used in Ozsoy-Cicek et al. (2013) is at least based on multiple measurements
conducted on one or more transects across a single floe.
This has been amended to compare against the profile mean RMS error of 11-15 cm from Ozsoy-Cicek et al (2013) 
Table 7 against our validation error. The training error, which is equivalent to a fit error, is not as good of a 
comparison because a ConvNet can/will overfit with an artificially low training error; model selection is done by 
choosing the best validation error, which is kept separate (but is similar to) the training set in order to try and reduce
overfitting.  



Figure 9: The description / caption of the figure needs to be improved. - Please an-
notate the images with a), b), c) ... - What is the value behind showing a continuous
fit in addition to the bars? It extrapolates the bars towards non-existing data values. -
What are the bin-sizes used? Are these the same in all three histograms shown? Do
they always have the same borders (i.e. minimum and maximum value included into
the count of a respectiv bar)? - The peak counts are obscured by the legend. This
needs to be changed. - I suggest to add in each row which PIPs are used for what. -
I suggest to stress in the caption that the last row shows a different range of thickness
values. - The caption in line 3 says PIP7-9 but in line 2 it is PIP4, 7 and 8. What is
correct? - The caption in line 4 says PIP9. True? - What is the unit at the y-axis in the
histograms? - The mixed colors in the histograms originating from overlapping bars of
different data sets are not easy to interpret. Perhaps you could either add these in the
annotation (which is possible if you increase the size of Figure 9) or find a different way
to show the counts of the different data sets. One way to do this would be that you use
substantially narrower bars which you do not let overlap each other and center these at
a specific thickness; then in the caption you might need to state that you display three
bars centered at a specific thickness, separated horizontally for better visibility. That
way the real differences in the distributions would become more clear.
This figure has been redone with just the outline of the histogram, binned at 0.4m, with additional labels added. The 
caption has been fixed, thanks for noting this.

The bin sizes were chosen to have equal numbers of bins as opposed to a constant bin size; this has been changed to 
constant bins of 0.4m. 

Page 20: Lines 2-4: Perhaps you could put these numbers in context with the number
of data points used to get these uncertainty estimates? I guess, in case of Ozsoy-
Cicek et al. (2013) we are talking about 23 floes with an actually unknown number of
measurements per transect. About how many measurements are we talking in your
case?
We have 4 floes, but each floe has many measurements as the lidar/AUV data can be binned at varying resolutions. 
So the REM (relative error of the mean) is comparing floe mean with floe mean; although as you point out the floes 
may have different numbers of measurements.  We have added a note that our test error is essentially taking 3 floes 
and applying the fit to a fourth floe, vs. fitting to 23 floes. It is probably easier to get a good fit with fewer floes, but 
we also expect poorer generalization with fewer floes, so we can reasonably infer that our fit is better generalized 
than a linear fit.

Page 21: Line 14: I suggest to remove the "see" –> at least I cannot see these results.
We have removed it.

Line 29: "isostatic assumption may no longer be valid" –> may be so. What do we
know about spatial scales over which the isostatic assumption is valid? No too much
I’d say - particularly for ridged ice. Perhaps this sentence could be deleted.
Deleted. In fact, we realized that the ConvNet does not require assuming isostacy.

Figure 10: - this figure belongs to section 4 and should be located within section 4 not
before it. - Why do we have 3x3 imagettes for layer 1 but 16 for layer 3? - The size of 4
m and 8.8 m given in the caption, do these refer to the pixel size in these imagettes or
to the imagette size itself? It seems as if the pixels in layer 1 are indeed smaller than
in layer 3. - Instead of "as the lidar" you might want to write "as the surface elevation"
- Is it in this context correct to assume that layer 3 has the unit meters while layer 1 is
unitless? - What do the bright and dark pixels in layer 1 mean?
Moved to appropriate section. The pixels corresponding to the meters of the layers have been added to the caption. 
Due to the stride, each subsequent layer essentially halves in resolution. Darker colors indicate higher weights, 
though the actual weight values are not important. The reference to “surface elevation” has been fixed. All the layers 
are unitless as the weights are just a numerical weight value. The direction of the colorbar doesn’t actually matter as 
the difference would just be a negative sign, easily accounted for in any of the subsequent hidden layers. This has 
been clarified in the text.



Page 22: Line 17 through Page 23: Line 7 and Figure 11: - Please provide a), b), ...
in Figure 11; it aids referring to the images. - I suggest to mention Figure 11 before
Figure 12. - You refer to Figure 11 in Line 5 but should perhaps also do it in Line 3
(strong correlation for feature #0) and again in Line 6. - I have difficulties to understand
the continued mentioning of "effective densities". I doubt that with the CNN you can
(and should) derive any conclusions about the effective density - especially because
the densities for sea ice and snow do not necessarily co-vary. This brings be back to
GC2.
Figure 11 and 12 have been switched. The ConvNet cannot give any conclusions about why it has learned its 
prediction; we simply try to give physically plausible explanations without asserting that these are true. Our goal is 
to show that this method can work in general for other datasets, and why we may expect this to be the case. We will 
attempt to better stress how speculative our discussion is.

Page 23: Line 10: "snowy surfaces" –> which still need to be defined in comparison to
"level surfaces".
Yes, this has been clarified in the text. 
Page 24: Line 4: "ridged and level surfaces are clearly distinguishable" –> I don’t agree
when I look at Figure 13 - unless I have perhaps misunderstood what the used tool is
able to show. But my interpretation of this figure is that level, ridged and snowy symbols
overlap well.
Ridge, snowy and level overlap somewhat, but Ridge and Level are more distinct with less of an overlap. This 
suggests their features are differently analyzed by the ConvNet.

Page 25: Lines 9/10: That prediction of snow depth from lidar input is possible as also
been shown by Ozsoy-Cicek et al. (2013) and Kern and Ozsoy-Cicek (2016).
OK, added

Lines 11-13: I guess these two sentences could be deleted.
Removed

Page 26:
Lines 1-8: I am not a fan of these attempts to try to relate CNN features to (effective)
snow density variations which may or may not be realistic and physically meaningfully
linked to input parameters. To my opinion, this really requires a careful analysis and
description of how the CNN "learns" from the input data and whether there is (within
the CNN) a link to physics - which I doubt is the case.
We agree that the speculation that these features may be linked to snow density variations is highly speculative. 
Because the weights of these features (5, 7) are so small, we decided it is not that important and we have removed this
from the text.

Lines 18: "thickness of a new dataset" –> you seem to have applied your approach to
a different PIPERS data set. It might be really beneficial to show this example in the
paper and not to just mention it. Particularly because you come back to this in your
conclusions (Line 33, "unseen floe").
This was badly worded. By new/unseen floe, we mean a dataset on which the net is not trained (i.e. the test floe). We 
have changed these to “test dataset”. 

Page 27: Line 5: "it can account for a varying ice/snow density" –> I’d say that this is
a hypothesis. It may be that the ConvNet is able to account for the different densities
and perhaps even provide additional information about these - but the evaluation of
whether this is the case and/or whether this is at all meaningful physically based on
deep learning is not known and might not be over-stressed here.
We have softened this as a “possible” strength.

Lines 12-15: "Our error ..." I suggest to not overstress these inter-comparisons be-
cause these are based on completely different data sets and scales. After all, a real
quality measure of your method will be its application to ICESat-2 data which should
be the overall goal here - as is finally mentioned in the last paragraph.



We will keep the reference to the survey-wide mean RMSE from Ozsoy-Cicek 2013 because as explained in the 
results and discussion, we feel this is a reasonable comparison, but we temper the statement by saying these are 
different datasets. We will delete the comparison to Kern 2015 and satellite based estimates.

References: You need to go through the references list and complete it with respect
to page numbers and journal volume and issue numbers. Also doi’s are generally
missing. Some journal abbreviations are not in place.
OK - done
Page 28: Line 31: I am not sure but I guess Figures in the Appendix need to be named
differently to the main text. See the instructions for authors.
Thanks for bringing this to our attention.

Page 29: Line 2: Would you mind commenting on the layer sizes being first 4 m, then
8.4 m and subsequently 8.8 m? Do these "strange" values have to do with the pixel
size of 0.2 m?
This is discussed in an earlier caption, but it is simply because of the stride of 2 halving the resolution each layer (so 
0.2m, then 0.4m, then 0.8m), with window sizes of 20, 21 and 11 pixels. This has been clarified.

Figure 15: - What is a "training loss"? - It appears that after epoch 550 there is a∼10 cm and ∼30 cm, depending on the region,
small jump in validation and training error from a certain level before that epoch to a
certain, lower level afterwards. Any explanation to this? - What explains the sudden
increases in the training error from a low background of 15-16% MRE to the level∼10 cm and ∼30 cm, depending on the region,
of the validation error? It seems as if the result of the ConvNet even after that many
epochs is still not stable?
The training loss is just the loss function (mean squared error) of the training set. This has been clarified in the 
caption.
The jump may be due  the method being stochastic and this accounts for the error jumping around. Also, because we
are optimizing mean squared error, this is correlated to but not exactly equivalent to optimizing the MRE (which is 
closer to optimizing mean absolute error). As the method is also stochastic, we could possibly get a smoother curve 
with more epochs and a smaller time step, but this increases training time. Again, the point here is to show that this 
method is effective for lidar datasets in general and not to propose that our architecture is the best possible one. 

Typos:
Please replace "e.g" by "e.g." (a few incidences) Please check usage of "climatology"
and replace all incidences in the paper by a more appropriate term.
Page 2: Line 9: witeh –> with, interrannual –> interannual
Page 9: Line 26/27: "beyond beyond" –> "beyond"
Page 15: Line 11: "which" –> "who"
Page 21: Line 28: "slighly" –> "slightly"
Page 28: Line 23: "assigining" –> "assigning"
Figure 14, caption, line 3: "optimzer" –> "optimizer"
Thanks for this.

REVEIWER #3

Dear TC editor and authors of the manuscript TC-2019-140,
The topic of the manuscript is interesting and the content useful for sea ice research.
A neural network has been applied to sea ice thickness (SIT) estimation from lidar
surface elevation. The introduction section is quite comprehensive. It is mentioned that
it may be possible that the introduced method may be used to improve SIT estimation
by lower resolution / larger footprint laser instruments (ICESat-2). The results have
mostly been presented nicely and comprehensively.

The first referee already submitted quite comprehensive comments on the manuscript,
and I’ll just try to complement his comments. I agree with him that a major review is
still required before publication



Here are some comments trying to improve the manuscript:
General comments:
1) I agree with the reviewer 1 that more results of the DCNN approach could be included.
We have added an additional figure into the DCNN Results section showing the spatial distribution (Fig. 9)

2) Also a more detailed technical description of the applied methods (DCNN) would be
preferable, as already suggested by referee 1. This could be a Section of its own (not
an Appendix). Also include the information of numbers of DCNN neurons used at each
layer and how these numbers were selected.
We have added a Methods section with most of the material that was in the appendix.

3) Regarding e.g. icesat-2 data, it would be nice to have some experiments or at least
approximation related to the effect of resolution to SIT estimation using the proposed
method.
Unfortunately, ICESat-2 data is linear and not suitable as an input for our ConvNet, although see the response to 
reviewer #2 above regarding how these results provide a demonstration of deep learning techniques and a possible 
path to an improved ICESat-2 algorithm.  We have discussed a halving of the resolution and its effect on the 
accuracy in the Results. We cannot reduce the resolution too much as each lidar scan is only 100m x 100m, which 
limits how large our window can be. We are now exploring this with ICEBridge data, but this will be a subsequent 
paper.

More detailed comments:
S. Introduction P5, L17-18 "... detailed snow depth measurement": Also include al-
ready here by which method the snow depth measurements were made (not in detail).
Added “manually-probed”

S. Data P6, L12 and L22: instruments are named, also include references to their
technical specs, and also shortly write on the principle of the snow measuring device.
Added.

S. Data P 6-7: Division of the data sets used into training and test data sets (possibly
also validation data set) could be clearly described in the data section already. Were
the data sets the same for all the performed experiments? This seems to be described
later in the deep learning section for the DCNN.
We have added a Methods section which describes this training/validation  procedure and the test data set

S 3.1.1 P9, L18-19: Rather say "...Thickness of the level ice (L) forming a sail and its
sail height (S)..."
Fixed, thanks.

S 3.1.1 P10, L8 "...for estimating sea ice thickness,..." -> "...for estimating sea ice thick-
ness T,...". Possibly You could use SIT for sea ice thickness throughout the manuscript?
We have replaced sea ice thickness with SIT.

3.1.2 title could be "...mean sea ice thickness..." or "...mean ice thickness..." or even
"mean SIT".
Changed to SIT

P10, Fig. 5. Make the figure larger, difficult to read in the printed version. Its width
could e.g. be approximately the column width.
OK – done.

P11 S 3.1.2 L22: Describe the use of semivariogram in more detail. Did You make any
experiments by varying the window size also?
We used the semivariogram to identify the optimal window size. We did try a half-sized window, as described in the 
text, but with somewhat worse results, likely because the windows fail to capture surface features.

P12 Fig. 6: Same thing as for Fig. 5, make larger.



OK – done

P14 Fig. 7: Same thing as for Fig. 5, make larger.
OK – done

P18 Fig. 8: Make the figure larger or make the box frames wider for better visibility.
Include a legend describing the classes instead of writing it in the caption.
OK, done.

S 3.3, P 19 L5: The best-performing linear regression result has been given here for
comparison. Have You any idea, could better results have been achieved by using a
nonlinear approach with the same inputs, e.g. a multilayer perceptron neural network
with the same inputs (plus an additional constant/intercept input)? Or are the depen-
dencies really linear?
MLPs actually are less effective but more complicated than ConvNets due to their fully-connected style. This means 
the total number of parameters quickly becomes very high. We also use a nonlinear activation function in our 
ConvNet, as the dependencies are nonlinear, as you note. Moreover, we want a convolutional approach precisely 
because we believe the spatial information in the lidar ‘image’ is important and necessary for accurate SIT 
estimation.

P19 L12-13: "20m x20m windows", also give the window size in pixels here.
Did You study the effect of the resolution to the result by using down-sampled data?
Any idea, how would this possibly affect the estimation result? Possibly You could then
get average SIT over a larger area? This could give an idea of the applicability of the
method to coarser resolution data.
Yes, we have tried to halve the resolution. This is mentioned in the text (was formerly in the appendix) and results 
given (a modest degradation in performance). As mentioned above, we cannot keep halving the resolution as then 
our dataset becomes too small to do any meaningful convolution. We are attempting to do this in future studies using 
Operation IceBridge data.

Figs. 9, 11,12,1314 and 15: make bigger for better readability in the printed version.
Ok – done.

App. A: did You also vary the number of neurons at each level and how did this affect
to the results? How were these parameters selected? Does there exist any "rules of
thumb" for selecting the parameters (e.g. numbers of neurons) for DCNN’s as there
exist for Multilayer Perceptrons (as a function of the number of inputs and outputs)
We varied the number of filters at each layer and if there were too few, then the results were worse. There are no 
rules of thumb, other than to double the number of filters in each layer if the stride is 2 (as the dimensionality of the 
data is halved), which we did. Again, we stress that our architecture could be fine-tuned to improve accuracy even 
more, and we simply aim to show that this method can be applied to improve SIT estimates.

A: Also include execution times for the training and SIT estimation in the used
hardware.
Added.

And yet one interesting aspect: As a researcher of microwave and optical EO imagery
(over sea ice) I am also interested in possibilities of utilizing the existing imaging de-
vices for SIT estimation. Typical high-resolution (HR) sensors covering a wide spatial
area, such as HR SAR or optical/IR sensors, measure only the 2-D sea ice surface,
not the elevation directly. However, it is possible to locate ice ridges and even estimate
their sail width in HR EO imagery. There is some literature (e.g. Timco & Burden,
1997) relating the ridge parameters to each. However, I have not seen any good ref-
erence relating sail width (Ws) to sail height (Hs). This kind of relationship would be
very useful for better estimating ice thickness from 2-D HR EO data. Could the au-
thors comment on this topic i.e. how (well) the morphology could be derived/estimated
from the available 2-D EO data/imagery and whether this relation could be utilized in
SIT estimation? Possibly a deep neural network could be used after deriving some



ridge parameters from 2-D HR sea ice data form SAR/optical/IR, or even just training
a DCNN with the data directly. This would naturally require a good data set with a
large number of (nearly) simultaneous SIT measurements (possibly made by another
validated remote sensing method, such as laser scanning).]

We agree convnets might have utility to determine potential relationships with other metrics and sea ice thickness. 
For example, it is reasonable to think that spatial variability in SAR signatures might be correlated with deformed 
ice percentage, ice types, etc, which are likely correlated with ice thickness. Alternatively, HR imagery may show 
features that are indicative of snow dunes or ridges. However, at present we have little basis to expect that any such 
relationships might be sufficiently reliable, and without carrying out such analysis, we feel this is too speculative to 
comment on. To take the example suggested by the reviewer, our experience with analysis of ridge morphology in the 
Antarctic (from our data and Icebridge) we have not seen any suggestion of a relationship between the sail height 
and width. Ridges identified in imagery may vary from well-behaved triangular ridges which may exhibit some 
relationship, to rubble fields, which likely do not. Note also that in our case, it appears that the CNN appears to 
heavily use the freeboard; without any freeboard information, we do not expect a CNN to be very accurate in 
predicting thickness. That said, we would agree that a CNN would likely be effective in identifying ice types (in 
analogy to how a trained analyst does this).

Since any suggestions here would be very speculative, we prefer to not discuss here, although we have added 
additional discussion in the conclusions relevant to ICESat-2, as requested by the other reviewers.
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Abstract. Satellites have documented variability in sea ice areal extent for decades, but there are significant challenges in

obtaining analogous measurements for sea ice thickness data in the Antarctic, primarily due to difficulties in estimating snow

cover on sea ice. Sea ice thickness
::::
(SIT)

:
can be estimated from surface elevation

::::
snow

::::::::
freeboard

:
measurements, such as those

from airborne/satellite LiDAR, by assuming some snow depth distribution or empirically fitting with limited data from drilled

transects from various field studies. Current estimates for large-scale Antarctic sea ice thickness
:::
SIT

:
have errors as high as5

∼50%, and simple statistical models of small-scale mean thickness have similarly high errors. Averaging measurements over

hundreds of meters can improve the model fits to existing data, though these results do not necessarily generalize to other floes.

At present, we do not have algorithms that accurately estimate sea ice thickness
:::
SIT

:
at high resolutions. We use a convolutional

neural network with laser altimetry profiles of sea ice surfaces at 0.2 m resolution to show that it is possible to estimate sea ice

thickness
:::
SIT

:
at 20 m resolution with better accuracy and generalization than current methods (mean relative errors ∼15%).10

Moreover, the neural network does not require specifying snow depth/density, which increases its potential applications to

other LiDAR datasets. The learned features appear to correspond to basic morphological features, and these features appear to

be common to other floes with the same climatology. This suggests that there is a relationship between the surface morphology

and the ice thickness. The model has a mean relative error of 20% when applied to a new floe from the region and season, which

is much lower than the mean relative error for a linear fit (errors up to 47%). This method may be extended to lower-resolution,15

larger-footprint data such as such as
::::::::
Operation

:
IceBridge, and suggests a possible avenue to reduce errors in satellite estimates

of Antarctic sea ice thickness
:::
SIT from ICESat-2 over current methods, especially at smaller scale

::::
scales.

1 Introduction

Satellites have documented changes in sea ice extent (SIE) for decades (Parkinson and Cavalieri, 2012); however, sea ice

thickness (SIT) is much harder to measure remotely. Declines in Arctic sea ice thickness
:::
SIT

:
over the past several decades20

have been detected in under-ice upward-looking sonar surveys and satellite observations (Rothrock et al., 2008; Kwok and

Rothrock, 2009). Arctic ice thickness has been observed with satellite altimetry to continue to decline over the past decade

(Kwok and Cunningham, 2015), but any possible trends in Antarctic SIT are difficult to detect because of the presumably

1



relatively small changes, and difficulties in estimating sea ice thickness
:::
SIT

:
in the Antarctic (Kurtz and Markus, 2012; Zwally

et al., 2008). Because fully-coupled models generally fail to reproduce the observed multi-decadal increase in Antarctic SIE, it

is likely that their simulated decrease in Antarctic SIT is also incorrect (Turner et al., 2013; Shu et al., 2015). However, ocean-

ice models forced with atmospheric reanalysis correctly reproduce an increasing Antarctic SIE and suggest an increasing SIT

(Holland et al., 2014). Massonnet et al. (2013) found that assimilating sea ice models with sea ice concentration shows that SIT5

covaries positively with SIE at the multi-decadal time scale, and thus implies an increasing sea ice volume in the Antarctic.

Detection of variations in sea ice thickness
:::
SIT

:
and volume are important to understanding a variety of climate feedbacks

(e.g. Holland et al., 2006; Stammerjohn et al., 2008); for example, they are critical to understanding trends and variability in

Southern Ocean salinity (e.g. Haumann et al., 2016). At present, large-scale ice thickness cannot be retrieved with sufficient

accuracy to detect witeh
:::
with

:
any confidence the relatively small trends in thickness expected (Massonnet et al., 2013), or even10

interrannual variability (Kern and Spreen, 2015).

The main source of Antarctic SIT measurements comes from ship-based visual observations (ASPeCt, the Antarctic Sea Ice

Processes and Climate program, compiled in Worby et al. (2008)), drill-line measurements (e.g. Tin and Jeffries, 2003; Ozsoy-

Cicek et al., 2013), aerial surveys with electromagnetic induction (e.g. Haas et al., 2009) and sporadic data from moored ULS

(e.g. Worby et al., 2001; Harms et al., 2001)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Worby et al., 2001; Harms et al., 2001; Behrendt et al., 2013). These are all sparsely15

conducted, with significant gaps in both time and space, making it hard to infer any variability or trends. There is also some

evidence of a sampling bias towards thinner ice due to logistical constraints of ships traversing areas of thick and deformed ice

(Williams et al., 2015).

The only currently-feasible means of obtaining SIT data on a large enough scale to examine thickness variability is through

remotely-sensed data, either from large-scale airborne campaigns such as Operation IceBridge (OIB) (Kurtz, 2013), or more20

broadly from satellite altimetry, (e.g. ICESat (Zwally et al., 2008), or more recently, ICESat-2 (Markus et al., 2017)). Here,

SIT is derived from either the measured surface elevation
::::
snow

::::::
surface

::::
(i.e.

::::::
surface

::::::::
elevation

:::::::::
referenced

::
to

::::
local

::::
sea

:::::
level) in

the case of laser altimeters (ICESat and OIB), or from a measure of the ice surface freeboard (CryoSat-2) (Wingham et al.,

2006). The measurement of the surface elevation itself has some error, due to the error in estimating the local sea surface height

(Kurtz et al., 2012). When using radar altimetry, the ice-snow interface may be hard to detect as observations suggest that the25

radar return can occur from within the snowpack (e.g. Willatt et al., 2009), possibly due to scattering from brine wicked up into

the overlying snow, or melt-freeze cycles creating ice lenses, or from the snow-ice interface (Fons and Kurtz, 2019). However,

even with an accurate measurement of the surface elevation
:::::::
snow/ice

::::::::
freeboard, there are challenges with converting this to a

SIT estimate.

Assuming hydrostatic equilibrium, the ice thickness T may be related to the surface elevation
::::
snow

::::::::
freeboard

:
F (i.e. snow30

depth + ice freeboard, sometimes called snow freeboard; see Fig. 1) and snow depth D measurements using the relation

T =
ρw

ρw − ρi
F − ρw − ρs

ρw − ρi
D (1)

for some densities of ice, water and snow ρi,ρw,ρs (Fig. 1). In this article, freeboard refers exclusively to ice freeboard.

Without simultaneous snow depth estimates (e.g. from passive microwave radiometry (Markus and Cavalieri, 1998) or from
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ultrawideband snow radar such as that used on OIB (e.g. Kwok and Maksym, 2014), some assumption of snow depth has to be

made, or an empirical fit to field observations is needed (e.g Ozsoy-Cicek et al., 2013)
:::::::::::::::::::::::::
(e.g. Ozsoy-Cicek et al., 2013). When

averaging over multiple kilometers, and in particular during spring, it is common to assume that there is no ice component in

the surface elevation
:::::
snow

::::::::
freeboard, i.e. F =D in Eq. 1 (Xie et al., 2013; Yi et al., 2011; Kurtz and Markus, 2012). However,

this assumption is likely not valid near areas of deformed ice, which may have significant non-zero ice freeboard, and OIB5

data suggest this is not true at least for much of the spring sea ice pack (Kwok and Maksym, 2014). More generally, empirical

fits of SIT to F can be used (Ozsoy-Cicek et al., 2013), but these implicitly assume a constant proportion of snow within the

surface elevation
::::
snow

:::::::::
freeboard and a constant snow and ice density. These are not likely to be true, particularly at smaller

scales and for deformed ice. Moreover, detecting variability with such methods is prone to error because these relationships

may change seasonally and interannually.
::::::::::::::::::::
Kern and Spreen (2015)

::::::::
suggested

:
a
::::::::
ballpark

::::
error

:::
of

::::
50%

:::::
from

:::::::::::::
ICESat-derived10

:::::::
thickness

:::::::::
estimates.

:::::::::::::::
Kern et al. (2016),

:::::::::
following

::::::::::::::::
Worby et al. (2008)

:
,
::::::
looked

::
at

:::
the

:::::
snow

::::::::
freeboard

::
as

::::
one

:::::
layer

::::
with

:::::
some

:::::::
effective

::::::
density

:::::
taken

:::
as

::::
some

::::::
linear

::::::::::
combination

:::
of

:::
sea

:::
ice

:::
and

:::::
snow

::::::::
densities.

:
More recently, Li et al. (2018) has used a

regionally- and temporally-varying density (equivalently, a variable proportion of snow in surface elevation
::::
snow

::::::::
freeboard)

inferred from the empirical fits of Ozsoy-Cicek et al. (2013)and Xie et al. (2011), which is equivalent to a more complex,

regime-dependent set of snow assumptions.15

A key question is how much the sea ice morphology affects these relationships between surface measurements and thickness.

Pressure ridges, which form when sea ice collides, fractures and forms a mound-like structure (Fig. 1), are a primary source

of deformed ice. Although only a minority of the sea ice surface is deformed, ridges occur at a spatial frequency of 3-30 per

km and so may account for a majority of the total sea ice volume (Worby et al., 1996; Haas et al., 1999). Around such
:::
The

:::
sea

::
ice

:::::::
surface

:::::::
naturally

::::
has

:
a
:::::::
varying

:::::::::
proportion

::
of

::::::::
deformed

:::
ice,

::::::
which

::::::
affects

:::
the

::::::::
sampling

:::::::
required

::
to

::::::::
faithfully

::::::::
represent

:::
the20

:::::::::
distribution

:::::::::::::::::::::::::
(Weissling and Ackley, 2011).

:::::::
Around

::::::::
deformed

:
areas, both the ice freeboard and snow depth may be high, and

we do not yet understand the
:::::
know

::
the

::::::::
statistical

:
distribution of snow around such deformation features. This means that

:
In

::::
this

::::::
respect,

:
local estimates of SIT are likely biased low as the average ice freeboard cannot be assumed to be zero. Moreover, the

effective density of deformed ice (i.e. the density of the deformed ice including snow-, air- and seawater-filled gaps) may differ

significantly from level ice areas due to drained brine and trapped snow in ridge sails, and seawater in large pore spaces in25

ridge keels (Fig. 1
:
;
::::
also

::::::::
discussed

::
in

:::::::::::::::::::
Hutchings et al. (2015)). Because these densities affect the empirical fits, it is important to

quantify how SIT predictions should be adjusted to account for morphological differences in surface elevation
:::::
snow

::::::::
freeboard

measurements.

Many pressure ridges can be observed from above using airborne or terrestrial lidar scans (e.g Dierking, 1995)
::::::::::::::::
(e.g. Dierking, 1995)

. However, it is difficult to derive SIT of deformed areas from these scans due to the difficulty in determining the contribution30

of snow to the surface elevation
:::::
snow

::::::::
freeboard

:
measured by a lidar scan.

::::::::::
Furthermore,

:::
the

::::::::::::
corresponding

::::
keel

:::::::::::
morphology

::::
given

:::::
some

::::::
surface

::::::
(lidar)

::::
scan,

:::
and

:::
its

:::::
effect

::
on

:::
the

::::
SIT

::::::::::
distribution,

:
is
:::
not

:::::::
known. Among other factors, radar-based estimates

of snow depth are known to be highly sensitive to surface roughness, weather and grain size (Stroeve et al., 2006; Markus and

Cavalieri, 1998). Kern and Spreen (2015)
:::::::::::::::::::::
Ozsoy-Cicek et al. (2011)

:::
and

:::::::::::::::::
Markus et al. (2011) found that snow depth measured

by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) around deformed ice is underesti-35
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mated by a factor of two or more, and found an estimate of Antarctic sea ice thickness error from ICESat of around 50%, which

is not easily reduced due to AMSR-E snow depths not reporting any uncertainty. Kern and Spreen (2015) also showed that the

error estimate in the sea ice thickness
:::
SIT

:
is considerably affected by the snow depth error, with a conservative estimate of

30% error in snow depth leading to a relative ice thickness error up to 80%.

Figure 1. A schematic diagram of a typical first-year ridge. The ridge may not be symmetric, and peaks of the sail and keel may not coincide.

The effective density of the ice is affected by the air gaps above water and the water gaps below water. T , D and F may be linked by

assuming hydrostatic balance (Eq. 1).

Sea ice draft and ridge morphology may also be observed from below using sonar on autonomous underwater vehicles5

(AUVs) (e.g Williams et al., 2015). As most of the sea ice is below water, using the mean draft as a direct estimate of the

SIT gives lower errors than surface elevation-based methods. Moreover, the underside of the deformed ice surface does not

have snow, making the morphological features less obscured.
:::::::::::::::::::::
(e.g. Williams et al., 2015)

:
. Although AUV datasets of deformed

ice have higher resolution than air- and satellite-borne lidar datasets, they are much more sparsely conducted and fewer such

datasets
::
of

::::::::
Antarctic

::
ice

:
exist. This makes it hard to generalize conclusions of deformed sea ice from empirical datasets. It is10

therefore important to understand how the morphology of deformed ice relates to its thickness distribution. By using coincident,

high-resolution and three-dimensional AUV and lidar surveys of deformed ice, we can characterize areas of deformation and

surface morphology and its relationship to ice thickness and surface elevation
::::
snow

:::::::::
freeboard much better than with linear,

low-resolution drilling profiles.

In order to account for the varying effective density of a ridge, we need to be able to characterize different deformed15

surfaces. The analysis of ridge morphology is currently very simplistic. As summarized in Strub-Klein and Sudom (2012),

the geometry of the above-water (sail) and below-water (keel) heights is typically analyzed, traditionally by calculating the

sail-keel ratios and sail angles (Timco and Burden, 1997). There are known morphological differences between Arctic and

Antarctic ridges, such as sail heights of Antarctic ridges being generally lower than those of Arctic ridges, but these are not

known comprehensively (Tin and Jeffries, 2003). According to drilling data and shipboard underway observations, Antarc-20

tic ridges have typical sail heights of less than 1 m (Worby et al., 2008) and keel depths of order 2-4 m (Tin and Jeffries,
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Figure 2. Drone imagery (180 m x 180 m) of heavily deformed ice in the Ross Sea, Antarctica. There are multiple ridges which cannot

be easily separated. The ridge widths and slopes are varying and must be arbitrarily defined, leading to a variety of possible values. Image

provided by Guy Williams.

2003), though much thicker (maximum keel depths > 15 m) ridges have also been observed with AUVs (Williams et al.,

2015). Metrics like sail/keel angle are less meaningful in the presence of non-triangular, irregular or highly deformed ridges

(e.g. Fig. 2), which are underrepresented in literature due to selection bias. Arctic ridges are somewhat more well-studied,

with Tucker III and Govoni (1981) finding a square-root relationship between block size and above-water (sail) height, and5

Timco and Burden (1997) finding a linear relationship between sail height and keel depth but no relationship between sail

height and level ice thickness. Ekeberg et al. (2015) found that first-year (Arctic) ridge keels are better characterized by a

trapezoid than a triangle, and Petty et al. (2016) found that ice thickness could be predicted (with considerable error) from

metrics taken from lidar-derived topography of deformed ice. These results may or may not hold for Antarctic ridges. For

Antarctic ridges, Tin and Jeffries (2003) found the keel depth was proportional to the level ice thickness around a ridge, and10

Tin and Jeffries (2001b) found a linear relationship between the ice thickness and snow surface roughness. It is possible that

other, more complex metrics may be more relevant for characterizing the relationship between pressure ridge morphology and

its corresponding SIT distribution. Identifying how the morphology of deformed ice can inform estimates of sea ice thickness

:::
SIT

:
is important for reduce

:::::::
reducing

:
errors on SIT estimates, which

:
.
::::
This

:
is necessary to understanding temporal-spatial

variations in SIT using existing measurements of surface elevation.15

The uncertainty in sea ice density is also a
:::::::::
significant contributing factor to the high uncertainty of sea ice thickness

:::
SIT

:
estimates (Kern and Spreen, 2015). For example, if assuming zero ice freeboard (F =D in Eq. 1) with some known

snow density, a 10% uncertainty in the sea ice density can lead to a 50% uncertainty in the sea ice thickness
:::
SIT. As men-

tioned before, the effective density may also vary locally,
::::::::::

particularly
:::

in
::::::::
deformed

::::
ice. On previous Antarctic fieldwork

such as SIPEX-II in spring 2012, Hutchings et al. (2015) found the density of first-year ice in the presence of porous gran-20

ular ice to be as low as 800 kg m−3, a difference of more than 10% from the standard assumption of 900-920 kg m−3

(e.g Worby et al., 2008; Xie et al., 2013; Maksym and Markus, 2008; Zwally et al., 2008; Timco and Weeks, 2010)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Worby et al., 2008; Xie et al., 2013; Maksym and Markus, 2008; Zwally et al., 2008; Timco and Weeks, 2010)
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, but in line with the 750-900 kg m−3 range found by Urabe and Inoue (1988). This effective density could vary regionally

and seasonally in line with ridging frequency, and knowing these variations with greater certainty would decrease the errors

in sea ice thickness
:::
SIT estimations. The effective density may also vary locally around areas of deformed ice, which have

varying gap volumes. This means that the scatter in any given linear fit of T and F , and the variability between different fits for5

different datasets, can be interpreted as differences in effective densities; alternatively, this points out that linear fits will have

an irreducible error due to local effective density variations.

In this paper, we aim to use a high-resolution dataset of deformed sea ice to develop better algorithms to estimate sea ice

thickness
:::
SIT

:
from surface topography. Unlike previous studies which have relied on low-resolution, 2D drilling transects,

we use high-resolution, 3D characterization of the snow surface from terrestrial lidar, coincident with 3D ice draft from an10

autonomous underwater vehicle and detailed
:::::::::::::
manually-probed

:
snow depth measurements. In particular, having 3D coverage

allows for the analysis of complex morphological features. We first analyze our dataset to examine the morphology of the

surveyed first-year ridges and potential relationships with ice thickness. Second
:::
First, we examine simple statistical relation-

ships between surface elevation
::::
snow

:::::::::
freeboard,

:::::
snow

:::::
depth and ice thicknessand simple measures of local morphology, and

compare with prior studies. We also estimate effective densities of iceand snow
:::::
/snow

:::
by

:::::::::
comparing

:::
the

:::
fits

::::
with

::::
Eq.

:
1
:
and15

compare with field data. Lastly
::::
Next, we use a deep learning convolutional neural network to improve estimates of local ice

thickness by using complex, non-linear functions of 3D surface morphology. We then discuss
::::::
Finally,

:::
we

::::::
discuss

:::
the

:::::
linear

::::
and

:::::::
ConvNet

::::::
models

::::
and

::::::
attempt

:::
to

:::::::
interpret how learned features in the neural network may be related to physically-meaningful

morphological features, and consider possible extensions to this work on larger datasets.

:::
Our

::::
goal

:::::
here

::
is

::
to

::::
test

:::::::
whether

:::::::
complex

:::::::
surface

::::::::::::
morphological

:::::::::::
information

:::
can

:::
be

::::
used

:::
to

:::::::
improve

:::
sea

:::
ice

:::::::::
thickness20

:::::::::
estimation.

::
In

::::
this

:::::
paper,

:::
we

:::::::::::
demonstrate

:::
this

:::::
using

:::::::::::::
high-resolution

::::::
spatial

::::::
surface

:::::::::::
topography,

:::::
which

::
is

:::::
most

:::::::::
applicable

::
to

:::::::
airborne

::::::
remote

::::::
sensing

::::
data

::::
such

::
as

::::
that

:::::::
obtained

:::
by

:::::::
NASA’s

::::::::
Operation

::::::::
IceBridge

::::::::::::
(Kurtz, 2013).

::::::
While

:
a
::::::::
somewhat

::::::::
different

:::::::
approach

::::::
would

::
be

:::::::
required

:::
for

:::::
linear

::::
data

::::
such

::
as

:::
that

::::::::
obtained

::::
from

:::
the

::::::::
ICESat-2,

::::
this

:::::
paper

:
is
::
a
:::
first

::::
test

::
of

::::::::::::::
proof-of-concept

:::
that

:::::
using

::::
such

::::::::::
information

::::
may

::
be

:::::::::
beneficial.

:

2 Data
:::
and

:::::::::
Processing25

The PIPERS (Polynas, Ice Production, and seasonal Evolution in the Ross Sea) expedition took place from early April to early

June 2017 (Fig. 3). In total, 6 AUV ice draft surveys were taken of the undersides of deformed sea ice. Of these, 4 coincided

with snow depth measurements and a lidar survey of the surface elevation
::::
snow

::::::::
freeboard, thus providing a ‘layer-cake’ of snow

depth, ice freeboard and ice draft data (following Williams et al. (2013)). These 4 layer cakes are shown in Fig. 4. There are two

other AUV scans which lack lidar/snow measurements but are included for draft-related
::
so

::
are

:::
not

::::::::
included

::
in

:::
our analysis. The30

AUV scans were done using the
::::::
surveys

::::
were

:::::
done

::::
with

:
a
:
Seabed-class AUV from the Woods Hole Oceanographic Institution

equipped
::::::::
following

::::::::::::::::::
Williams et al. (2015),

:
with a swath multibeam sonar (Imagenex 837 DeltaT)

:
at

::
a
:::::
depth

::
of

:::::::
15-20m

::
in

::
a

:::::::::
lawnmower

:::::::
pattern

:::::::
(equally

::::::
spaced

::::::
passes

:::::
under

:::
the

:::
ice

::
in
::::::::::

alternating
:::::::::
directions).

::::::::
Adjacent

::::::
passes

:::::
were

::::::
spaced

::
to

:::::::
provide

::::::::::::
approximately

::::
50%

::::::
overlap

:::
in

::::::::::
consecutive

::::::
swaths,

::::
with

::
at
:::::

least
:::
one

::::
pass

::::::
across

:::
the

::::
grid

::
in

:::
the

:::::::::
transverse

::::::::
direction

::
to

:::::
allow
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:::::::::
corrections

:::
for

:::::
sonar

:::::::::
orientation

::
in

:::
the

:::::::
stitching

:::::::
together

::
of

:::
the

::::
final

:::::
sonar

::::
map. The AUV multibeam data was

::::
were

:
processed

to correct for vehicle pose, then individual swaths were stitched together, with manual corrections to pitch and roll offsets of

the sensors to minimize differences in drafts for overlapping portions of adjacent swaths. This largely follows the methodology

in Williams et al. (2015), although Simultaneous Localization and Mapping (SLAM) algorithms were not applied here as the5

quality of the multibeam maps were determined to be comparable to those without SLAM processing, and any improvements

in resolving small-scale features would not affect the analysis here. The vertical error for
:
in
:::::
draft is estimated at 10 cm over

deformed areas and <1
:
3
:
cm for level areas (Williams et al., 2015). The scans were ultimately binned at 0.2 m horizontal

resolution. The surface elevation
::::
snow

::::::::
freeboard

:
scans were done with a Riegl VZ-400 lidar , using four

:::::::
VZ-1000

::::::::
terrestial

::::
lidar

:::::::
scanner,

::::
using

::::
3-5 scans from different sides of a 100 m x 100 m grid to minimize shadows, which were stitched together10

using tripod-mounted
:::::::
reflective

:
targets placed around the grid.

:::
We

:::::::
scanned

::
at

::
the

:::::::
highest

::::
laser

:::::
pulse

::::::::
repetition

:::
rate

::
of

::::::::
300kHz,

::::
with

::
an

::::::::
effective

::::::::
maximum

:::::
range

:::
of

:::::
450m.

::::
The

::::::::
accuracy

::::
and

::::::::
precision

::
at

:::
this

:::::
pulse

::::
rate

:::
are

:
8
::::

mm
::::
and

:
5
::::

mm
:::::::::::
respectively.

:::
All

:::::::::
composited

::::
and

::::::::
registered

:::::
scans

:::
for

:
a
::::::::
particular

::::
site

::::
were

:::::::::::::
height-adjusted

::
to

:
a
::::::::

sea-level
::::::
datum

::::
using

::
a
::::::::
minimum

::
of

::
3
::::
drill

::::
holes

:::
for

:::
sea

::::
level

::::::::::
references. The output point cloud was binned at 0.2 m resolution, and any small shadows were interpolated

over with natural neighbor interpolation (Sibson, 1981). The snow depth measurements were done
:::
last,

:
using a MagnaProbe,15

a commercial product
::::
probe

:
by Snow-Hydro LLC with negligible vertical error when measuring snow depth on top of ice

(Sturm and Holmgren, 2018; Eicken and Salganek, 2010). The probe
::::::::
penetrates

:::
the

:::::
snow

:::
and

::::::::::::
automatically

::::::
records

:::
the

:::::
snow

:::::
depth.

::
It was fitted with an Emlid Reach Real-Time Kinematic GPS, referenced to base stations on the floe, which allowed

for more precise localization of snow depth. Using Post-Processed Kinematic (PPK) techniques with the open-source RTKLIB

library and correcting for floe displacement/rotation, the localization accuracy was∼10 cm.
:::
The

:::::
snow

:::
was

:::::::
sampled

:::
by

:::::::
walking5

::::
back

:::
and

:::::
forth

::
in

:
a
::::::::::
lawnmower

:::::::
pattern,

::::
with

::::::
higher

::::::::
sampling

::::::
clusters

::::::
around

:::::::::
deformed

:::
ice.

:
A typical survey

:::
over

:::
the

::::
100

::
m

:
x
::::
100

::
m

::::
area had ∼2000 points, with higher resolution (∼10 cm) near areas of changing snow surfaces (near deformed ice

)
::::::::
deformed

:::
ice

:
and lower resolution (∼5m) over flat, level topography. These measurements were converted into a surface

by using natural neighbor interpolation
::::::::::::
(Sibson, 1981), binned at 20 cm to match the lidar and AUV data. The ice thickness

can then be calculated by taking (draft) + (surface elevation
::::
snow

::::::::
freeboard) - (snow depth).

::::
Note

::::
that

::::::
because

:::
of

:::
thin

:::::
snow,

::
a10

::::::::
negligible

::::::
portion

::
of

:::
the

:::
ice

:::
had

::::::::
negative

::::::::
freeboard.

::::::
Where

::::
they

::
do

::::
tend

::
to

:::::
occur

:::
(in

::::::
deeper

::::
snow

:::::::
adjacent

::
to

:::::::
ridges),

:::
the

:::::
effect

::
on

:::::::
isostacy

::
at

:::
the

::::::
spatial

:::::
scales

:::::::::
considered

::::
here

::::
will

:::
also

:::
be

:::::::
neglible

::::::
because

:::
of

::
the

:::::
much

::::::
thicker

::::
ice.

In addition to these 6 AUV scans from PIPERS, there were 14 additional AUV scans from other experiments (3 from

SIPEX-II, 5 from IceBell and 6 from SeaState) combined for analysis (Williams et al., 2015; Thomson et al., 2018). SIPEX-II

took place in East Antarctica in September 2012, IceBell in November 2010 in the Bellinghausen

:::
The

::::
lidar

::::
and

:::::
AUV

::::
data

::::
were

::::::::
corrected

:::::
with

:
a
:::::::
constant

::::::
offset,

::::::::
estimated

:::
by

:::::::
aligning

::::
with

:::
the

:::::
mean

::::::::::::
measurements

:::
of

:::
the

::::
level

:::::
areas

::
of

:::
the

::::
drill

::::
line

:::
for

::::
each

::::
floe.

::
It
::
is
:::::::::
important

::
to

:::
use

:::
the

:::::
level

:::::
areas

::::
only

::
as

::::
drill

::::
line

::::::::::::
measurements

:::
are

:::::
likely

:::
to

::
be

::::::
biased

:::
low

::::
due

::
to

:::
the

:::::::::
difficulties

::
of

::::::
getting

:::
the

::::
drill

:::
on

:::
top

::
of

:::::
sails,

:::::::
potential

:::::
small

::::::
errors

::
in

::::::::
alignment

:::
of

:::
the

::::::
drilling

::::
line5

::::::
relative

::
to

:::
the

:::::
AUV

::::::
survey,

:::::::::
differences

::
in

::::::::
thickness

:::::::::::
measurement

::
in

:::::
highly

:::::::::
deformed

::::
areas

::::
(the

::::::
drilling

::::
line

::::::
samples

::
at
::
a

:::::
point,

::::
while

:::
the

:::::
AUV

::::
will

::
be

:::::
some

:::::::
average

::::
over

:::
the

:::::
sonar

::::::::
footprint)

::::
and

:::
the

:::::::
presence

::
of

:::::::::::::
seawater-filled

::::
gaps

:::
that

::::
may

:::
be

::::::::
confused

::::
with

:::
the

::::::::
ice-ocean

:::::::
interface

:::::
when

:::::::
drilling.

::::
The

:::::
order

::
of

:::
the

::::
lidar

:::::::::
correction

::
is

:::
∼1

:::
cm

:::
and

:::
the

:::::
order

::
of

:::
the

:::::
AUV

:::::::::
correction

::
is

7



Figure 3. PIPERS track (magenta) with locations of ice stations labeled. The
:::::
Stations

::::
with

:
AUV scans used in this paper are shown in green

(3, 4, 6, 7, 8 and 9) and the other stations (1, 2 and 5) are shown with red squares. Stations 4, 7, 8 and 9 (green circles) also have a surface

elevation
::::
snow

:::::::
freeboard

:
scan and snow depth measurements; these are shown in Fig. 4. Other stations have some combination of missing

lidar/AUV/snow data. Station dates were 05/14 for station 3, 05/24 for station 4, 05/27 for station 6, 05/29 for station 7, 05/31 for station 8

and 06/02 for station 9. Overlain is the sea ice concentration data (5-day median) for 06/02/2017 from ASI-SSMI (Kaleschke et al., 2017).

::::
∼10

:::
cm.

::::
This

:::::
offset

:::::::
accounts

:::
for

:::::
errors

::
in
:::::::::
estimating

:::
the

:::
sea

::::
level

::
at
:::::
lidar

::::
scan

::::::::
reference

:::::
points

:::
and

:::
the

:::::
AUV

:::::
depth

:::::
sensor

::::
and

::::::
vehicle

::::
trim.

:
10

::::::::
Summary

:::::::
statistics

:::
for

:::
the

::::
floes

:::::::
sampled

::::::
during

:::::::
PIPERS

::
are

::
in
:::::
Table

::
1.

::::
The

:::::::
PIPERS

::::::
surveys

:::::::::
comprised

::::
floes

::::
with

:::::
ridges

::::
that

:::
had

::::
sails

:::
and

:::::
keels

::::::::::
significantly

::::::
thicker

::::
than

::::
those

::::
that

::
are

::::::::
typically

:::::::
sampled

::
in

::::::
drilling

:::::::
transects

:::::::::::::::::::::::::::::::::::::::
(e.g. Tin and Jeffries, 2003; Worby et al., 2008)

:
.
:::
The

::::
sail/Weddell seas, and SeaState in October 2015 in

:::
keel

::::::
angles

:::
(the

:::::
angle

:::
of

:::
the

:::::::
sail/keel

:::::
slope

::::::
relative

::
to
::::::::

vertical)
:::
are

:::
not

::
as

:::::::::::
well-defined

:::
for

::::::::
complex,

:::::::::
non-linear

::::::
ridges,

::
so

::
a
:::::
range

::
of

::::::
angles

::
is
::::::

given,
:::::
based

:::
on

:::
the

::::::
variety

:::
of

:::::
slopes

:::::::::
measured

:::::
across

:::
the

::::::::
deformed

:::::
area.

:::
The

:::::
99th

::::::::
percentile

:::
for

:
the Chukchi

:::
sail/Beaufort seas. Note that SeaState surveyed Arctic ice, but15

we include it for comparison as the AUV scans are primarily of thin, first-year ice. Tin and Jeffries (2003)found that Antarctic

ridges are morphologically comparable to those from
:::
keel

::::::
height

::
is

::::
also

:::::::
reported

::
to
::::::

inhibit
::::

the
:::::
effect

::
of

:::::::
outliers

:::::
from

:::
the

::::::::
lidar/AUV

::::::
scans.

:::
We

:::::
found

:::
the

:::::::
sail/keel

::::
ratio

::::
was

::::
much

:::::
more

:::::::::
consistent

::::
when

:::::
using

:::
the

::::
99th

::::::::
percentile

::::::
values.

::::
Our

:::
sail

::::::
angles

::
are

::::::::
typically

:::::
< 10o

:::
and

::::
our

:::
keel

::::::
angles

:::
are

:::::::
typically

::::::
< 20o,

::
in

:::
line

::::
with

::::::::
averaged

:::::
values

:::::
from

::::::::::::::::::
Tin and Jeffries (2003)

:
.
::::::::
However,

:::
our

:::
sail

::::::
heights

:::
and

::::
keel

::::::
depths

:::
are

::::::
slightly

:::::
larger

::
in

:::::::::
magnitude

::::
than

:::
the

:::::::
averaged

::::::::
Antarctic

::::::
values

::::
from

:::::::::::::::::::
Tin and Jeffries (2003)

:
,
:::
and

:::
are

::::
more

::::::
similar

:::
to

::::
their

:::::::
reported

:::::
values

:::
for

:
temperate Arctic ridgeswhich largely form from first-year ice.

3 Results

8



Figure 4. Layer
::
Sea

:::::::
ice/snow

::::
layer

:
cakes from PIPERS. The top layer is the snow depth (D), the middle layer is the lidar scan of the surface

elevation
::::
snow

:::::::
freeboard (F ), and the bottom layer is the AUV scan of the ice draft. The ice thickness is therefore given by ice draft + surface

elevation
::::
snow

:::::::
freeboard

:
- snow depth.

We attempt to statistically model sea ice thickness using surface-measurable metrics (e.g. mean and standard deviation of the

surface elevation), in order to see the limitations of this method. .
::::::::
Although

::::
our

:::::::
sampled

::::::
ridges

::::
seem

::
to
:::

be
::::::::::::::
morphologically5

:::::
typical

:::
of

::::::::
Antarctic

::::::
ridges,

::::
they

:::
are

:::::::::
somewhat

::::::
thicker

::::
than

:::::
those

:::::::
typically

::::::::
sampled

::
in

::::::
drilling

:::::::::
transects,

:::::
which

::
is

:::::::::
consistent

::::
with

::::::::::::::::::
Williams et al. (2015),

::::
who

::::::::
suggested

::::
that

::::::
drilling

::::::::
transects

::::
may

::::::::::
undersample

::::::
thicker

::::
ice.

3
:::::::
Methods

3.1 Estimation of Sea Ice Thickness With Surface-Based Metrics
::::::
Linear

:::::::::
regression

:::::::::
approach

Following previous literature, we expect some relationship between sea ice morphology and thickness. Previous studies10

have used low-resolution, 2D surveys using drill lines and have found various correlations between certain metrics and the

level/deformed ice thickness.The PIPERS surveys comprised floes with ridges that had sails and keels significantly thicker

than those that are typically sampled in drilling transects (e.g. Tin and Jeffries, 2003; Worby et al., 2008). For our PIPERS

9



Table 1. Standard metrics calculated for PIPERS dataset: Sail height (HS), sail angle (AS), the surface roughness (here taken as the standard

deviation of the surface elevation
::::
snow

:::::::
freeboard, σ), mean surface elevation

::::
snow

:::::::
freeboard (F̄ ), keel depth (HK ), keel angle (AK ), mean

thickness (Ī), mean level ice thickness (ĪL), mean deformed ice thickness (ĪD), sail-to-keel ratio (HS/HK ) and % deformation. For HS

and HK , the absolute maximum is given, along with the 99th percentile value of the deformed section draft (in brackets). The amount of

deformed ice in each scan is generally high as the survey grids were deliberately chosen for their deformation. The sail/keel angles are not

precisely defined because the deformed surfaces are complex and non-linear,
:::
and

::
a
::::
range

::
of

:::::
slopes

:::::
across

:::
the

:::::::
deformed

::::::
surface

::
are

:::::
given.

HS (m) AS (o) σ (m) F̄ (m) HK (m) AK(o) Ī (m) ĪL (m) ĪD (m) HS/HK %def.

PIP4 1.64 (1.33) 6-40 0.20 0.28 7.43 (6.53) 15-25 1.72 0.65 2.19 0.22 (0.20) 71

PIP7 2.02 (1.53) 3-7 0.26 0.37 7.30 (6.84) 13-17 2.20 0.47 3.49 0.28 (0.22) 57

PIP8 1.95 (1.16) 1-6 0.15 0.27 5.70 (5.32) 6-14 1.33 0.57 2.08 0.34 (0.22) 50

PIP9 1.82 (1.27) 6-13 0.15 0.24 6.57 (5.93) 9-34 0.91 0.59 2.01 0.28 (0.21) 23

data, we calculate standard metrics such as sail/keel height and angle, summarized in Table 1. The sail/keel angles are not as

well-defined for non-linear ridges, so a range of angles is given. The 99th percentile for the sail/keel height is also reported to15

inhibit the effect of outliers from the lidar/AUV scans. We found the sail/keel ratio was much more consistent when using the

99th percentile values. Our sail angles are typically < 10o and our keel angles are typically < 20o, in line with averaged values

from Tin and Jeffries (2003). However, our sail heights and keel depths are slightly larger in magnitude than the averaged

Antarctic values from Tin and Jeffries (2003), and are more similar to their reported values for temperate Arctic ridges. We

compare the relationships for predicting thickness from prior studies that were fitted on low-resolution, 2D datasets with our20

higher-resolution, 3D dataset to see if the same relationships still hold.

3.1.1 Estimating level ice thickness from keel depth

The simplest way to account for the morphology of a deformed surface is to simply measure its maximum height, as has often

been done when quantifying ridge statistics from airborne lidar surveys (e.g Dierking, 1995; Petty et al., 2016). A common

way of reporting this is by taking the ratio of the sail height and keel depth. Using the 99th percentile values for the sail/keel25

from Table 1, the ratio of keel depth and snow-sail height for our PIPERS dataset is 3.9, in line with a ratio of 3.6
::
We

:::::::
attempt

::
to

:::::::::
statistically

::::::
model

:::
SIT

:::::
using

::::::::::::::::
surface-measurable

::::::
metrics

::::
(e.g.

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

::
of

:::
the

:::::
snow

:::::::::
freeboard),

::
in

:::::
order

::
to

:::
see

:::
the

:::::::::
limitations

::
of

::::
this

:::::::
method.

::
To

:::::::::
accurately

::::::::
calculate

:::
SIT

:::::::
without

:::::::
making

::::::::::
assumptions

::
of

:::::
snow

::::::::::
distribution,

:::
we

:::::
need

::
to

:::
use

::::::::
combined

:::::::::::::
measurements

::
of

:::
ice

::::
draft

:::::::
(AUV),

:::::
snow

::::::::
freeboard

::::::
(lidar)

:::
and

:::::
snow

:::::
depth

:::::::
(probe).

:::::
Here,

:::
we

::::::::
primarily

::::
use

:::::::
PIPERS

:::
data

:::
to

:::::
focus

::
on

::::::::::
early-winter

:::::
Ross

:::
Sea

:::::
floes,

::::
and

::::
also

::::::
because

::::
this

::
is

:::
the

::::::
largest

::::
such

::::::
dataset

:
from 204 drill profiles30

of Antarctic sea ice examined by Tin and Jeffries (2001a), and also consistent with a ratio of 4.4 for first-year Arctic ridges

from Timco and Burden (1997). Tin and Jeffries (2001a) also found a ratio of 29.6 for ice keel area/ice sail area, and a ratio

of 10.4 for ice keel area/snow sail area. For our corresponding 3D dataset, our ice keel volume/ice sail volume ratios range

from 11.6-19.0 and our ice keel volume/snow sail volume ratios from 4.6-6.4. Our ratios are somewhat lower than those of

10



Tin and Jeffries (2001a), perhaps because drill line measurements of snow
:::
one

:::::
season/ice freeboard tend to be biased low due

to selection bias.

It may also be possible to infer the level ice thickness given a measured sail height. Tucker III et al. (1984) found the

thickness of the level ice forming a sail (L) and its sail height (S), assuming buckling failure, could be related as S ∝ L0.5.5

Tin and Jeffries (2003), following Melling and Riedel (1996), assumed that the sail height (S) could be related to the keel depth

(H)as H = 5S, and thus the keel depth could be related to the level ice thickness as H = aL0.5, and found a= 5 for a dataset

from the Ross Sea . This coefficient of 5 is lower than the coefficients (15-20) for a variety of Arctic ridges in the Beaufort Sea

(Tucker III et al., 1984; Melling and Riedel, 1996). When fitted to our PIPERS AUV dataset , we get a = 6.7± 0.7. Note that

here we use the mean draft of the level ice from the AUV dataset
::::::
region, which is very close to the mean thickness (and indeed,10

for early winter, over level ice, the F =D assumption should be approximately true). Following Leppäranta and Hakala (1992)

, Tucker III et al. (1984) and Timco and Sayed (1986), which found the range for the exponent could not be narrowed beyond

beyond 0.5-1.0, we also try fitting a linear regression (with no intercept), giving a= 9.3± 1.5. We expand this regression

to include our full AUV dataset (20 scans, see Section 2) spanning a much wider range of keel depths (Fig. ??). We obtain

a= 6.8± 0.4 for the square-root relationship and a= 6.5± 0.7 for the linear relationship. As the scatter is high, we select the15

best model by choosing the lowest AIC (Akaike Information Criterion, see Akaike (1974)) as the R2 is not well-defined for

a fit with no constant term. In both the PIPERS-only and full-AUV datasets, the square-root relationship was a better model

than the linear relationship, even if an intercept was included in the linear regression. Our coefficient of a= 6.8 is similar to

the coefficient of 5 from Tin and Jeffries (2003), and both of these are much lower than the coefficients found for Arctic ridges

(15-20), suggesting a possible morphological difference between Arctic and Antarctic ridges. We also performed a monomial20

fit to identify the best exponent of L, which gave H = 6.4L0.38. This had a marginally smaller AIC than the square-root fit,

although this exponent is not within the range of 0.5-1 suggested by Timco and Sayed (1986) and Tucker III et al. (1984). In

any case, both the square-root and monomial fits have considerably lower AICs than the linear fit, which suggests that the

exponent is likely closer to 0.5 than 1.0.
::::::::
important

:::
so

:::
that

:::
the

:::::
ridges

:::::
have

::::::::
consistent

:::::::::::
morphology.

This relationship could potentially be used the other way, by measuring the extreme value (sail height) and inferring the25

level ice thickness . Sail heights and deformed ice proportion are recorded when taking underway observations (ASPeCt)to

estimate ice thickness, and so our empirical relationship may be applied to these data to give a basic estimate of sea ice volume

in the Ross Sea. Worby et al. (2008) identified a relationship for estimating sea ice thickness, assuming a triangular sail and

keel, as T = 2.7RS+Zu for some deformed proportion R, sail height S and level thickness Zu. This relationship was
:::
We

:::
use

:::::
simple

:::::::::::
(multi)linear

:::::::::::
least-squares

::::::::
regression

::::
with

:::::
either

::::
one

:::::
(snow

:::::::::
freeboard,

::
F )

:::
or

:::
two

:::
(F

:::
and

:::::
snow

:::::
depth,

:::
D)

::::::::
variables

::::
with30

:
a
:::::::
constant

:::::
term,

::::
such

:::
that

::::::::::::::::::
T = c1F + c2D+ c0.

:

:::
For

:::
the

::::::::::
two-variable

:::
fit,

:::
we

::
do

:::
an

::::::::
additional

::
fit

::::
with

:::
the

:::::::
constant

::::::
forced

::
to

::
be

:::::
zero,

::
in

::::
order

::
to
::::::
obtain

::::::::::
coefficients

:::
that

:::
can

:::
be

::::
used,

::::::::
following

::::
Eq.

::
1,

::
to

:::::::
estimate

:::
the

:::::::
snow/ice

::::::::
densities.

:

::
To

:::::::
measure

::::
the

::
fit

::::::::
accuracy,

:::
we

::::
use

:::
the

:::::
mean

:::::::
relative

::::
error

:::::::
(MRE),

:::
as

:::
this

::::::
avoids

:::::::::
weighting

::::::
errors

::::
from

:::::::::
thin/thick

:::
ice

:::::::::
differently.

::::
The

::::
R2

adj:::::
value,

::::::::
adjusted

:::
for

:::::::
different

:::::::
number

::
of

:::::::::
variables,

::
is

::::
also

:::::::
reported

:::::
where

::::::::
possible

::
(it

::
is

:::
not

:::::::
defined

:::
for

:
a
::
fit

::::::
forced

:::::::
through

:::
the

:::::::
origin).

::::::
When

:::::::::
comparing

:::
the

::::::::::::
generalization

:::
of

:::
the

:::
fits

::
to

::::
test

::::
data

::::::::
excluded

::::
from

::::
the

::
fit

:::::
data,

:::
we

11



:::
also

::::::
report

:::
the

::::::
relative

:::::
error

::
of

:::::::::
predicting

:::
the

:::::
mean

::::::::::
survey-wide

::::::::
thickness

:::::::
(REM),

:::
as

::::
often

::::::::::
researchers

:::
are

::::::::
interested

:::
in

:::
the

::::::::
aggregate

:::::::
statistics

::
of

::
a
::::::
survey.

:::::
These

::
fit
::::::

errors
::
in

:::::::::
estimating

:::::
mean

:::
SIT

:::
are

::::::::
compared

:::
to

::::
both

::::
prior

:::::::::::
relationships derived from

drilling data by initially working out the snow sail mean to draft mean ratio as 5.1, and then correcting for snow obscuring the5

deformed surface area to obtain a corrected ratio of 4.4. Using our own values for mean ice draft/freeboard, we coincidentally

get the same corrected ratio of 4.4, and so we could expect the relationship above to hold for our dataset. However, our ridges

are non-triangular, so we are not surprised to find that this relationship does not really hold with our PIPERS dataset, with a

MRE of 56% (using the 99th percentile values for the sail height, which would be closer than the 100th percentile value to

the effective height of an equivalent-volume triangular sail). Further analysis using surface roughness as a variable to estimate10

ice thicknessis detailed in Sections ?? and 4.1.3
::
to

::::::::
highlight

:::::::::
uncertainty

:::::
when

:::::
used

::::
with

:::::::
different

:::
ice

::::::::::
conditions,

:::
and

::
to
::::

our

:::::::
ConvNet

::::::::::
predictions

::
of

:::
ice

:::::::
thickness.

Level ice (draft) thickness vs keel depth (defined as the 99th percentile draft), following theoretical relationships described

in Tucker III et al. (1984); Tin and Jeffries (2003). The square-root fit (black) has a much lower AIC (75.9) than the linear fit

(blue, AIC = 92.7), and the monomial fit (green) has a slightly lower AIC (75.4) than the square-root fit. The mean relative15

errors (MRE) in predicting keel depths compares similarly, with MREs of 41%, 24% and 22% for the linear, square-root and

monomial fits.

3.1.1 Estimating mean thickness with surface roughness

It is reasonable to expect that rougher ice, which is generally older and more deformed, should be thicker. Tin and Jeffries (2001b)

found a linear relationship between the large-scale (1 m resolution, over 150 m) RMS roughness (i.e. the
:
In

:::::
order

::
to

::::::::
motivate20

::::
more

::::::::
complex

:::::::
methods

::
in
::::::::::

subsequent
::::::::
sections,

:::
we

::::
also

:::
use

:::::::
surface

::::::::
roughness

::
(standard deviation, σ) of the snow surface

and its thickness, and also a linear relationship between the σ of the surface and σ of the draft, for 3 Ross Sea datasets

from summer and autumn. Taking their ratio, we can estimate the linear relationship between the σ of the draft and the ice

thickness, which we can compare to our AUV data (Fig. ??). Tin and Jeffries found that the survey-wide mean thickness was

5.5 times the survey-wide snow-surface roughness, and their snow-surface roughness was 1/3.7 of the ice bottom roughness.

So, approximately, the survey-wide mean thickness would be 5.5/3.7 times the ice bottom roughness, giving a factor of 1.5.5

As not all our AUV datasets have corresponding lidar/snow data, we use the mean draft as an estimate of the mean thickness.

We find the same ratio of (survey-wide mean thickness)/(survey-wide bottom roughness) = 1.5±0.1 for our AUV dataset (Fig.

??) . Here, our survey-wide scale is very close to the floe scale of Tin and Jeffries (2001b), but our surveys are not necessarily

representative of the whole floe due to deliberate selection of deformed ice. To avoid confusion, we refer to our large-scale

statistics as survey-wide instead of floe-wide; each survey (e.g. PIPERS) is comprised of multiple scans (e.g. PIP4, PIP7), from10

which smaller windows are taken.
::
to

::::::
predict

:::::::::
thickness,

::
to

::::::::::
demonstrate

::::
that

::::::
surface

::::::::::::
morphological

:::::::::::::
characteristics

::::
have

:::::
some

:::::::::
information

::::
that

:::
can

:::
be

::::
used

::
to

::::::
predict

::::::::
thickness.

:

Due to the seasonally- and regionally-varying snow cover, the relationship between snow-surface roughness and bottom

roughness is unlikely to be consistent across different climatologies, so we only analyze the thickness
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Figure 5.
:::::::
ConvNet

:::::::::
architecture,

:::::
using

:
3
::::::::::
convolutional

:::::
layers

:::
and

::
2

:::::::::::
fully-connected

::::::
layers,

::
for

::::::::
predicting

:::
the

::::
mean

:::::::
thickness

::
(1

::
x

:
1
::::::
output)

:
of
::

a
::
20

::
m
::

x
::
20

::
m
::::
(100

::
x

:::
100

:::::
input)

::::
lidar

::::
scan

::::::
window

::
at

:::
0.2

::
m

::::::::
resolution

:::::::::::
(LeNail, 2019).

::::
The

:::
(64

:
x
::
1)
:::::

layer
:
is
:::::

made
::
by

::::::::
reshaping

:::
the

::
(64

::
x
:
1
::
x

::
1)

:::::
output

::
of

:::
the

:::
final

:::::::::::
convolutional

::::
layer,

:::
and

::
so

::
is
::::::
visually

::::::::
combined

:::
into

:::
one

:::::
layer.

:::
The

::::::::
optimizer

:::
used

::::
was

:::::
Adam

:::
with

::::::
weight

::::
decay

:::::::::
1.0× 10−5

:::::::::::::::::
(Kingma and Ba, 2014)

:
.
:::
The

:::::
initial

::::::
learning

:::
rate

:::
was

:::::::::::
η = 3× 10−3

:::
and

::::::
reduced

::
by

::
a
::::
factor

::
of

:::
0.3

::::
every

::::
100

:::::
epochs

::::
until

:
it
::::::
reached

::::::::
9× 10−5.

3.2
::::
Deep

:::::::
learning

:::::::::
approach15

:::
One

:::::::::
advantage

::
of

::::
deep

:::::::
learning

:::::::::
techniques

::
is

:::
that

::::
they

:::
are

::::
able

::
to

::::
learn

:::::::
complex

:::::::::::
relationships

:::::::
between

:::
the

:::::
input

:::::::
variables

:::
and

::
a

::::::
desired

::::::
output,

::::
even

::
if

:::
the

::::::::::
relationships

:::
are

:::
not

:::::::
obvious

::
to

:
a
:::::::
human.

::::::::
Although

::::
they

:::
are

:::::::::
commonly

::::
used

::
for

::::::
image

:::::::::::
classification

::::::::
purposes,

::::
they

:::
can

::::
also

::
be

::::
used

:::
for

:::::::::
regression

::::::::::::::::::::
(e.g. Li and Chan, 2014).

::::
We

:::::
expect

::
a
:::::::::::
convolutional

::::::
neural

:::::::
network

:::::::::
(ConvNet)

::
to

::::::
achieve

:::::
lower

:::::
errors

::
in

:::::::::
estimating

:::
SIT,

::
as

::::
they

:::
are

::::
able

::
to

::::
learn

:::::::
complex

::::::::
structural

:::::::
metrics,

::
in

:::::::
addition

::
to

::::::::
simplistic

:::::::::
roughness

::::::
metrics

:::
like

:::
σ.

:::
Our

:::::
input

::
is

:
a
:::::::::
windowed

::::
lidar

::::
scan

::::::
(snow

:::::::::
freeboard)

:::
and

::
an

::::::
output

::
of

:::::
mean

:::
ice

::::::::
thickness.

::::::::
Notably,

::::
there

::
is
:::
no20

::::
input

::
of

:::::
snow

:::::
depth,

:::
nor

::::
any

::::
input

::
of

:::
ice/(snow-surface roughness) ratio for the four full ice stations from Fig. 4 in the PIPERS

dataset. This gives a ratio of 8.2±0.5
::::
snow

::::::::
densities.

::::
This

::::::
allows

:::
the

::::::::
ConvNet

::
to

::::
infer

:::::
these

::::::::::
parameters

::
by

:::::
itself,

::::
and

:::::
more

::::::::::
importantly,

::
to

:::::::::
potentially

:::
use

:::::::
different

:::::::
density

:::::
values

:::
for

:::::::
different

:::::
areas.

:

:::
Our

::::::::::
architecture

::
is

:::::
shown

:::
in

:::
Fig.

::
5.

::::
The

::::
input

:::::::
consists

::
of

:::
20

:
x
:::
20

::
m

::::
(100

:
x
::::
100

:::::
pixel)

::::::::
windows,

::::
with

::
3

:::::::::::
convolutional

:::::
layers,

with a mean relative error of the mean thickness of 12%, which is higher than the ratio of 5.5 from Tin and Jeffries (2001b)25

. In this paper, we use the mean relative (percentage) error (MRE) of the predictions instead of the mean absolute error

to prevent weighting prediction errors in thicker ice differently to thinner ice, which is important as the majority of sea

ice surfaces are thinner, undeformed ice. The ratio of (survey-wide surface roughness) /(survey-wide bottom roughness) is

1/(6.5± 0.5) , which is also different to the corresponding ratio of 1
::::
stride

::
of

::
2
::
in

:::
the

::::
first

::
2

:::::
layers,

::::
and

::::
two

:::::::::::::
fully-connected

:::::
layers.

::::
We

::::
used

::::::
scaled

::::::::::
exponential

:::::
linear

:::::
units

:::::::
(SELU)

::
to

::::::
create

:::::::::::
non-linearity

::::::::::::::::::::
(Klambauer et al., 2017)

:
.
:::
The

::::
loss

::::::::
function30

::::
used

:::
was

::::::
mean

::::::
squared

:::::
error.

::::
We

::::
also

::::
used

:::::::
dropout

:::::::
(p=0.4)

:::
and

::::::::::::
augmentation

:::::::
(random

::::
90o

::::::::
rotations,

:::::::::
horizontal/3.7 from

Tin and Jeffries (2001b). Interestingly, combining them to get a ratio of (survey-wide mean thickness)
::::::
vertical

:::::::
flipping)

:::
to

:::::
reduce

:::::::::
overfitting

::::::::::::::::::::
(Srivastava et al., 2014).

:::
An

::::::::
overview

:::
of

::::::::
ConvNet

:::::
basics

::::
and

:::
full

:::::::::::::
implementation

::::::
details

:::
are

:::::
given

:::
in

:::
the

::::::::
Appendix.

:
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:::
The

:::::::
training/(survey-wide bottom roughness) gives a very similar value of 1.3±0.1, which agrees well with their value of

1.5. This may be because our scans captures larger features than a drill line can, and these may have different roughness values.

Moreover, drill lines may suffer sampling biases as previously discussed.

We repeat the analysis using local snow surface roughness (σ of a 20m x 20m window at resolution 0.2 m ) and local mean

draft (Fig. ??b) instead of scan-wide statistics. The window size was chosen
::::::::
validation

:::
set

::::::::
consisted

::
of

::::::::::::::::
randomly-selected5

:::::::
windows

:::::
from

::::
three

:::::::
PIPERS

:::
ice

:::::::
stations,

::::
each

:::
on

:
a
:::::::
different

::::
floe.

:::
We

:::::
chose

:::
20

::
m

::
as

:::
the

:::::::
window

:::
size

:
by using the range of the

semivariogram for the floes (25 m), which we expect to represent the maximum feature length scale. This compares well to an

average snow feature size of 23.3 m from early-winter Ross Sea drill lines from Sturm et al. (1998). We chose 20 m
::::::
instead

::
of

::
25

::
m

:
windows to balance this with the need for a smaller window size to ensure a larger number of windows (= data points)

for our analysis. The MREs using the snow surface roughness to predict mean local thickness range from 23-37%when fitting10

for each survey separately. For comparison, we also try fitting the local mean thickness to the local draft roughness, which has

higher MREs of 31-48% . In general, rougher surfaces correspond to thicker ice, although the nature of this relationship may

be nonlinear at higher resolutions.

Similarly, we may expect rougher areas to trap more snow (Massom et al., 2001; Kwok and Maksym, 2014). Although

Kwok and Maksym (2014) averaged the snow depth and surface roughness over a much larger scale (4 km scale at resolutions15

1-10 m)
:::::
These

:::
data

:::::
were

::::::::
randomly

::::::
divided

::::
into

::::::::
80%-20%

::
to

:::::
make

:::
the

::::::
training

::::
and

::::::::
validation

::::
sets.

::::
The

::::::::
remaining

::::
floe

:::::::
(divided

:::
into

:::::::::
windows)

:::
was

::::
kept

:::
as

:
a
:::
test

::::
set,

::
in

::::
case

:::
the

:::::::
training

:::
and

:::::::::
validation

::::::::
windows

:::
had

::::::
similar

:::::::::::
morphology

:::
and

:::
the

:::::::::
validation

::
set

::::
was

::::
thus

:::
not

::::::
entirely

::::::::::
independent

:::
of

:::
the

::::::
training

:::
set.

:::
To

::::::
prevent

:::::::::::::
cherry-picking,

:::
the

::::::::
ConvNet

:::
was

::::::
trained

::::
four

:::::
times,

::::
with

::
a

:::::::
different

:::
floe

:::::
used

::
as

:::
the

:::
test

::::
floe

::::
each

::::
time.

:::::::
Results

:::
are

:::::
shown

::
in
:::::
Table

::
3.
::::::::
Although

:::
the

:::::::
training

:::::
error

:
is
:::::::

directly
:::::::::
analagous

::
to

::
the

:::
fit

::::
error

:::
for

:::::
linear

::::::
models

:::
for

:::::
some

::::::
dataset, we also find snow accumulates preferentially in areas of deformation. We find20

that snow depth at a 20 m scale can be approximated by a linear function of the surface roughness (slope: 0.80, intercept: 0.12

m). This is a similar relationship to what they found (slope: 0.83-1.25, intercept: 0.07-0.18 m), despite their dataset being from

a different region (Weddell/Bellinghausen Seas) and season (spring) than ours (Ross Sea/winter). Our correlation (R= 0.66)

is also comparable to theirs (R= 0.71). It is not surprising that snow accumulates in areas of deformation, but the relatively

high scatter in using a simple linear model motivates more advanced techniques to analyze deformed surfaces. RMS roughness25

does not account for spatial features, as any permutation of points within a grid would have the same standard deviation.

(a) Survey-wide RMS roughness (σ) vs. floe mean draft thickness for the different AUV datasets, to be compared against a

slope of 1.5 from Tin and Jeffries (2001b). Our fit for all data (black dotted line) also has a slope of 1.5. The resolution is 0.5 m.

PIPERS and SeaState largely focused on first-year ridges, whereas Icebell data is from consolidated late spring (potentially with

multi-year ice), and SIPEX-II is from early spring. Fits to the individual datasets are color-coded. The MRE in the predicted30

mean thicknesses are 11%, 17%, 12%, and 18% for IceBell, PIPERS, SIPEX-II and SeaState respectively, and 33% for all

data. (b) Local σ of the snow surface vs. local mean thickness, for PIPERS data only. The MREs for predicting mean local

thickness range from 23-37%, with the fit for all PIPERS data (black dotted line) having a MRE of 33%. This is slightly lower

than the MRE of 49% for predicting mean draft thickness using local draft roughness from PIPERS (not shown).
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These results relating ridge morphology to other metrics largely agree (with some exceptions) with prior literature, despite

the difference in resolutions and ridge thicknesses. This suggests that surface morphology can be related, at least to a limited

extent, to sea ice thickness, and potentially improve on simple linear predictions of ice thickness. This is discussed in further

in Section 4.1.3.

3.3 Estimating thickness using hydrostatic balance5

To accurately calculate sea ice thickness without making assumptions of snow distribution, we need to use combined measurements

of ice draft (AUV), surface elevation (lidar) and snow depth (probe). Here, we primarily use PIPERS data to focus on

early-winter floes, and also because this is
:
it

::
is

:::::
much

::::::
easier

::
to

::::::
overfit

::::
with

::
a

:::::::
ConvNet

:::
as

:
the largest such datasetfrom the

same season/region, which is important so that the ridges have consistent morphology. The lidar and AUV data were corrected

by aligning the mean measurements of the level areas of the drill line. It is important to use the level areas only as drill10

line measurements are likely to be biased low due to the difficulties of getting the drill on top of sails, and the presence of

seawater-filled gaps that may be confused with the ice-ocean interface.

Assuming hydrostatic balance, Eq. 1 should hold for all datasets. However, drill lines have coarse resolution, which may not

capture the local variability in elevation between drill points, and so drill points may not even be in hydrostatic balance. Drill

lines are also only 2D, and so surface variations in the 3rd axis may not be accounted for in drilled points. Moreover, densities15

may vary spatially, in particular around deformed surfaces that may contain air/water gaps. Due to the difficulty in drilling sail

peaks, freeboards from drill lines may also be undermeasured. Our 3D data should therefore more accurately sample ridged

regions, and we should expect hydrostatic balance to hold.

Ozsoy-Cicek et al. (2013) compiled various Antarctic datasets to investigate the relationship between sea ice thickness, snow

depth and surface elevation. Assuming hydrostatic equilibrium is reached over the window size (20 m), we use Eq. 1 to fit a20

regression for sea ice thickness (T ) as a linear function of surface elevation (F ), sometimes along with snow depth (D).

This approach has been applied by Zwally et al. (2008); Worby et al. (2011); Yi et al. (2011); Xie et al. (2013) over a variety

of scales
::::::
training

:::::
error

:::
can

::
be

:::::
made

::::::::
arbitrarily

::::
low.

:::
As

:
a
::::::
result,

:::
we

:::::::
compare

:::
our

::::::::
validation

:::::
error

::
to

:::
the

:::::
linear

::
fit

::::::
errors,

:::
and

::::
also

:::
use

:::
our

:::
test

:::::
errors

:::
as

:
a
::::
test

::
of

:::
the

::::::::::::
generalization

::
of

:::
our

::::::
model.

:::::
From

::::
here

::::::::
onwards,

:::::::
analysis

::
of

:::
the

::::::::
ConvNet

:::::
refers

::
to

:::
the

::::
one

::::
using

:::::
PIP8

::
as

:
a
::::
test

:::
set,

::::::
though

:::::
using

:
a
:::::::
different

::::
one

:::::
would

:::::
yield

::::::::::
qualitatively

::::::
similar

:::::::
analysis.25

4
::::::
Results

4.1
:::::
Linear

::::::
model

:::::::
results

4.1.1 Fitting to surface elevation
:::::
snow

::::::::
freeboard

:
only

Although we have snow depth measurements in addition to surface elevation
::::
snow

::::::::
freeboard

:
measurements, in general there

are far fewer snow data and so we first try to fit with just surface elevation
::::
snow

:::::::::
freeboard, by making some snow depth30

assumptions.
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For level topography, where the snow = surface elevation assumption is supposedly valid (set F =D in Equation 1), Eq. 1

would simplify to T = 2.7F (using density values from Zwally et al. (2008)). In contrast, when the topography is sufficiently

rough, there is considerable ice freeboard, which may even exceed snow depth. If we assume the snow is negligble (D = 0),

which may be the case at the sail peak, Eq. 1 becomes T = 9.4F . These values become lower and upper bounds for fitting k in

T = kF .

All our coefficients, which range from 2.9-6.1, fall between these two extremes of snow-only freeboard and ice-only

freeboard, with the lowest value of 2.9 being for level topography, as expected. Our sampled areas are likely not representative5

of typical area-averaged deformation rates of sea ice due to these survey areas being selected for their heavy deformation, and

so the fitted coefficients for individual floes and the “All” category are considerably higher than 2.7. In contrast, the coefficients

for F of 2.8-3.0 in Xie et al. (2011), and 2.2-3.1 in Ozsoy-Cicek et al. (2013) , suggest that at floe-wide and larger scales, there

is enough level ice that the snow = surface elevation assumption is valid, at least for this region/season. It is also possible

that these drill lines have undersampled ridged ice. Our coefficient of 5.79 is much higher, which suggests that there is some10

non-zero component of ice freeboard in the surface elevation measurements. For example, if we assume typical snow/ice

densities of 300 kgm−3/920 kgm−3, we can estimate that snow, on average, comprises 54% of the measured surface elevation,

which means Eq. 1 simplifies to T = 5.8F , as in Fig. 10. In further support of this, our dataset has mean snow depths for

the four surveys ranging from 16-26 cm, and mean surface elevations ranging from 24-37 cm, implying non-zero mean ice

freeboards from 6.5-11 cm. If the proportion of ice to snow were constant (and their effective densities, too), then the best-fit15

line would have no scatter. This is not the case in Fig. 10, and indeed the standard deviation of ice freeboardacross all windows

was 7.9 cm (mean: 9.0 cm). This means that assuming a constant snow/ice density or a constant snow/ice proportion is not

justified, and hence it is likely that simple statistical models break down when looking at deformation on a small scale, or when

large-scale snow deposition and ice development conditions vary.

The sea ice thickness (T ) as a function of measured surface elevation (F ). As expected, all points lie between the two extreme20

regimes (no ice freeboard and no snow freeboard). The level surfaces mostly have no ice freeboard, as expected, though there

is some scatter that suggests a varying component of ice freeboard. The best fit line for all windows from Table 2 is shown in

black. Assuming mean snow and ice densities of 300 and 925 kgm−3, this implies a mean proportion of 62% snow and 38%

ice in the surface elevation. Again, the scatter around the best fit line indicates that this proportion is changing. Some points

for the level category fall below the T = 2.7F line, suggesting that snow densities in these areas are <300 kgm−3 (or effective25

ice density <915 kgm−3.)

Note that our sampled region is not representative of the floe, as we have deliberately chosen a heavily-deformed area, and so

the amount of ice freeboard is higher in our survey, in contrast to large-scale averaged surface elevations like Xie et al. (2013)

and Ozsoy-Cicek et al. (2013). This suggests that at large scales for some seasons/regions, it may be reasonable to assume that

the mean freeboard is zero, but this is not the case at smaller scales.30

Ozsoy-Cicek et al. (2013) found the fitted linear regression between T and F as T = 2.45F +0.21 for a winter Ross Sea

dataset. With our PIPERS dataset, our equivalent fit is T = 7.67F − 0.73, with 23% MRE. Using the relationship from

Ozsoy-Cicek et al. (2013) on our dataset, the MRE is 36%, and the error in estimating the overall survey mean thickness is
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41%, despite being from the same climatology. This means that relationships from other datasets from the same region/season

do not generalize well, especially if the proportion of deformed ice (and hence nonzero freeboard) is significant.

It is possible to interpret our negative intercept as a bias due to fitting a linear model across two roughness regimes. From

above, the two regime extremes (no-ice vs. no-snow contribution to surface elevation) give coefficients of 2.7 and 9.4 for F .

In general, we expect the proportion of ice freeboard to gradually increase as F increases from thinner, level ice to thicker,

deformed ice. Although snow also accumulates around deformed ice, there may also be local windows at parts of the ridge with5

no snow (e.g. the sail). Fitting one line through these two clusters of points would result in a coefficient for F between 2.7 and

9.4 and a negative intercept, which we find in almost all our cases. The one exception is the no-intercept fit with F for the level

category, which is essentially a null fit (as over 90% of the thickness values are clustered around 0.5 m, with surface elevations

varying over a narrow 5 cm range). In contrast, the coefficients for F from Ozsoy-Cicek et al. (2013); Xie et al. (2011) are all

∼3, because these studies average over multiple floes and have a sufficiently small proportion of deformed surface area to10

assume a negligible mean freeboard. This could also explain why their intercepts are positive.

4.1.2 Fitting to surface elevation and snow depth

Using typical values of 910 kgm−3 for ice density, 1027 kgm−3 for water density and 323 kgm−3 for snow density from

Worby et al. (2011), the coefficients for the freeboardF and snow depthD should be 8.8 and 6.0. Similarly, Zwally et al. (2008)

used corresponding densities of 915.1 kgm−3, 1023.9 kgm−3 and 300 kgm−3, giving a freeboard coefficient of 9.4 and a snow15

coefficient of 6.7. We compare these to our results of the (multi)linear regressions in Table 2. We include fits with an additive

constant, even though this is unphysical, to see how well a linear model can predict SIT. Our coefficients when fitting over all

4 floes are 10.4 for F
::::
This

::::::::
approach

:::
has

::::
been

:::::::
applied

:::
by

:::::::::::::::::::::
Ozsoy-Cicek et al. (2013) and 6.8 for D, which are comparable to

those inferred from Zwally et al. (2008), although there is considerable variation between the floes (7.9-10.6
::::::::::::::
Xie et al. (2013)

::
in

::::
order

:::
to

:::::
obtain

::::::::
empirical

:::::::::::
relationships

::::::::
between

:::
SIT

::::
and

:::::
snow

::::::::
freeboard.

::::
All

:::
our

:::::
fitted

:::::::::
coefficients

::::
are

:::::
shown

:::
in

:::::
Table

::
2.20

:::::::
Because

:::
the

:::
R2

::
is

:::
not

:::::::::::
well-defined

::
for

::
a
::
fit

::::
with

:::
no

:::::::
constant

:::::
term,

:::
we

:::
can

::::::::
compare

:::
all

:::
the

:::::
model

:::
fits

:::::
with

:::
the

::::
AIC

:::::::
(Akaike

::::::::::
Information

:::::::
Criterion

::::::
(lower

::
is
::::::

better,
:::
see

:::::::::::::
Akaike (1974)

:
).

:::
For

:::
all

:::::::::
categories

::::::
except

:::
for

:::::::
‘Level’,

:::
the

::::::
{F,D,

::::::::
constant}

:::
fit

::
is

::::::::::
indisputably

::::
best;

:
for F ; 3.9-6.3 for D). As discussed below, this suggests a lack of generalization in the fits. Assuming the

density of seawater is fixed at 1028 kgm−3, this gives bounds for the effective densities and standard errors of sea ice and

snow as 929.4±3.5 kgm−3 and 356.3±57.2 kgm−3. The snow density is in line with Sturm et al. (1998), which found mean25

densities of 360-390 kgm−3 during winter in the Ross Sea, as well as the measured snow densities from PIPERS (245-300

kgm−3). The ice (effective) density errors here are only for our PIPERS dataset and may not apply to other samples from

the Ross Sea in winter as the effective density is affected by the proportion of ridged ice. Moreover, it is important to note

that under this fitting method, the density estimates are coupled (due to ρi appearing in both coefficients in Eq. 1) and if the

estimate of ρs decreases, ρi increases. For example, if ρi = 935 kgm−3 (unusually, but not impossibly high for the effective30

density of ridged ice, which includes some proportion of seawater - see Timco and Frederking (1996), and also note that this is

the effective density, including some proportion of seawater), the best estimate for ρs becomes 312 kgm−3, which is closer to
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Although each individual floe has MREs of 10-20% when fitting with an intercept, the large variations in coefficients and

constants suggests that the linear model does not generalize well between floes. For example, using the relationship from PIP7,

PIP8 or PIP9 on PIP4 gives 30%, 33% or 35% MRE respectively, compared to 10% error for the PIP4 coefficients; using the

PIP4, PIP7, or PIP8 fits on PIP9 gives 67%,
::::::::
example,

:
a
:::::::::
difference

::
in

::::
AIC

::
of 70 % or 43% mean error, compared with 21% for

using PIP9 coefficients. Table 3 summarizes the fit and test errors for using each of the floes as the test set. The fit MREs range

from 17-20% (fitting with
:::::::
between

:::
the

:::
two

::::
best

::::::
models

::
in

:::
the

::::
‘All’

:::::::
category

:::::::
implies

:::
that

:::
the

::::::::
likelihood

::::
that

:::
the

:::::
model

::::
with

::::
{F ,5

constant) and 25-36% (without), and the test MREs range from 23-34% (with constant) and 12-59% (without). Using typical

values for snow
:
}

::
is

:::::
better

::::
than

:::
the

:::
one

::::
with

::::::
{F,D,

::::::::
constant}

::
is

::::::::::::::::
e−70 = 4× 10−31.

:::
For

:::
the

::::::
‘Level’

::::::::
category,

:::
the

:::::::::
difference

::
in

:::
AIC

::::::::
suggests

:::
that

:::::
linear

:::
fits

::::
with

::::::
{F,D,

::::::::
constant}

::::
and

:::
{F ,

::::::::
constant}

:::
are

::::
very

::::::
similar

::::
(the

::::
latter

::::
has

:
a
::::
50%

:::::::::
likelihood

::
of

:::::
being

:::::
better

::::
than

:::
the

:::::::
former),

:::::
which

::
is
:::::::::
consistent

::::
with

:::
the

::::
idea

:::
that

:::::
level

:::
ice

:::::::
probably

::::
has

:
a
:::::::
constant

:::
ice/ice density from literature

mentioned above (giving F and
::::
snow

::::
ratio

:::::
such

:::
that

::::::::::
introducing D coefficients of 8.8 and 6.0 (Worby et al., 2001) or 9.4 and10

6.7 (Zwally et al., 2008))gives MREs of 26% in both cases, and errors in estimating overall mean thickness of ∼ 15%. The

high variability in the test errors suggests that statistical relationships may not generalize to future datasets, even those from

the same climatology. This is an important limitation of applying empirical fits from small datasets.

::
as

:
a
:::::::
variable

::::
does

:::
not

:::::::
improve

:::::
much

:::
on

:::::
using

::::
only

::
F .

:

:::::
Fitting

::::::::::::
T = c1F + c0:::::

gives
:
a
:::::
mean

::::::
relative

::::
error

::::::
(MRE)

::
of

:::::
23%.

::::::::
However,

:::
the

::::
slope

::
is
:::::
much

::::::
higher

::::
(7.7),

::::
and

:::
the

:::::::
intercept

::
is

:::
also

:::::
larger

:::
and

::::::::
different

::
in

:::
sign

:::::
(-0.7

::
m)

::
to

:::::::
existing

:::
fits

::
in

::
the

::::::::
literature

::::
(e.g.

:::::::::::::::::::::
Ozsoy-Cicek et al. (2013)

:::::
found

:::
that

::::::::::::::::
T = 2.45F +0.215

::
for

::
a
::::::::::
early-spring

:::::
Ross

:::
Sea

:::::::
dataset).

::::::
Using

:::
the

:::::
fitted

::::::::::
relationship

::::
from

::::::::::::::::::::::
Ozsoy-Cicek et al. (2013)

::
on

:::
our

:::::::
dataset,

:::
the

:::::
MRE

::
is

::::
36%,

::::
and

:::
the

::::::
relative

:::::
error

::
in

:::::::::
estimating

:::
the

::::::
overall

::::::
survey

:::::
mean

::::::::
thickness

::::::
(REM)

::
is

:::::
41%.

::::
This

::
is

:::::::
perhaps

:::::
partly

::::
due

::
to

:::
the

:::::::
seasonal

::::::::
difference

::
in

:::::
these

:::::::
datasets,

:::::
which

:::::
itself

::::::
implies

::::
that

::
the

:::::::::
proportion

::
of

::::::::
deformed

:::
ice

::::
(and

:::::
hence

:::::::
nonzero

:::
ice

:::::::::
freeboard)

:
is
::::::::
variable.

:::::::
Reasons

:::
for

:::
the

::::::::
difference

::
in

:::::
slope

:::
and

::::::::
intercept

:::
are

:::::
given

::
in

::::::
Section

::::
5.1.

:::
We

:::
also

::::
test

::::
how

::::::::::::::
well-generalized

::
the

:::
fits

:::
are

:::
by

:::::
fitting

::::
only

::
3
::
of

:::
our

::
4
:::::::
surveys

:
at
::

a
:::::
time,

:::
then

::::::
testing

:::
the

:::::
fitted

::::::::::
coefficients10

::
on

:::
the

:::::::::
remaining

::::::
survey.

:::::
These

::::::
results

:::
are

:::::::::::
summarized

::
in

:::::
Table

::
3.

::::
The

:::::::
average

::
fit

::::
error

::::
was

:::::
24%,

:::
but

:::
the

:::::::
average

:::
test

:::::
error

:::
was

:::::
31%,

:::::
which

::::::
means

:::
that

::::::::
empirical

:::
fits

::
to

:::
the

:::::
snow

::::::::
freeboard

::::
may

::::
have

:::::
errors

:::
of

::::
31%

:::::
when

::::::
applied

::
to

::::
new

:::::::
datasets.

:

4.1.2
::::::
Fitting

::
to

:::::
snow

:::::::::
freeboard

:::
and

:::::
snow

::::::
depth

:::
For

:::
this

:::::::
section,

:::
we

:::
do

::::
two

::::::::
different

::::::::::
regressions:

:::
one

:::::
with

:
a
::::::::

constant,
::::

and
::::
one

:::::::
without.

::::
The

::::::::::::
with-constant

::
fit

::
is

::::::::
intended

::
to

:::
test

:::::::
whether

::::::::::
introducing

:::::::::
additional

::::::::::
information

::::::::
improves

:::
the

::::::::
empirical

::::
fits,

::::::::
following

::::::::::::::::::::::
Ozsoy-Cicek et al. (2013),

::::
and

:::
the15

:::::::::::::
without-constant

:::
fit

::
is

:::::::
intended

::
to

:::
be

::::::::
compared

::::::
against

:::
Eq.

::
1
::
to

:::::::
estimate

:::
sea

::::::::
ice/snow

::::::::
densities.

::::
The

::::::::::
coefficients

:::
are

:::::::
reported

::
in

::::
Table

::
2
:::
and

:::
the

::::::
fit/test

:::::
MREs

:::
are

:::::::
reported

::
in

:::::
Table

::
3.

:::
We

:::
can

:::
see

::::
that

::::::
adding

::::
snow

:::::
depth

::
as

::
a

::::::
variable

::::
only

:::::::
slightly

::::::::
improves

::
the

:::
fit

::::
MRE

::::::::
(average

:::::
20%),

:::
but

:::
the

:::
fits

::::::
remain

::::::::::::::::
poorly-generalized,

::::
with

::
a
:::
test

:::::
MRE

::
of

:::::
28%,

::::
only

:::::::
slightly

:::::
lower

::::
than

:::
the

::::
31%

:::
test

:::::
MRE

::
of

:::::
fitting

::::
with

::
F

:::::
only.

:::::
Fitting

:::::::
without

:
a
:::::::
constant

::::::
allows

::
us

::
to

:::::::
directly

:::::::
compare

:::
the

:::::
fitted

:::::::::
coefficients

::::
with

:::
Eq.

::
1.
::::::
Using

:::::
typical

::::::
values

::
of

::::
910

::::::
kgm−3

::
for

:::
ice

:::::::
density,

::::
1027

:::::::
kgm−3

:::
for

:::::
water

::::::
density

:::
and

::::
323

::::::
kgm−3

:::
for

:::::
snow

::::::
density

::::
from

:::::::::::::::::
Worby et al. (2011),

:::
the

::::::::::
coefficients

:::
for5

::
the

:::::::::
freeboard

::
F

:::
and

:::::
snow

::::
depth

:::
D

:::::
should

:::
be

:::
8.8

:::
and

::::
6.0.

::::::::
Similarly,

:::::::::::::::::
Zwally et al. (2008)

:::
used

::::::::::::
corresponding

::::::::
densities

::
of

:::::
915.1
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Table 2. Fitted coefficients for SIT T as a multilinear regression of the snow freeboard F and snow depth D (Section 3.2.2), and also fitting

for F only (Section 3.2.1). The variable ‘const.’ refers to a constant term being included in the fit. Surfaces are also categorized (Fig. 7)

to incorporate roughness into the fits (Section 4.1.3). As the R2 is not well-defined for a fit with no constant term, the Akaike Information

Criterion (a metric that minimizes information loss) is used to compare the models (Akaike, 1974). The R2 is reported for the with-constant

fits only and is adjusted for the different sample sizes in each fit. For each dataset, the smallest AIC value is bolded, and the second-lowest

underlined. The absolute value of the AIC does not matter; only the relative differences between AICs for different models that use the same

dataset matter, with the lowest being the best model. For individual floe fits, only PIP8 is shown for brevity as the other floes have comparable

errors/coefficients.

Fitted variables R2
adj AIC MRE, m [%] F coeff. D coeff. Constant (m)

PI
P8

F, const. 0.91 10.2 0.20 [16] 7.07 ± 0.30 N/A -0.81 ± 0.10

F, D N/A 37.3 0.26 [24] 9.03 ± 1.0 -5.45 ± 1.25 N/A

F, D, const. 0.92 5.30 0.18 [15] 8.85 ± 0.73 -2.70 ± 1.02 -0.70 ± 0.11

R
id

ge
d

F, const. 0.91 128 0.31 [21] 7.59 ± 0.20 N/A -0.65 ± 0.08

F, D N/A 111 0.29 [22] 10.33 ± 0.44 -6.53 ± 0.67 N/A

F, D, const. 0.94 75.5 0.25 [17] 10.42 ± 0.39 -5.06 ± 0.63 -0.45 ± 0.07

L
ev

el

F, const. 0.00 -71.6 0.07 [13] 0.02 ± 0.67 N/A 0.50 ± 0.11

F, D N/A -56.5 0.07 [13] 3.58 ± 0.77 -0.82 ± 0.96 N/A

F, D, const. 0.07 -72.3 0.06 [12] 0.87 ± 0.85 -1.22 ± 0.76 0.52 ± 0.11

Sn
ow

y

F , const. 0.81 32.3 0.27 [24] 7.74 ± 0.59 N/A -0.72 ± 0.16

F, D N/A 36.4 0.29 [34] 10.45 ± 1.37 -6.29 ± 1.63 N/A

F, D, const. 0.87 19.9 0.22 [23] 11.88 ± 1.15 -5.33 ± 1.33 -0.63 ± 0.14

A
ll

F, const. 0.92 179 0.28 [23] 7.67 ± 0.15 N/A -0.73 ± 0.05

F, D N/A 194 0.30 [31] 10.42 ± 0.37 -6.81 ± 0.53 N/A

F, D, const. 0.94 109 0.24 [20] 10.19 ± 0.31 -4.51 ± 0.49 -0.52 ± 0.05

::::::
kgm−3,

::::::
1023.9

:::::::
kgm−3

:::
and

::::
300

::::::
kgm−3,

::::::
giving

:
a
:::::::::

freeboard
:::::::::
coefficient

::
of

:::
9.4

:::
and

::
a
:::::
snow

:::::::::
coefficient

::
of

:::
6.7.

::::
Our

::::::
results

:::::
when

:::::
fitting

::::
over

::
all

::
4

::::
floes

:::
are

::::
10.4

:::
for

::
c1 :::

and
:::
6.8

:::
for

:::
c2,

:::::
which

:::
are

::::::::::
comparable

::
to

::::
those

:::::::
inferred

::::
from

:::::::::::::::::
Zwally et al. (2008),

::::::::
although

::::
there

::
is

::::::::::
considerable

::::::::
variation

:::::::
between

:::
the

::::
floes

::::::::
(7.9-10.6

:::
for

:::
c1;

::::::
3.9-6.3

:::
for

:::
c2,

:::
not

:::::
shown

::
in
:::::
Table

:::
2).

::::::::
Assuming

::
a

::::::
density

::
of

::::::::
seawater

::::::
during

:::::::
PIPERS

::
of

:::::
1028

::::::
kgm−3

::::::::::
(determined

:::::
from

::::::
surface

:::::::
salinity

::::::::::::
measurements

::
at

:::::
these10

:::::::
stations),

::::
this

:::::
gives

::::::
bounds

::::
for

:::
the

::::::::
effective

:::::::
densities

::::
and

::::::::
standard

:::::
errors

:::
of

:::
sea

:::
ice

::::
and

:::::
snow

::
as

::::::::::
929.4±3.5

::::::
kgm−3

::::
and

::::::::::
356.3±57.2

::::::
kgm−3.

::::
The

:::::
snow

::::::
density

::
is
::
in
::::

line
::::
with

::::::::::::::::
Sturm et al. (1998),

:::::
who

:::::
found

:::::
mean

:::::::
densities

:::
of

:::
350

::::
and

:::
380

:::::::
kgm−3

:::::
during

:::::::::::::::::
autumn/early-winter

::::
and

::::::::::::
winter/spring,

:::::::::::
respectively,

::
in

:::
the

:::::
Ross

::::
Sea,

::
as

::::
well

:::
as

:::
the

::::::::
measured

:::::
snow

::::::::
densities

:::::
from

:::::::
PIPERS

::::::::
(245-300

:::::::
kgm−3).

::::
The

::::::::
measured

:::::::
PIPERS

:::::
snow

::::::::
densities

::::
may

:::
be

:::::
biased

::::
low

:::::::
because

::::
they

:::::
were

::::::::
measured

::
at

:::::
level

:::::
areas,

:::
and

::::::::
possibly

:::
do

:::
not

:::::::
repesent

:::::
snow

::::::::
densities

::
in
::::::

drifts
::::::
around

::::::
ridges

::::
well.

::::
The

::::::
errors

::::
here

:::
are

::::::::::
propagated

::::
from

::::
the15

:::::::
standard

:::::
errors

:::::
found

::::::
during

:::
the

:::::::::
regression;

::::
they

::::
are

:::::::
therefore

::::::::::::
representative

::
of

:::
the

:::::
error

::
in

:::::::::
estimation

::
of

:::
the

:::::
mean

::::::::
densities

:::
over

:::
all

::::
data

:::
and

::
do

:::
not

::::::::
represent

:::::
actual

::::::
ranges

::
in

:::
the

:::::::
ice/snow

::::::::
densities.

::::
The

:::
ice

::::::::
(effective)

:::::::
density

:::::::
estimates

::::
here

:::
are

::::::::
averaged

19



Table 3. A compilation of the MRE of different fitting methods. Coefficients for the linear fits are shown in Table 2 and details are in Sections

3.2.1-2. The leftmost column indicates the floe that was excluded from the fitting data (e.g. the first row indicates fits that were done over the

PIP7-9 data and then tested on PIP4). The
::::::
ConvNet

:
validation error was used for comparison with the linear model fits, as the training error

can be made artificially low by overfitting. On average, the ConvNet (Section 4.2) achieves the best generalization in the fit, even though

there are individual anomalous cases. For example, the linear, no-constant
::::

F-only
:
fit using PIP4

:::
PIP7

:
as a test set has a low test error of 12%

despite having a high
:::
than fit errorof 36%. This is ,

:::::
which

:
simply coincidental in

::::
means

:
that the scatter

:::::
average

:::::::
snow/ice

::::
ratio for the fit

::::
PIP7

is so high that the best-fit coefficients end up close
:::::

similar to the corresponding coefficients
:::::::
averaged

:::::::
snow/ice

:::
ratio

:
for the PIP4 floe

::::
other

:::
floes. The F-only (no constant) column is included as this

:
F

::::
only

::
fit is directly

:::
most

:
comparable to our ConvNet method, as they

:::::
neither use

surface elevation as the only input (no snow depth ) and maintains the zero freeboard = zero thickness condition
:

as
::
an

::::
input.

Linear (no constant) Linear (with constant) F only (with constant) ConvNet

Test set Fit MRE Test MRE Fit MRE Test MRE Fit MRE Test MRE Val. MRE Test MRE

PIP4 36% 12% 17% 31% 19% 39% 14% 20%

PIP7 25% 33% 20% 24% 26% 23% 14% 18%

PIP8 33% 32% 22% 23% 25% 32% 16% 20%

PIP9 27% 59% 20% 34% 24% 30% 14% 20%

Average 30% 34% 20% 28% 24% 31% 15% 20%

:::
over

:::
the

::::::
entire

:::::::
PIPERS

::::::
dataset

:::::::::
(including

::::
both

::::::::
deformed

:::
and

:::::::::::
undeformed

:::
ice)

::::
and

:::
thus

::::
may

::::
not

:::::
apply

::
to

::::
other

:::::::
samples

:::::
from

::
the

:::::
Ross

:::
Sea

::
in

::::::
winter,

::
as

:::
the

:::::::
effective

:::::::
density

:
is
:::::::
affected

:::
by

:::
the

:::::::::
proportion

::
of

:::::
ridged

::::
ice,

:::::
which

::
is

::::::::::
deliberately

:::::::::::::
overrepresented

::
in

:::
our

:::::::
sample.

:::::::::
Moreover,

:
it
::

is
:::::::::

important
::
to

::::
note

::::
that

:::::
under

::::
this

:::::
fitting

:::::::
method,

:::
the

:::::::
density

::::::::
estimates

:::
are

:::::::
coupled

::::
(due

::
to
:::
ρi

::::::::
appearing

::
in

::::
both

::::::::::
coefficients

:::
in

:::
Eq.

::
1)

::::
and

::
if

:::
the

:::::::
estimate

:::
of

::
ρs:::::::::

decreases,
:::
ρi ::::::::

increases.
::::
For

:::::::
example,

::
if
:::
ρi ::

=
:::
935

:::::::
kgm−3

:::::::::
(unusually,

:::
but

:::
not

:::::::::
impossibly

:::::
high

:::
for

:::
the

:::::::
effective

::::::
density

:::
of

:::::
ridged

::::
ice,

:::::
which

::::::::
includes

::::
some

:::::::::
proportion

:::
of

:::::::
seawater

::
-
:::
see

::::::::::::::::::::::::
Timco and Frederking (1996)

:
),

:::
the

:::
best

:::::::
estimate

:::
for

:::
ρs :::::::

becomes
:::
312

:::::::
kgm−3,

:::::
which

::
is
:::::
closer

::
to
:::
the

::::::::
measured

::::
300

::::::
kgm−3

:::::
value

::::
from

:::::::
PIPERS.

:
5

:::
The

::::
fact

:::
that

::::::::::
introducing

:::::
snow

:::::
depth

::
as

:
a
:::::::
variable

::::
only

:::::::
slightly

::::::::
improves

:::
the

:::::::::::
generalization

:::
of

:::
the

::
fit

::::
may

::
be

:::::::
because

:::::
snow

::::
depth

::
is
:::::
itself

:::::
highly

:::::::::
correlated

::::
with

::::
snow

::::::::
freeboard

:::::::::::::::::::::::::
Ozsoy-Cicek et al. (e.g. 2013).

::::::
Linear

:::::::
methods

::
of

::::::
fitting

::::::
require

::::::::
assuming

:
a
:::::::
constant

::::::::
snow/ice

:::::::
density

:::
(or

::
in

::
a
::::::::
one-layer

:::::
case,

:
a
::::::::

constant
::::::::
‘effective

:::::::::
density’),

:::::
which

:::::::
implies

:::
an

:::::::::
irreducible

:::::
error

:::
for

::::::::
estimating

::::::::::
small-scale

::::
SIT.

::::
This

::::
fails

::
to

:::::::
account

:::
for

:::::::
varying

:::::::
ice/snow

::::::::
densities

::::::
around

:::::::::::::
level/deformed

:::
ice.

::::
This

::
is
:::::::::

discussed

:::::
further

::
in
:::::::
Section

:::
5.1,

::::
and

::::::::
motivates

:::
the

::::::::::
introduction

::
of

:::::::
surface

::::::::
roughness

:::
(σ)

:::
as

::
an

::::::::
additional

:::::::
variable

::
in
::::
our

:::::
linear

::
fit.

:
10

4.1.3 Incorporating surface roughness into the fit

Given that we expect effective density variations for different surface types, we expect SIT estimates to improve with the

addition of surface morphology information. The most simple of these is the surface standard deviation, as prior studies have

found that this is correlated to the snow depth (Kwok and Maksym, 2014), and we have previously shown that the
:::
and

:::
the

:::::
mean

:::::::::::::::::::::::::::::::::::::::::::::::::
thickness(Kwok and Maksym, 2014; Tin and Jeffries, 2001b)

:
.
:::
Our

::::
data

::::
also

:::::
show

:
a
:::::::::
reasonable

::::::::::
relationship

::::::::
between

:::
SIT

::::
and15
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Figure 6.
::::::::
Predicting

::::
mean

::
ice

::::::::
thickness

:::
with

:::
just

:::
the

:::::
surface

::::::::
roughness

:::
(σ)

::
as

::
the

:::::
input,

:::
with

:::::
MRE

::::
33%.

:::
The

::::::
best-fit

:::
line

:
is
::::
also

:::::
shown,

::::
with

:::::::
R2=0.65.

surface σhas some prediction power for the mean thickness ,
::::::
though

::
it
::
is

::::::
weaker

::::
than

:::
fits

::
to

:::
the

::::::::
freeboard

:
(Fig. ??b

:
6). Adding

the roughness as a
::::
third variable to the fit , so that T = c1F + c2D+ c3σ(+c0), gives slightly lower fit MREs of 16-20%

(with constant) and 24-34% (without) and slightly higher test MREs of 14-28% (with constant) and 28-58%(without)
::::
gives

:::
an

::::::
average

::
fit

:::::
MRE

::
of

::::
18%

::::
and

::
an

:::::::
average

:::
test

:::::
MRE

::
of

::::
24%. This is not much of an improvement, and it is possible that σ is too

simplistic a metric to improve the fit. Furthermore, there ,
::
or

::::
that

::
it

:
is
:::::
itself

::::::
highly

::::::::
correlated

::::
with

::
F

::::
and

:::::::
therefore

::::::
offers

::::
little

::::::::
additional

::::::::::
information.

:

:::::
There is no particular reason to expect the surface σ to be linearly combined with the snow depth and surface elevation

::::
snow5

::::::::
freeboard, even if it makes dimensional sense.

Instead, we can try using the roughness as a regime selector. To do this, firstly the lidar windows were classified manually

into snowy surface, level surface, ridged surface and deformed surface categories (Fig. 7). If it had both a ridge and snow, it

was classified as ridged. ‘
:::::
Level’

:::::::
surfaces

:::::
were

:::::::::::
distinguished

::
as

:::::
those

:::::::
windows

::::
with

:::
no

:::::
visible

::::::::
snow/ice

:::::::
features

::
in

:::
the

:::::::
majority

::
of

:::
the

:::::::
window.

:::::::
‘Snowy’

:::::::
surfaces

::::
were

:::::
those

::::
that

::::::::
contained

:
a
:::::
snow

::::::
feature

::::
(e.g.

:
a
::::
dune

:::
or

::::
drift)

::
in

:::
the

:::::::
window.

:
‘Deformed’ was10

intended as a transitional category for images that had no clear ridge but were generally rough - this comprised, typically,∼ 5%

of an image and was excluded from analysis.
:::
We

:::::::::::
acknowledge

:::
that

:::
this

:::::::::::
classification

:::
can

:::
be

:::::::
arbitrary,

::::
and

:::
use

:::
this

:::::::
method

::::
only

::
to

::::
show

::::
that

:::::::
different

::::::
surface

:::::
types

::::::
should

::
be

::::::
treated

:::::::::
differently,

:::
but

:
a
:::::::
manual

:::::::::::
classification

::::
does

:::
not

::::
help

:::::
much:

::::
this

::::::::
motivates

::
the

::::
use

::
of

:
a
:::::
deep

:::::
neural

:::::::
network

:::
in

:::
the

::::
next

::::::
section.

:
The snowy, level and ridged categories were individually fitted to see if

there were any differences in the coefficients; these are also reported in Table 2.15

We then used a two-regime model over all four floes, so that ice thicknesses for the low-roughness surfaces are estimated us-

ing the ‘level’ coefficients, and high-roughness surfaces using the ‘ridged’ coefficients. This resulted in MREs of 16-21% (with

constant) and 17-19% (without), assuming 20-50% of the surface is deformed. This is slightly better than for fitting the ‘all’

category in Table 2 (20% MREwith constant and 31% without), suggesting that distinguishing topographic regimes improves
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Figure 7. An example lidar scan from a station (PIP4
::::
PIP7) with the

:::::::
manually

:
classified segments. Yellow = level surface, green = ridged

surface (possibly with snow), magenta = snowy surface and blue = deformed surface (excluded from analysis). Snow features are clearly

visible emanating from the L-shaped deformation.
:::::::
Deformed

:::::
(blue)

::::::
surfaces

::::
were

:::::::
excluded

::::
from

::
the

:::::::
analysis.

thickness estimates. However, this fit has issues with generalizing to other floes. If the fit for the rough/level coefficients is20

done using only 3 floes and then applied to the remaining
::::
(test)

:
floe (using a surface roughness threshold determined from that

floe, and again assuming 20-50% of the surface is deformed), the test MREs averaged over all possible choices of test floe are

considerably higher (19-25% when fitting with constant, 34-36
::
24% when fittingwithout, and in each case averaging the results

over all possible test floe choices). This does not improve
::::
much

:
on the generalization if not using a two-regime model

::::
from

::
the

:::::::::::
two-variable

:::::
linear

:::
fit, where the test MREs, again averaged over all test cases, are

:::::
MRE

::::
was 28%(with constant) and25

34% (without) . Although the distinguishing of regimes may improve the model fits, it does not improve the test errors, again

because this is likely too simplistic. .
:

In reality, there is no reason why ice thickness should be non-zero given a zero surface elevation and snow depth. For all

cases, the AIC and mean error is lower when fitting with an intercept, but a negative intercept, as in all our fits, sets a lower

bound on values for F and D that return non-negative values of T . This reduces the applicability of these statistical models30

for thin ice. Taking the zero-intercept models only, estimating the survey-wide thickness has relatively low error (10-20%), but

estimating local thickness has much higher errors (30-50%), which means that variations in ice thickness, such as those around

deformation areas, cannot be precisely estimated. This motivates more advanced techniques to decrease the MRE, especially

those that also maintain the physicality of zero surface elevation = zero thickness. Given that high surface elevation values may

be either snowfeatures or ridges (leading to very different ice thicknesses), we need to distinguish these surface features in a
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non-arbitrary way. In particular, we want to account for the complex deformation morphology, which we expect to be better

predictors of thickness than the simplistic metrics used previously.5

4.2 Predicting SIT with deep learning

One advantage of deep learning techniques is that they are able to learn complex relationships between the input variables and a

desired output, even if the relationships are not obvious to a human. Although they are commonly used for image classification

purposes, they can also be used for regression (e.g. Li and Chan, 2014). We expect a convolutional neural network (ConvNet)

to achieve lower errors in estimating sea ice thickness, as they are able to learn complex structural metrics, in addition to10

simplistic roughness metrics like σ. Our input is a windowed lidar scan (surface elevation) and an output of mean ice thickness.

Notably, there is no input of snow depth, nor any input of ice/snow densities. This allows the ConvNet to infer these parameters

by itself, and more importantly, to potentially use different density values for different areas.

Our best-performing linear regression has a mean error of 23%, though this includes an unphysical intercept, and also does

not generalize to other datasets from the Ross Sea. We seek our model to improve on this error rate, while also being generalized15

enough to apply to different floes (from the same climatology), and also maintaining the physicality of zero surface elevation =

zero thickness. Due to our limited dataset, comprised entirely of Ross Sea data in early winter, we do not expect our results to

necessarily apply to other regions or seasons, which may have different snow distributions, ridging frequencies, or other causes

of morphological differences. We intend simply to demonstrate the potential for these techniques to improve estimates of SIT.

We do, however, expect our methods to generalize to new floes from the same region/season as our data.20

Full details for our ConvNet are given in the Appendix. The training set consisted of randomly-selected 20 m x 20 m

windows from three PIPERS ice stations. We chose 20 m windows, as in Section 3.1, by inspecting the semivariogram. 20%

of the data were excluded from training so that it could be used as a validation set. The remaining floe was kept as a test set,

in case the training and validation windows had similar morphology and the validation set was thus not entirely independent

of the training set. To prevent cherry-picking, the CNN was trained four times, with a different floe used as the test floe each25

time. These results are shown in Table 3. Although the training error is directly analagous to the fit error for linear models

for some dataset, it is much easier to overfit with a ConvNet as the trainingerror can be made arbitrarily low. As a result, we

compare our validationerror to the linear fit errors, and also use our test errors as a test of the generalization of our model.

From here onwards, analysis of the ConvNet refers to the one using PIP8 as a test set, though using a different one would yield

qualitatively similar analysis.30

4.2
:::::::

ConvNet
::::::
results

:::
The

:::::::::::
(irreducibly)

::::
poor

:::::::::::
generalization

::
of

:::::
linear

::::
fits,

:::::
likely

:::
due

:
a
:::::::::::::
locally-varying

:::::::::
proportion

::
of

:::::::
snow/ice

:::::::
amongst

::::::::
different

::::::
surface

:::::
types,

::::::::
motivates

:::
the

:::
use

:::
of

::::
more

::::::::
complex

:::::::::
algorithms

::::
that

:::
can

:::::::
account

:::
for

:::
the

:::::::
surface

::::::::
structure.

:::
For

::::
this,

:::
we

:::
use

::
a
::::::::
ConvNet

::::
with

::::::::::::::::::
training/validation/test

:::::::
datasets

::
as

::::::::
described

::
in

:::::::
Section

:::
3.2.

:

The input windows were randomly flipped and rotated in integer multiples of 90o to help improve model generalization, and

dropout layers (p= 0.4) were added after the first and second convolutional layers to reduce overfitting (Srivastava et al., 2014)
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. The best validation error of 15.5%occurred at epoch 881
:::
was

:::::
15%, corresponding to a training error of 11.3

::
11% (Fig. 8

:
a
::::
and

:
b). The mean test error (on the excluded floe) was 20.0

::
20%. Although the linear models have a similar fit error, they do not5

generalize as well to the test set, and the resulting thickness distribution is visibly different to the real test distribution
::::
(Fig.

:::
8c).

This shows better generalization than the linear models (test MREs from 28-47%). Although the best-performing linear

models have only slightly higher test MREs (23-24%
:::
24%

:::
for

:::
the

:::::::::
3-variable

::
fit

::
in

::::::
Section

:::::
4.1.3) than our ConvNET (20%), the

range of errors is much greater, with test MREs of 23-34
::::
18-29%, whereas the ConvNet has remarkably consistent test MREs

of 18-20%. Furthermore, it is important to remember that achieving these comparably low MREs with linear models requires10

snow depth as a variableand also a constant term. These constants, as shown in Table 2, are all negative,
::::::
which

::
is

::::::::
generally

:::
not

::::::::
available.

:::::
These

::::
fits

::::
also

:::::::
typically

:::::::
include

::
a

:::::::
negative

:::::::
constant

::::::
(Table

::
2), which means T < 0 for F =D = 0 which is

clearly unphysical
::
and

::::::
limits

:::
the

:::::::::
application

:::
of

:::::
these

::::::
models

::
to
:::::

areas
:::
of

:::
low

:::::
snow

:::::::::
freeboard. The fits to surface elevation

::::
snow

::::::::
freeboard

:
only, which is using the same input data as the ConvNet, have considerably higher MREs (13-74%

:::
test

::::::
MREs

:::::::
(23-39%,

::::
see

:::::
Table

:
3). For sake of comparison to models that use RMS error such as Ozsoy-Cicek et al. (2013), the RMS15

errors for our validation and test datasets were 6-11
::::::::
validation

:::::
RMS

::::
error

:::
for

:::
our

::::::::::::::
survey-averaged

:::::
mean

::::::::
thickness

::::::
values

::
is

:
2
:
cm, which is considerably lower than the RMS errors of > 50 cm for single drill point measurements in drill lines given in

Ozsoy-Cicek et al. (2013), and also lower than the RMS error of 26 cmfrom using one varying-density layer at a 70 m scale

from Li et al. (2018).
::::
error

::
of

:::::
11-15

:::
cm

:::::
from

:::::::::::::::::::::
Ozsoy-Cicek et al. (2013)

:
.
::::
Our

::
fit

::::
uses

::
3
:::::::
surveys

::::
from

::
3
:::::::
different

:::::
floes

::
as

:::
an

:::::
input,

:::::
which

::::::
means

:::
the

::
fit

::
is
::::::

likely
:::::
lower

::
in

:::::
error

::::
than

:::::::::::::::::::::
Ozsoy-Cicek et al. (2013),

::::::
which

::::
uses

:::
23

:::::
floes.

::::::::
However,

:::
we

::::::
would20

:::
also

::::::
expect

::::::
poorer

::::::::::::
generalization

::
for

::::
our

:::
test

:::
set

::::
from

:::::
using

::::
only

:
3
::::::::
surveys.

::::::::
Although

:::
our

:::
test

:::::
RMS

::::
error

:::
for

:::
the

:::::
mean

::::::
survey

:::::::
thickness

:::
(3

:::
cm)

::::::
cannot

::
be

:::::::
directly

:::::::::
compared,

::
it

:
is
:::::::::
reasonable

:::
to

::::::
surmise

::::
that

:::
our

::::::::
ConvNet

:::::::
achieves

:::::
better

::::::::::::
generalization

::::
than

:
a
:::::
linear

:::
fit. Note that the RMS error is not linked to the surface RMS roughness, which is just the standard deviation of the

surface elevation
:::::
snow

::::::::
freeboard.

It is not entirely fair to compare the single-point RMS errors to our survey-averaged RMS errors due to the different length25

scales; a better comparison is in estimating mean scan-wide thicknesses (∼100 m length scale). This error should not be

confused with the mean error in estimating the local window means, which is what is being optimized by the ConvNet.

The mean error in estimating survey-wide thickness (averaging through all 4 datasets) is 5% for the training set, 6% for

the validation set and 11% for the test set. The 5-11% MREs for the scan-wide mean thickness predictions correspond to

RMS errors of 1-3 cm, which is much lower than the best-performing linear regression for a Ross Sea floe-wide dataset from30

Ozsoy-Cicek et al. (2013) with an RMS error of 16 cm.

As shown in Fig. 8
:
c, the ConvNet does seem to be capturing the thickness distribution of the test floe, even if the individual

window mean estimates have some scatter. In contrast, the linear models have considerably different thickness distributions

(Fig. 8,
:::
red

::::::::::
points/lines) despite having only a slightly higher test MRE

::::::
similar

::
fit

::::::
MREs

:
(Table 3). In any case , the

:::
The

:::::::
ConvNet

::::
also

:::::::::::
successfully

:::::::::
reproduces

:::
the

::::::
spatial

:::::::::
variability

::
of

:::
the

::::
SIT

::::::::::
distribution

:::::
better

::::
than

::::
the

:::::
linear

::
fit

:::::
(Fig.

:::
9).

:::::
Note,

::::::
because

::
of

:::
the

:::::
small

::::
size

::
of

:::
the

::::::
dataset,

:::::
there

:
is
:::::::::
significant

::::::::::::
oversampling

::
in

::
the

::::::::
ConvNet

:::::::::
prediction

::
of

:::
the

:::
floe

::::
SIT

::::::::::
distribution.

:::
The

:::::::
primary

:::::::::
difference

:::::::
between

:::
the

::::::::
ConvNet

:::
and

::::::
linear

::
fit

:::
for

:::
this

::::
floe

::
is

:
a
:::::
large

::::::::::::
overestimation

:::
of

::::
level

:::
ice

:::::::::
thickness.

::::
This5

:::::::::::
demonstrates

:::
the

:::::::
inability

::
of

:::
the

:::::
linear

::
fit

::
to

:::::::
account

:::
for

::::::::
variations

::
of

::::::::
effective

:::::::
densities

::::::
and/or

:::::::
snow/ice

:::::::::
freeboard

:::::
ratios.

::::
The
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Figure 8. ConvNet results. The top panels show ,
::::
with

::
(a)

:
the learned

::::::
ConvNet

:
model applied to the training data (80% of randomly sampled

20m x 20m windows from PIP4, PIP7, PIP8
::::
PIP9), with MRE 12%; the middle panels show ,

:::
(b) the learned

::::::
ConvNet

:
model applied to the

validation data (remaining 20% of the randomly sampled 20m x 20m windows from PIP7-9
::::
PIP4,

::::
PIP7,

::::
PIP9) with MRE 16% ; the bottom

panels show
::
as

:::
well

::
as
::
a
::::
linear

:::::
model

::::
(with

:::::
snow

:::::::
freeboard

::
+

:::::::
constant)

::::
fitted

::
to

::::
PIP4,

:::::
PIP7,

::::
PIP9

:::
with

:::::
MRE

::::
25%,

::
(c)

:
the learned

:::::::
ConvNet

:::::
model

::::
and

::::
fitted

::::
linear

:
model applied to randomly sampled 20m x 20m windows from PIP9

::::
PIP8, as a check against learning self-similarity,

with MRE 19
::
20% . The panels on the right show the resulting thickness distribution, both as a histogram

::::::::
(ConvNet) and as a continuous

function. We also show the best
:::
32%

:
(linear modelfitted for the PIP4, PIP7

::
)).

::
In

:::
each

::::
case, PIP8 in the middle panels (red) which has

:::
left

::::
panel

:::::
shows a comparable MRE of 20%

::::
scatter

::::
plot

:::
with

:::
the

:::::::
predicted

:::
and

:::
true

:::::::::
thicknesses, and the results of this model applied to PIP9 (test

floe) in
:::
right

:::::
panel

:::::
shows the bottom panels (red) (MRE: 34%)

::::::
resulting

:::::::
thickness

:::::::::
distribution. Our results suggest slight overfitting, as the

test scatter
::::
error is higher than the training scatter

::::
error, but the learned model still generalizes fairly well, with MREs much lower than linear

models, even when including an unphysical intercept to improve the fit (Table 3).
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Figure 9.
::

Ice
:::::::
thickness

:::::
profile

::
of

:::
the

:::
test

:::
set

:::::
(PIP8),

:::::
using

:::
the

::::
linear

::
fit

::::::::::::
(T = c1F + c0)

::::
and

:::::::
ConvNet

:::::
model,

::::
both

::::
done

::::
with

::::
PIP4,

::
7

:::
and

:
9
::
as

:::::
inputs.

::::
The

::::
input

:::::::
windows

::
are

:::
20

::
m

:
x
::
20

:::
m,

:::
with

::
a
::::
stride

::
of

::
5

:
m
::

in
::::
each

::::::::
direction,

::
so

::::
there

:
is
::

a
:::::::::
considerable

:::::::::::
oversampling.

:::
The

:::::
mean

::::::
residual

::
for

:::
the

:::::
linear

:::::
model

:::
(35

:::
cm)

::
is

::::
much

:::::
higher

::::
than

:::
for

::
the

:::::::
ConvNet

:::
(19

::::
cm),

:::::
which

:::::
means

:::
the

:::::::
resulting

::::
mean

:::::::
thickness

:::
has

::::::
almost

::::
twice

:::
the

::::
REM

::::
(24%

:::
vs.

:::::
13%).

:::
The

::::::::
scatterplot

:::::
clearly

:::::
shows

:::
the

::::
linear

:::::
model

:::::
(using

::::
20m

:::::::
windows

::
as

::::
well,

::::
with

::::::::
coefficients

::::
from

:::::
Table

::
2)

::::::::
predictions

:::
are

:::::::::
consistently

:::::
biased

::::
high,

:::::
which

:
is
::::
also

::::::
apparent

::
in

:::
the

::::
linear

:::::
model

:::::::
residual.

:::::::
ConvNet

:::::::::
prediction

:::
can

:::::
have

:::::
some

::::
large

:::::
local

::::::
errors.

::
In

::::
this

::::
case

::::::
chiefly

:::
on

:::
the

:::::
flanks

:::
of

:::
the

:::::
ridge,

::::::
where

::::
steep

:::::::::
freeboard

::
or

::::::::
thickness

::::::::
gradients

::::
may

:::::
affect

:::::::::::
performance.

:::::::::::
Comparisons

:::
for

:::::
other

::::
floes

::::
(not

::::::
shown)

:::
are

:::::::::::
qualitatively

:::::::
similar,

::::::
though

:::
the

:::::
spatial

::::::::::
distribution

::
of

:::
fit

:::::
errors

:::::
varies

::::::
among

:::::
floes.

::::
The

:
key result of the ConvNet is in the signficantly reduced error in the

local (20 m scale) mean thickness (MRE of 15-20%), which also gives a low, ∼ 10% error of the average scan-wide thickness.10

Moreover, this high accuracy also carries over to new floes
:::
test

:::
sets

:
from the same climatology. An additional advantage of

the ConvNet
:::::::::::
region/season.

::
In

::::::::
contrast,

:::::
linear

:::::::
models,

:::::
which

:::
do

:::
not

::::::::
generalize

::::
well

::
to
::::

new
::::::::
datasets,

::::
have

:
a
:::::::::::
considerable

::::
bias

::::
(Fig.

:::
9),

::::::
despite

::::::
having

::
an

:::::::::
ostensibly

::::
good

:::
fit.

:::::::
Analysis

:::
of

:::
why

:::
the

::::::::
ConvNet

::::
may

::
be

::::::::::
performing

:::::
better

::::
than

:::::
linear

:::
fits

::
is

:::::
given

::
in

::::::
Section

::::
5.2.
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5
:::::::::
Discussion5

5.1
::::::

Possible
::::::
causes

:::
for

:::::
poor

:::::
linear

:::
fit

:::
Our

:::::
linear

:::::::::
regression

::::::
results

:::
for

:::::
fitting

::::::::::::
T = c1F + c0::::

have
::::::::
markedly

::::::::
different

::::::::::
coefficients

::::
from

::::
drill

::::
line

::::
data

::::
from

:::
the

:::::
same

:::::::::::
region/season

::::::::::::::::::::::
(Ozsoy-Cicek et al., 2013).

::::
Here

:::
we

::::::
discuss

:::::::
possible

:::::::
reasons

:::
for

::::
their

::::::::::
differences.

:::
The

::::
first

::::::::
difference

::
is

::::
that

:::
our

::::
value

:::
for

:::::::::
c1 = 7.67

:::::
(Table

::
2)

::
is
:::::
much

::::::
higher.

:::::
This

:
is
::::::
almost

::::::::
certainly

:::::::
because

:::
our

::::::
dataset

:::::::
includes

:::::
much

:::::
more

::::::::
deformed

::::
ice,

::
as

::
we

::::::::::
deliberately

::::::::
sampled

::::::::
deformed

::::
areas

:::
on

::::
floes.

::::
This

::::
may

:::
be

:::::::
because

:::
our

::::::
dataset

:::::::
includes

:::::
much

::::
more

::::::::
deformed

::::
ice,

::
as

:::
we10

:::::::::
deliberately

::::::::
sampled

::::::::
deformed

:::::
areas

::
on

:::::
floes.

::
At

::::
one

:::::::
extreme,

::::::
where

:::
the

::::
snow

::::
load

::
is
:::::
large

::::
such

::::
that

:::
the

::::
snow

:::::
depth

::
=
:::::
snow

::::::::
freeboard

:::::::::
assumption

::
is
:::::::::::::

approximately
::::
valid

::::
(set

::::::
F =D

::
in
::::::::

Equation
:::
1),

::::::
which

:::
for

:::
our

::::
data

::::::
occurs

:::
for

::::
level

::::
thin

:::
ice

::::::
where

::::
there

::
is

:::::
some

::::
snow

:::::
load,

:::
Eq.

:
1
::::::
would

:::::::
simplify

::
to

::::::::
T = 2.7F

::::::
(using

::::::
density

::::::
values

::::
from

::::::::::::::::
Zwally et al. (2008)

:
).
:::
In

:::::::
contrast,

:::::
when

::
the

::::::::::
topography

::
is

:::::::::
sufficiently

::::::
rough,

::::
there

::
is
:::::::::::
considerable

:::
ice

::::::::
freeboard,

::::::
which

::::
may

::::
even

::::::
exceed

::::
snow

::::::
depth.

::
If

::
we

:::::::
assume

:::
the

::::
snow

::
is

::::::::
negligble

:::::::
(D = 0),

::::::
which

::::
may

::
be

:::
the

::::
case

::
at

:::
the

:::
sail

:::::
peak,

::::
Eq.

:
1
::::::::
becomes

:::::::::
T = 9.4F .

:::::
These

::::::
values

::::::
become

:::::
lower

::::
and15

:::::
upper

::::::
bounds

:::
for

:::::
fitting

::
c1::

in
::::::::
T = c1F:::::::

(without
:::
the

::::::::
constant

:::
c0).

::::
The

:::
best

:::
fit

::::
value

:::
for

::
c1:is that it does not require specifying

:::
5.8

::::
when

::::::
fitting

::
to

:::
the

:::
full

::::::
dataset

:::::
(Fig.

::::
10),

:::::
which

::::
falls

:::::::
between

:::::
these

::::
two

:::::::
extremes

:::
of

:::::::::
snow-only

::
F

:::
and

:::::::
ice-only

:::::::::
freeboard

::
F .

::::
Our

:::::::::
coefficient

:
is
::::
also

::::::::::
comparable

::
to

:::::::::::::
Goebell (2011),

::::
who

:::::
found

::
a
:::::::::
coefficient

::
of

::::
5.23

::::
from

::::::::
first-year

:::::::
Weddell

:::
ice.

::::::
Much

::
as

::
in

::::::::::::
Goebell (2011)

:
,
:::
our

::::::
dataset

:::::::
includes

:::::::::::
considerable

::::::::
deformed

:::
ice

::::::
which

:::
has

::
a

:::::::
non-zero

:::
ice

:::::::::
freeboard,

:::
and

:::
so

:::
the

:::::::::
coefficient

::
of

::
F

::
is

:::::
higher

::::
than

::::
2.7.

:::
We

:::
can

:::::::
estimate

:::
the

::::
ratio

::
of

:::::
snow

::
to

:::
ice

::
by

:::::::::
comparing

::::
this

::::
with

:::
the

:::::::::
hydrostatic

::::::::
equation:

:::
for

::::::::
example,

:
if
:::
we

:::::::
assume

::::::
typical

::::::::
snow/ice

::::::::
densities

::
of

::::
300

::::::::::
kgm−3/920

:::::::
kgm−3,

:::
this

:::::::
implies

::::
that

:::::
snow,

:::
on

:::::::
average,

:::::::::
comprises

::::
54%

:::
of

::
the

:::::::::
measured

::::
snow

:::::::::
freeboard.

::::::
Using

::::
these

::::::
values,

::::
Eq.

:
1
:::::::::
simplifies

::
to

:::::::::
T = 5.8F ,

::
as

::
in
::::

Fig.
:::
10.

:::
In

::::::
further

::::::
support

::
of
::::

this,
::::

our5

::::::
dataset

:::
has

:::::
mean

::::
snow

::::::
depths

:::
for

:::
the

:::
four

:::::::
surveys

:::::::
ranging

::::
from

:::::
16-26

:::
cm,

::::
and

:::::
mean

::::
snow

:::::::::
freeboards

:::::::
ranging

::::
from

:::::
24-37

::::
cm,

:::::::
implying

:::::::::::
considerable

:::::::
non-zero

:::::
mean

:::
ice

::::::::::
freeboards.

:::
The

::::
high

::::::
scatter

::
of

:::
our

:::
fit

:::
also

::::::::
suggests

:::
that

:::
the

::::::::
snow/ice

::::
ratio

::
is

::::::
varying

:::::::
locally,

::
as

:::
can

::
be

::::::::
expected

::::::
around

:::::::::::::
level/deformed

:::
ice.

::
If

:::
the

:::::::::
proportion

::
of

:::
ice

::
to

::::
snow

:::::
were

:::::::
constant,

::::
then

:::
the

::::::
best-fit

:::::
line,

::
for

::::::::
whatever

:::::
slope,

::::::
would

::::
have

:::
no

::::::
scatter.

::::
This

::
is

:::
not

::
the

:::::
case

::
in

:::
Fig.

::::
10,

:::
and

::::::
indeed

:::
the

::::::::
standard

::::::::
deviation

::
of

:::
ice

::::::::
freeboard

::::::
across

::
all

::::::::
windows

::::
was

:::
7.9

:::
cm

::::::
(mean:

:::
9.0

:::::
cm).

::::
This10

:::::
means

::::
that

::::::::
assuming

:
a
::::::::
constant

:::::::
snow/ice

:::::::
density

::
or

:
a
:::::::
constant

::::::::
snow/ice

:::::::::
proportion

::
is

:::
not

::::::::
justified,

:::
and

:::::
hence

::
it
::
is

:::::
likely

::::
that

:::::
simple

::::::::
statistical

:::::::
models

:::::
break

:::::
down

:::::
when

::::::
looking

::
at

:::::::::::
deformation

::
on

::
a

::::
small

:::::
scale,

:::
or

:::::
when

:::::::::
large-scale

::::
snow

:::::::::
deposition

::::
and

::
ice

:::::::::::
development

:::::::::
conditions

:::::
vary.

::::
This

::::::
mirrors

:::
the

::::::::::
conclusions

:::
in

::::::::::::::
Kern et al. (2016)

:
,
::::
who

:::::
found

::::
that

:::::
linear

::::::::::
regressions

:::::
could

:::
not

::::::
capture

::::::
locally-

::::
and

:::::::::::::::
regionally-varying

::::::::
snow/ice

::::::::::
proportions.

::::
Even

:::::
when

::::::::
including

:::::::::::::::
regime-dependent

:::
fits

:::::
(Sect.

:::::
4.1.3,

::::
Fig.

::
6),

::::
this

::::
does

:::
not

:::::::
improve

:::
the

:::
test

:::::
errors

:::::::
because

:::
this

::
is

:::::
likely

:::
too

::::::::
simplistic

:::::
(even

::::::
within

:
a
:::::
ridge,

:::
the

::::
ratio

::
of

:
snow/ice densities,15

but instead implicitly accounts for the (potentially spatially-varying) densities with its filters (discussed below) . The ConvNet

also gives an output thickness of 4×10−2 m (essentially zero)when the input is a zero array, which is physically appropriate
::
is

:::::
likely

:::::::
varying).

:::
An

:::::::::
important

:::::
point

::::::::
regarding

::
σ

::
is

:::
that

::
it

::::
does

:::
not

:::::::
actually

:::::::
account

:::
for

:::
the

::::::
surface

:::::::::::
morphology

::::
very

::::
well,

:::
as

:::
any

::::::::::
permutation

::
of

:::::::::
elevations

:::::
within

:::
the

:::::::
window

:::
will

::::
give

:::
the

:::::
same

::
σ.

::::
This

:::::
means

::::
that

:::
the

:::::::
‘shape’,

::
or

:::::::::
‘structure’

::
of

:::
the

::::::
surface

:
is
:::
not

:::::
truly

::::::::
accounted

:::
for.

:::::
This

::::::::
motivates

::::
more

::::::::
complex

::::::
metrics

:::
for

::::::
surface

:::::::::
roughness

:::::::
(Section

::::
4.2).

:
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Figure 10.
:::
The

:::
SIT

:::
(T )

::
as

:
a
:::::::

function
::
of

:::::::
measured

:::::
snow

:::::::
freeboard

:::
(F ).

:::
As

:::::::
expected,

::
all

:::::
points

:::
lie

::::::
between

:::
the

:::
two

::::::
extreme

::::::
regimes

:::
(no

:::
ice

:::::::
freeboard

:::
and

::
no

::::
snow

:::::::::
freeboard).

:::
The

::::
level

::::::
surfaces

::::::
mostly

:::
have

:::
no

::
ice

::::::::
freeboard,

::
as

:::::::
expected,

::::::
though

::::
there

:
is
:::::
some

:::::
scatter

:::
that

::::::
suggests

::
a

:::::
varying

:::::::::
component

::
of

::
ice

::::::::
freeboard.

:::
The

::::
best

::
fit

:::
line

::
for

::
all

:::::::
windows

::::
from

:::::
Table

:
2
::
is

:::::
shown

:
in
:::::
black.

::::::::
Assuming

::::
mean

::::
snow

:::
and

:::
ice

:::::::
densities

:
of
::::

300
:::
and

:::
920

::::::
kgm−3,

:::
this

::::::
implies

:
a
::::
mean

::::::::
proportion

::
of

::::
55%

::::
snow

:::
and

::::
45%

::
ice

::
in

:::
the

::::
snow

:::::::
freeboard.

::::::
Again,

::
the

:::::
scatter

::::::
around

::
the

::::
best

::
fit

:::
line

::::::
indicates

::::
that

:::
this

::::::::
proportion

:
is
::::::::
changing.

::::
Some

:::::
points

::
for

:::
the

::::
level

::::::
category

:::
fall

:::::
below

::
the

::::::::
T = 2.7F

::::
line,

::::::::
suggesting

:::
that

::::
snow

:::::::
densities

:
in
:::::
these

::::
areas

::
are

:::::
<300

::::::
kgm−3

::
(or

:::::::
effective

::
ice

::::::
density

:::::
<915

::::::
kgm−3.)

:::::
Unlike

::::
our

::::::::
approach,

:::
the

:::
fits

::
in

::::::::::::::::::::::
Ozsoy-Cicek et al. (2013)

::
and

:::::::::::::::
Xie et al. (2011)

::
use

::::::::::
large-scale,

::::::::::::::
survey-averaged

::::
data.

:::::
Their

:::::::::
coefficients

:::
for

:::
c1,

::::::
2.4-3.5

::::
and

:::
2.8

::
for

:::::
Ross

:::
Sea

::::
and

::::::::::::
Bellinghausen

:::
Sea

::::
data

:::::::::::
respectively,

:::
are

::::
near

:::
the

:::::::::
theoretical

::::
value

:::
of

:::
2.7

::::::::
assuming

::
no

:::
ice

:::::::::
freeboard.

::::
This

:::::::
suggests

:::
that

::
at

:::::
large

:::::
scales

:::
for

::::
some

::::::::::::::
seasons/regions,

::
it

:::
may

:::
be

:::::::::
reasonable

::
to

::::::
assume

::::
that

:::
the

::::
mean

:::
ice

::::::::
freeboard

::
is

::::
zero,

:::
but

::::
this

::
is

:::
not

:::
the

::::
case

:
at
:::::::
smaller

::::::
scales.

:
It
::
is

::::
also

:::::::
possible

:::
that

::::
drill

::::
lines

::::
have

::::::::::::
undersampled

::::::
ridged

::
ice

::::
due

::
to

::::::::
sampling

::::::::::
constraints,

::
or

:::
(in

:::
our

:::::
case)

::::::
sample

:::::::
heavily

::::::::
deformed

:::::
areas

:::
that

:::
are

::::
not

:::::::
typically

:::::::
sampled

:::
in

::::
situ.

:::::
Thus,25

::::::::
empirical

::
fits

::::::
should

:::
be

::::
used

::::
with

:::::::
caution.

:::
The

::::::
second

:::::
major

:::::::::
difference

:
is
::::
that

:::
our

:::::::
intercept

::
is

:::::::
negative,

:::::::
whereas

:::::
those

::::
from

::::::::::::::::::::::
Ozsoy-Cicek et al. (2013)

:::
and

:::::::::::::
Xie et al. (2011)

::
are

:::
all

::::::::
positive.

::
In

:::
our

:::::
case,

::
it

::
is

:::::::
possible

::
to

::::::::
interpret

:::
our

:::::::
negative

::::::::
intercept

::
as

::
a
:::::
result

::
of

::::::
fitting

:
a
::::::

linear
:::::
model

::::::
across

::::
two

::::::::
roughness

:::::::
regimes.

:::::
From

::::::
above,

:::
the

:::
two

::::::
regime

::::::::
extremes

::::::
(no-ice

:::
vs.

:::::::
no-snow

:::::::::::
contribution

::
to

::::
snow

:::::::::
freeboard)

::::
give

:::::::::
T = 2.7F

:::
and

:::::::::
T = 9.4F

::
as

:::::::
limiting

:::::
cases.

:::
In

:::::::
general,

:::
we

::::::
expect

:::
the

:::::::::
proportion

::
of

:::
ice

::::::::
freeboard

:::
to

::::::::
gradually

:::::::
increase

::
as
:::
F

::::::::
increases30

::::
from

::::::
thinner,

:::::
level

:::
ice

::
to

::::::
thicker,

::::::::
deformed

::::
ice.

::::::::
Although

::::
snow

::::
also

::::::::::
accumulates

::::::
around

:::::::::
deformed

:::
ice,

::::
there

::::
may

::::
also

::
be

:::::
local

:::::::
windows

::
at

:::::
parts

::
of

:::
the

:::::
ridge

::::
with

::
no

:::::
snow

::::
(e.g.

:::
the

:::::
sail).

::::
This

::::::
means

:::
that

:::
we

::::::
expect

::
a
::::::
gradual

::::::::
transition

:::::
from

:::::::::
T = 2.7F

::
to

::::::::
T = 9.4F

::
as

::
F

:::::::::
increases.

::::::
Fitting

:::
one

:::
line

:::::::
through

:::::
these

:::
two

:::::::
clusters

::
of

::::::
points

:::::
would

:::::
result

::
in

::
a

:::::::::
coefficient

::
for

::
F
::::::::

between
:::
2.7

:::
and

:::
9.4

:::
and

::
a

:::::::
negative

::::::::
intercept,

:::::
which

:::
we

:::
find

::
in

::::::
almost

:::
all

:::
our

:::::
cases.

:::
The

::::
one

::::::::
exception

::
is

:::
the

::
fit

:::
for

::
the

:::::
level

:::::::
category,

::::::
which

:
is
:::::::::
essentially

::
a
::::
null

::
fit

:::
(as

::::
over

::::
90%

:::
of

:::
the

::::::::
thickness

:::::
values

:::
are

::::::::
clustered

::::::
around

::::
0.5

::
±

::::
0.05

:::
m).

::
In

::::::::
contrast,

:::
the

::::::::::
coefficients

::
for

::
F
:::::
from

::::::::::::::::::::::::::::::::::::
Ozsoy-Cicek et al. (2013); Xie et al. (2011)

::
are

:::
all

:::
∼3,

:::::::
because

:::::
these

::::::
studies

:::::::
average

::::
over

:::::::
multiple

::::
floes

:::
and

:::::
have

:
a
:::::::::
sufficiently

:::::
small

:::::::::
proportion

::
of

::::::::
deformed

:::::::
surface

::::
area

::
to

::::::
assume

:
a
:::::::::
negligible

:::
ice

::::::::
freeboard

::
as

::::::::
discussed

::::::
above.

::
In

::::
their

:::::
case,
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::::
their

:::::::
intercept

::::::
would

::
be

:::::::
positive,

:::
as

::::
their

:::
ice

::::::::
thickness

::::::::
estimates

:::::
would

:::
be

::::::::
otherwise

:::::::::::::
underestimated

:::
due

::
to

:::::
some

::
of

:::
the

:::::
snow

::::::::
freeboard

:::::
being

::
ice

:::::::
instead

::
of

:::::
snow.5

:::::
When

:::::
fitting

::
a

::::::::::::
linear/Convnet

:::::
model

::
to
:::::

snow
::::::::
freeboard

:::::
data,

:::
we

::::::
cannot

::::
know

:::::::
whether

:::::
there

:::
are

:::::::
negative

:::
ice

::::::::::
freeboards;

::
as

::::
such,

:::::
these

:::::::
methods

:::::::
account

:::
for

:
it
::::
only

:::::::::
implicitly,

::::
with

:
a
:::::
linear

:::
fit

::::::::
effectively

:::::::::
assuming

:::
that

:
a
::::::
similar

::::::::::
percentage

::
of

:::::::::
freeboards

:::
will

:::
be

:::::::
negative.

:::::
This

::::
may

::::::::
contribute

:::
to

:::::
errors

:::::
when

:::::
trying

:::
to

:::::
apply

:
a
:::::::
specific

:::::
linear

::
fit

:::
to

:
a
::::
new

:::::::
dataset.

::
A

::::::::
ConvNet

:::::
could

::::::::::
conceivably

::
do

:::::
better

::::
here,

:::
in

:::
that

:::::::::
significant

:::::::
negative

::::::::
freeboard

::
is

:::::
likely

::
to

:::::
matter

:::::
most

:::::
when

::::
there

::
is

::::
deep

:::::
snow,

::::::
which

:::::
might

::::
have

::::::::::
recognizable

:::::::
surface

::::::::::
morphology,

::::::::
although

:::
this

::
is

:::::
quite

:::::::::
speculative.10

When applying this model

5.2
:::::::

Plausible
::::::::
physical

:::::::
sources

::
of

:::::::
learned

::::::::
ConvNet

::::::
metrics

:::
The

::::::::
ConvNet

::::::::
performs

:::::
better

::::
than

:::
the

::::
best

:::::
linear

::::::
models

:::::
both

::
in

::
fit

:::
and

::::
test

::::::
MREs.

::::::::
However,

:::
the

::::::::
ConvNet

::::::
trained

::::
with

::::
our

::::::
dataset

:
is
::::
very

:::::::
limited

::
in

::::::::::
applicability

::
to

::::
only

:::::::
datasets

:::::
from

:::
the

::::
same

::::::::::::
region/season.

:::::
When

:::
we

:::::::
applied

:::
our

::::::
trained

::::::::
ConvNet to

lidar inputs from a different expedition (SIPEX-II, see Maksym et al., in prep) with different climatology (different seasonand15

different region)
::::
from

:
a
:::::::
different

::::::::::::
season/region, the MRE is 69%, and the error of predicting the survey mean

::::
REM

:
is 51%. This

suggests that other seasons/regions may have different relationships between the surface morphology and SIT, which is not sur-

prising given that snow accumulates throughout winter. The SIPEX-II data was collected during spring in coastal East Antarctic

in an area of very thick, late-season ice with very deep snow with large snow drift features of length scales>20 m (which would

not be resolved by the ConvNet filters here). It is also possible that datasets from spring, such as SIPEX-II, will not be as easy

to train networks on because the signficantly higher amounts of snow may obscure the deformed surface. Although this points

out a limitation of this method, which restricts any trained ConvNet to a narrow range of climatologies
:::::::::::::
temporal/spatial

:::::
range,5

it also adds weight to the idea that the ConvNet is learning relevant morphological features. A ConvNet trained on Arctic data

would likely learn different features (e.g. melt ponds and hummocks), although additional filters may be needed to distinguish

multi-year and first-year floes.

We also tried different inputs, such as using 10 m x 10 m windows, which had training/validation/test errors of 9%/18%/25%,

and using 20 m x 20 m inputs with half the resolution (i.e. 0.4 m), which had errors of 7%/13%/25%. The smaller window case10

has a slightly higher validation error than the above ConvNet, and the coarser-resolution input has a slightly lower validation

error than the above ConvNet, but both cases have slighly
::::::
slightly higher test errors. It is not surprising that a smaller window

has a higher error, as the isostatic assumption may no longer be valid. Larger windows, which are more likely to capture surface

features, are likely to improve the fit, but our dataset is too small to test this as larger window sizes would mean fewer training

inputs. However, it is promising that the validation errors are lower at a coarser resolution. This suggests that this method may

indeed extend to coarser, larger datasets like those from airborne laser altimetry from OIB. We also tried training for the mean

snow depth given the lidar inputs, with training/validation/test errors of 15%/17%/18%, which is very similar to the thickness5

prediction. This is not entirely surprising as, if hydrostatic balance is valid, being able to predict the mean thickness given some

surface elevation
::::
snow

::::::::
freeboard

:
measurements naturally gives the mean snow depth via Eq. 1.
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6 Discussion

5.1 ConvNet metric analysis

Although the ConvNet achieved a much lower test error than the linear fits, the inner workings of a ConvNet are not as clear to10

interpret. Here, we
::
We

:::
can

:
try to analzye the learned features by passing the full set of lidar windows through the ConvNet to

see if the final layer activations resemble any kind of metric. The below analysis of features is very qualitative, as it is inherently

very difficult to characterize what a ConvNet is learning.

One helpful way to gain insight on what the ConvNet is learning is to inspect the filters. Filters in early layers tend to detect

basic features like edges (analagous to a Gabor filter, for example), with later layers corresponding to more complex features15

like lines, shapes, or objects (Zeiler and Fergus, 2014). We see similar behavior in our filters; typical filters learned in our

model are shown in Fig. 11. Early filters highlight basic features like edges when convolved with the input array, while later

filters show more complex features. These complex features are hard to interpret, but are clearly converged and not just random

arrays. For example, a ‘blob’ feature could be a snow dune filter, while filters with a clear linear gradient could correspond to

the edge of ridges. The filters in the final layer are around ∼8 m in size. This may be too small to resolve the entire width of20

the ridges in our dataset, but would be enough to identify areas near ridges. With a larger windowed lidar scan, such as those

from OIB with scan width ∼ 250 m (Yi et al., 2015), we expect better feature identification, as the entire width of a ridge can

be resolved within a filter.

Figure 11. Typical weights learned in the first and last convolutional layers. Weights learned from the third layer are shown using the same

colormap as the lidar
::::
snow

:::::::
freeboard

:
in Fig. 7 to facilitate comparison.

:::::
Darker

:::::
colors

:::::::
indicate

::::
lower

:::::::
weights,

:::
but

::
the

:::::
actual

:::::
values

:::
are

:::
not

:::::::
important.

:
The filters in layer 1 correspond to edge detectors

:::
e.g.

:::::
Sobel

::::
filters, and the filters in layer 3 may be higher-order morphological

features like ‘bumps’ (snow dunes) and linear, strand-like features (ridges). The filter size of the first layer corresponds to 4.0 m
::
(20

:::::
pixels

::
at

::
0.2

::
m

::::::::
resolution)

:
and the third layer is 8.8m

:::
(11

::::
pixels

::
at
:::
0.8

::
m

::::::::
resolution).

:::
The

:::::::
resolution

::
is
:::::
halved

::
at
::::
each

::::
layer

:::
due

::
to

:::
the

::::
stride

::
of

:
2
::::
(see

:::
Fig.

::
5)

:
.
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Figure 12.
::
(a)

::::::::::
Distribution

::
of

:::
the

:::
final

::
(8
::

x
::
1)

::::
layer

::::::::
activations

:::
for

:::
the

::::
level,

:::::
ridged

::::
and

::::
snow

::::::::
categories

::::
from

:::
Fig.

::
7,
:::
and

:::
(b)

:::
the

::::::
learned

::::::
weights

::
for

:::
the

::::
final

::::::::::::
fully-connected

:::::
hidden

:::::
layer.

:::
To

::::::
generate

:::
the

::::
final

:::::::
thickness

:::::::
estimate,

:::
the

:::::::::
activations

::
in

::
(a)

:::
are

::::::::
multiplied

::::
with

:::
the

::::::
weights

:
in
:::

(b),
::::
then

:::::::
summed.

The learned weights for the final (8 x 1) hidden layer and their activations (when each input window is fed forward through

the ConvNet) are shown in Fig. 12a, grouped by category (level, ridged, snowy). These should correspond to (unspecified)5

metrics, which are linearly combined with the weights shown in Fig. 12b. It is clear that level surfaces are distinguished from

ridged and snowy surfaces, but ridged and snowy surfaces show considerable overlap with each other. While it is not possible

to determine with full certainty what each of the 8 features corresponds to, we can correlate these features to metrics that we

may expect to be important for estimating the ice thickness and see which ones match. Doing this analysis, for ridged surfaces,

features #0, #3 and #6 had a strong correlation (|R|> 0.95) to the mean elevation
::::
snow

::::::::
freeboard

::::
(Fig.

::::
13d); for snowy surfaces,10

these three features had a slightly weaker correlation (0.88< |R|< 0.96) to the mean elevation
::::
snow

::::::::
freeboard; and for level

surfaces, features #1 and #5 had a slight correlation (|R|= 0.67 and 0.80 respectively) to the mean elevation
::::
snow

:::::::::
freeboard

(Fig. 13
:
a). However, features that correlated to the ridged surface mean elevation

:::::
snow

::::::::
freeboard did not correlate to the level

surface mean elevation
:::::
snow

::::::::
freeboard, and vice versa

::::
(Fig.

:::
13b

::::
and

::
c). This suggests that the mean elevation

:::::
snow

::::::::
freeboard

for level surfaces is treated differently (e.g. given a different effective density) than other categories.15
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Figure 13. Scatter plot showing correlations between features and real-life metrics. Here, features #0 and #5 correlate strongly to the mean

elevations of the level and ridged surfaces respectively, but not the other way around. This suggests that the level and ridged surfaces are

treated differently, implying a different effective density of the surface freeboard. The correlation for the level category is not as strong;

without the two points near x= 0.1, |R|= 0.64, so this feature is possibly a combination of the mean elevation and something else.

For ridged surfaces, in addition to the mean elevation
::::
snow

::::::::
freeboard, the RMS roughness was also important, with features

#2 and #4 weakly correlating (|R|= 0.61) to the standard deviation of the window. The standard deviation had a slightly

weaker correlation (|R|= 0.55) for level surfaces, and virtually none at all for snowy surfaces (|R|< 0.20). Another measure

of roughness is the rugosity (the ratio of ‘true’ surface area over geometric surface area, see Brock et al. (2004)). This was most

important for the snowy category, with |R|= 0.57 for feature #7, compared to |R|= 0.53 for feature #6 for ridged surfaces

and |R|= 0.22 for feature #2 for level surfaces. As we found before, these features were much more strongly correlated to the

mean elevation and standard deviation respectively for their respective surface category. This was not the case for feature #7 for

snowy surfaces, which had a similar correlation (|R|= 0.54) to the mean elevation and a much weaker correlation (|R|= 0.35)5

to the surface σ. To summarize, for all categories, the mean surface elevation
::::
snow

:::::::::
freeboard is important (though weighted

differently, as different filters are activating for different categories). For both level and ridged surfaces, the RMS roughness

is important, and for snowy surfaces, the rugosity is also important. All the above analysis suggests that there are important

regime differences for estimating sea ice thickness
:::
SIT.

::
It

::::::
should

::
be

:::::
noted

::::
that

:::::
these

::::::::
statistical

::::::
metrics

:::::::::
suggested

::::::
above,

::::
with

::
the

:::::::::
exception

::
of

::::::::
rugosity,

::
do

::::
not

::::::
account

:::
for

::::::::
structure

::::
(any

::::::::::
permutation

:::
of

:::
the

:::::
same

:::::::
numbers

:::
has

::::
the

::::
same

::::::::
mean/σ),

::::::
which10

:::::
limits

:::
the

::::::::
usefulness

::
of
::::

this
::::::::
approach

::
to

::::::::::
interpreting

:::
the

:::::::
ConvNet.

This is by no means an exhaustive list, but it suggests that the ConvNet is learning useful differences between these

categories
:::::::
different

::::::
surface

:::::
types. However, as suggested by the considerable overlap in the distributions in Fig. 8, these cat-

egories may also not be the most relevant classifications. Alternatively, a t-distributed Stochastic Neighbor Embedding (see

Maaten and Hinton (2008)), which is an effective cluster visualization tool, shows that ridged and level surfaces are clearly dis-15

tinguishable, but there is considerable overlap between the snowy and ridged categories (Fig. 14). However, the ridged category

is quite dispersed, and may even consist of different classes of deformation which should not be grouped all together. Never-
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(a) Distribution of the final (8 x 1) layer activations for the level, ridged and snow categories from Fig. 7, and (b) the learned weights for the

final fully-connected hidden layer. To generate the final thickness estimate, the activations in (a) are multiplied with the weights in (b), then

summed.

Figure 14. The t-SNE diagram for the encoded input, using the first fully-connected layer (feature vector of size 64) (Maaten and Hinton,

2008). The level and ridged categories are most clearly clustered, although the snowy category may also be a cluster. There is some overlap

between the snowy/ridged clusters, which may reflect how ridges are often alongside snow features. It is also possible that the ridged

category contains multiple different clusters. This result suggests that the manually-determined surface categories shown in Figs. 7 and 12

are pertinent, but perhaps not the most relevant, for estimating SIT given different surface conditions.

theless, it is apparent that at the very least, the level and non-level categories are meaningfully distinguished. With more data

and larger scan sizes (e.g. from OIB), a deep learning neural network suitable for unsupervised clustering (e.g. an autoencoder)

could identify natural clusterings with their associated features (Baldi, 2012).20

To emphasize the importance of the mean elevation, we also tried training the same ConvNet architecture with demeaned

elevation as the input. Our ConvNet architecture is able to achieve a lowest validation error of 25% (training error 10%), but

test MRE is relatively high (40%). The validation error is only slightly lower than the fit error for fitting T ∝ σ (Fig. ??b, with

MRE 33%), and the test error is worse than the linear model, and has twice the test MRE of our ConvNet with the raw surface

elevation
::::
snow

::::::::
freeboard

:
(test MRE: 20%). Moreover, a simple statistical model of thickness as a linear function of surface25

elevation, snow depth and RMS roughness also only does marginally better (MRE 30%). This suggests both that the surface

elevation means are important, and also that these means are differently treated for different features, as was speculated in the

previous paragraph.

We also trained the ConvNet to predict the mean snow depth, with comparable training/validation/test errors of 15%/17%/18%

when using raw lidar input, and errors of 15%/22%/45% when using demeaned lidar input, which suggests the same analyses30

hold for snow depth prediction. As the snow depth is largely correlated with the surface elevation
::::
snow

::::::::
freeboard

:::::::::::::::::::::::::
(e.g. Ozsoy-Cicek et al., 2013)

, with the exception of ridged areas, it is not surprising that the demeaned input is not a good
::
as

:::::
good

:
a
:
predictor of the snow

depth. However, when metrics obtained from the demeaned elevation
:::::
snow

::::::::
freeboard (such as roughness) are combined with

the mean elevation
::::
snow

:::::::::
freeboard, snow depth estimates (as well as SIT estimates) are improved. This may mean that

::::
aside

::::
from

:::
the

:::::
mean

::::
snow

:::::::::
freeboard,

::::::
surface

::::
lidar

:::::
scans

::::
may

::::::
contain

:::::
other

:::::::::
information

::::
(e.g.

:::::::::::
morphology)

:::::::
capable

::
of

:::::::::
improving both
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SIT and snow depth may be predicted given some lidar input, which
:::::::::
predictions.

:::::
This is promising for applications to larger

datasets such as OIB or ICESat-2.5

Interestingly, predicting mean draft thicknesses using demeaned AUV windows gave low errors of 9%/11%/14%, suggesting

that ice-surface morphology is a far better predictor of thickness than snow-surface morphology. This is not surprising, given

that snow obscures the deformed ice surface. To compensate, the mean elevation becomes much more important.

Another approach to analyze these learned weights is to look at the sign of the weight and the typical values of the activations

in Fig. 12. Feature #0 has a negative weight for which the ridged category (and to a lesser extent, snowy) has the largest (most10

negative) feature values; this leads to adding extra thickness, primarily for the ridged ice category. This perhaps accounts for a

higher percentage of ice freeboard in the surface elevation
::::
snow

::::::::
freeboard

:
measurement than for the level and snowy categories.

Indeed, most of the level category have values near 0 for this feature. This could therefore be interpreted as a ’deformation

correction’ of some sort, or increasing the effective density of the ridged surface (perhaps due to a higher proportion of ice).

This is also the case for features #3 and #6, which is not surprising as these three features all had strong correlations to the15

mean elevation for the ridged/snowy categories.

Feature
:::::::
Features #7, which has positively- and negatively-skewed distributions for level/ridged categories respectively,

centered on the snowy category distribution, may be accounting for variations in snow density. For example, ridges may

have less wind-packed snow due to the shielding effects of the ridge (and hence less dense snow), whereas level surfaces may

have wind-packed, denser snow. In contrast, feature
:
5
::::
and #5 has the level/ridged distributions skewed the other way around.20

Because the weight is positive, but the values are mostly negative, this most strongly reduces the thickness estimate for level

surfaces. This may be equivalent to reducing the effective density of the surface due to the presence of snow, which would be

reduced the most for level surfaces (that have mostly snow) , whereas the ridged category would have a minor correction (and

so the feature values are mostly near 0)
:
7
::::
both

:::::
show

::::
some

::::::::::::
distinguishing

::
of

:::
the

:::::::
different

:::::::
surface

:::::
types,

:::::::
although

:::
the

:::::::
weights

:::
are

::
so

:::::
small

:::
for

::::
these

:::::::
features

:::::
(Fig.

::::
12b)

:::
that

::::
they

:::
are

:::::
likely

::::
not

::::::::::
significantly

::::::::
changing

:::
the

:::
SIT

::::::::
estimate

:::
and

:::
we

:::
do

:::
not

::::::::
speculate25

::::
what

::::
these

::::
may

:::::::
account

:::
for.

The inner workings of ConvNets are not easily interpreted, but the analysis here suggests that the ConvNet is responding in

physically realistic ways to the surface morphology. It may be possible to use these physical metrics to construct an analytical

approximation to the model, but due to the nonlinearities in the ConvNet as well as the considerable scatter between the features

and our guessed metrics, this will not be as accurate as simply passing the input through the ConvNet.30

6
::::::::
Summary

::::
and

::::::::::
conclusions

::::::::
Statistical

::::::
models

::::
for

:::
SIT

::::::::::
estimation

:::::
suffer

:::::
from

:
a
:::::

lack
::
of

::::::::::::
generalization

:::::
when

:::::::
applied

:::
to

::::
new

:::::::
datasets,

:::::::
leading

::
to

:::::
high

::::::
relative

:::::
errors

:::
of

::
up

::
to
:::::

50%.
::::
This

::
is
:::::::::::
problematic

:
if
::::::::::

attempting
::
to

:::::
detect

::::::::::
interannual

:::::::::
variability

::
or

:::::
trends

:::
in

:::
ice

::::::::
thickness

:::
for

:
a
::::::
region.

:::::
Deep

:::::::
learning

:::::::::
techniques

::::
offer

:::::::::::
considerably

::::::::
improved

::::::::
accuracy

:::
and

::::::::::::
generalization

::
in

:::::::::
estimating

::::::::
Antarctic

::::
SIT

::::
with

:::::::::
comparable

:::::::::::
morphology.

::::
Our

::::::::
ConvNet

:::
has

::::::::::
comparable

::::::::
accuracy

::
to

::
a

:::::
linear

::
fit

:::::
(15%

:::::
MRE

:::
vs.

:::::
20%

:::::
MRE)

:::
but

::
it
::::
has

:::::
much35
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:::::
better

:::::::::::
generalization

::
to

::
a

:::
test

:::
floe

:::::
(20%

:::::
MRE

:::
vs.

::::
28%

:::::
MRE

::
for

::::::::
applying

:::
the

:::
best

:::::
linear

::::
fit).

::::
This

:::::
linear

::
fit

::::
uses

::::::::
additional

:::::
snow

::::
depth

::::
data

:::
not

::::::::
included

::
in

:::
the

::::::::
ConvNet;

:::::::
without

:::
this

::::
data,

:::
the

:::::
linear

::
fit

::::
has

::
an

::::
even

::::::
higher

:::
test

:::::
MRE

::
of

:::::
31%.

:::
We

:::
find

::::
that

::::
even

:::
for

::::
level

:::::::
surfaces,

:::::
there

::
is

:
a
:::::::::::
considerable

::::::
varying

:::
ice

::::::::
freeboard

:::::::::
component

::::
that

::::::
creates

::
an

:::::::::
irreducible

:::::
error

::
in

:::::
simple

:::::::::
statistical

:::::::
models,

:::
but

:::
can

:::
be

::::::::::::
accommodated

:::
as

:
a
::::::::::::
morphological

::::::
feature

:::
in

:
a
::::::::
ConvNet.

::::
Our

:::::
error

::
in

:::::::::
estimating

:::
the

::::
local

:::
SIT

::
is
::::::
<20%

:::::
(RMS

:::::
error

::
of

:::
∼7

::::
cm)

:::
and

:::
the

::::::::
resulting

::::
mean

:::::::::::
survey-wide

:::
SIT

::::
also

:::
has

:::::
lower

::::::
errors

:::::
(RMS

:::::
error:

:::
2-3

::::
cm)5

:::
than

::::::::
empirical

::::::::
methods

::::::
(11-15

:::
cm,

:::
see

:::::::::::::::::::::
Ozsoy-Cicek et al. (2013)

:
).
:

In applying any model to a new dataset, it is assumed that the relationships from the fitted dataset hold for the new dataset.

We already showed that linear fits do not hold for different datasets (even from the same region/season), with the relative

error increasing by factors of 2-4 when estimating local or floe-wide thicknesses
::::
MRE

:::::::::
increasing

::::::::::
substantially, likely due to

differing snow/ice proportions in the surface elevation
::::
snow

::::::::
freeboard. This is true even when applying relationships from some10

PIPERS floes on other PIPERS floes. In addition to different surveys having different freeboards, ice/snow densities may also

be differently distributed between surveys. Our ConvNet has errors of 12-20% when estimating both the local and scan-wide

::::::::::
survey-wide thicknesses of a new

:::
test

:
dataset, which is only slightly higher than the validation errors of 7-15%. This suggests

that the morphological relationships learned in the ConvNet also hold for other floes of comparable climatology, which in turn

suggests that deformation morphology may be consistent within the same region/season.15

Although our survey consists of high-resolution lidar, snow and AUV data, we really only need high-resolution lidar data.

We showed that using demeaned AUV topography has the same low error in predicting mean thickness as using the surface

elevation. However, lidar
:::::
Lidar surveys are much easier to conduct

:::
than

:::::
AUV

:::::::
surveys, and so a more viable method for

obtaining more data for future studies is to use a high-resolution lidar scan, combined with coarser measurements of mean sea

ice thickness
:::
SIT (e.g. with electromagnetic methods, as in Haas (1998)). Snow depth measurements are not needed with this20

method. This should greatly reduce the logistical difficulties to extend these methods to more regions/seasons.

Statistical models for SIT estimation suffer from a lack of generalization when applied to new datasets, leading to high

relative errors of up to 50%. This is problematic if attempting to detect interannual variability or trends in ice thickness for

a region. Deep learning techniques offer considerably improved accuracy and generalization in estimating Antarctic sea ice

thickness. Our ConvNet has comparable accuracy to a linear fit (16% MRE vs. 20% MRE for fitting PIP4-8), but it has much25

better generalization to an unseen floe (20% MRE vs. 28% MRE for applying the best linear fit). This linear fit uses both an

unphysical constant term, as well as snow depth data that is not needed for the ConvNet. If comparing to a linear fit with no

constant and without snow depth data, then the linear fit has a far higher fit error (43% MRE) and far worse generalization (47%

MRES) than the ConvNet. The low test error for the ConvNet suggests that surface morphology, as identified by the ConvNet,

may be consistent between different floes from the same climatology, and that this morphology may inform estimates of SIT.30

Another
:::::::
Another

:::::::
possible

:
strength of our proposed ConvNet is that it can

:::::
could

:
account for a varying ice/snow density,

with greater complexity and accuracy than an empirical, regime-based method. Although recent works like Li et al. (2018)

have attempted to vary effective surface densities using empirical fits, these are not effective at higher resolutions, where

snow/ice proportions may vary locally. Although the workings of ConvNets are somewhat opaque, we have shown that our

ConvNet takes into account the spatial structures of the deformation, and given plausible justifications for why the snowy,
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level and ridged surfaces are treated differently. The learned filters suggest that morphological elements are important for

SIT estimation. We find that even for level surfaces, there is a considerable varying ice freeboard component that creates an

irreducible error in simple statistical models, but can be accommodated as a morphological feature in a ConvNet. Our error in

estimating the local SIT is <20% (RMS error of ∼7 cm), which is considerably lower and at higher resolution than current5

satellite-based estimates (∼50%, or 80 cm, see Kern and Spreen (2015)), and the resulting mean scan-wide SIT also has lower

errors (RMS error: 2-3 cm) than empirical methods (16 cm, see Ozsoy-Cicek et al. (2013)).

Although our ConvNet would be greatly improved with more training data, it is promising that local sea ice thickness
:::
SIT can

be accurately predicted given only surface elevation
::::
snow

::::::::
freeboard

:
measurements. More extensive lidar/AUV/snow measure-

ments from different regions/seasons would improve the ConvNet generalization, but because high-resolution ice thickness and10

snow depth are not needed, other, simpler-to-obtain data sets (e.g. coincident scanning lidar and EM-induction ice thickness

measurements) can also be used with this technique.
:
.The window size of 20 m x 20 m used here may also be valid, with

some modifications, to work on OIB lidar data, as the learned features at ∼8 m resolution are also resolved by OIB lidar data

(resolution 1-3 m). Using

:::
We

::::
have

:::::
shown

::::
that

::::::
surface

::::::::::::
morphological

::::::::::
information

:::
can

::
be

:::::
used

:
to
::::::::
improve

::::::::
prediction

::
of

:::
sea

:::
ice

::::::::
thickness

:::::
using

:::::::
machine15

:::::::
learning

:::::::::
techniques.

:::::
This

:::::::
provides

::
a
::::::::::::::
proof-of-concept

:::
for

::::::::
exploring

:::::
such

:::::::::
techniques

::
to

::::::::
similarly

:::::::
improve

::::
sea

:::
ice

::::::::
thickness

::::::::
prediction

:::::::::::
(particularly

::
at

::::::
smaller

:::::::
scales)

:::
for

:::::::
airborne

::
or

:::::::
satellite

:::::::
datasets

:::
of

:::::
snow

::::::
surface

::::::::::
topography.

::::::
While

:::
the

::::::::
ConvNet

::::::::
technique

::::::::
presented

::::
here

::
is

:::
not

:::::::
directly

::::::::
applicable

::
to
:::::
linear

:::::
lidar

:::
data

:::::
such

::
as

::::
from

:::::::::
ICESat-2,

::::::
related

:::::::
methods

::::
that

::::::
exploit

:::
sea

::
ice

:::::::::::::
morphological

::::::::::
information

:::::
might

::::
help

:::::::
improve

:::
sea

:::
ice

::::::::
thickness

:::::::
retrieval

::
at
:::::::

smaller
:::::
scales

:::::
from

::::::::
ICESat-2.

::::::::::::
Alternatively,

::::
using

:
a larger training set, it may be possible to

:::
use

::::
deep

:::::::::::::
learning-based

:::::::
methods

::
to

:
more readily identify relevant metrics20

for predicting SIT that may be measured/inferred from low-resolution, coarser data like ICESat-2 . With more data, the low

errors of deep learning-based methods may yield high-resolution, low-error SIT estimates that may be able to verify modest

interannual variability
:
or

:::::::::
Operation

::::::::
IceBridge.
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Appendix A: ConvNet Details

For a comprehensive introduction to deep learning, the reader is directed to Shalev-Shwartz and Ben-David (2014). Here we

will give the details of our ConvNet and explain the importance of chosen parameters.10

Convolutional Neural Networks, commonly known as ConvNets, are a class of deep neural networks that convolve filters

(matrices that contain weighting coefficients, or weights) through the input array. The input array is typically an image, and

the learned filters typically correspond to basic edge detections in initial layers, and more complex features in later layers (e.g.

Krizhevsky et al., 2012). Here, we use the lidar elevation scan as an input, due to its similarity to a grayscale image.

Like other deep learning methods, ConvNets ‘learn’ by updating their weights. This is done through comparing the output

of the prediction with the true output, using the derivative of a loss function (here, mean squared error) propagated through

the layers in reverse (backpropagation). The weight update rule, in its most basic form, is wi+1 = wi+ η
∂E
∂wi

, for some weight

w, loss function E and learning rate η. The value of η is important to ensure convergence: too high, and the filters may not

converge (and may even diverge); too low, and the filters may take too long to converge. In order to introduce nonlinearities in5

the network, a nonlinear activation function is used at each layer. Typically, this is done with a Rectified Linear Unit (ReLU),

which zeros out all negative activations. We chose a scaled exponential linear unit (SELU), which has been found to improve

convergence (Klambauer et al., 2017), as ReLUs sometimes lead to dead weights when dealing with many negative values. As

convolutions by default shift by 1 pixel at a time, this leads to considerable overlap and large output sizes at each layer. To

combat this, the filters can shift by a different number; this is called the stride.10

ConvNets are normally used in image classification problems due to their ability to discern features. The output would be a

probability vector assigining
::::::::
assigning likelihood of different classes, with the highest one being the prediction. ConvNets can

also be applied to regression problems (e.g. Levi and Hassner, 2015) by simply changing the output to be one number. Here,

we make the output the mean thickness, scaled by 5. The scaling here is because, for our dataset, the maximum thickness was

just under 5.0 m, and normalizing the outputs to be between 0-1 allows the gradients for the backpropagation of error to neither15

vanish nor blow up. Similarly, the lidar inputs were scaled by 2.0 to keep them between 0-1. The values are unscaled during

model evaluation. ConvNet inputs, when dealing with image classification, are often standardized to have a mean of 0 and a

variance of 1, but this was not done here as we want to use the mean and variance (roughness) of the elevation to predict the

mean ice thickness.

The proposed architecture is shown in Fig. 5. We use multiple convolutional layers to try to capture morphological features,20

along with fully connected layers at the end to combine the learned features. We tried networks with 2, 3 and 4 convolutional
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Figure A.1. Training errors, validation errors and training losses shown on a logarithmic scale. Although the training loss continues to slowly

drop after the epoch with the lowest validation error (red line, at epoch 881), validation error stays relatively flat, suggesting that the ConvNet

is overfitting after this epoch.
::::
The

:::::
gradual

:::::::
decrease

::
in

::::
MRE

::
is
:::
less

::::::
smooth

::::
than

::
the

:::::::
training

:::
loss

::::::
because

:::
the

:::
loss

:::::::
function

:
is
:::::
mean

::::::
squared

::::
error,

::::::
whereas

:::
the

::::
MRE

::
is

:::::::::
proportional

::
to

:::
the

::::
mean

:::::::
absolute

:::
error.

layers and 1 or 2 fully connected layers with a variety of filter sizes and found the one shown in Fig. 5, with a total of 5

hidden layers, had the best results. The filter sizes were chosen to try and capture feature sizes of <20 m, following Section

??
::
as

::::::::
discussed

::
in

:::::::
Section

:::
3.2. The first layer has a size of 4 m, the second is 8.4 m, and the third is 8.8 m

:::::::::::::
(corresponding

::
to

:::::::
windows

::
of

:::
20,

:::
21

:::
and

:::
11

:::::
pixels

::
at

::::
0.2,

:::
0.4

:::
and

:::
0.8

::
m

:::::::::
resolution). For the first two layers, a stride of 2 was used to reduce the25

dimensionality of the data. The implementation was done using PyTorch with an NVIDIA Quadro K620 GPU
:::
and

::::
took

::::::
around

:
8
:::::
hours.

ConvNet architecture, using 3 convolutional layers and 2 fully-connected layers, for predicting the mean thickness (1 x 1

output) of a 20 m x 20 m (100 x 100 input) lidar scan window at 0.2 m resolution (LeNail, 2019). The (64 x 1) layer is made by

reshaping the (64 x 1 x 1) output of the final convolutional layer, and so is visually combined into one layer. The optimzer used30

was Adam with weight decay 1.0× 10−5 (Kingma and Ba, 2014). The initial learning rate was η = 3× 10−3 and reduced by

a factor of 0.3 every 100 epochs until it reached 9× 10−5.

The input windows were randomly flipped and rotated in integer multiples of 90o to help improve model generalization.

Dropout, which randomly deactivates certain weights with some probability p, were added after the first and second convolu-

tional layers (p= 0.4) to reduce overfitting (Srivastava et al., 2014). The selected model for analysis was the best-performing35

validation error (15.5%) at epoch 881, as shown in Fig. A.1.
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