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Abstract. The calving fronts of many tidewater glaciers in Greenland have been undergoing strong seasonal and inter-annual 

fluctuations. Conventionally, calving front positions have been manually delineated from remote sensing images. But 

manual practices can be labor-intensive and time-consuming, particularly when processing a large number of images taken 

over decades and covering large areas with many glaciers, such as Greenland. Applying U-Net, a deep learning architecture, 

to multi-temporal Synthetic Aperture Radar images taken by the TerraSAR-X satellite, we here automatically delineate the 10 

calving front positions of Jakobshavn Isbræ from 2009 to 2015. Our results are consistent with the manually delineated 

products generated by the Greenland Ice Sheet Climate Change Initiative project. We show that the calving fronts of 

Jakobshavn’s two main branches retreated at mean rates of -117 ± 1 m yr-1 and -157 ± 1 m yr-1, respectively, during the years 

2009 to 2015.  The inter-annual calving front variations can be roughly divided into three phases for both branches. The 

retreat rates of the two branches tripled and doubled, respectively, from phase 1 (April 2009–January 2011) to phase 2 15 

(January 2011–January 2013), then stabilized nearly zero in phase 3 (January 2013–December 2015). We suggest that the 

retreat of the calving front into an overdeepened basin whose bed is retrograde may have accelerated the retreat after 2011, 

while the inland-uphill bed slope behind the bottom of the overdeepened basin has prevented the glacier from retreating 

further after 2012. Demonstrating through this successful case study on Jakobshavn Isbræ and due to the transferable nature 

of deep learning, our methodology can be applied to many other tidewater glaciers both in Greenland and elsewhere in the 20 

world, using multi-temporal and multi-sensor remote sensing imagery. 

1 Introduction 

Glacier retreating is one of the processes that control the recent speedups of Greenland’s tidewater glaciers (King et al., 

2018). As glacier retreats, it accelerates to compensate for the loss of downstream buttress. Glacier dynamic instabilities, as 

suggested decades ago by Meier and Post (1987), play an essential role as the glaciers retreat over depressions in the bedrock 25 

topography. For example, Joughin et al. (2008a) indicated that dynamic instabilities caused Helheim and Kangerdlugssuaq 

Glaciers to speed up as they retreated into an overdeepened basin whose bed is retrograde between 2001 and 2006. 

Examining 276 marine-terminating outlet glaciers, Bunce et al. (2018) concluded that bed geometry is an important control 

on the timing and magnitude of glacier retreat. 
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An accurate and detailed quantification of calving front variations would improve our understanding of the controlling 

mechanisms of glacier retreat. Moreover, observations of retreat may serve as initial indicators for other dynamic variations 

such as the glacier acceleration (Moon and Joughin, 2008). Calving front positions are influenced by a range of forces 

including ice mélange buttressing, increased runoff, and ocean-driven melt (Moon et al., 2015; Fried et al., 2018). 

Nevertheless, the mechanisms behind the numerous and complex controls on front positions are not yet fully understood. 5 

Compared with manually digitizing calving fronts, automatic mapping is superior because of greater productivity and 

reliability and lower cost. While most of the previous studies have manually delineated the calving fronts (e.g., Howat et al., 

2005; Joughin et al., 2008b), studies by Sohn et al. (1996) and Seale et al. (2011) have automatically delineated calving 

fronts using feature extractors. Sohn et al. (1996) designed a method to extract ice sheet margin by applying Roberts edge 

extractor to ERS-1 Synthetic Aperture Radar (SAR) images. Seale et al. (2011) automatically identified glacier calving 10 

fronts from daily MODIS images by combining Sobel and brightness profiling methods. With low computational complexity 

requiring no training and little memory resources, these feature-extracting methods are promising but require extensive prior 

knowledge and experience. 

Deep learning can solve more complex problems with	little prior knowledge required and take advantage of increased data 

volume (LeCun et al., 2015). With the continuous accumulation in the past decades and in recent space missions, the data 15 

volume of remote sensing imagery in the polar regions has increased dramatically. Moreover, glacier systems are complex, 

as conditions such as weather and glacier dynamic behaviors vary from place to place and from season to season. There are 

therefore obvious advantages to applying deep learning techniques to automatically extract glaciological features from the 

available big data. 

Here we aim to design a novel method to automatically delineate a glacier calving front from multi-temporal TerraSAR-X 20 

(TSX) images based on deep convolution neural networks (DCNNs). More specifically, we delineate the glacier calving 

front of Jakobshavn Isbræ (Fig. 1a) and quantify its seasonal and inter-annual variations. With this new set of observations, 

we investigate the possible link between calving front variations and bed elevation. 

DCNNs are a class of the deep learning methods, and have made important breakthroughs in image processing. DCNNs can 

discover both low-level (e.g., edges, corners, and lines) and mid-level features (e.g., shapes, sizes, and locations) (Sun et al., 25 

2014; Zhang et al., 2015). Recently, some studies have used DCNNs on high-resolution SAR images to perform 

classification tasks (Geng et al., 2015; Huang et al., 2017). These studies unanimously agree that DCNNs outperform 

traditional classification methods on SAR images. 

We use TSX images due to their high temporal resolution (11 days), high spatial resolution (3.3 to 3.5 meters), and ability to 

penetrate cloud cover. These high-temporal-resolution images have been acquired in all seasons and allow us to investigate 30 

calving front variations with a high degree of continuity and consistency. With these high-spatial-resolution images, we can 

easily digitize the calving fronts (known as “ground truth” in the context of deep learning), and verify the accuracy of the 

DCNN. Using SAR images can avoid the cloud cover problem associated with optical images such as the Landsat-8 image 

shown in Fig. 1b. 
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2 Jakobshavn Isbræ 

Jakobshavn Isbræ, located in central-west Greenland, is one of the largest and fastest tidewater glaciers in the world. In 

Jakobshavn, the ice flows westward to the ocean and divides into two branches near the coast (Fig. 1a). Before summer 

2004, these two branches merged and flowed into the Kangia fjord. Afterwards, as the glacier retreated, the two branches 

became disconnected (Bondzio, 2017). During the past few years, Jakobshavn Isbræ has undergone dramatic acceleration as 5 

the glacier has retreated and thinned (Joughin et al., 2008c; Joughin et al., 2012). Jakobshavn’s calving front retreated 16 km 

between 2002 and 2008 (Rosenau et al., 2013). This glacier alone has contributed nearly 1 mm to the global sea level rise 

from 2000 to 2011 (Howat et al., 2011).  

Observations have shown that the calving front variations were correlated with the glacier velocity changes in Jakobshavn 

Isbræ. In 1998, the glacier sped up by 18% in its frontal regions, coinciding with the initial retreat of the ice tongue (Thomas, 10 

2004; Luckman and Murray, 2005). The glacier doubled its speed by spring 2003, when nearly the entire floating ice tongue 

had disintegrated (Joughin et al., 2004). After the loss of this ice tongue, the glacier’s velocity fluctuated seasonally from 

2004 to 2007 (Joughin et al., 2008b). The glacier slowed down when it was advancing, and speeded up when it was 

retreating (Joughin et al., 2012). 

The variations of Jakobshavn’s calving front are also strongly influenced by the presence of ice mélange, namely a mixture 15 

of calved icebergs and sea ice (Fig. 1a). The seasonal variation of the calving front in Jakobshavn Isbræ is well correlated 

with the growth and recession of sea ice in the Kangia fjord (Sohn et al., 1998; Joughin et al., 2008c). Temporal variations of 

the ice mélange strength can also control the timing of calving events and influence the evolution of the calving front 

position (Amundson et al., 2010).  

Our study area covers a 14´18 km section of the frontal area of Jakobshavn, and includes bedrock, ice mélange, and glacier 20 

regions. We restrict the extent of the study area to reduce the computational costs, while also ensuring the coverage of all the 

calving fronts within our investigation period (2009–2015, determined by the TSX images we have access to). We classify 

our study area into two classes: ice mélange and non-ice mélange regions (including both glacier and bedrock regions). We 

delineate the boundaries between these two regions and retrieve glacier calving fronts. The repetitive texture of crevasses in 

the glacier region clearly distinguishes it from ice mélange, where icebergs are distributed discretely. It is easy to identify the 25 

bedrock region because of the distinct bedrock texture, including cracks and land-based lakes.  
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Figure 1.  (a) TerraSAR-X image taken on 11th July 2015 showing the frontal area of Jakobshavn Isbræ. Its two branches are 
labeled as ‘A’ and ‘B’. The green lines indicate the location of the bed elevation profiles shown in Fig. 8. (b) Landsat-8 image taken 
on 13th July 2015. The white box shows the area illustrated in Fig. 1a. 

3 TerraSAR-X images and pre-processing 5 

The German SAR satellite TerraSAR-X was launched in June 2007 and carries an X-band SAR sensor. In this study, we use 

TSX images taken in both ascending and descending orbits and in stripmap imaging mode. We use the enhanced ellipsoid 

corrected (EEC) products, which are multi-looked, projected and resampled to the WGS84 reference ellipsoid. We use 159 

images in total, taken between April 16th, 2009 and December 23rd, 2015 (listed in Table S1). We apply three pre-processing 

procedures including despeckling, multi-looking, and re-georeferencing. Figure 2 shows an illustrative example of our pre-10 

processing workflow, which we will describe below in detail. 

Because the quality of SAR images is adversely affected by the speckle noise (Fig. 2a), we apply the median blur filter to 

mitigate the speckle noise (Fig. 2b) and then multi-look the filtered images to reduce their size by 25 times (Fig. 2c). The 

median blur filter is widely used in image processing and is particularly effective for speckle noise. With the despeckled 

images, we average five neighboring pixels (vertically and horizontally) by using Geospatial Data Abstraction Library 15 

(GDAL) package (www.gdal.org).  
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We choose the EEC products because they include topographic correction and are the standard geocoded products of TSX 

(Roth et al., 2004). However, even for the EEC products, we observe that the geocoding information for our study area is 

inaccurate. First, overlaying the EEC images on Google Earth, we note obvious offsets between these two. Second, the 

geocoding information is inconsistent in different orbit directions of EEC products. Therefore, we need to re-georeference 

the EEC products. For the images we have, we observe that the images in the same orbit direction have identical geometry. 5 

Based on this observation, we assume that the differences between the EEC products and the Google Earth images are 

systematic, namely that they are consistent for the EEC products in the same orbit direction. We correct the geocoding 

information of the EEC products using 16 ground control points on Google Earth images, including the center of lakes and 

cross sections of the bedrock, due to their stability and ease of identification. For all the EEC products in the same orbit 

direction, we apply the same thin plate spline transformation using the GDAL package. 10 
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Figure 2. A set of examples of TerraSAR-X data pre-processing and preparation, including (a) the enhanced ellipsoid corrected 
(EEC) product, (b) despeckled image after reducing the speckle noise, (c) multi-looked image after decreasing the image size, and 
(d) images after vertically flipping and rotating Fig. 2c by 90º, 180º, and 270º, respectively. For ease of presentation, the images in 
Fig. 2d are not to scale with (a)–(c). 

4 Deep learning and post-processing 5 

DCNNs are a class of neural networks that consist of numerous convolutional layers, each of which contains learnable 

weights and biases. A network’s architecture refers to its overall structure, including the number of units and layers the 

network has and how they are connected. Here, we use the U-net architecture, which has achieved outstanding performance 

in biomedical segmentation applications and is among the best methods in image segmentation (Ronneberger et al., 2015). 

This network is fast, taking less than a second on a mainstream graphics processing unit (GPU) to segment a 512´512 image.  10 

The proposed framework for using deep learning to delineate the calving fronts is summarized in Fig. 3. We separate all the 

SAR images into a training dataset (75 images) and a test dataset (84 images) (Table S1). This practice is different from the 

deep learning convention that separates the entire dataset into three groups: training, validation, and test. As the validation 

dataset is used to evaluate the performance of different architectures, and since we only use one architecture (i.e., U-net), we 

choose not to include a validation dataset. 15 

 
Figure 3. Diagram of the proposed framework. Details are described in Sections 3 and 4. 

Before training the network, we prepare the training dataset, including training images (SAR images) and their 

corresponding ground truth images. The ground truth images have two classes: the ice mélange region is set as zero, and the 

non-ice-mélange region (including both glacier and bedrock regions) is set as one (Fig. S1). The ground truth images are 20 

derived by converting the vector of manually delineated calving fronts to rasters using GDAL. Manual delineation is simple 
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on most TSX images. However, it is challenging to delineate the calving fronts on few TSX images acquired in winter and 

spring because the boundaries are obscured due to snow covering and sea ice bonding. For each of these obscure images, we 

use its temporally closest image with a clear calving front as a reference, and require that our manually-delineated fronts are 

smooth (Fig. S4). 

We increase the smoothness of our network results in two ways. First, despeckling and multi-looking can smooth images 5 

without the loss of essential information for delineating the calving fronts. Second, we increase the convolution kernel size 

from the default 3´3 pixels to 5´5 pixels. This practice gives us more precise and smoother results. However, a larger 

convolution kernel increases the training time. 

To ensure the effectiveness and accuracy of deep learning for a set of SAR images taken in all seasons spanning seven years, 

it is important to prepare a sufficiently diverse training dataset. We include at least one image in each month into the training 10 

dataset to represent various conditions related to radar backscatter and image texture. First, radar backscatter can vary with 

the dielectric properties of the surface scatterers in the study area due to changes in snow covering, wetness, and variations in 

geometric properties such as roughness, grain size, and internal structure (Fahnestock et al., 1993). Since our study area is in 

the ablation region, backscatter increases in winter because of dry snow covering and decreases in summer due to snow 

melting. Second, the seasonal and inter-annual variations of ice mélange condition can change the image texture. Sea ice 15 

formation in winter solidifies ice mélange, while ice mélange weakens in summer, resulting in freely floating icebergs 

(Amundson et al., 2010; Xie et al., 2016). 

We also perform data augmentation to enrich our training dataset. We adopt the following two strategies. First, we vertically 

flip and rotate our training images by 90°, 180°, and 270°, respectively, to constitute many possible locations of the calving 

front in the study area (Fig. 2d). Second, we apply 2% linear stretch to the training images to enhance the edges. 20 

We subdivide each image (3565´1634 pixels) in the training dataset into small patches (960´720 pixels). Otherwise, the 

resolution would be limited by the GPU memory. We split images with overlaps, and obtain 36414 patches in total. Such a 

strategy allows a seamless segmentation after merging, which reduces the edge effect. A larger patch size can also better 

mitigate the edge effect. Another common issue of DCNN training is overfitting, which refers to the cases when the test 

errors are large even though the training error is small. We adopt the common overfitting-mitigation strategy by stacking 25 

several items of training data together as a batch. With a given GPU memory, a smaller patch size allows more items in a 

batch, which consequently better mitigates overfitting. To strike a balance between overfitting and edge effect, we choose 

960´720 pixels as our patch size. 

Due to different computational time used in training and automatic delineation, the overlap areas between adjacent patches 

are set differently in the training and the test datasets. Taking the GPU we use as an example, training the network takes 30 

longer time (dozens of hours) than automatic delineation (several minutes) after the network is well trained. Therefore, we 

split the training images with smaller overlap (two-thirds of the patch size) to save computational power and split the test 

images with larger overlap (four-fifths of the patch size) to make denser samplings so that the results become more robust. 
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Balancing the number of training samples between classes is crucial in deep learning (Batista et al., 2005; Anantrasirichai et 

al., 2018). Compared with patches with two classes, patches with only one class are not equally helpful for delineating 

boundaries. However, one-fifth of the 36414 patches only have one class. Therefore, we randomly drop out 80% of these 

patches to make the network perform better on the boundary between two classes and also to save computational power.  

Training the network starts with initializing all weights as zero, and then we use backpropagation to reduce the loss. Two 5 

properties are needed for the loss function: (1) the loss should be positive; and (2) it should tend towards zero as the network 

output is closer to the ground truth. We use binary cross-entropy (BCE) between the ground truth images and the network 

outputs to measure the training error, because it avoids the problem of slow learning (the training loss decreases slowly) 

(Goodfellow et al., 2016). When the error is no longer decreasing and stable, we consider the network as being well trained.  

After the training, we first subdivide each test TSX image into small patches and use the well-trained network to segment all 10 

the patches into ice mélange and non-ice-mélange classes. Then, we merge the segmented patches (binary images with a 

pixel value of one or zero) into a single segmentation image by averaging the overlaps. After merging, if the pixel value is 

larger than 0.5, we consider the pixel to be in a non-ice mélange region. We use GDAL to convert the segmentation image 

into a vector, which contains a large polygon constituted by both the calving front and the image border, and small isolated 

polygons caused by erroneous segmentation. After removing the small polygons and truncating the large polygon to separate 15 

the calving front from the image border, we finally obtain the calving front for each image. 

Using the post-processed delineation results, we can quantify the temporal calving front variations of both branches. Taking 

the earliest calving front (April 16th, 2009) as the reference, we calculate the enclosed area bounded by the reference and the 

calving front in a given TSX image. We adopt these metrics of area changes because they take both calving front position 

and shape into account. 20 

5 Data validation and error estimation 

Our results are validated by calving front products from the Greenland Ice Sheet Climate Change Initiative (CCI) project 

(http://products.esa-icesheets-cci.org). The CCI calving fronts are derived by manual delineation using ERS & Sentinel-1 

SAR, and Landsat-5,7,8 optical imagery. We validate our results in the following two aspects. 

First, the validation of the re-georeferencing (Section 3) is derived by directly comparing the manually delineated calving 25 

fronts obtained from this study and the CCI products. We manually delineate the calving fronts from the TSX image after re-

georeferencing and then calculate the averaged width of the enclosed area bounded by both the calving fronts from these two 

datasets on the same date. The mean difference is 104 meters (Table S2, Fig. S2). Several reasons could cause such a 

seemingly large difference. The geocoding information of the CCI products also has uncertainties. Moreover, manual 

delineation from both the CCI and ours are subjected to image quality and the different criteria we adopt for front 30 

delineation.  
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Second, the difference of calving front variations between ours and the CCI presents an overall validation that sums up both 

re-georeferencing and network-delineation uncertainties. We quantify the calving front variations of the CCI products with 

the same method and reference used in our results. Finally, we calculate the difference between these two variations in terms 

of both area and equivalent length. 

The errors in the test dataset represent the error of the network. Unlike the BCE-measured segmentation error in training, the 5 

test error is for calving front delineation. We measure the test error by calculating the averaged width of the enclosed area 

bounded by the manually delineated and the network-delineated calving fronts (Fig. S3). 

6 Results 

We present our results in the following order: (1) the network-delineated calving fronts from April 16th, 2009 to December 

23rd, 2015, which are shown in a movie (Movie S1); (2) two examples of our automatically delineated calving fronts (i.e., 10 

results in test dataset) (Fig. 4); (3) retreat rates (Table 1) and time series of calving front variations (Fig. 5); (4) inter-annual 

calving front variation (Fig. 6 and 7).  

The individual network-delineated results are influenced by the image quality. Usually, the boundary is more distinct in 

summer than in other seasons, yielding superior results (Fig. 4a). In winter and spring, the boundary is obscure due to the 

low contrast and similar texture of the images, for example, the Branch B and the northern part of Branch A (Fig. 4b, 4c, and 15 

4d). The backscatters of the snow-covered ice mélange and the glacier are similar. Moreover, sea ice formation in winter 

solidifies the ice mélange and even bonds it with the glacier. As a result, our detected edge deviates from the ground truth. 

Table S3 lists all of the test error with a mean of 38 meters. It also shows that our network performs better in summer than 

other seasons. 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-14
Manuscript under review for journal The Cryosphere
Discussion started: 7 February 2019
c© Author(s) 2019. CC BY 4.0 License.



10 
 

 
Figure 4. Examples of (a) superior and (b) inferior delineation from our deep-learning-based method. In both (a) and (b), the red 
line shows the calving front delineated by the network. (c) and (d) show the zoom-in figure of the obscure calving front positions 
within the blue boxes in (b). 

Overall, our results agree well with the CCI products (Fig. 5). The area difference is 2.14´106 m2, and the equivalent length 5 

difference is 73 meters. Moreover, our results have a higher temporal resolution (about two measurements every month) than 

the CCI products (about four measurements every year). Therefore, we can observe the seasonal and inter-annual variations 

more clearly. Based on our results, Branches A and B retreated from 2009 to 2015 with linear trends of -117 ± 1 m yr-1 and -

157 ± 1 m yr-1, respectively. The inter-annual variation can be roughly divided into three phases (Fig. 5 and summarized in 

Table 1). (1) From April 2009 to January 2011, the retreat rates were -141 m yr-1 and -228 m yr-1 along Branches A and B, 10 

respectively. (2) From January 2011 to January 2013, the glacier retreated 170% and 61% faster than in the previous phase in 

Branches A and B, respectively. (3) From January 2013 to December 2015, these two branches behaved differently. In 

Branch A, the glacier retreated and advanced seasonally, but at much slower average rates (-23 m yr-1). In Branch B, the 

seasonal variations were minor, and the glacier retreated slowly (-46 m yr-1). 

 15 
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Table 1. Retreat rates in area and equivalent length during different phases. 

 Period Mean retreat rate 
Branch A Branch B 

Area change  

(106 m2 yr-1) 

Apr 2009–Jan 2011 -3.07 ± 0.05 -4.97 ± 0.09 
Jan 2011–Jan 2013 -8.30 ± 0.04 -8.03 ± 0.07 
Jan 2013–Dec 2015 -0.50 ± 0.03 -1.01 ± 0.03 
Apr 2009–Dec 2015 -2.56 ± 0.01 -3.41 ± 0.01 

Equivalent length change (m 
yr-1) 

Apr 2009–Jan 2011 -141 ± 4 -228 ± 9 
Jan 2011–Jan 2013 -381 ± 3 -368 ± 5 
Jan 2013–Dec 2015 -23 ± 2 -46 ± 2 
Apr 2009–Dec 2015 -117 ± 1 -157 ± 1 

 

Figure 5. Time series of calving front variations (in area changes) of Branches A and B from our deep learning method (stars) and 
the Greenland Ice Sheet CCI project (triangles). Dashed vertical lines divide the time series into three separate phases (see text). 5 

Further examination of the inter-annual variation indicates that the calving front exhibited different seasonal variations from 

year to year. First, even within a close distance of ten kilometers around the coastal area, Branches A and B behaved 
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asynchronously. For example, in 2010, Branch A began to retreat in May, while Branch B started to retreat one month later 

(Fig. 6a and 7). Moreover, after 2012, Branch A’s front underwent strong seasonal variation while Branch B’s front 

remained relatively stable (Fig. 6b). Second, the retreat timing of the glacier varied in different years. In Branch A, the front 

began to retreat around May in most years, while in 2011 and 2013 the retreat started in June. In 2010, both branches 

experienced a sudden retreat from mid-January to early February, and then became stable. Third, the calving front variation 5 

became regular after 2012. In Branch A, the front stopped retreating in July of each year, and its position remained 

unchanged up to September to October. In Branch B, the front advanced in spring and retreated in early summer, while its 

position remained almost unchanged in other seasons (Fig. 5 and 7).  

 

Figure 6. Two examples showing the asynchronous behaviors of Branches A and B. (a) Branch A began to retreat in May 2010, 10 
while Branch B started to retreat one month later. (b) Branch A’s calving front underwent strong variation between August to 
November 2012, whereas Branch B’s calving front was relatively stable. The magenta line in both (a) and (b) shows the calving 
front position just before the annual retreat. 
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Figure 7. Similar to Fig. 5 but showing the time series of calving front changes (in area changes) of our deep-learning-based results 
in different years. The red filled stars mark the dates when the glacier started to retreat. Red open stars mark starting dates that 
cannot be reliably determined due to data gaps (e.g., Branch A in 2011) and small variations (e.g., Branch B in 2013). 

7 Discussion 5 

7.1 Calving front variation and bed elevation 

In general, calving front variations are influenced by multiple factors, including floating or grounding conditions (McFadden 

et al., 2011; Murray et al., 2015; Bondzio et al., 2017; Fried et al., 2018), interaction with the ocean (Holland et al., 2008;  

Howat et al., 2008; Motyka et al., 2011; Vieli and Nick, 2011; Straneo et al., 2013), ice mélange and sea ice conditions 

(Amundson et al., 2010; Moon et al., 2015; Cassotto et al., 2015), basal lubrication (Joughin et al., 2008b; Moon et al., 2014) 10 

and bed elevation (Joughin et al., 2008a; Joughin et al., 2014; Kehrl et al., 2017; Bunce et al., 2018). Here we examine the 

possible link between the observed variations of the calving fronts with bed elevation. 
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Bed elevation has a substantial influence on the glacier retreat. In the first situation where the bed is flat, glacier retreat 

decreases resisting force, which accelerates the glacier. The acceleration of the glacier can also thin the ice. Thinning reduces 

the effective pressure at the bed, 𝑁 = 𝑃$ − 𝑃&, where 𝑃$ is the overburden pressure and 𝑃& is water pressure. A decreased 𝑁 

reduces basal drag, causing stretching and faster flow and constituting positive feedback. In the second situation, as the 

glacier retreats into an overdeepened basin where the bed slopes down inland or is retrograde, the positive feedback is 5 

reinforced, and the glacier becomes more unstable, for two reasons. First, ice thickness at the calving front increases as the 

retreat progresses, increasing driving stress. Second, because the calving front moves into deeper water, this retreat decreases 

𝑁 further. In the third situation where the bed slopes inland-uphill, the glacier may stabilize, since retreating into shallower 

water increases 𝑁 and decreases driving stress. 

Previous studies also suggest that bed elevation has a substantial influence on glacier calving front variations. Examining the 10 

height above flotation of Branch A in Jakobshavn, Joughin et al. (2014) suggested that retreating into an overdeepened basin 

where the bed slope is retrograde may lead to an unstable calving front retreat, and a bed sloping inland-uphill may stabilize 

the glacier. Other studies have also suggested that retreating into deeper water may accelerate the glacier, resulting in an 

unstable retreating (Howat et al., 2005; Howat et al., 2007; Nick et al., 2009; Catania et al., 2018). 

In our study area, the bed elevation derived from BedMachine v3 (Morlighem et al., 2017) shows two overdeepened basins 15 

along the main channel of Branch A (Fig. 8a). During the period from 2009 to 2015, the calving front of Branch A retreated 

into the second overdeepened basin in August 2011 for the first time, which may have produce a faster rate of retreat. In July 

2012, the glacier retreated to the bottom of the overdeepened basin and stopped retreating further (Movie S2). The inland-

uphill bed slope behind the bottom of the overdeepened basin may have prevented the glacier from further retreating. In 

Branch B, after June 2012, the glacier retreated into a zone where the bed slopes uphill inland (Fig. 8b, Movie S3). We 20 

suggest that retreating into this zone may have led to the more regular and stable behavior of Branch B after June 2012 (Fig. 

5b). 
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Figure 8. Bed elevation profiles of two branches derived from BedMachine v3 (Morlighem et al., 2017). The profile locations are 
shown in Fig. 1a. The dashed box shows the zone where the bed slopes uphill inland. 

7.2 Prospects for future work 

The accuracy of a DCNN largely depends on the information richness of the training dataset (Goodfellow et al., 2016). 5 

Therefore, by including more images into the training dataset, we can minimize network error. In this study, the well-trained 

network is limited to a specific dataset, namely TSX images. However, it is feasible to apply the DCNN to multi-sensor 

remote sensing imagery, which has been proved by previous studies (Nogueira et al. 2017; Lang et al., 2018). 

The effectiveness and transferable nature of deep learning (Anantrasirichai et al., 2018) promises that our methodology can 

be applied to many other glaciers, both in Greenland and elsewhere in the world. Besides Jakobshavn Isbræ, other Greenland 10 

tidewater glaciers such as Helheim and Kangerdlugssuaq also show strong calving front variations (Howat et al., 2005; 

Howat et al., 2007; Joughin et al., 2008a). In theory, the DCNN can be retrained whenever new data is added to the training 

dataset. Moreover, including more data over other places can increase the generalization of the network, making it applicable 

to more situations (Goodfellow et al., 2016).  
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8 Conclusions 

This study designs a method based on DCNNs to automatically delineate calving fronts of Jakobshavn Isbræ from 

TerraSAR-X SAR images acquired from April 2009 to December 2015. Small test error suggests that the accuracy of a well-

trained network can be close to the human level. Our results reveal that the two branches of Jakobshavn Isbræ behaved 

asynchronously. We suggest that bed elevation may have a major influence on the observed calving front variations. Our 5 

methodology can be applied to many other tidewater glaciers both in Greenland and elsewhere in the world using multi-

temporal and multi-sensor remote sensing imagery. 
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whole framework (Fig. 3) will be provided by Enze Zhang upon request. The network-delineated calving fronts obtained in 
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