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The authors use a deep convolutional neural network with a U-net architecture to delineate the 
calving fronts of Jakobshavn Isbrae between 2009 and 2015. The network achieves reasonable 
results, allowing the analysis of the interannual and season behavior of the two branches of the 
glacier. The authors determine three distinct phases of calving front behavior, which they 
partially attribute to the bed elevation. There are a some issues with the manuscript regarding 
originality of the paper, ambiguous or incorrect technical comments, and lack of clarity in some 
aspects of the methods. However, it does add valuable results and showcases the uses of deep 
learning in SAR products. Therefore, I believe the article may be considered for publication 
after Major Revisions, once the following concerns have been addressed:  

We highly appreciate the reviewer for the constructive comments which have significantly 
improved the quality of our manuscript. We have made our best effort to revise the manuscript 
based on the referee’s comments and suggestions.  

Major Comment 

As the first reviewer pointed out, despite the claim in the manuscript regarding the novelty of 
the technique, the methodology is very similar to that of Mohajerani et al. [2019] 
(https://doi.org/10.3390/rs11010074). However, this study does provide a different take on this 
technique and the authors should point out specifically how this work improves on previous 
efforts. For instance, the authors here use classification of surfaces in order to obtain the calving 
front, while Mohajerani et al use semantic segmentation to extract the front without classifying 
the surrounding surfaces. Each technique has strengths in different contexts. This and other 
differences should be discussed.  

We have added a new subsection 7.1 titled Differences from the previous work to discuss 
the differences between our work and the method of  Mohajerani et al. (2019), which are 
summarized as follows: 

• Different strategies are used to classify calving fronts. Our study classifies the surface 
into two types (i.e., ice mélange and non-ice mélange) to extract the calving front; 
Mohajerani et al. (2019) use semantic segmentation to extract the front without 
classifying the surrounding surfaces. 

• Additional manual practices such as finding a rotation angle for each glacier are needed 
in the work of Mohajerani et al. (2019). 

• We subdivide the images into small patches, which allows us to use images with high 
resolutions and various size (i.e., TerraSAR-X images). Mohajerani et al. (2019) 
resampled images to a fixed size (240 by 152 pixels) with low spatial resolution (49.0 
to 88.1 meters).  

 

There are some statements that are not necessarily true from a technical point of view and raise 
some concern, which require revision:  

i) Page 6 Lines 12-15: This is not true. Even when using one architecture, the loss and/or 
accuracy metrics on the validation dataset can be used during training in order to avoid 



overfitting, whereas the test dataset is only used after training. This is particularly important if 
the trained network is intended to be used in multiple areas.  

We agree and have separated our data into three parts: training, validation, and test. 
We revised the relevant text as: We separate all the SAR images into a training-
validation dataset (75 images) and a test dataset (84 images) (Table S1). In the 
training-validation dataset, we randomly choose 90% as training data and take the 
rest as validation data. (Page 7 Line 13-15) 

ii) Page 7 Lines 7-8: This statement is not necessarily true and could be misleading. A larger 
kernel provides more context, but doesn’t necessarily directly increase precision. It is 
dependent on the scale of the desired features to be extracted, depth of network, desired level 
of weight sharing, and many other factors.  

Indeed, the accuracy relies on several factors such as the depth of the network and 
desired level of weight sharing. The primary purpose of increasing the kernel size 
is to get smoother calving fronts. We rephrased the relevant text as: We utilize 
relatively large convolution kernel size (5 by 5) to obtain smoother calving fronts. 
(Page 7 Line 7) 

iii) Page 7 Line 27: It is not necessarily true that having more items in a batch reduces 
overfitting. This is dependent on the total number of epochs that the batches are cycled through 
and the rate of minimization of the loss function as a function of batch size. Large batches can 
indeed reduce generalizability (e.g. Keskar et al [2016] https://arxiv.org/abs/1609.04836).  

We agree that a larger batch size would not reduce overfitting but actually reduce 
generalizability. Typically, batch sizes are no larger than 256. A large batch size 
would help to increases the efficiency and improves the accuracy of the gradient 
estimation at each step. Here, the batch size we use is three. We revised the relevant 
text as: With a given GPU memory, a smaller patch size allows more items in a 
batch, which increases the efficiency and improves the accuracy of the gradient 
estimation at each step. To strike a balance between edge effect and batch size, we 
choose 960´720 pixels as our patch size and the batch size is three. (Page 8 Line 
22-24) 

 

 

There is no proper measure of the extent of overfitting in the study. Without a validation dataset 
to keep track of overfitting during training, and no regularization in the network (or lack of 
discussion in the manuscript), one cannot make any statements about the generalizability of the 
model. This is exacerbated by the fact that the authors train and test the network on only one 
and the same glacier.  

We have added the validation dataset and halted the training when the validation error stops to 
decrease with patience of 5 epochs (Page 7 Line 13-15; Page 9 Line 1-2). The optimizer we 
use has an L2 regularization term with a factor of 0.00001 (Page 7 Line 12). These strategies 
help to mitigate overfitting. We chose not to include the dropout layer because we found that 



adding a dropout layer caused large fluctuations for both the training loss and validation loss 
at the end of training. 

 

It would be helpful to provide more detailed information on the time requirements (e.g. Page 
7 Lines 30-31) and the GPU model used in the study as a point of reference.  

We have provided more detailed information on the time requirements (Page 8 Line 27). We 
do mention the used GPU model, Quadro P5000 GPU, in the Acknowledgment section. We 
prefer not to mention any brand name in the main part. 

 

 

There is very little discussion on the actual architecture of the U-Net model. How many layers 
are used, what activation functions are used, etc.?  

We have added one paragraph and a graph to describe the U-Net architecture (Page 6 Line 13, 
Page 7 Line 1-12, Figure S1). The architecture we use has 41 layers in total, including 23 
convolutional layers and 18 batch normalization layers. The activation function in the last 
convolutional layer is Sigmoid, and the rest activation functions are LeakyReLU. 

 

 

It would be more meaningful to put the errors in context. For example Page 8 Line 28, how 
much of the error is purely from the delineation alone, if you had multiple investigators 
manually delineate the same calving front? And how do these errors and those reported in Table 
S3 compare with the resolution of the image in terms of the number of pixels?  

We agree that including the error from delineation alone would be more meaningful. We asked 
another investigator to manually delineate the calving fronts from six selected images. By 
comparing the two sets of independent delineation results, we obtained a mean difference of 
33 meters (equivalent to ~5.5 pixels). We revised the relevant text as: To measure the manual 
delineation error, we have another investigator to manually delineate the above-mentioned six 
calving fronts again. By comparing the two sets of independent delineation results, we obtained 
a mean difference of 33 meters (equivalent to ~5.5 pixels) (Table S2). (Page 9 Line 23-26) 
 
We have added the error in terms of the number of pixels in Table S3. 

 

 

Minor Comments 

Page 1 Line 16: add “to” after “stabilized”. 



We have revised as suggested (Page 1 Line16). 

 

Page 3 Line 13: change “speeded up” to “sped up” 

We have revised as suggested (Page 1 Line15). 

 

Table S1: please statement more clearly if 0=test and 1=train to avoid confusion.  

We have revised the caption of Table S1 as suggested. 

 

Page 4 Line 15: How are boundaries dealt with in the averaging of pixels?  

The images we use to delineate the calving front manually and to apply to the network are all 
multi-looked images. The original TerraSAR-X images have a high spatial resolution, and their 
pixel size is 1.25 meters. After reducing the image size by 25 times, the boundaries in the multi-
looked images remain visually clear. 

 

Page 7 Lines 3-4: It is not very clear how the calving front is delineated front the closest 
temporal neighbor. Is there a set distance threshold from the calving front of the reference 
image?  

If the boundary is not clear in an image, we will find its closest temporal neighbor with a clear 
edge. By observing the texture variation due to the glacier movement, we can approximately 
decide where the calving front is for the blur image. Figure S3 gives an example of how we 
dealt with this issue. The manual delineation is all based on visual observations without any 
quantitative analysis. 
 

Figure S4: “(c) and (c) show the manually delineated calving fronts” should be changed to “(c) 
and (d) [. . .]”.  

We have revised the caption of Figure S3.  

We have changed the order of the Figures in supporting information in the order they are 
referred to in the main manuscript: 

Figure S1--> Figure S2 

Figure S2--> Figure S4 

Figure S3--> Figure S5 



Figure S4--> Figure S3. 

We have added one figure in supporting information to describe the network architecture 
(Figure S1). 

 

Page 7 Line 19: Is rotation augmentation necessary if you are only working with one glacier 
here?  

Without rotation augmentation, the trained network still can generate reasonable results. 
However, we prefer to keep the rotation augmentation since it could be helpful when we apply 
our method to other glaciers in the future. 

 

Page 7 Line 20: Please explain what you mean by 2% linear stretch. Is this done separately in 
each direction (horizontal and vertical)?  

We didn’t do the linear stretch separately in each direction. 

The linear stretching is to change the pixels’ values to increase the contrast.  

For all values between 2% and 98% of the pixel value range, we use the following equation to 
do the linear stretching 

𝑃"#$%#&'%( = 255 ∗ (./01.2/0)
(.2451.2/0)

. 

Where 𝑃"#$%#&'%( is the pixels’ value after linear stretching and 𝑃67	is the pixels’ value before 
stretching. 𝑃967 and 𝑃9:; are the 2nd and 98th percentile in the histogram (that is, 2% of the 
pixels have values lower than 𝑃967, and 2% of the pixels have values larger than 𝑃9:; ).  

For values lower than 𝑃967, they are set as zero, and for values larger than 𝑃9:;, they are set 
as 255. 

We believe that “x% linear stretch” is a widely used terminology in remote sensing and 
therefore choose not to provide a detailed explanation in the manuscript.  

 

Page 8 Lines 3-4: Just a suggestion: in order to avoid losing training data, you can change the 
weights in the loss function instead.  

Thanks for your suggestion, but we prefer dropping out these one-class patches. By changing 
the weights in the loss function, we can indeed avoid losing training data. However, the primary 
purpose of dropping out one-class patches is to save computational power. The network may 
generate erroneous segmentation in the region that is away from the calving fronts due to 
dropping out one-class patches. However, we can fix this problem in post-processing by 
removing small isolated polygons caused by erroneous segmentation. 



 

Page 8 Line 9: what threshold do you use to determine a “stable error”?  

We have changed our strategy to ovoid overfitting. With give patience of 5 epochs, if the 
validation loss stops to decrease, we halt the training process (Page 9 Line 1-2). 

 

Figure 10: the magenta and red colors are very hard to distinguish. Please consider using a 
more contrasting color.  

We have changed the line color from magenta to green. 

 

Section 7.2: What are the limitations of the current technique?  

We have added a new subsection 7.3 titled Limitation of current method to discuss the 
limitations of the current technique, which are summarized as follows:  

• The U-Net architecture requires relatively high GPU memory. 
• Splitting images with overlaps increase the training time. 
• The accuracy of this method relies on manual delineation and the information richness 

of the training dataset. 

Could imagery artifacts or more varied surfaces be dealt with?  

As long as the calving fronts are clear in the images, imagery artifacts or more varied surfaces 
will not be a problem to the network. For example, with additional training, the network could 
handle images with low cloud cover (Figure R1) as well as Landsat 7 images with scan line 
errors (Figure R2). Note that the image in Figure R1 is not in the training dataset, and the image 
in Figure R2 is in the training dataset.  

However, imagery artifacts such as image distortion need to be corrected by pre-processing 
procedures other than deep learning. 

We did not include the results using Landsat -7 and -8 images since they are preliminary and 
beyond the scope of this manuscript. 

 



 

Figure R1. An example of automatically delineated calving front at Jakobshavn Isbrae using a 
Landsat 8 image with clouds. The image was taken on August 27th, 2014. The blue box 
indicates an area with low cloud cover. 



 

Figure R2. An example of automatically delineated calving front at Jakobshavn Isbrae using a 
Landsat 7 image with scan line errors. The image was taken on July 24th, 2013. 

 

Can the trained network be applied to multiple glaciers or does it have to be retrained for every 
glacier?  

Currently, if we want to apply the network to other glaciers, retraining is needed. We conducted 
a preliminary experiment by directly applying the network generated from this work as trained 
by TerraSAR-X imagery from Jakobshavn to Helheim (without including any new training 
data). Figure R3 is a superior example shows that the automatically delineated calving front at 
Helheim is very close to what one would get from visual inspection. Of course, we need to 
include more training examples from more glaciers to ensure reliable results on other glacier 
domains. 

However, with more and more data from different glaciers included in the training dataset, the 
trained network has the potential to be applied to another glacier without retraining.  

We did not include the results on other glacier domains since they are preliminary and beyond 
the scope of this manuscript. 

 



 

Figure R3. An example of automatically delineated calving front at Helheim. The background 
image is a Landsat 8 image taken on April 11th, 2015. The red line indicates the automatically 
delineated calving front. 


