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Abstract. Glacier lake outburst floods are common glacial hazards around the world. How big such floods can become (either

in terms of peak discharge or in terms of total volume released) depends on how they are initiated: what causes the runaway

enlargement of a subglacial or other conduit to start the flood, and how big can the lake get before that point is reached? Here we

investigate how the spontaneous channelization of a linked-cavity drainage system can control the onset of floods. In agreement5

with previous work, we show that floods only occur in a band of water throughput rates in which steady reservoir drainage is

unstable, and identify stabilizing mechanisms that allow steady drainage of an ice-dammed reservoir. We also show how stable

limit cycle solutions emerge from the instability, and identify parameter regimes in which the resulting floods cause flotation of

the ice dam, and are therefore likely to be initiated by flotation rather than the unstable enlargement of of a distributed drainage

system.10

1 Introduction

Glacier lake outburst floods or jökullhlaups are a glacial hazard in many parts of the world (e.g. Björnsson, 1988; Clague et al.,

2012). In addition, they provide a window into subglacial drainage systems: most outburst floods involve the opening and

closing of a subglacial conduit, driven by melting of its walls through heat dissipation in the turbulent flow of water, and by

viscous creep closure of the ice. In the early stages of the outburst flood, wall melting dominates through a positive feedback in15

which conduit enlargement leads to faster water flow and therefore more dissipation of heat. Later in the flood, creep closure

accelerates as the lake level drops, eventually causing the conduit to close again, and terminating the flood. Alternatively, the

flood can terminate because the lake has run dry. Then conduit then becomes partially air-filled and closes with minimal flow

going through it.

While the mechanics of the main discharge phase of an outburst flood are relatively well-understood (Nye, 1976; Clarke,20

1982, 2003; Fowler and Ng, 1996; Ng, 1998; Fowler, 1999; Kingslake and Ng, 2013; Kingslake, 2013), the mechanisms that

initiate the flood are still poorly understood, even though they dictate the level to which the lake is able to fill, and therefore the

magnitude and timing of the flood. In other words, the challenge is to explain not how a single flood progresses once started, but

how it starts, and more to the point, what makes repeated floods occur cyclically, as a self-sustaining oscillation in the drainage

system (Fowler, 1999; Kingslake, 2015). The main discharge phase of the flood is generally only part of a larger cycle, which25
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also comprise a slow recharge phase in which outflow from the lake is small or absent altogether, and the transition between

the recharge and discharge phases, where both inflow into and outflow out of the lake are of comparable magnitude.

One possibility for flood initiation is that the lake simply fills to the level at which the ice dam starts to float, and a sheet

flow emerges between ice and bed that subsequently channelizes (Flowers et al., 2004). This may occur irregularly in same

lakes such as Grímsvötn due to exceptionally large inflow rates to the lake, for instance during volcanic eruptions, or as part of5

a repeating flood cycle in others (Bigelow et al., 2020). Some lakes are however known to initiate outburst floods before they

reach that flotation level.

Motivated by the subglacial lake at Grímsvötn in Icealand, Ng (1998) and Fowler (1999) consider how outburst floods are

initiated in a drainage system that consists of a Röthlisberger (R-) channel (Röthlisberger, 1972). In the simplest version of

their model, where the channel is fed purely by the lake, they find that the amplitude of floods grows from cycle to cycle, and10

that water pressures exceeding ice overburden are eventually reached, meaning that floods should start through the flotation of

the ice dam after a few cycles. At the heart of this behaviour is the fact that the R-channel can shrink to progressively smaller

sizes between successive floods, making it harder to re-initiate drainage.

Grímsvötn typically starts its flood when water levels are below flotation (Björnsson, 1988), without successive floods

growing in amplitude, except when the flood results from a large increase in water input due to volcanic activity (Gudmundsson15

et al., 1997). To explain this behaviour, Fowler (1999) considers the effect of a water supply along the length of the R-channel

on its evolution. Such a water supply can maintain a minimum channel size even between outburst floods, with flow of water

being directed partly into the lake and partly down-glacier to the margin, provided the glacier has a geometrical ‘seal’. As the

lake fills, the flow divide inside the channel migrates towards the lake, and the flood begins when the divide reaches the edge

of the lake.20

While this mechanism successfully explains how limit cycles (stable, periodic oscillations in lake level) can emerge in the

model, it also predicts that no water can leave the lake between floods. Tracer experiments conducted at Salmon Glacier in

Canada (Fisher, 1973) demonstrate that lakes can leak continuously throughout their recharge phase. Summit Lake, dammed

by the Salmon Glacier, also has a history of flood initiation at lake levels below the flotation level (Post and Mayo, 1971).

At Gornersee in Switzerland, observations of water lake levels and inferences of lake water balance based on meteorological25

measurements over two consecutive years also suggest leakage and flood initiation below flotation level during one year, and

flood initiation at or above flotation level during the previous year, potentially in the absence of any pre-flood leakage (Huss

et al., 2007). Observations at Hidden Creek Lake (Anderson et al., 2003) by contrast suggest no leakage prior to flood initiation,

though that conclusion is again based on water balance estimates rather than direct tracer experiments.

In this paper, we consider an alternative mechanism by which floods can initiate in a recurring fashion without the need for30

a sealed lake, but with continuous leakage throughout the flooding-and-refilling cycle. We show that a conduit that is able to

switch spontaneously between the behaviour of typical of an R-channel and the behaviour of a linked cavity system (Kessler

and Anderson, 2004; Schoof, 2010; Hewitt et al., 2012; Hewitt, 2013; Werder et al., 2013) can sustain limit cycles without

leading to flotation of the glacier at flood initiation, and without requiring the flood divide migration appealed to in Fowler

(1999). Note that many elements of the model studied here were included in the earlier study of outburst flooding by Kessler35
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and Anderson (2004), who were able to replicate leakage from a glacier-dammed reservoir before the onset of the outburst

flood, but did not attempt to reproduce recurring floods. It is unclear their model would have been able to do so since, in

common with the model due to Fowler (1999), the main trunk of their drainage system was set up as a pure R-channel.

The behaviour studied in the present paper was first documented in a model by Schoof et al. (2014). In this paper, we

approach the problem from a more theoretical perspective, focusing on the following: first, we delineate when a ‘lake’ or other5

storage reservoir can be drained steadily, and identify conditions under which steady drainage becomes unstable, and how that

instability leads to a limit cycle. Next, we investigate how the amplitude and period of floods depends on reservoir size and

inflow rate. As a corollary, we determine at which point (in parameter space) the model predicts that flotation does occur and

a different flood initiation mechanism is likely to take over. In closing, we also briefly comment on the difference in flood

dynamics caused by distributing water storage along the flow path rather than having a single water reservoir (Schoof et al.,10

2014). We outline how the classical runaway melt mechanism for outburst floods first described by Nye (1976) can be replaced

as a mechanism for self-sustaining water pressure oscillations by a spatial phase shift between conduit size and water pressure

along the flow path.

The original motivation for the work in Schoof et al. (2014) was to demonstrate that behaviour akin to outburst floods can

occur in systems with limited or even distributed water storage, manifesting itself in the form of unforced water pressure15

oscillations. Such limited storage could in principle result from moulins or any other vertical shaft that can fill progressively

with water as water pressure rises.such as a basal crevasse. Viewed from that alternative different perspective, the present

paper analyzes a drainage model that has become widely adopted in the study of subglacial hydrology (Werder et al., 2013).

We identify instabilities that spontaneously lead to self-sustained oscillations, describing the mechanisms behind them and

delineating the regions in parameter space where they occur. This is likely to be useful in diagnosing the behaviour of such20

models, regardless of their specific application to large outburst floods emanating from easily identifiable glacier ‘lakes’.

We use a hierarchy of model versions, employing both, a spatially-extended, one-dimensional drainage system model and

a lumped, box-type model that provides additional physical insight, as well as being the appropriate limit of the spatially-

extended model in the case of a long flow path. The paper is laid out as follows: in section 2, we develop the spatially extended

and lumped models. In sections 3.1 and 3.2, we identify instabilities in the lumped model. The evolution of that instability at25

finite amplitude is investigated in detail in sections 3.3 and 3.4, where we show that stable limit cycles emerge in the lumped

model. In section 4, we show that the lumped model replicates the behaviour of the spatially extended behaviour well in the

classical parameter regime that corresponds to the drainage of large glacier-dammed lakes. We also show that the extended

model is unstable in more exotic parameter regimes, where the lumped model is not, and investigate the resulting dynamics.

These results are summarized in section 5.1, and we briefly touch on the dynamics of systems with distributed water storage in30

section 5.2, relegating detail to the supplementary material.
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2 Model

2.1 A continuum model for outburst floods

We use the one-dimensional continuum model for drainage through a single conduit in Schoof et al. (2014), building on similar

models used elsewhere (e.g. Ng, 1998; Hewitt and Fowler, 2008; Schuler and Fischer, 2009; Schoof, 2010; Hewitt et al., 2012).

Note that we use the term ‘conduit’ here to refer to a generic drainage element that can evolve dynamically to behave as an5

R-channel, in which dissipation and creep closure are the dominant mechanisms by which channel size changes, or as a cavity,

in which opening due to sliding over bedrock and creep closure are dominant (Kessler and Anderson, 2004; Schoof, 2010).

Denoting conduit cross-section by S(x,t), effective pressure by N(x,t) and discharge by q(x,t), where x is downstream

distance and t is time, we put

∂S

∂t
= c1q̃Ψ + vo(S)− vc(S,N), (1a)10

∂q̃

∂x
= 0, (1b)

q̃ = q(S,Ψ), (1c)

Ψ = Ψ0 +
∂N

∂x
, (1d)

on 0< x < L, subject to boundary conditions

−Vp(N)
∂N

∂t
= qin− q̃ at x= 0, (1e)15

N = 0 at x= L, (1f)

where L is the length of the flow path, and we assume the closures

vo(S) = ubhr(1−S/S0), vc(S,N) = c2S|N |n−1N,

q(S,Ψ) = c3S
α|Ψ|−1/2Ψ. (1g)

Here c1, c2, c3, n, α, ub, hr and S0 are positive constants with α > 1, while qin is also prescribed as a function of time and

Vp > 0 is a function of N . Ψ0 is a geometrically determined background hydraulic gradient, given in terms of ice surface20

elevation s(x) and bed elevation b(x) through

Ψ0 =−ρig
∂s

∂x
− (ρw − ρi)g

∂b

∂x
. (1h)

Here ρw and ρi are the densities of ice and water, respectively, and g is acceleration due to gravity. Note that effective pressure

N is linked to water pressures pw, which is the primary observable in the field, through

N = pi− pw (1i)25
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Figure 1. Geometry of the problem: the conduit runs along the ice-bed interface.

where pi is overburden (or more precisely, normal stress in the ice at the bed, averaged over a length scale much larger than

that occupied by the conduit). Typically (including in (1h)), pi is assumed to be cryostatic, equal to ρig(s− b).

Physically, the model represents a conduit whose size evolves due to a combination of dissipation-driven wall melting at

a rate c1qΨ, opening due to ice sliding over bed roughness at rate ubhr(1−S/S0), and creep closure at rate c2SNn, with

discharge in the conduit given by a Darcy-Weisbach or Manning friction law as c3Sα|Ψ|−1/2Ψ through (1g). ub is sliding5

velocity, hr is bed roughness and S0 is a cut-off cavity size at which bed roughness is drowned out (Schoof et al., 2012). S0 is

typically a regularizing parameter that prevents conduits from becoming excessively large in regions where effective pressures

are low, such as near the glacier terminus, but has little effect on conduit sizes along most of the flow path; this corresponds to

the limit of large S0. Equation (1a) also ignores the effect water pressure on the melting point, which affects the fraction of the

dissipated heat available for melting of the conduit walls (Werder, 2014). We have also neglected the effect of water storage of10

water in the conduits, and of dissipation-driven melting, in the mass balance relation (1b); the reason for this is that a simple

scaling exercise shows that these terms are invariably small for a terrestrial glacial system (supplementary material, section

2.2).

Vanishing effective pressure at the end of the flow path x= L simply reflects the assumption that overburden and water

pressure vanish simultaneously (where we have neglected atmospheric pressure as a gauge throughout). A computationally15

preferable assumption to N = 0 may be to assume that there is an ice cliff at the glacier terminus, so that vanishing water

pressure still corresponds to a finite N and the effect of dissipation-driven opening does not have to be offset by an unrealistic

closing of the conduit through the sliding term, which becomes negative when S > S0; our results are however not sensitive to

this assumption.

The upstream boundary condition at x= 0 reflects water storage in a reservoir at the head of the conduit: (1e) represents20

conservation of mass in the reservoir, with inflow rate qin, outflow at rate q(0, t) through the conduit modelled by (1a)–(1d)

and with water storage V in the reservoir a function of effective pressure at x= 0 such that dV/dN =−Vp (see e.g. Clarke,

5
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2003). Note that we deliberately use ‘reservoir’ rather than ‘lake’ here since we will be interested not only in large lakes, but

also in more modest-sized reservoirs as in Schoof et al. (2014). We will treat Vp and qin as constants in most of what follows,

although realistic lake shapes may argue for particular forms of the function Vp(N) (Clarke, 2003). Conservation of mass along

the conduit (1b) by contrast assumes that water storage is negligible along the flow path. We show that the contribution of wall

melting to mass flux is in general negligible in terrestrial drainage systems in section 2.2 of the supplementary material.5

For simplicity, we have neglected the possibility of a partially air-filled conduit, and the effects of overpressurization, where

effective pressure becomes negative (Schoof et al., 2012; Hewitt et al., 2012). Overpressurization is particularly relevant to the

initiation mechanism for subglacial floods where unstable enlargement of the conduit is not fast enough for the flood to occur

before the lake reaches N = 0 and overfills. A partially air-filled conduit may form by contrast at the upstream end of the flood

path if the lake fully drain at the end of the outburst floods, and could form more permanently at the downstream end as shown10

in Hewitt et al. (2012). We defer consideration of both processes to future work.

There is an important simplification we have made, irrespective of the particular choice of Vp: Our model effectively imposes

an ice cliff at the conduit inlet x= 0, with the cliff height typically above the flotation thickness. This ensures that N(0, t) can

change over time without the upstream end of the conduit migrating. This contrasts with a glacier that partially floats on the

lake, in which case the upstream end of the conduit is always at N = 0. In that case, the upstream conduit end migrates as the15

lake fills or empties, and its location is related to lake volume (see section 2.4 of the supplementary material).

The assumption of an ice cliff, in addition, allows us to assume that Ψ0 > 0 along the entire flow path, without a ‘seal’ at a

finite distance from the reservoir at which Ψ0 changes sign (Fowler, 1999). With a seal, there is a finite region of negative Ψ0

between reservoir and seal location, with water flow out of the reservoir possible only when local effective pressure gradients

∂N/∂x are large enough to overcome the effects of the seal to make the total hydraulic gradient Ψ positive in (1d). In the20

absence of a seal and without an ice cliff (so N = 0 at the edge of the reservoir), normal stress at the glacier bed just outside

of the reservoir would then be below the flotation pressure, and there would be nothing to dam the reservoir (see section 2.4 of

the supplementary material).

The two situations (an ice cliff and a seal) can be reconciled in the sense that a seal very close to the edge of the reservoir

corresponds to a short, steep ice surface slope rather than an actual cliff. This results in a large, negative Ψ0 between reservoir25

and seal over a short distance, which can be balanced by an equally large ∂N/∂x over the same short distance, leading to a

non-zero effective pressure at the seal itself, only a short distance from the lake.

Nevertheless, our simplifying assumption is relevant as the mechanism for initiating periodically recurring floods is fun-

damentally different from that in Fowler (1999): his model relies on a geometrical seal with negative Ψ0 near the reservoir,

changing sign at the seal location, and an englacial water supply to the conduit that dictates the gradient ∂N/∂x while the30

lake is filling. As described in the introduction, the onset of the outburst flood corresponds to the instant at which Ψ at the

the conduit inlet x= 0 changes from negative to positive, and allows water to flow out of the reservoir. This leads to runaway

enlargement of the conduit through dissipation-driven melting.

By contrast, our model assumes that the reservoir always experiences some amount of leakage, and requires no englacially-

supplied conduit: the water supply to the drainage system in our model is purely through the inflow term qin into the reservoir.35
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Leakage out of the reservoir is facilitated by the linked-cavity behaviour of the conduit between floods, associated with the

cavity opening term vo that keeps the conduit open even when flow rates are small. This is absent from the models in Fowler

(1999) and Ng (1998). As the lake fills, these cavities enlarge because the effective pressure is reduced, and the conduit

then grows through the same melt-driven conduit enlargement as in Fowler (1999) and Ng (1998), but the initiation of that

enlargement differs.5

2.2 A lumped model

The model (1) can be simplified if we assume that Ψ0 not only does not change sign along the flow path, but can be treated as

a constant, and if we assume that the effective pressure gradient ∂N/∂x along the flow path can be treated as negligible (see

also Fowler, 1999; Ng, 2000, and sections 2.2 and 2.3 of the supplementary material).

Under these assumptions, we can relate the flux q along the flow path (which is independent of position by (1b)) purely to10

the conduit size S and hydraulic gradient Ψ0 at the head of the conduit, leading to a system of ordinary rather than partial

differential equations:

Ṡ = c1q̃Ψ + vo(S)− vc(S,N) (2a)

−VpṄ = qin− q̃ (2b)

q̃ = q(S,Ψ) (2c)15

where a dot signifies an ordinary derivative with respect to time, and we continue to assume the closure relations (1g); by

the argument above, we then strictly speaking have to put Ψ = Ψ0. We generalize this reduced model slightly to account

qualitatively, if not quantitatively, for the effect of pressure gradients along the flow path by putting

Ψ = Ψ0−N/L, (2d)

which corresponds to a crude divided difference approximation of the actual gradient ∂N/∂x by [N(L,t)−N(0, t)]/L20

In what follows, we proceed first with an analysis of the simpler, ‘lumped’ model (2), to which we can bring to bear the

theory of finite-dimensional dynamical systems (Strogatz, 1994; Wiggins, 2003), leading a number of semi-analytical results.

Subsequently, we study the full, spatially-extended model (1), for which we are limited to comparatively expensive numerical

methods that we can guide by our analysis of the simpler, lumped model.

3 An analysis of the lumped model25

3.1 Nye’s jökulhlaup instability in the reduced model

Nye’s (1976) original theory of jökulhlaups centers on the idea that steady flow in an R-channel is unstable if there is a

water reservoir that keeps water pressure approximately constant. This instability results in the runway growth of a channel,

eventually allowing the reservoir to drain in an outburst flood. The assumption of a constant effective pressure is of course a
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simplification of the more complete model (2), based on the notion that the drainage of the lake is generally too slow to lead to

changes in effective pressure that could stabilize the channel against growth.

The basis of this instability is relatively easy to capture mathematically. To set the scene, we present a simplified version first

before tackling an analysis of the complete model (2). If we assume a classical R-channel in the sense of Röthlisberger (1972)

and Nye (1976) and therefore set the cavity opening term vo to zero in (2a), and use the remaining relations in (1g), the conduit5

evolution equation (2a) becomes

Ṡ = c1c3S
α|Ψ|3/2− c2S|N |n−1N, (3)

with a steady state conduit size S̄ given by c2S̄|N̄ |n−1N̄ = c1c3S̄
α|Ψ|3/2. At fixed effective pressure N , and hence at fixed

Ψ, this steady state is unstable: an increase S′ away from the steady state size S̄ will lead to a further growth in he conduit, as

we have (S̄+S′)α ≈ S̄α +αS̄α−1S′ and so10

Ṡ′ ≈c1c3αS̄α−1S′|Ψ|3/2− c2S′|N |n−1N

=c1c3(α− 1)S̄α−1|Ψ|3/2S′, (4)

where, with α > 1, the right-hand side is positive if S′ is, signifying that S′ will continue to grow in a positive feedback.

In more abstract terms, if Ψ and N are fixed, (2a) can be expected to lead to unstable growth of conduits away from an

equilibrium state S̄ if (see also pages 5–6 of the supplementary material to Schoof (2010))15

c1
∂q

∂S

∣∣∣∣
S=S̄

Ψ +
∂vo
∂S

∣∣∣∣
S=S̄

− ∂vc
∂S

∣∣∣∣
S=S̄

> 0. (5)

This is also precisely the condition that defines a conduit as being ‘channel-like’ in Schoof (2010), in the sense that two

neighbouring conduits will compete for water with one eventually growing at the expense of the other if both are ‘channel-

like’.

Key to the instability mechanism above was the notion that effective pressure N is kept constant as the conduit evolves,20

which is not actually the case: instead, the lake simply buffers changes in N from happening rapidly. Next, we investigate in

more detail how water storage and the finite size L of the system control whether Nye’s instability does occur in the reduced

model of section 2.2

Note that vo, vc and q satisfy

∂vo
∂S
≤ 0,

∂vc
∂S

> 0,
∂vc
∂N

> 0,
∂q

∂S
> 0,

∂q

∂Ψ
> 0. (6)25

with vo(S)> 0 bounded as S→ 0, vc(S,0) = 0 and vc(0,N) = 0, q also has the same sign as Ψ, and satisfies q(0,Ψ) =

q(S,0) = 0. These are the minimal assumptions we make on these functions, allowing us to generalize from the specific forms

in (1g) in analyzing Nye’s instability.
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The primary dependent variables in the model (2) are S and N . For constant water input qin, the model admits a steady state

(S̄, N̄) given implicitly by

c1q(S̄,Ψ̄)Ψ̄ + vo(S̄)− vc(S̄, N̄) = 0 (7a)

q(S̄,Ψ̄) = qin (7b)

Ψ̄ = Ψ0− N̄/L. (7c)5

where we assume positive lake inflow qin > 0. It can be shown (see section 3 of the supplementary material) that there is a

unique steady state solution with positive N̄ , S̄ and Ψ̄. To establish whether the solution is stable, we can linearize around the

steady state as

N = N̄ +N ′ exp(λt), S = S̄+S′ exp(λt).

This yields the following eigenvalue problem c1qSΨ̄ + vo,S − vc,S −λ −c1(qΨΨ̄ + q̄)L−1− vc,N
V̄ −1
p qS −V̄ −1

p qΨL
−1−λ

 S′

N ′

= 0, (8)

where

qS =
∂q

∂S

∣∣∣∣
S=S̄,Ψ=Ψ̄

, qΨ =
∂q

∂Ψ

∣∣∣∣
S=S̄,Ψ=Ψ̄

, vo,S =
dvo
dS

∣∣∣∣
S=S̄

,

vc,S =
∂vc
∂S

∣∣∣∣
S=S̄,N=N̄

, vc,N =
∂vc
∂N

∣∣∣∣
S=S̄,N=N̄

, V̄p = Vp(N̄).

Setting the determinant of the matrix on the left, we obtain a quadratic with solution

λ=
1

2

[
a1±

√
a2

1− 4a2

]
(9)

where10

a1 =c1qSΨ̄ + vo,S − vc,S − V̄ −1
p qΨL

−1 (10a)

a2 =V̄ −1
p

[
c1qS q̄L

−1 + qSvc,N + qΨL
−1(vc,S − vo,S)

]
(10b)

From our assumptions on the various functions involved, we see that a2 > 0 (recall that vo,S ≤ 0 from (6)), while a1 can be

either sign. Since a2 > 0, we have a2
1−4a2 < a2

1 and two possible types of solution: either a2
1−4a2 > 0 and we have two real

roots, both of which have the same sign as a1. Alternatively, we have a2
1−4a2 < 0 and a complex conjugate pair of roots, both15

of which have real part a1. In either case, we see that the system is linearly unstable if and only if a1 > 0, or

(
c1qSΨ̄ + vo,S − vc,S

)
− V̄ −1

p qΨL
−1 > 0. (11)

We have deliberately written the left-hand side of (11) as the difference of two terms, a potentially destabilizing term

c1qSΨ̄ + vo,S − vc,S and a stabilizing term −V̄ −1
p qΨL

−1. The first term can be recognized as the growth rate sensitivity we
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previously identified as being at the heart of Nye’s instability in (5), as well as an indicator of whether the steady-state conduit

is ‘channel-like’ in the terminology of Schoof (2010).

The second term in (11) is a stabilizing term that is inversely related to storage capacity. Its physical origin is the following:

the sensitivity of conduit growth to perturbations in conduit size may be positive, potentially leading to unstable conduit growth.

However, growth of the conduit also allows water to drain out of the system, which will increase the effective pressure N . As5

the effective pressure is increased, the hydraulic gradient Ψ = Ψ0−N/L is reduced. This leads to less turbulent dissipation

in the conduit as the conduit grows, and increased N further leads to faster creep closure of the conduit. Both of these will

suppress further growth of the conduit. How strong this stabilizing effect is will depend on the storage capacity of the system,

and on the length L of the flow path: a large storage capacity V̄p or a long flow path L leads to a reduced stabilizing effect. In

practice, we are likely to see stabilization for small storage elements, such as moulins and individual crevasses.10

3.2 Stability boundaries

We have established that Nye’s instability will occur if the conduit is channel-like and water storage in the system is sufficiently

large, and if the system length L is big enough. Note that with the choices in (1g), the system is always unstable if vo = 0 (so

the conduit is always a channel) and L=∞ (so effective pressure does not alter the hydraulic gradient). This is in agreement

with Ng (1998).15

We can go further and determine explicitly the regions of parameter space in which this stability occurs. While we present

our results here in dimensional form, note that it is possible to reduce the spatially extended and lumped models (1) and (2)

to a four-dimensional parameter space by non-dimensionalizing them (sections 2.2 and 2.3 of the supplementary material).

These parameters are dimensionless versions of the inflow rate qin, storage capacity Vp, system length L and conduit cut-off

size S0. Recall that S0 is intended to have minimal impact on conduit evolution away from the glacier margin, and we are20

therefore interested in the limit of large S0. As a result, we restrict ourselves to the three-dimensional parameter space spanned

by (qin, V̄p,L) and set S0 =∞ in the lumped model (2). The remaining fixed parameter values we have used are given in table

1. The low value of Ψ0 stated corresponds approximately to a 1:50 surface slope.

Figure 2 shows stability boundaries in the (qin, V̄p)-plane for different values ofL. These are the locations in parameter space

where the real part of the growth rate λ in (9) is zero (see section 3.2 of the supplementary material for details); invariably, the25

eigenvalues λ then form purely imaginary conjugate pair, and we have a so-called Hopf bifurcation (see section 3.3 below).

Note that V̄p is displayed in units of km2, normalizing by ρwg; in other words, what is really plotted is V̄p/(ρwg), the surface

area of the lake (see section 2). Similarly, we will plot N in units in subsequent figures, normalizing by ρwg: changes in N

plotted then correspond directly to changes in water level in the lake.

In each case shown in figure 2, there is a region of instability above some critical value of V̄p, and for qin in some intermediate30

range, where larger V̄p is required and the unstable inflow range is shrunk for shorter flow path lengths L. This is consistent with

theoretical results (section 3.1 of the supplementary material) showing that the system is always stable for either sufficiently

small or sufficiently large qin, but can be unstable at intermediate inflow rates.
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Parameter value

c1 1.3455× 10−9 J−1 m3

c2 3.44× 10−24 Pa−3 s−1

c3 4.05× 10−2 m9/4 Pa−1/2 s−1

α 5/4

n 3

ubhr 3.12× 10−8 m2 s−1

S0 170 m2 (spatially extended model)

S0 ∞ (lumped model)

Ψ0 178 Pa m−1

Table 1. Parameter values common to all calculations except those in figure 12, for which Ψ0 = 1630 Pa m−1 (corresponding to a much

steeper 17:100 slope), ubhr = 1.05× 10−07 m2 s−1 and L= 5 km.
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Figure 2. Stability boundaries for reservoirs systems with the parameter values in table 1 shown as solid/dashed curves. Note the logarithmic

scales on the axes. The unstable region in parameter space is above the curves as shown. The curves correspond to different values of L:

10 km (red), 50 km (blue) and 250 km (black); the latter is not intended to be physically realistic but to reflect the limit of large L. The

Hopf bifurcation at the stability boundary is supercritical where the curve is solid, subcritical where dashed (see section 3.3). The dot-dashed

curves show the asymptotic stability boundaries (12) and (13).
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For large enough V̄p and L, we can determine approximate analytical expressions for the stability boundaries. The lower

critical value of qin at which the drainage system first becomes unstable corresponds to the switch from a cavity-like to a

channel-like conduit, and this occurs for large L at (see Schoof, 2010, and section 3.1 of the supplementary material)

qin =
ubhr

c1(α− 1)Ψ0
. (12)

The upper critical value of qin at which the system stabilizes again can similarly computed in the limit of large L by omitting5

the cavity opening term vo and reducing conduit evolution (2a) to a balance between the first (dissipation-driven melting) and

third (creep-closure) terms on the right hand side. This yields

V̄p ∼
q

1/α
in

2(α− 1)c1c
1/α
3 Ψ

(3α+2)/(2α)
0 L

. (13)

These limiting forms are also shown in figure 2, where we see that they are most accurate for large L as expected.

3.3 Hopf bifurcations and limit cycles10

The analysis above has been purely linear, identifying parameter regimes in which steady drainage is unstable. That lineariza-

tion will eventually fail where unstable growth is predicted, and a nonlinear model is needed to predict what the instability

grows into. A key aspect of many outburst floods is that they are a recurring phenomenon. For the reduced model (2) with

two dynamical degrees of freedom and steady forcing, such recurrence must correspond to a stable periodic oscillation in the

absence of time-dependent forcing (see also Kingslake, 2013, for time-dependent forcing that leads to chaotic solutions). As15

was underlined by Ng (1998) and Fowler (1999), the existence of such a limit cycle does not simply follow from the instability

itself: we need to ensure that the evolution away from the steady state leads to bounded growth of the instability once it reaches

a finite amplitude.

It is straightforward to demonstrate bounded growth in our model computationally. Figure 3 shows a sample calculation of a

periodic solution, with the classical attributes of a outburst flood cycle: effective pressure slowly decreases during the interval20

between outburst floods, when conduit size is small. This is simply the lake refilling. As N approaches its minimum, the

conduit size S starts to grow rapidly, initiating the outburst flood: effective pressure is no longer large enough to keep conduit

size small, and enough water can flow to start enlarging the conduit in the runaway growth envisioned by Nye (1976). The lake

then drains, rapidly increasing N . Once effective pressure gets large enough, creep closure becomes dominant, causing S to

shrink again, and the cycle repeats. By contrast with Ng (1998) and Fowler (1999), key to this periodic behaviour is that the25

conduit cannot become arbitrarily small between floods, since it is kept open by ice flow over bed roughness.

In fact, S in our model actually starts to increase almost immediately after flood termination, as the refilling of the reservoir

leads to decreasing effective pressure allowing the now cavity-like conduit to grow. As explained above, water flow through

them will eventually lead to re-initiation of dissipation-driven melting and enlargement of the conduit. By contrast, once the

amplitude of the floods has become large enough, conduit size in the pure channel model of (Ng, 1998) and (Fowler, 1999)30

keeps shrinking during the refilling phase until the effective pressure changes sign to negative, and this underpins the ever-

increasing flood amplitudes in their model.
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Figure 3. Periodic oscillations in the system (2) with parameter values as in table 1, with Vp = 4 km2, L = 50 km and qin = 10.9 m3 s−1.
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Figure 4. The periodic solution of figure 3 plotted in a phase plane. The thin curve represents a solution that approaches the limit cycle

shown as a thick curve as indicated by the arrow. The instability of the steady state solution (where the nullclines cross) is clearly visible,

since evolution along the thin line is away from that steady state.

An alternative visualization of the physics involved is a phase plane, plotting S against N as the system evolves; a periodic

solution then corresponds to a closed orbit. Figure 4 shows the phase plane equivalent of (3), with the dashed lines correspond-

ing to nullclines (the curves on which either Ṡ = 0 or Ṅ = 0. During the refilling phase, the point (N(t),S(t)) closely follows

the S-nullcline, with S steadily increasing as explained above.
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Figures 3 and 4 show only one example. It is possible to solve directly for such periodic solutions and trace how they

change under parameter changes using an arc length continuation method (section 3.4 of the supplementary material), and

to determine simultaneously whether the periodic solutions are stable: some periodic solutions are in fact never attained by

forward integration of (2) because they are themselves unstable small perturbations will cause the system to evolve away from

them.5

As in section 3.2, we focus on how solutions change as the water input to the reservoir qin is varied. Figure 5 shows how the

amplitude of oscillations varies with water input for a fixed L= 50 km and different storage capacity Vp (treated as independent

of N here). In each panel, the coloured curve (black in panel e) shows the minimum and maximum value of N attained for

a periodic solution at the corresponding value of qin (i.e., the values of N where the corresponding orbit in the phase plane

crosses the N -nullcline). Solid portions of these coloured curves in figure 5 correspond to stable periodic solutions, while10

dotted portions are unstable periodic orbits. The black curves in figure 5 generally correspond to steady state solutions, plotting

N in the steady state against qin (we use black for steady states and oscillatory solutions in panel e, but these are easily

distinguished by comparing the plots in panel e with those in the remaining panels). Again, solid black lines are stable steady

states and dashed black lines are unstable steady states. Each panel in figure 5 corresponds to a different storage capacity Vp

and therefore represents a horizontal slice through panel figure 2; Vp decreases from panel a to panel d.15

In all cases, an unstable steady state corresponds to a limit cycle. As qin crosses the lower critical value at which instability

first occurs (associated with the change in the steady state conduit from cavity- to channel-like behaviour), a limit cycle of small

amplitude is formed, with that amplitude growing progressively as qin increases, and the emerging limit cycle is an oscillation

around an unstable steady state. This is consistent with a supercritical Hopf bifurcation (Wiggins, 2003).

As the upper critical value of qin is approached, the stability analysis of section 3.1 predicts that the steady state returns20

to stability. As this happens, we see that the amplitude of oscillations only shrinks continuously back to zero for the smallest

value of V̄p considered (in which case the upper critical value corresponds to another supercritical Hopf bifurcation). In panels

a-c, the amplitude of stable periodic solutions continues to increase until values of qin near the upper critical value are reached.

The amplitude then decreases slightly with a further increase in qin, before the periodic solution ceases to exist at a third

critical value of qin that is larger than the threshold at which the steady state has become stable again, as shown in more detail25

in the inset in panel b. (In technical terms, this is known as a saddle-node bifurcation of the Poincaré map of the dynamical

system (2), see Wiggins (2003).) Where this abrupt disappearance of the stable periodic solution occurs, it is accompanied by

an unstable periodic solution near the upper critical value of qin, corresponding to a subcritical Hopf bifurcation. Panel d (see

inset) represents an exotic exception to this, where there are two stable periodic solutions for a small interval of qin.

The nature of the Hopf bifurcations at the stability boundaries in figure 2 can be determined more quickly than by the30

numerical continuation method used above, using a weakly nonlinear stability analysis (see section 3.3 of the supplementary

material). This allows us to map out in figure 2 where that boundary corresponds to a supercritical Hopf bifurcation, in whose

vicinity a small-amplitude stable periodic solution emerges (stability boundaries shown as a solid curve), and where the Hopf

bifurcation is subcritical and the small-amplitude periodic solution is unstable (dashed stability boundary). As in the few
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Figure 5. Bifurcation diagrams for L= 50 km, Vp = 4 (a), 0.8 (b), 0.16 (c), 0.112 (d), 0.094 (e) km2. Plotted are stable (solid black)

and unstable (dashed black) steady state N , minimum and maximum N attained in stable (solid coloured) and unstable (dotted coloured)

periodic solutions. The insets in (b) and (d) show details, while the vertical dotted line marks the value of qin at which the conduit becomes

channel-like.
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Figure 6. The period of stable periodic solutions where they exist for the same parameter values as in figure 5. The colour scheme is the same

as for the coloured curves in figure 5, where only the stable portion of the periodic solution curves is shown. The dashed line here represent

the asymptotic solution for the period of oscillation, (14)

samples shown in figure 5, we see that the lower critical value of qin is always supercritical, while the upper critical value is

generally subcritical, except at low Vp.

We can also compute the period of the the drainage oscillations, that is, the recurrence interval of floods. Figure 6 shows the

period of the stable periodic solutions shown in figure 5 as a function of water supply rate qin, using the same colouring scheme

to distinguish different values of Vp. Perhaps unsurprisingly, large inflow rates qin correspond to more rapid flood cycles, and5

large reservoir volumes correspond to floods repeating more slowly, albeit with a larger amplitude.

There is a significant caveat here: in many cases, the limit cycle solutions we have computed predict thatN becomes negative

during the cycle of reservoir filling and draining. This is not something that the models are designed for. Instead of the conduit

expanding through creep, as occurs in (1) and (2) when N < 0, we expect that the glacier should instead detach from the bed

and a sheet flow of water initiates the outburst flood in this case; prototypes of models for this behaviour can be found in Schoof10

et al. (2012), Hewitt et al. (2012) and Tsai and Rice (2010).

It is important to know where in parameter space the outburst flood mechanism will change away from conduit growth

due to cavities becoming channel-like at the end of the refilling phase, and instead involve water separating ice from bed at

vanishing effective pressure. The boundary between these two regimes should correspond to the location in parameter space

where the minimum effective pressure during the flood cycle is zero. Figure 7 shows that parameter regime boundary, computed15

numerically (section 3.4 of the supplementary material) and superimposed on the stability boundary plot of figure 2. Clearly,

sheet-flow-initiated floods (in which the glacier starts to float at the start of the outburst flood) are favoured at high water input

rates and smaller reservoir volumes, where the conduit is less able to adjust to the rapid refilling of the reservoir.
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Figure 7. The stability boundary of figure 2 for L= 50 km plotted in black, with the region of parameter space in which the steady state

is unstable shown in grey. The red curve is set of parameter combinations (qin,Vp)) for which there is a periodic solution that reaches a

minimum effective pressure of N = 0. The minimum effective pressure becomes negative inside the region delineated by the red curve, as

well as in a small strip to the right of the right-hand branch of the red curve: this is the region where the stable limit cycles shown for instance

in the inset of figure 5(b) coexist with stable steady state solutions, and exist for larger qin than the periodic orbit that reaches a minimum

of N = 0 near the upper critical value of qin. The dot-dashed curve is the asymptotic formula (15) for the threshold value of qin at which

negative N is first attained.

3.4 Asymptotic solutions

We can also address limit cycle solutions through asymptotic methods in some parametric limits in our model. The most

relevant limit for ‘real’ glacier-dammed lakes is likely to be that of a relatively large reservoir that is filled relatively slowly,

but where water supply is not so small as to allow the conduit to be cavity-like in steady state (in which case the reservoir

would be drained steadily, without a flood cycle): This is the case of large Vp and moderate but not small qin, and is described5

in appendix A and, in detail, in section 4 of the supplementary material. This region of parameter space lies in the upper left of

the unstable region of figure 7, between the near-vertical solid black line and the solid red curve.

In brief, the asymptotic solution confirms that there is a periodic flood cycle that the system very quickly settles into, and

that the flood cycle consists of three distinct stages. During the main flood stage, the evolution of the conduit is rapid and

dominated by dissipation-driven melt c1qΨ and creep closure vc(S,N) in (2a), and water input qin to the lake is much smaller10

than outflow q. This is followed by a long refilling phase in which the conduit has shrunk dramatically and therefore behaves
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as a cavity. Its size is dictated by a quasi-equilibrium in which the cavity opening term vo(S) balances the creep closure term

vc(S,N), leading to a slow opening of the conduit as the reservoir fills and N consequently dropped. Outflow q from the

reservoir during this phase is insignificant, and the mass balance of the lake is dominated by inflow qin. The refilling phase is

terminated by a flood initiation phase whose length is intermediate between the main refilling phase and the rapid flood phase.

During this initiation phase, the reservoir is still filling, but the conduit has enlarged sufficiently that dissipation-driven wall5

melting c1qΨ starts to be significant.

Qualitatively, this solution is illustrated by the limit cycle in figures 3 and 4 and panel a of figure 9. The asymptotic solution

only becomes quantitatively accurate when Vp is large enough to be physically unrealistic for real glacier-dammed lakes

(section 4.4 of the supplementary material); this is because the relatively large exponent n= 3 in Glen’s law makes the creep

closure term quite sensitive to changes in N when N is small, and the initiation phase of the floods is affected significantly by10

this.

One of the predictions of the asymptotic solution is that the amplitude of effective pressure oscillations should be insensitive

to refilling rate qin, except close to the Hopf bifurcation at which oscillations are initiated. As a result, the flood recurrence

period (which is essentially the time taken to refill the reservoir in the limit where reservoir drainage is fast) should simply be

inversely proportional to qin. Specifically, the result states that

tperiod ∼ Ñfcα/(n+1−α)
1 c

−1/(n+1−α)
2 c

1/(n+1−α)
3

×Ψ
(1+2α)/[2(n+1−α)]
0 V n/(n+1−α)

p q−1
in , (14)

where Ñf is a dimensionless constant, with a value of 1.44 for the parameters of α and n chosen here, in the limit of a large flow

path length L (section 4.1 of the supplementary material). This asymptotic formula is overlaid onto the numerically computed15

periods in figure 6; it should be clear that the asymptotic formula performs poorly for the relatively moderate values of Vp used

here. This should not be a surprise since figure 5 demonstrates that, for the same values of Vp, the amplitude of oscillations is

in fact sensitive to the inflow rate qin.

The same asymptotic solution also provides an estimate for the inflow rate qin at which zero effective pressure is first reached

during the flood cycle, and our model ceases to be physically realistic as described above. The estimate is given by an analysis

of the flood initiation phase (section 4.4 of the supplementary material) as

qin ∼ γcc(n+1)/(αn)
1 c

−1/n
2 c

(n+1)/(αn)
3

× Ψ
3(n+1)/(2αn)
0 (ubhr)

−(α−1)(n+1)/(αn)Vp, (15)20

where γc ≈ 0.25 for the values of α and n chosen here. This is critical inflow rate as a function of Vp is superimposed on

figure 7. The formula above is in general an underestimate of the value of qin at which zero effective pressures are reached, but

clearly gives the correct scaling of how that value relates to Vp.
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We are also able to construct a second asymptotic solution for the opposite case of a large water supply rate qin (section 5

of the supplementary material). This predicts rapid oscillations in the reservoir level (or effective pressure) whose amplitude

slowly evolves to a steady value. These rapid oscillations however invariably involve effective pressure changing from negative

to positive. As discussed above, such solutions are clearly not physically viable, and the model must be amended to take

account of ice-bed separation.5

4 The spatially extended model

The analysis above provides a comprehensive picture of the lumped model (2). Here, we consider how well that lumped model

represents the behaviour of its more complete, spatially-extended counterpart (1). We begin by recreating the stability boundary

diagrams of figure 2. The method by which the latter were computed explicitly (sections 3.1 and 3.2 of the supplementary

material) cannot be applied directly to the extended model (1), since we have no closed-form solution to a linearized version10

of the model analogous to (9). Instead, we grid the (qin, V̄p) parameter space used in figure 2 finely. For each (qin, V̄p) pair,

we discretize (1), compute steady states and perform a linear stability analysis numerically as described in Schoof et al. (2014,

appendix B); this allows us to delineate regions of instability, although in a less sophisticated way. We adapt that method for the

transient nonlinear calculations in figures 9–11 by solving equations (B1)–(B2) of the same appendix in Schoof et al. (2014)

using a backward Euler step.15

Results are shown in figure 8. It is clear that the lumped model consistently underestimates the range of parameter values

over which steady drainage is unstable. The onset of instability at the transition from cavity- to channel-like conduit behaviour

remains robust except for small domain lengths L (panel c), where the system appears to be unstable for combinations of small

storage capacities V̄p and inflow rates qin. The lumped model typically underestimates instability at low storage capacities,

and at large flow path lengths L. The latter is particularly significant since we have previously attributed stabilization to the20

effect incipient reservoir drainage reducing the hydraulic gradient along the flow path and therefore reducing flow through the

conduit.

While stabilization at large water input rates qin does eventually occur, this happens at values that can be several orders

of magnitude larger than predicted by the lumped model, especially for large flow path lengths L. Furthermore, for a given

storage capacity V̄p, the lumped model predicts that there is a single interval of inflow rate values qin over which instability25

occurs. The spatially extended model by contrast has two or more such intervals for most values of V̄p, with a narrow region

of stability between (the diagonal bands of solid black diamonds in panels a and b of figure 8).

To understand this discrepancy better. we have solved for the nonlinear evolution of the draiange system as described by the

spatially extended model (1) for the parameter values indicated by magenta circles in panel a of figure 8.

The three smallest values of qin all correspond to unstable steady states in the lumped model (2), and we can compare30

spatially extended and lumped solutions. Figure 9 shows results. While the spatially extended solution is an infinite-dimensional

dynamical system and strictly speaking cannot be visualized using a phase plane, we can overlay plots of conduit size S(0, t) at

the upstream end of the conduit against effective pressure N(0, t) at the same location onto the S–N phase plot for the lumped
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Figure 8. The stability boundaries of figure 2 with L =50 km (a), 250 km (b), 10 km (c) plotted as black lines; unstable regions in the lumped

model (2) are marked in grey. Solid black circles indicate parameter combinations for which the steady state solution to the full model (1) is

stable, small dots indicate that the full model is unstable. The magenta markers in panel (a) indicate parameter values for which the evolution

of the full, spatially extended model has been computed up to finite amplitude (figures 9–11). The red curve in panel (a) is the same boundary

as in figure 7 indicating where negative effective pressures are encountered in the lumped model. The dashed, coloured horizontal lines in

(a) show the values of Vp used in figure 8, using the same coloured scheme as the periodic orbits in the latter figure.

model. This is shown in the top row of panels. In all three cases, the extended models settles into a limit cycle, and for small

and intermediate qin, we find good agreement between extended and lumped models. This only breaks down as we approach

the upper critical value of qin at which the lumped model stabilizes.

The lower row of panels in figure 9 shows snapshots of N(x,t) against x for the correspnding limit cycle shown in the top

panel of the same column. For the smaller two values of qin, we see that pressure gradients ∂N/∂x are moderate away from the5

glacier terminus and therefore do not contribute significantly to the hydraulic gradient Ψ. This was the basis for the reduction

of the spatially extended model (1) to the lumped form (2), and explains the good agreement. For larger qin, effective pressure

N(x,t) along the conduit starts to develop wave-like structures, causing the approximation of negligible pressure gradients to

break down, and the discrepancy between lumped and extended model grows.

The extended model remains unstable beyond the stability boundary of the lumped model, but our numerical solutions no10

longer support the conclusion that the system necessarily settles into a limit cycle. Figure 10 shows the evolution of the system

for Vp = 408 m3 Pa−1 s−1 (a lake with a surface area of 4 km2) and qin = 2.18×103 m3 s−1 as in the magenta marker labelled

‘D’ in figure 8a (the fact that this is an inflow rate of biblical proportions is not as relevant as it may at first seem, as we

discuss in section 5 below). Panels a and b show the growth of rapid oscillations in the maxima of N and S along the flow
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Figure 9. Each column represents one of the magenta markers in figure 8a. For each column, Vp = 4 km2 and L= 50 km, while qin =

10.9 m3 s−1 (panels a, d, marker A in figure 8a.), 218.4 m3 s−1 (panels b, e, marker B), 655 m3 s−1 (panels c, f, marker C). The top row

(panels a-c) displays phase planes of (N(0, t),S(0, t)) for the full model (1) (blue) superimposed on the phase plots for the lumped model

(2) (black). The bottom row shows snapshots of N(x,t) against x for periodic solutions of the full model at intervals of 93 days (panel d)

5.5 days (e) and 4.6 days (f).

path over time, but without the growth becoming bounded. Panels c and d show snapshots over the last two oscillations in the

computation. Note that the vertical scale in panel c is logarithmic. What we see is that conduit size develops an aneurysm-

like, massively enlarged feature near the terminus, blocked by a narrow constriction that requires an extremely large pressure

gradient to overcome. The simulation eventually terminates when the solver fails to converge, and it is unclear whether this is

merely a computational problem or indicates that the true continuum solution becomes pathological or ceases to exist.5

For even larger qin, a narrow band of stable values is passed and a different instability ensues as shown in figure 11.

This instability appears to lead to bounded growth, again marked by rapid oscillations whose amplitude first grows and then

saturates, and significant pressure gradients along the flow path.

Once again, a key observation is that the spatially extended model predicts negative effective pressures long before any

kind of limit cycle is reached for all but one of the solutions shown, and that the discrepancies between lumped and spatially10

extended models occur only where this is the case. Moreover, they occur for water supply rates to the reservoir that far exceed
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Figure 10. Finite-amplitude evolution of the instability for the magenta dot marked ’D’ in figure 8a. (a): the maximum of N(x,t) along the

flow path plotted against time t. (b): the maximum of S(x,t) with respect to x plotted against t (c): snapshots of S(x,t) at intervals of 0.93

days towards the end of the simulation (d): snapshots ofN(x,t) at the same points in time as in (c). Note the logarithmic vertical scale in (c).
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Figure 11. Finite-amplitude evolution of the instability for the magenta dot marked ’E’ in figure 8a. (a): the maximum of N(x,t) along the

flow path plotted against time t. (b): snapshots of N(x,t) at the same points in time as in (c).

values that would be plausible for typical glacier-dammed lake systems: the lumped model appears to be robust for the latter.

This includes the prediction by the lumped system of where overpressurization of the drainage system (N < 0 in the limit

cycle) first occurs.

This does not render some of the more exotic instabilities shown in figures 9–11 irrelevant: The parameter values we have

chosen here were deliberately chosen to reflect typically large reservoirs dammed by low-angled and large glaciers. Much5

smaller reservoirs in shorter, more steeply-angled glaciers are liable to give rise to some of these exotic instabilities, even

though they lie outside the reach of standard glacier-dammed lakes.

5 Discussion

5.1 Glacier-dammed lakes and small reservoirs

We have shown that a drainage system that switches between cavity-like and channel-like behaviour spontaneously is capable10

of supporting periodic outburst floods from a glacier-dammed reservoir. At issue here is the initiation of the flood: as discussed

by Ng (1998) and Fowler (1999), if the conduit consists purely of a Röthlisberger-type channel, kept open only by melting

due to heat dissipated in the turbulent flow of water through the channel, then the initiation of floods can be delayed more and
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more, without a limit cycle emerging. Both of these authors proposed that englacially-routed water supplied to the channel

should keep it open at a minimum size, and the migration of the flow divide within the channel as the lake fills then becomes

the control on flood initiation. Our theory differs from theirs in the sense that no englacial water supply is necessary and the

lake can continuously leak water through a linked-cavity-type drainage system that spontaneously becomes ‘channel-like’ and

undergoes runaway enlargement through dissipation-driven melting as the lake fills.5

At the heart of the oscillatory behaviour of glacier-dammed lakes is that runaway growth, or instability, of a channel-like

conduit, which prevents steady discharge of the water supplied to the reservoir (Nye, 1976; Ng, 1998; Fowler, 1999). As

described in Schoof et al. (2014) and section 3.1 above, this instability does not occur when the conduit draining the reservoir

acts as a set of linked cavities: when these are capable of steadily draining the water supplied to the reservoir, no outburst floods

occur.10

By contrast, for typical glacier-dammed lakes, moderate inflows qin exceed the drainage capacity of a linked cavity system

but the large storage capacity Vp ensures that the lake fills slowly compared with the time scale over which a basal conduit

can evolve. The cycle of filling and draining then follows the characteristic sequence of a long filling period in which outflow

from the lake is negligible, followed by a brief onset period in which the conduit starts to experience significant melt-driven

enlargement but the lake level continues to rise, and an even shorter outburst flood in which inflow to the lake is dwarfed by15

drainage through the subglacial conduit. For a given lake size Vp, larger inflow rates will slowly increase the amplitude of the

lake level fluctuation during the flood cycle (figure 5), while significantly shortening the length of the flood cycle (figure 6).

As in Ng (1998) and Fowler (1999), our flood initiation mechanism can also be too slow to respond to water input and lead to

our models (1) and (2) predicting negative effective pressures at the upstream end of the conduit: in that case, the glacier ought

to float and flood initiation is likely to take the form a sheet flow that subsequently channelizes, as explored in Flowers et al.20

(2004), Schoof et al. (2012) and Hewitt et al. (2012). This effect is not included in our models here, but we are at least able to

give an approximate expression (valid in the limit of very large reservoir sizes Vp) for the water supply qin at which the change

in flood initiation mechanism occurs (switching between between unstable conduit growth and partial glacier flotation and a

sheet flow); this is equation (15). Adapting our model to account for this alternative flood initiation mechanism is the obvious

next step to take. One straightforward adaptation of the lumped model to this effect, based on the model in Hewitt et al. (2012)25

is the following: if suppose that lake level cannot rise beyond the point at which N = 0, then the opening of an ice-bed gap

must be such as to permit outflow balancing inflow to the lake at that point, which forces us to alter the constitutive relation

for q once N = 0. We can similarly build the possibility of flood termination due to the lake running dry at an upper bound

on effective pressure at N =Nmax = ρig(s(0)− b(0)) into the model. Once the lake is fully empty, discharge q in the conduit

will be the lesser of inflow into the conduit qin (corresponding to a partially filled conduit) and the discharge the conduit would30
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Figure 12. Stability boundary plotted in the same way as in figure 2, but with Ψ0 = 1630 Pa m−1, ubhr = 1.05× 10−07 m2 s−1, and we

put L= 5000 m.

carry if it were completely filled with water. The appropriately adapted lumped model (2) is

Ṡ = c1qΨ + vo(S)− vc(S,N) (16a)

−VpṄ = qin− q̃ (16b)

q̃ =


max(q(S,Ψ), qin) if N = 0,

q(S,Ψ) if 0<N <Nmax,

min(q(S,Ψ), qin) if N =Nmax,

(16c)

Ψ =Ψ0−N/L. (16d)5

The equivalent for the spatially-extended model (1) is the channel model in Hewitt et al. (2012), with a reservoir at the upstream

end. Importantly, the stability of steady state solutions as in sections 3.1 and 4 is unchanged by these adaptations unless the

steady state corresponds to an empty lake basin and a partially filled conduit, in which case the conduit is presumably stable

since discharge in the conduit does not increase when its size is increased. The upper and lower bounds on flux introduced in

(16) only affects the nonlinear dynamics of the system, once the amplitude gets large enough. We leave the nonlinear analysis10

of the adapted model to future work.

We have also investigated a mechanism previously identified in Schoof et al. (2014), by which flow out of a reservoir can

be stabilized when the storage capacity in the reservoir is relatively small, so that typical drainage rates (comparable to the

inflow rate qin) lead to adjustment of effective pressure in the reservoir much faster than the conduit can evolve due to wall

melting. The rapid response of reservoir water levels can have a large enough effect on hydraulic gradients to stabilize the flow.15

This is true at least for a short enough drainage system. Importantly, this happens at water throughput rates that are completely

unrealistic for typical, large glacier lakes (and even these rates are underestimated by a simplified, ‘lumped’ model as described

in section 4).
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The reason why this stabilization mechanism is relevant is that it may explain why much smaller water reservoirs that are

typically not recognized as lakes but nonetheless provide storage capacity (such as large moulins) do not invariably generate

outburst-flood type behaviour: the stability diagram of figure 2 was generated for parameter values chosen to represent large

lakes dammed by a long glacier with a small surface slope, but can easily be rescaled to represent other glacier geometries,

reservoir storage capacities and water throughput. The relevant scaling is explored in section 2 of the supplementary material.5

Here, we confine ourselves to a simple numerical demonstration: figure 12 recalculates the stability boundary for steeper,

shorter valley glacier with a relatively small reservoir sizes. We use the same parameter values as in table 1, except for Ψ0,

ubhr andL. The ‘upper’ stability boundary (the larger critical value of qin where the lumped model (2) becomes stable again)

is much more accessible for reasonable flow rates, and some of the more exotic manifestations of instability explored in section

2.1 are more likely to be within reach of typical water input rates.10

With this as motivation, we also briefly discuss a second ‘exotic’ instability, which diverges from the classical picture of a

glacier outburst flood in that it does not require channel-like behaviour but can occur in a purely cavity-based drainage system.

Much of the necessary groundwork is already in place from the analysis in section 3.1.

5.2 Distributed storage: a modification of Nye’s instability

In section 2, we formulated a model for a single reservoir, for which Nye’s instability predicts the onset of oscillations when15

the conduit becomes channel-like. In Schoof et al. (2014, section 5), the case of spatially spread-out storage capacity, for

instance in the form of numerous basal crevasses arrayed along the flow path, was considered in addition to a single reservoir.

A numerical linear stability analysis was used to demonstrate that instability can also occur for cavity-like conduits (which are

generally stable for a single reservoir) for the case of such distributed water storage. As in the case of a single reservoir, Schoof

et al. (2014) find that there is a finite range of values qin for which instability then occurs, only that this extends to lower values20

of qin, where the conduit is cavity-like.

Here we sketch how to build on section 3.1 to shed further light on the results in Schoof et al. (2014), which were built on

the model

∂v(N)

∂t
+
∂q̃

∂x
= 0, (17a)

∂S

∂t
= c1qΨ + vo(S)− vc(S,N), (17b)25

q̃ = q(S,Ψ), (17c)

Ψ = Ψ0 +
∂N

∂x
. (17d)

Here v(N) is a decreasing function of N that describes storage of water per unit length of the conduit, and the rest of the

notation used replicates that of the single-reservoir model (1). Below, we will denote by

vp =− dv

dN
, (18)30
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the equivalent of Vp in (1). This model also requires boundary conditions; an obvious choice is a prescribed flux q = qin at the

inflow x= 0, with no actual reservoir there, and again N = 0 at the terminus x= L.

With a finite domain size and the proposed boundary conditions above, a steady state solution to (17) will in general have

spatial structure as in Schoof et al. (2014), and a linearization around that steady state, analogous to section 3.1 will lead to a

boundary value problem that is not amenable to a closed-form solution. To avoid this, we concentrate here on shorter length5

scales, and assume that we can use (17) with periodic boundary conditions at these scales. This yields a spatially uniform

steady state solution defined implicitly by (7a) combined with qin = q(S̄,Ψ̄) and Ψ̄ = Ψ0, where qin is the prescribed flux

through the system. This is closely analogous to (7) but simpler, as the hydraulic gradient here does not contain the gradient

term retained in (7c).

Linearizing as N = N̄ +N ′ exp(ikx+λt), S = S̄+S′ exp(ikx+λt), we find an analogue to the problem (8) as10

−v̄pλN ′+ ikqSS
′− k2qΨN

′ = 0, (19a)

λS′− (c1qSΨ̄ + vo,SS
′− vc,S)S′

−
[
ikc1(qΨΨ̄ + q̄)− vc,N

]
N ′ = 0, (19b)

using the same notation as in section 3.1. The eigenvalue λ is again given by an equation of the form (9), but now with a1 and

a2 given by15

a1 = (c1qSΨ̄ + vo,S − vc,S)− v̄−1
p k2qΨ (20a)

a2 = v̄−1
p

{
k2 [c1qS q̄+ qΨ(vc,S − vo,S)] + ikqSvc,N

}
(20b)

The only term that differs intrinsically from (10) is a2, which now has an imaginary part. We see that the real part of a2 is still

invariable positive, so the real part of a1− 4a2 is smaller than a1. However, we can no longer conclude that the real part of λ

has the same sign as a120

We can identify two mechanisms for instability. The first is essentially the same as Nye’s melt-drainage feedback: the more

storage capacity there is, the smaller all the terms containing k are in (20) for a given wavenumber k, and the more likely the

first term (c1qS + vo,S − vc,S) in the definition of a1 is to dominate the eigenvalue λ, leading to instability for a channel-like

system. To increase the size of the potentially stabilizing terms therefore requires larger wavenumbers k, and a larger range

of short wavelengths is likely to be unstable. Although we are not able to address a system of finite length directly with our25

approach of a quasi-periodic domain, the results of Schoof et al. (2014) confirm that systems of limited size can remain stable

if storage capacity is sufficiently limited Schoof et al. (2014).

A second instability mechanism can occur if the conduit is cavity-like with (c1qS + vo,S − vc,S)< 0 and therefore a1 < 0.

It is still possible to have an eigenvalue with positive real part and hence instability, because a2 has a non-zero imaginary part.

One particular case in which an instability due to this term may occur is with limited storage capacity (so v̄−1
p is large) and at30

an intermediate wavelengths range (so k is small but not too small). Then it is possible, purely by controlling the size of the
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storage capacity v̄p, to ensure that a2
1− 4a2 ∼−i4v̄−1

p qSvc,Nk and

λ∼±(1− i)

√
ṽ−1
p kqSvc,N

2
. (21)

Full details can be found in section 6 of the supplementary material. Choosing the + sign ensures an eigenvalue with positive

real part. Importantly, this instability corresponds to a growing wave that propagates, in this case downstream as the imaginary

part of λ is then negative. It is also of the same size as the real part, so propagation is not slow. This unstable wave is not the5

result of Nye’s instability as the conduit is cavity-like. Instead, it is the result of an interaction between the dependence of the

conduit closing rate on effective pressure and the dependence of water drainage (which affects effective pressure through water

storage) on conduit size.

6 Conclusions

As demonstrated previously using a much more restricted sweep of parameter space in Schoof et al. (2014), we have shown that10

drainage systems capable of switching spontaneously between channel- and cavity-like behaviour are stable in the presence of

a localized water reservoir at low and high water throughput, with an unstable intermediate range of water fluxes. In that range,

spontaneous oscillations in reservoir level will occur, driven by Nye’s (1976) instability mechanism driving outburst floods.

These outburst floods turn out to be regular, periodic oscillations in water level at least at low-to-moderate water input, where

a simplified, ‘lumped’ model of reservoir drainage generally reproduces the results of a more sophisticated, spatially-extended15

drainage model. At high water throughput rates, our results are more equivocal as to the emergence of such limit cycles in the

model used; in any case, the model necessarily breaks down physically (as opposed to mathematically) because it predicts that

the oscillations will invariably reach negative effective pressures and therefore flotation of the ice dam at such large throughput

rates.

It is worth pointing out that part of our focus has been on the emergence of limit cycle solutions in order to identify how the20

flood initiation mechanism can prevent flood magnitude from increasing progressively from cycle to cycle as observed in Ng

(1998) and Fowler (1999), and to present an alternative mechanism for suppressing the continued growth in amplitude from

that considered by Fowler (1999), whose lake is necessarily ‘sealed’ between floods. The alternative mechanism here is the

ability of a cavity-like drainage system that remains during the reservoir recharge phase to switch to a channlized drainage

mode.25

The fact that we illustrate this by showing evolution towards a limit cycle is not at odds with the chaotic behaviour observed

by Kingslake (2015) using a variant of Fowler’s (1999) model: the chaotic behaviour is intrinsically the result of a time-varying

water input to the reservoir, which we have not studied in this paper. It is entirely possible, and in fact likely, that our model

will also behave chaotically under such time-varying water input rates qin(t). The point of demonstating that limit cycles

emerge was rather to underline that the growth of Nye’s (1976) instability is bounded in our model without having to appeal to30

additional physics.
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The lower cut-off to the drainage instability that leads to outburst floods corresponds to the drainage system switching to

a cavity-like state under steady flow conditions when water input to the reservoir can be drained steadily by those cavities.

The mechanism for the cut-off at high water throughput rates is harder to identify. The lumped model predicts that the high

sensitivity of water level in the reservoir to the evolution of the draining conduit will induce water pressure gradients that reduce

flow as the conduit grows, and therefore suppress its enlargement due to heat dissipation. The threshold at which this happens5

is however significantly underestimated by lumped model relatively to its spatially-extended counterpart, which develops more

wave-like instabilities at higher water throughput rates.

In closing, we have also investigated how wave-like instabilities can occur when the water reservoir is not localized but

spread out or ‘distributed’ along the flow path (for instance, in the form of many small reservoirs like basal crevasses). This

type of instability was first observed in Schoof et al. (2014), and persists even where water throughput is insufficient to lead10

to channel-like behaviour. Adapting the stability analysis performed on a model with localized storage, we have shown that

Nye’s instability persists, but also that a second instability mechanism emerges, in which a phase shift between water storage

and flux arises that causes water to accumulate in regions where effective pressure is already low.

Future work is likely to focus on capturing the role of overpressurization of the drainage system in initiating and mediating

the instability driving outburst floods, since flood initiation at water pressures below flotation is confined to a relatively small15

part of parameter space, and the model predicts that reaching zero effective pressure and initiation by partial flotation of the ice

dam is likely to be common.

7 Code availability

The MATLAB code used in the computations reported is included in the supplementary material, except for the code used to

solve the transient calculations displayed in figures 9–11, which is included in the supplementary material to Rada and Schoof20

(2018).
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Appendix A: Asymptotic solutions for large lakes with moderate inflow

This appendix provides only a brief sketch of the derivation of an asymptotic solution for a limit cycle solution in the case

where the reservoir volume is large and inflow is sufficient to ensure that the reservoir cannot be drained by a cavity-like

conduit, but also that the conduit size evolves much faster than the time scale over which the reservoir fills. Full details are

given in section 4 of the supplementary material.5

The solution is developed from a parameteric limit of the model (2) with (1g), where we assume S0 =∞. We scale as

N∗∗ =N/[N ]′, S∗∗ = S/[S]′, t∗∗ = t/[t], where the scales are defined through [S]′/[t]′ = c1c3[S]′αΨ
3/2
0 = c2[S]′[N ]′n and

Vp[N ]′/[t]′ = c1[S]′αΨ
1/2
0 . Substituting and omitting the asterisks immediately, we obtain

Ṡ = Sα|1− νN |3/2 + δ−S|N |n−1N (A1a)

Ṅ =−ε+Sα|1− νN |−1/2(1− νN) (A1b)10

where ν = [N ]′/(Ψ0L), δ = ubhr/(c2[S]′[N ]′n) and ε= qin/(c1[S]′αΨ
1/2
0 ).

We assume that the exponents n and α satisfy n+ 1> α > 1, in which case the asymptotic solution we develop is valid

when

δ� ε. δ(α−1)(n+1)/(αn)� 1

and ν . 1.

The main flood phase is described by omitting terms of O(δ) and O(ε)

Ṡ = Sα|1− νN |3/2−S|N |n−1N, (A2a)

Ṅ = Sα|1− νN |−1/2(1− νN), (A2b)15

where matching with the initiation phase described later requires that (N,S)→ (0,0) as t→−∞. The transformation P =

N/S allows the system (A2) to be re-cast in such a way as to demonstrate that the orbit into the fixed point (0,0) is unique, so

there is only one flood phase solution. The orbit terminates at a finite N = Ñf as t→∞; this then sets the amplitude of the

lake level fluctuations that give the asymptotic formula for the flood cycle period (14).

The refilling phase is described by the rescaling Ñ =N , S̃ = δ−1S and t̃= ε(t− tf ), where tf is the time of the last flood.20

At leading order,

0 = 1− S̃|Ñ |n−1Ñ, (A3a)

dÑ

dt̃
=−1; (A3b)

conduit size is quasi-steady and cavity-like, while lake level evolves purely because of inflow.

The refilling phase ends as N → 0 and cavity size becomes large. The relevant rescaling becomes

N̂ = δ−(α−1)/(αn)Ñ, Ŝ = δ(α−1)/αS̃,
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t̂= δ−(α−1)/(αn)(t̃−Nf )

and gives at leading order

εδ−(α−1)(n+1)/(αn) dŜ

dt̂
= Ŝα + 1− Ŝ|N̂ |n−1N̂, (A4a)

dN̂

dt̂
=−1, (A4b)

where we have assumed ε∼ δ(α−1)(n+1)/(αn); the alternative case of ε∼ δ is described in the supplementary material. The key

to (A4) is that it predicts finite-time blow-up in Ŝ at some finite N̂ = N̂c that depends purely on the value of εδ−(α−1)(n+1)/(αn).5

This is the smallest value of effective pressure (rescaled, of course) that is reached during the drainage cycle. The larger ε∼
δ(α−1)(n+1)/(αn), the smaller and eventually more negative N̂c becomes; there is therefore a critical value of ε∼ δ(α−1)(n+1)/(αn)

at which N̂c = 0. When rendered in dimensional form, this value gives the formula (15).
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