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This is an awkward paper to referee. Being Christian Schoof, there is not going to be
anything technically wrong with it, but from my perspective it is not properly thought
out.
Nor is it well presented. The very first thing to say is that the text is littered with typo-
graphical and grammatical errors, so many that I will not list them all here. But there
are such errors on page 1, line 16; 1,24; 2,5; 2,6; 2,13; 2,15; 2,20 (twice); 2,29 (the
whole second half); 2,35; and so on, and on, and on. Perhaps the best is saved for last,
where Schoof’s own 2012 paper is mis-referenced (it is part 1, not part 2). Incidentally,
all the poor authors cited in the references are demoted to a single initial each.
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I’m not sure my mere name warrants such confidence in the results, but I’ll take this to
mean I actually haven’t made any mistakes. The apparent awkwardness is as difficult
to answer at this point as it may have been for the referee to review the paper in the
first place. In view of this, I will respond to the specific comments later. As far as the
presentation is concerned— or rather, the number of typos and other superficial but
annoying errors — I’m happy to concede the paper may have been submitted in too
much of a hurry. My apologies for that. With regard to the author initials, I’ll simply
point out that I am using the Copernicus bibliography style file. As such the complaint
is probably best addressed to the publisher.

The paper concerns a model (which is analysed in both a ‘lumped’ form and a spatially
dependent one) for subglacial floods, or joÌĹkulhlaups. The paper is motivated heavily
by previous work of Fowler and Ng, and seeks to modify this earlier work, by allowing
for the case where there is no ‘seal’ of the subglacial (or ice-dammed) lake, which can
then continually leak between floods, as is the case for Summit Lake, according to
Fisher in 1973. Note: Fisher, not Fischer.

Fair point. I must have allowed my teutonic roots to influence my spelling.

The improvement consists of showing that with an extra term in the closure equa- tion
of the classical Nye-RoÌĹthlisberger theory, the model will describe limit cycles even
in the absence of a seal. This seems to me the principal achievement of this paper.
The extra term invoked is an ingenious addition due to Schoof in 2010 which allows
the description of both cavity drainage and channel drainage within the confines of a
single model. It is worth offering some comments on this addition.

Indeed. I’d hope that beyond the qualitative statement that limit cycles are possible
by adding a mechanism by which the drainage system remains ‘open’ in the refilling
phase, an analysis of how flood magnitude and timing depends on forcing and geom-
etry a valuable, too.

In its original form, the extra term appears as the first term on the right hand side of the
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closure equation

Ṡ = ubhr + c1ΨQ− c2N
n

(
Q

c3

√
Ψ

)0.8

.

and it describes the opening of cavities by ice flow (velocity ub) over bedrock bumps
(height hr). The steady state of this equation provides for both channels (N increases
withQ) and linked cavities (N decreases asQ increases). There are several comments
to make.
(i) We might suppose in reality that ub will itself depend on N as well as basal shear
stress τb; might this not then ruin the conclusion? The answer is no, at least for sliding
laws of power law type.

This is true; I have deliberately skirted this issue as the kind of glacier junctions at
which dams are likely to occur often have awkward geometries — this is certainly true
for Summit Lake, or the field site at the Kaskawulsh Glacier that has motivated my own
interest in this subject (and before you ask: I do intend to publish data from said site, but
inclusion in this paper would sure;y break the bounds of what is reasonable for paper
length, even if I were to shorten the analysis). Those awkward geometries matter in
the sense that treating ice flow as a function of local N might be stretching credulity. As
the reviewer rightly points out, making ub dependent on N doesn’t ultimately break the
mechanism being investigated, so long as ub remains bounded below by something
greater than zero. It just makes the flood cycle even less simple to describe. I’d be
happy to add a brief discussion to the supplementary material if desired, but don’t think
this will add much to the main paper.

(ii) Second, Schoof’s 2010 paper indicates a minimum value of N ≈ 2.6 MPa. This
seems very high, and particularly seems unable to explain the very low values of N
seen in the Siple Coast ice streams, for example. One might say these are sediment-
floored, so that the concept of bed roughness is less clear to understand: does this
mean one must abandon this theory in that context? The reason I enquire is that it
seems to me that the understanding of sub-ice sheet floods is something this theory
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should aspire to.

This, I believe, is actually a reference to the fact that classical R-channel models with
Nye (1953)-type closure rates consistently overpredict effective pressures, not just in
the sense that they would require effective pressures larger than overburden, but in
the sense that measured overburden pressures are usually significantly smaller. That
is not an original observation of mine. The main reference to this that I’m aware of is
Hooke, R.LeB. and Laumann, T. and Kohler, J., 1990, Subglacial water pressures and
the shape of subglacial conduits. J. Glaciol. 36(122), 67–71. The point is that flatter
channel shapes allow smaller effective pressures to balance predicted dissipation rates
in the flow, and therefore to reconcile observation and theory. In the context of the
model being used here, this issue is discussed at length in Schoof (2014) as cited in
the present manuscript.

I agree that this is an appealing direction to develop outburst flood models in, and
in particular, that the question of what the lateral aspect ratio of a channel actually is
deserved further attention (ideally building on the vastly underappreciated D.Phil. thesis
by Felix Ng.) Probably beyond the scope of this paper, though. As far as the concept
of bed roughness becoming nebulous for deformable beds is concerned, I’m inclined
to agree for relatively fine-grained beds with a narrower grain size distributions — as
would apply for the formerly submarine bed areas of West Antarctica, for instance.
For polydisperse grain size distributions, where there are larger cobbles and boulders
mixed into the till, I’d argue that there are likely to be bed protrusions that can support
cavities as in the canonical hard bed picture.

(iii) The boundary condition N = 0 is applied at the glacier snout. This is problematic
because the closure equation then predicts S increases indefinitely. In the Schoof
(2014) paper this is circumvented by saturating the opening term as ubhr(1 − S/S0),
allowing for drowning of roughness at conduit size S0 ; this allows a steady state to be
reached, but one in which S > S0 , which makes no physical sense. In fact, the issue
with the boundary condition is that the outlet flow must become open to the atmosphere
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at some unknown point upstream of the snout, where I think two boundary conditions
should be prescribed for N and Nx , corresponding to continuity of water pressure and
water flux. This may be important in view of figures 8 and 9, for example.

What is really at issue here I think is the way the cavity opening rate “goes away”
for large S (note that this is only relevant to the spatially extended model, so I will
restrict my discussion to the latter). In the model as posed, as in the earlier Hewitt et al
(2012), Schoof (2010) and Schoof et al (2012, 2914) papers, this is done by writing the
opening rate as ub(hr−h)/lr) for a continuum “sheet”, or equivalently as ubhr(1−S/S0)
for an individual conduit. This does have the somewhat unintended consequence of
leading to the opening rate becoming negative in an unbounded way when S exceeds
the threshold S0. A better way of dealing with the idea that bed roughness cannot
indefinitely lead to a constant opening rate as conduit size grows (which is probably
robust) might be to write the opening rate as ubhrf(S/S0) with f(x)→ 1 as x→ 0 and
f(x)→ 0 as x→∞; something like f(x) = (1 + tanh(x))/2 would do.

Having made the choice of cut-off function we have made here (where f goes to ∞
linearly as x → 0 instead of vanishing), we can ask what difference this makes. In
a model where cavity opening vanishes for large conduit sizes, the dominant balance
near a glacier margin where N → 0 would be between the melt rate c1QΨ and closure
rate c2SN

n. This would still leave the problem singular at the margin with S → 0, but
not in a pathological way (and the problem could further be regularized to maintain finite
S by supposing that the glacier ends in a cliff so N is small but finite, or by supposing
that the channel evolution equation is not cast in terms of St but the material derivative
St+ ubSx.1

For that case, we can construct a near-margin form of the solution, and further ask how
different the solution to other versions of the model is. In particular, for a pure channel

1This idea is due to Ian Hewitt, who may indeed have published it somewhere. While unappealing for cavities
that are tied to bed roughness, the advection term must play a role near the snout, where melting happens not only
because of subglacial water flow, but also from the surface, and ice flow must compensate for that.
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model with a vanishing cavity opening rate, we get

St = c1QΨ − c2S|N |n−1N, Q = c2S
α|Ψ|−1/2Ψ, Ψ = Ψ0 +Nx

and given a fixed discharge Q, a steady-state near-terminus solution can be con-
structed by noting that

Ψ = (Q/(c3S
α))1/2

so
c1c
−2
3 Q3S−(2α+1) = c2N

n

and hence

Nx = −Ψ0 + c
−2α/(2α+1)
1 c

−2/(2α+1)
3 Q(1−4α)/(2α+1) (c2N

n)2α/(2α+1)

which is clearly solvable form x < L with a boundary condition N(L) = 0; the near
field behaves as N ∼ Ψ0(L− x)−

2α+1
2αn+2α+1c

−2α/(2α+1)
1 c

2α/(2α+1)
2 c

−2/(2α+1)
3 Q(1−4α)/(2α+1)Ψ2αn/(2α+1)

0 (L −
x)(2αn+2α+1)/(2α+1)

S ∼ c
1/(2α+1)
1 c

−1/(2α+1)
2 c

−2/(2α+1)
3 Q3/(2α+1)Ψ−n/(2α+1)

0 (L − x)−n(2α+1) Clearly, we can
see that N remains well-behaved (and indeed positive, so the channel need not be
partially open to the atmosphere!) while S blows up in a power-law fashion. We can go
further and ask what the stability properties of the channel-only problem look like in the
near field and construct a linearization. This is best done by changing the dependent
variable S into something that remains bounded. An obvious choice is

Y = S1−α

The dominant balance when linearizing the problem above about the steady state (Y =
Ȳ + Y ′, N = N̄ + N ′, Ψ = Ψ̄ + N ′x, Q = Q̄ + Q′, where barred quantities are steady
state solutions and primed quantities are small perturbations) works out to be Y’t ∼
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3
2c1c3Ψ̄1/2N ′x
Q′ ∼ Q̄

2Ψ̄
N ′x

The germane question with using different model formulations that do not suppress the
cavity opening term as above is whether they lead to the same solution away from a
small region near the margin. As in, does the “regularization” of the model make any
difference? In view of the question about numerical results tin figures 8 and 9, the
question I will try to address is whether discrepancies between the channel-only model
advocated above and the model used in the paper become more pronounced at large
water throughputs in the model, which is the parameter regime that these calculations
look at. For more moderate throughputs, the good agreement between lumped and
spatially extended model suggests the issue of what happens near the margin (which
does not feature in the lumped model) becomes less relevant.

The model used in the paper replaces the above by

St = c1QΨ + ubhr(1− S/S0)− c2S|N |n−1N, Q = c2S
α|Ψ|−1/2Ψ, Ψ = Ψ0 +Nx.

In order to look at the difference from the channel-only model obtained by putting
ubhr = 0, I will scale this by defining

[S] =
(

[Q]
c3[Ψ]1/2

)1/α

, [t] =
[S]

c1[Q][Ψ]
, [N ] =

(
c1[Q][Ψ]
c2[S]

)1/n

, [x] =
[N ]
[[Ψ]

where [Q] and [Ψ] = Ψ0 are assumed to be given. Putting

S∗ =
S

[S]
, N∗ =

N

[N ]
, Ψ∗ =

Ψ
[Ψ]

, Q =
Q

[Q]
, t∗ =

t

[t]
, x∗ =

x

[x]
,

and immediately dropping the star decorations, the model becomes

St = QΨ + δ − νS − S|N |n−1N, Q+ Sα|Ψ|−1/2Ψ, Ψ = 1 +Nx
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where
δ =

ubhr
c1[Q][Ψ]

, ν = δ[Q]1/αc−1/α
3 [Ψ]−1/(2α)S−1

0 .

We can repeat the exercise of finding steady states. Assuming without loss of general-
ity that the scaled flux Q = 1, we find Ψ = S−2α and

S−(2α+1) + δ/S − (nu+Nn).

Hence S = (nu +Nn − δ/S)−1/(2α+1),
Nx = −1 + (ν+Nn− δ/S)−1/(2α+1) which the channel only model replaces by S = (nu
+Nn)−1/(2α+1),
Nx = −1 + (ν +Nn)−1/(2α+1) We want to know whether for larger |L− x|, the full and
channel-only models will agree. This will be the case provided N agrees between the
two models, and the latter will be the case if the correction δ/S remains small compared
with nu+Nn as well as having ν � 1. This will be the case so long as S ∼ ν−1/(2α+1)

near x = L is large enough, in other words, if 1� ν � δ/nu−1/(2α+1) or ν � δ2α/(2α+1).
The definitions of δ and ν above show that ν/δ−2α/(2α+1) increases with [Q], all other
parameters being constant, so we would in fact expect closer agreement between full
and channel-only models for large [Q].

We can go further and look at the linearization of the problem, again in terms of the
variable Y used above (or rather, its obvious dimensionless counterpart); the dominant
balances when adding the cavity opening term become Y’t ∼ 3

2Ψ̄1/2N ′x + δȲ 1/(α−1)Y ′

Q′ ∼ 1
2Ψ̄
N ′x By similar construction to the above, if the steady state converges to that

for the channel-only model as |L− x| becomes large, so will the linearized solution for
small δ; in other words, the additional term due to cavity opening will remain a small
correction. This suggests that the stability resutls in the main paper remain robust for
large water throughput rates.

Now we come to the main issue with this paper, which lies in its style. The paper
does not know whether it is for glaciologists or applied mathematicians. The message
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is in fact fairly simple: here is a modification of Nye which allows limit cycles, even
in a lumped version, and allows leakage between floods. But the material is drawn
out by over-elaborate interpretations and explanations, and veers off into dynamical
systems language which is neither helpful or informative. Starting on page 6, there is
a rather long-winded stability analysis, which descends by page 8 to undergraduate
mathematics. The only explanation can be that this is meant for glaciologists; but my
view is that if they want to learn this material they should do so in textbooks, not in a
research paper. And in fact, all you need is figure 4.
It goes on: we get undergraduate discussion of Hopf bifurcation, which by page 14 has
slowed to the point of somnolence. And on. The section on asymptotic solutions on
page 17 is mostly out of place here. What I actually think should happen is that the
paper should be rewritten in two versions: a longer mathematical one which goes to a
more mathematical journal (but then suitably prunes the more elementary stuff)and a
shorter glaciological version which punches out the results: which are the model and
some of the figures really.

Style may be where the referee and I won’t agree. I am happy to shorten some of
the material in the paper where appropriate, such as the linear stability analysis. The
existing text undoubtedly can be optimized in that sense, but I don’t think that’s the
issue. I understand the rationale for splitting work between “mathematical” papers and
“glaciology” papers. This has been practised by a number of researchers in the past
(Hutter, Morland, Fowler etc.) and even I have been known to try. However, in my own
experience, what happens is that these mathematical papers, to the extent that they
are taken up by anyone, get cited by glacioloists, not by applied mathematicians or fluid
dynamicists outside of glaciology. The only exception are perhaps those dealing with
numerical analysis of glaciological partial differential equations. A brief trawl through
an indexing website like Web of Science should confirm that impression.

In short, there seems little point in these separate mathematical papers for an imag-
inary specialist audience. At the same time, I do not believe in simply saying “here
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are our mathematical results, but you wouldn’t really understand so we won’t explain
any of the detail”, which is the risk I see in writing a “glaciological version”. What I do
see in glaciology is an increasing number of researchers who have solid background in
physics or similar disciplines. These researchers have the ability to understand math-
ematical material but may need a more didactic approach than the simple assumption
that they have not only taken a course in dynamical systems theory, but actually re-
member its contents. This is the audience I’d like to reach here. Yes, doing so may
mean a more pedestrian pace for the fully-fledged mathematician as a reader, but there
are few enough of those around that I’m disinclined to worry (except about the referee,
who I assume is an applied mathematician). I should add: I understand that a paper is
not a textbook, but slightly more explanation to get a point across does not go amiss,
and I think the manuscript as submitted is honest about what is ultimately textbook
material and what is not (although Stogatz may admittedly be a more suitable textbook
for the target audience than Wiggins).

I would add that a ‘didactic approach’ to presenting mathematical material in glaciology
has been taken previously, even where that material arguably has limited novelty in a
global (as opposed to discipline-specific) sense: to name but one example, a number
of papers published in the Journal of Glaciology around 2011 (primarily by Bassis and
Dukowicz et al) have elaborated on the fact that Stokes’ equations are equivalent to
a minimization problem — something that had been known to applied mathematics
and fluid dynamics at least since the 1960s, but was apparently not widely known in
glaciology. Whether the referee (who presumably hails form an applied mathematics
background) would regard those papers as giving an undergraduate introduction to the
calculus of variations I can’t tell, but these particular papers clearly have had some
impact (with 8 and 30 citations, respectively).
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