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Abstract. One of the primary controls upon the melting of the Greenland Ice Sheet (GrIS) is albedo, a measure of how much

solar radiation that hits a surface is reflected without being absorbed. Lower-albedo snow and ice surfaces therefore warm more

quickly. There is a major difference in the albedo of snow-covered versus bare-ice surfaces, but observations also show that

there is substantial spatio-temporal variability of up to ∼0.4 in bare-ice albedo. Variability in bare-ice albedo has been attributed

to a number of processes including the accumulation of Light Absorbing Impurities (LAIs) and the changing physical properties5

of the near-surface ice. However, the combined impact of these processes upon albedo remains poorly constrained. Here we

use field observations to show that pigmented glacier algae are ubiquitous and cause surface darkening both within and outside

the south-west GrIS ‘dark zone’, but that other factors including modification of the ice surface by algal bloom presence,

surface topography and weathering crust state are also important in determining patterns of daily albedo variability. We further

use observations from an unmanned aerial system to examine the scale gap in albedo between ground versus remotely-sensed10

measurements made by Sentinel-2 (S-2) and MODIS. S-2 observations provide a highly conservative estimate of algal bloom

presence because algal blooms occur in patches much smaller than the ground resolution of S-2 data. Nevertheless, the bare-

ice albedo distribution at the scale of 20×20 m S-2 pixels is generally unimodal and unskewed. Conversely, bare ice surfaces

have a left-skewed albedo distribution at MODIS MOD10A1 scales. Thus, when MOD10A1 observations are used as input to

energy balance modelling then meltwater production can be under-estimated by ∼2%. Our study highlights that (1) the impact15

of weathering crust state is of similar importance to the direct darkening role of light-absorbing impurities upon ice albedo and

(2) there is a spatial scale dependency in albedo measurement which reduces detection of real changes at coarser resolutions.

1 Introduction

The Greenland Ice Sheet (GrIS) has experienced ∼2 oC of summer warming since the mid 1990s, increasing runoff by more

than 40 % without concomitant increases in precipitation (van den Broeke et al., 2017). Since approximately 2010 the total20

mass imbalance has been dominated by melting and runoff, corresponding to 68% of mass losses between 2009 and 2012
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(Enderlin et al., 2014). This is especially important on the western side of the ice sheet where the majority of meltwater runs

off directly into the ocean rather than refreezing (Steger et al., 2017). Enhanced melting has been caused by recent persistent

anticylonic summer conditions (Fettweis et al., 2013) which reduce cloud cover, leading to enhanced shortwave radiation over

the ablation zone (Hofer et al., 2017). Mass loss from the GrIS accounted for 37% of cryospheric sea level rise from 2012 to

2016 (Bamber et al., 2018) so it is therefore critical to understand the contribution of surface melting and runoff to GrIS mass5

loss.

Melting is principally controlled by net shortwave radiation which in turn is modulated by surface albedo. Lower albedo

snow and ice absorb more energy, leading to faster melting and more runoff. Since around 2000 the albedo in several GrIS

sectors has declined, especially along the western margins where albedo reduced by as much as 9% between 2000 and 2017

(van den Broeke et al., 2017). Some of this change can be attributed to winter snowpack melting earlier in the summer, revealing10

lower albedo ice (Ryan et al., 2019), but observations of surface albedo and reflectance made over the past ∼20 years also show

an overall increase in the extent and magnitude of ‘dark’ ice as distinct from clean bare ice surfaces (Shimada et al., 2016;

Tedstone et al., 2017). Albedo is one of the largest uncertainties in energy balance modelling (Hock, 2005; Noël et al., 2015).

Models generally fail to capture the magnitude of the albedo reductions which have occurred in ‘dark’ areas, probably because

Light Absorbing Impurities (LAIs) are not presently included in model albedo schemes (Tedesco et al., 2016).15

Despite previous studies inferring the potential albedo-reducing importance of impurities including cryoconite, emergent

dust and liquid meltwater (Greuell, 2000; Bøggild et al., 2010; Wientjes and Oerlemans, 2010), there is an emerging consensus

that pigmented glacier algae grow on the ice surface (Uetake et al., 2010; Yallop et al., 2012; Stibal et al., 2017; Williamson

et al., 2018) and are the dominant agent of darkening amongst LAIs (Stibal et al., 2017; Tedstone et al., 2017; Cook et al.,

2019b). Glacier algae reduce albedo both directly (i.e. the cells absorb shortwave radiation) and indirectly by modifying the20

underlying ice surface, for instance by maintaining a liquid water film (Cook et al., 2017, 2019b; Williamson et al., 2019).

They are ubiqitous across south-west Greenland (Cook et al., 2019b; Wang et al., 2018). Their growth is principally controlled

by (i) the timing of winter snowpack retreat, (ii) meltwater availability and (iii) sufficient photosynthetically-active radiation

(Williamson et al., 2019).

The state of the uppermost surface ice itself, however, is also important in determining albedo. When shortwave radiative25

energy fluxes dominate, a porous, low-density ‘weathering crust’ develops as a consequence of radiative energy penetration to

the sub-surface (Muller and Keeler, 1969; Munro, 1990). This, together with cryoconite hole formation punctuating the porous

substrate (McIntyre, 1984; Cook et al., 2016), can allow supraglacially-generated meltwater to drain into a shallow, depth-

limited sub-surface water table (Irvine-Fynn et al., 2011; Cooper et al., 2018; Christner et al., 2018). This porous near-surface

ice layer typically has numerous air-ice interfaces characterised by a rough surface topography, offering opportunities for high-30

angle light scattering, which increases albedo (Jonsell et al., 2003). Conversely, during periods of overcast, warm and windy

weather, the low-density weathering crust will melt away, leaving a hard and glazed ice surface (Muller and Keeler, 1969).

Thus, during periods of weathering crust formation then surface lowering measurements will under-estimate actual ablation

rates, but during periods of weathering crust stripping then measured ablation rates will appear unusually large (Muller and

Keeler, 1969; Schuster, 2001).35
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It is difficult to identify the emergent processes that control bare ice albedo over landscape scales because there is a discon-

nect between the centimetre scales of ground-based spectroscopy versus remote sensing over hundreds of metres by satellite

platforms such as MODIS. Ground-based spectroscopy in the south-west ‘dark zone’ during the 2012 and 2013 seasons showed

bare ice albedo variability of 10–30 % and that dirty ice introduced a left-skew in the albedo distribution of transect-based mea-

surements (Moustafa et al., 2015). Single-point-to-satellite-pixel validation is inadequate as there are large in-situ deviations5

from coarser-scale satellite albedo measurements, so multiple-point-to-pixel approaches are needed to capture spatial variabil-

ity (Moustafa et al., 2017; Ryan et al., 2017).

Unmanned aerial systems (UAS) provide one way to bridge the scale gap between ground and satellite observations, by

making high spatial resolution measurements over tens of metres to kilometres. This is especially useful for examining hetere-

ogeneous distributions in LAIs. For example, on a single day in 2014, LAIs including dust, black carbon and pigmented algae10

explained 73 % of spatial variability in albedo along a 25 km transect (Ryan et al., 2018). More recently, combined ground

sampling, radiative transfer modelling and surface type classification of UAS and satellite imagery showed that algal blooms

specifically can cover at least 78 % of ice in the ‘dark zone’, generating at least 6–9 % additional ice melt in the south-west

‘dark zone’ during the dark year of 2016 compared to the ‘average’ year of 2017 (Cook et al., 2019b). Higher resolution

imagery is therefore able to bridge the scaling gap and has been crucial in demonstrating that glacier algae are the dominant15

LAI.

Whilst previous studies have made signficant advances in understanding spatial variability in albedo, there remain two key

challenges: (1) making measurements elsewhere beyond the ‘dark zone’, and (2) understanding why surface type and bare ice

albedo change through time. Here we present observations of surface type and albedo made by multi-spectral unmanned aerial

system (UAS) paired with ground sampling at two locations along the western GrIS margin. We examine the drivers of the20

measured albedo patterns, and at one site we also examine changes in albedo through time and undertake a multiple-point-to-

pixel comparison to assess whether these changes are captured by the Sentinel-2 and MODIS sensors.

2 Study sites

Albedo and surface type measurements were made at two sites in two different years (Fig. 1, inset). During July 2017 we

acquired approximately one week of measurements at S6 (67.07oN, 49.38oW, 1073 m asl) located within the south-west ‘dark25

zone’ approximately 60 km north-east of Kangerlussuaq and within 2 km of the IMAU S6 automatic weather station (AWS).

We also occupied the site from 31 May to 1 July, enabling us to observe the retreat dynamics of the winter snowpack for most

of the early ablation season. UAS imagery acquired on 21 July 2017 have been presented previously (Cook et al., 2019b) but

this study is the first to analyse the full time series of UAS imagery that we acquired at S6. During June there were several

epsiodes of snowpack melting, with most of the snowpack retreating by mid June and exposing bare ice with hetereogeneous30

albedo. However, a series of large snowfall events occurred towards the end of June and the ice surface was covered by ∼10 cm

snow when we left on 1 July. Most snow had melted away when we re-established the site on 13 July for UAS measurements.
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We measured surface type and albedo on a single day, 24 July 2018, at UPE_U (72.88oN, 53.55oW, 950 m asl), hereafter

UPE. The site was located in the ablation zone, 26 km from the ice margin to the east of Upernavik and ∼670 km north of

S6 and was within 2 km of the PROMICE UPE_U AWS. The surface was predominantly bare ice when the field site was

established on 21 July. However, there were then several snowfall events which caused a thin layer of snow to obscure much

of the ice surface throughout the campaign. Snow fell on 22, 25, 26 and 27 July. Nevertheless, air temperatures exceeded 0 oC5

every day between 21 and 27 July, partially melting the snow between each snowfall event.

3 Data and Methods

3.1 UAS data

We mapped a 250×250 m area of ice surface at each site using the methodology described previously in Cook et al. (2019b).

Briefly, we integrated a MicaSense Red-Edge multispectral camera onto a Steadidrone Mavrik-M quadcopter (referred to10

hereafter as UAS). The camera was remotely triggered through the autopilot which was programmed along with the flight

coordinates in the open-source software Mission Planner. Images were acquired at approximately 2 cm ground resolution with

60% overlap and 40% sidelap. Mapping required two successive flights with a UAS battery change between them. Each flight

lasted ∼ 10 min, was made at 30 m above the ice surface, and took place under clear-sky illumination conditions unless

otherwise noted (Appendix A).15

At S6 we made UAS flights over several successive days, requiring us to remove the effect of ∼0.5–1 md-1 of ice motion

from the final orthomosaics. We therefore placed 15 Ground Control Points (GCPs) and measured their X/Y locations on 21

July using a differential Global Navigation Satellite System (GNSS) receiver, post-corrected by reference to the Kellyville

International GNSS Service (IGS) GNSS station using IGS final orbits. We used the GCPs to constrain the horizontal geo-

referencing of every orthomosaic to the same static georectification solution.20

We applied radiometric calibration and geometric distortion correction following MicaSense procedures (MicaSense, 2018).

We then converted from radiance to reflectance using time-dependent regression between measurements of the MicaSense Cal-

ibrated Reflectance Panel (and, at UPE, a Spectralon® panel) acquired before and after each flight. The individual reflectance-

corrected images were mosaiced using AgiSoft PhotoScan following United States Geological Survey (2017), yielding multi-

spectral orthomosaics with 5 cm ground resolution. Finally, the orthomosaics were radiometrically adjusted to match directional25

reflectance measurements made by ground spectroscopy so that our surface classifier (Sect. 3.5), which was trained using the

directional reflectance measurements, could be applied to the orthomosaics.

The orthomosaics were used in three ways: (i) converted to albedo using a narrowband-to-broadband approximation (Knap

et al., 1999), (ii) classified into surface types (see Sect. 3.5), and (iii) digital elevation models derived photogrametrically in

Agisoft PhotoScan at 5 cm ground resolution.30

Narrowband-to-broadband approximations for albedo calculations were employed because empirical Bi-directional

Reflectance Distribution Functions (BRDFs) are not available for the surface types that we mapped. While these surfaces are

highly anisotropic, scattering light preferentially in the forward direction (Knap and Reijmer, 1998), there are no datasets we
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know of that can accurately correct reflectance values gathered at nadir. We therefore omit a BRDF correction as existing

BRDF datasets cannot be confidently applied to our sample surfaces.

We used the photogrammetric DEMs to derive (i) study area slope angle and (ii) local topographic variability. To calculate

the slope angle we applied a gaussian filter with a window of 0.25 m to remove very-high-frequency topographic features, then

we calculated the average slope across each study area after Horn (1981) as implemented in the RichDEM library (Barnes,5

2016). To examine local topographic variability (‘roughness’) we applied a gaussian filter with a window of 4.95 m, then

subtracted it from the DEM to yield a detrended surface.

3.2 Biological sampling

We took samples of the ice surface at each site to quantify the presence of glacier algal cells. At S6, samples were made

immediately after collection of paired ground spectra (Sect. 3.5) to enable direct upscaling by UAS imagery analysis. At UPE,10

widespread snow cover prevented us from utilising the paired approach carried out at S6. Instead, on 26 July (two days after

the UAS flight) we cast a random 75-point sampling grid over our UAS flight area. We used a trowel to scrape the snow away

to reveal the bare ice surface beneath for sampling.

Samples were made by cutting a 30×30×2 cm volume out using a metal ice saw and trowel and transferring into a sterile

Whirl-Pak bag which was immediately placed in the dark to melt over a ∼24 h period at ambient air temperature. Following15

melting, samples were homogenised, sub-sampled into Falcon tubes and fixed with 2% final concentration gluteraldehyde.

Samples were then returned to laboratories at the Universities of Sheffield and Bristol for counting by microscopic haeomcy-

ometry. Full details of the enumeration protocols used are in Cook et al. (2019b) (samples from 2017) and Williamson et al.

(2018) (samples from 2018).

3.3 Surface lowering20

At S6, we measured daily surface lowering across a total of 4 plastic ablation stakes drilled into the ice. The poles formed a

square ∼100×100 m centred within the wider 250×250 m UAS survey area. At each pole we took 2 measurements: one west

and one east. Measurements were made between 16:00–18:00 local time, except for 17 and 18 July at 12:00 local time, and 19

July at 19:45 local time. Here we present daily mean surface lowering calculated from all the poles.

3.4 Sentinel-2 data25

Clear-sky Sentinel-2 (hereafter S-2) data were available at the S6 site for 20 and 21 July. No clear-sky acquisitions were avail-

able coincident with our field season at the UPE site. We downloaded S-2 L1C data from SentinelHub (Sinergise, Slovenia).

We used all bands available at 10 and 20 m resolution by resampling those bands delivered at 10 m resolution to 20 m using

the S-2 toolbox of the European Space Agency (ESA) ‘SNAP’ platform. We processed the L1C data to L2A surface reflectance

using the ESA Sen2Cor processor. The data were then (i) converted to broadband albedo using a narrowband-to-broadband30

approximation (Liang, 2001) and (ii) classified into surface types (see Sect. 3.5).
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3.5 Surface type classification

To classify images by surface type we used a supervised classification approach following Cook et al. (2019b), trained on

ground spectra collected at S6 with a FieldSpec Pro 3 (Analytical Spectral Devices, Boulder, USA) during the 2016 and 2017

field seasons at S6. Briefly, we used 171 directional reflectance measurements. The measurements were labelled by visual

examination as snow (‘SN’), water (‘WA’), clean ice (‘CI’), light algae (‘LA’), heavy algae (‘HA’) and dispersed cryoconite5

(‘CC’). After ground spectra were acquired we took destructive ground samples following procedures in Sect. 3.2. Clean ice

samples contained 625 ± 381 cellsml−1, light algae samples 4.73×103 ± 2.57×103 cellsml−1 and heavy algae samples

2.9×104 ± 2.01×104 cellsml−1, confirming the accuracy of our visual assessments of each surface type. We split the dataset

randomly into training (70%) and test (30%) sets. These data were used to train a Random Forest classifier, which had the

highest performance of all classifiers tested (Cook et al., 2019b). We trained the algorithm to predict surface type from (i)10

our UAS-acquired data, utilising all 5 bands of data, and (ii) S-2 data, utilising all 9 bands at 20 m resolution. The confusion

matrices (Appendix B) for the classifiers in this study were similar to those in Cook et al. (2019b). Against the test set, UAS

classifier accuracy and recall were both 97% and S-2 classifier accuracy and recall were both 88%.

3.6 MOD10A1 data

We used the albedo retrievals contained within the MODIS/Terra Snow Cover Daily L3 Global 500 m Grid V006 ‘MOD10A1’15

data product (Hall and Riggs, 2016). The two pixels which overlapped with our S6 UAS area were examined in their origi-

nal sinusoidal projection. Precise overpass times were extracted from the granule pointer information contained within each

product file (Appendix A). There were no cloud-free MOD10A1 data available at UPE during our field season.

3.7 Energy balance and melt modelling

To provide a local environmental context we used a point surface energy balance model (Brock and Arnold, 2000) to estimate20

net shortwave and longwave radiation fluxes, the turbulent sensible and latent heat fluxes and the surface melt rate at a point

on a melting ice or snow surface. The model was forced at an hourly timestep by continuous measurements of shortwave

radiation, vapour pressure, air temperature and wind speed made by IMAU S6 AWS (Kuipers Munneke et al., 2018) and

PROMICE UPE_U AWS (van As et al., 2011). We used the albedo measured at each AWS, which at UPE_U was only for

solar zenith angles below 70o and at S6 was only when downwelling shortwave radiation was >250 Wm−2; night-time values25

were therefore forward-filled from the last valid albedo observation. The surface roughness length was held constant at 1 mm

according to similar values for ablating ice surfaces (Brock and Arnold, 2000). Daily melt fluxes were estimated from all time

points when the air temperature was ≥ 0 oC. As the AWS were located a few km away the computed melt rates should be

interpreted as indicative of the meteorologically-forced melting regime rather than as absolute melt rates experienced across

the study areas.30
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Figure 1. S6 (21 July 2017) and UPE (24 July 2018) UAS study area albedo and surface type. (a) UAS-measured albedo at S6, (b) UAS-

measured albedo at UPE, (c) surface type classification at S6, (d) surface type classification at UPE, (e) stacked-bar histogram of surface

type coverage at S6, (f) stacked-bar histogram of surface type coverage at UPE. CI: clean ice, LA: light algae, HA: heavy algae.

4 Results and Discussion

4.1 Impact of glacier algae

Biological sampling and UAS observations showed that glacier algae were ubiquitous at both S6 and UPE. At S6, low albedo

(Fig. 1a) was caused by extensive algal blooming (Fig. 1b) enabled by melting over several preceding weeks (see Cook et al.,

2019b). This finding is supported by radiative transfer modelling which shows that mineral dusts local to S6 are weakly5

absorbing and strongly scattering, meaning that they locally increase albedo, whereas glacier algae have an albedo-reducing

effect (Cook et al., 2019b). At UPE, the albedo was higher (Fig. 1d) due to persistent snow cover obsuring the darker bare ice
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surface (Fig. 1e). However, our ground sampling revealed up to 80% LA+HA coverage of the survey area (Appendix C) on

the bare ice surface that was hidden from our aerial remote sensing by a layer of fresh snow. Ultrasonic ranging observations

from the UPE_U AWS show that the winter snowpack had melted by 29 June 2018, revealing the bare ice beneath (Fausto

and van As, 2019). Between bare ice exposure and our arrival at the field site the surface had remained snow-free and our

energy balance modelling estimates that 35 cm w.e. of melt had occurred. These conditions promote algal growth (Yallop5

et al., 2012; Williamson et al., 2018; Stibal et al., 2017), explaining the presence of algae beneath the recently-deposited snow.

These observations of spatially expansive populations of algae at both sites demonstrate that biological albedo reduction is

important across the ablation zone of the western GrIS including areas outside of the ‘dark zone’.

4.2 Topographic and hydrologic controls

The two sites were distinct in their local topography and hydrology. S6 had an average slope of 5o. Topographic features10

within the area principally consisted of (1) a ∼0.3 m wide ice-incised supraglacial stream and (2) a few isolated small (<2

m2) ice rises up to ∼0.2 m high. After detrending (Sect. 3.1) 99% of the area had topographic variability of <±0.05 m and

54% of the area was within ± 0.01 m. The ice surface to ∼300 m up-slope of the area was flatter and had several small

moulins, reducing the area contributing to local flow. The shallow and ephemeral arterial hydrological pathways present across

the study area during July were likely the result of a constant slope and negligible meltwater routed from up-slope, reducing15

frictional stream incision (Ferguson, 1973). However, during June, winter snowpack retreat caused significant ephemeral water

drainage pathways to develop, causing algal cell concentration and re-distribution (e.g. Suppl. Fig. D2) until up-slope crevasses

and moulins opened to route meltwater away englacially. This was likely important in distributing concentrated algal blooms

growing in local niches over a wider area given that glacier algae lack a flagellated life stage and so are not independently

motile (Williamson et al., 2019).20

Observations at UPE where there was substantial local surface roughness (Fig. 2a,b) showed that lower albedos were asso-

ciated with local depressions (Fig. 2c; R2 0.71 with all data; R2 0.95 when albedo bins with <0.5% area coverage removed).

The higher the biomass loading (from CI, through LA to HA), the lower the local elevation of the associated surface was

(Fig. 2c). There are at least two possible reasons for the concentration of heavy algae in local depressions. One is entrainment

and transport of algal cells in topographically higher areas by meltwater; once the competence of the meltwater flow drops in25

local depressions then the impurities will be deposited. Another is that local depressions favour near- or at-surface availability

of meltwater through ponding, especially if a weathering crust is well-developed at topographic highs. Surface meltwater re-

duces albedo (Zuo and Oerlemans, 1996; Greuell, 2000; Greuell et al., 2002) which results in favourable growth conditions for

glacier algae (Williamson et al., 2018), further reducing albedo and amplifying surface ablation.

There are strong indications that the local topography and near-surface hydrology at UPE resulted in a different surface30

state to S6. The shallower slope (1o) than at S6 is likely to favour the evolution of perched meltwater ponds (Fig. 1e) as the

lower gravitational potential is less conducive to runoff. Meanwhile, meltwater generated further upglacier flows through the

area in streams incised to ∼0.6 m below the mean surface elevation (e.g. the stream running from north-west to south-east

through study area, Fig. 2a). Arterial meltwater pathways are thus likely to persist inter-annually as little melting had occurred

8



Figure 2. Surface topography variability at UPE. (a) Detrended elevation (‘roughness’). Black box delineates the area shown in panel b. (b)

Zoomed detail of detrended elevation, showing incised supraglacial stream and the pattern of local topographic highs and lows. (c) Median

detrended elevation in each 5% albedo bin±1σ (left axis), and percentage coverage of each albedo bin (gray line; right axis). (d) Letter-plots

of detrended elevation for each surface type, illustrating median (black line), distribution of elevation values (boxes) and outliers (diamonds)

within each category (Hofmann et al., 2011), computed from whole area shown in (a).

in the 2018 melt season prior to our measurements (Sect. 4.1). This stream-dominated hydrological regime likely reduces

the movement of microbial cells suspended in meltwater through the weathering crust (Irvine-Fynn et al., 2012; Cook et al.,

2016; Christner et al., 2018) compared to S6. A stream-dominated regime therefore also favours complex spatial and temporal

patterns of albedo where most ice is weathered, persistently bright and strongly scattering due to minimal sub-surface melt

water, punctuated by low-albedo melt ponds and concentration of LAIs and water in topographic lows.5

4.3 Changes in ice surface state

Our S6 field campaign captured a period of storm conditions in the middle of an otherwise shortwave-dominant energy regime,

with concomitant impacts upon ice surface state including the weathering crust. Energy balance modelling indicates that

shortwave energy fluxes dominated the 10 d preceding the start of our UAS observations on 15 July (mean daily maximum net

shortwave flux: 273 Wm−2). Oblique photography from 15 July confirms that a weathering crust was ubiqituous throughout the10

UAS area (Suppl. Fig. D1a). During 16–17 July, no melting was modelled (Fig. 3a) or measured (Fig. 3b), and ∼5 cm snow fell

on 17 July. During 18–19 July, shortwave energy fluxes remained low while latent and sensible heat fluxes increased (Fig. 3a),

associated with strong winds (up to 17.5 ms−1 at S6) and rainfall. We observed substantially more surface lowering (Fig. 3b)

than estimated by our model (Fig. 3a). By the evening of 19 July much of the UAS survey area surface had been transformed

to flatter, denser ice, overlain in places by ponded meltwater (Suppl. Fig. D1b). The remainder of our field campaign saw a15

return to shortwave-dominant energy balance conditions. Sub-surface melting presumably dominated ablation as no significant
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Figure 3. Time series of energy fluxes, modelled, surface melt rates, surface lowering and sensor albedos. (a) Energy balance components

derived from surface energy balance model (Sect. 3.7). (b) Left: Melt fluxes in mm water equivalent (bars) estimated with surface energy

balance model, split into responsible energy flux by colour, for each period of measured surface lowering. Right: 2 m air temperature (line)

from IMAU S6 AWS. (c) Mean measured surface lowering (mm) across the UAS area. (d) Albedo measured by UAS, S-2 within UAS area,

S-2 within the MOD10A1 pixels, and mean MOD10A1 albedo.

surface lowering occurred (Fig. 3c) despite relatively large modelled melt fluxes (Fig. 3b), resulting in weathering crust (re-

)development (Suppl. Fig. D1c).

We propose that changes in weathering crust state can be diagnosed through repeat measurements of reflectance in the NIR

part of the spectrum made by our UAS, centred on 840 nm. Absorption by LAIs such as glacier algae is concentrated in the

visible part of the solar spectrum while at 840 nm the albedo-reducing effect of glacier algae and other impurities are negligible5

(Cook et al., 2017, 2019b, a; Williamson et al., 2019) and so by deduction variations in the NIR are primarily due to changes

in near-surface ice properties. Whilst there may be some residual reflectance reduction attributable to black carbon (Warren,

1984), by deduction, the dominant signal retrieved at 840 nm by our UAS is indicative of the weathering crust state, inclusive

of ice grain sizes, ice density, porosity and interstitial and ponded surface meltwater. Reflectance at 840 nm thus essentially

provides an indication of the presence or absence of air-ice interfaces available for high-angle light scattering, whereby more10

interfaces result in higher albedo (Jonsell et al., 2003).
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Figure 4. Weathering crust evolution. (a) Change in 840 nm reflectance between 20 and 21 July 2017: positive values indicate an increase

in reflectance from 20 to 21 July. (b) as (a) but for 21–22 July change. (c-e) RGB-true-colour composites of surface within black rectangle

shown in panels (a) and (b). (f-h) Zoomed RGB-true-colour composites of surface within yellow rectangle in panels c-e. (c,f) 20 July 2017,

(d,g) 21 July 2017, (e,h) 22 July 2017.

UAS observations from S6 show a widespread increase in 840 nm reflectance between 20 July and 21 July (Fig. 4a). True-

colour UAV composites illustrate a transition from wet, polished and impermeable ice surfaces (Fig. 4c,f) to drained, whiter

ice with meltwater draining through the porous near-surface (Fig. 4d,g) and also shown by oblique surface photos (Suppl.

Fig. D1b,c). This change was coincident with the surface energy balance returning to a shortwave-dominant regime following

4 d of dramatically reduced net shortwave radiation (Fig. 3a) and 1–2 d of rainfall. Following regrowth of the weathering5

crust and drainage of ponded meltwater there were no further systematic changes in NIR reflectance (Fig. 4b) or true-colour

composites (Fig. 4d,e). These findings are consistent with previous studies showing that weathering crust development versus

decay is controlled primarily by the relative dominance of radiative or turbulent fluxes in the surface energy budget (Muller

and Keeler, 1969; Schuler, 2004). Further, the reduction of albedo by rainfall through weathering crust stripping means that the

melt-generating potential of cyclonic moisture intrusions which have been shown to account for ∼ 40 % of total precipitation10

over Greenland (Oltmanns et al., 2019) is likely to be higher if this rainfall-albedo feedback is accounted for in regional climate

models.
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Figure 5. Percentage coverage of each surface type through time at S6.

4.4 Surface classification change through time

Repeat UAS acquisitions at S6 showed that the proportional coverage of different surface classes varied significantly from

one day to the next (Fig. 5). Over the study period, LA coverage varied by 19% and HA coverage by 11%. The reduction in

snow and CI between 15 July and 20 July was caused by rainfall and high winds on 18 and 19 July which resulted in high

sensible heat fluxes (Fig.3a) and rapid surface melting on 19 July despite low net shortwave radiation (Fig 3b). Rainfall caused5

widespread reduction of the thickness of the porous near-surface weathering crust layer and transient cryoconite hole melt-out,

dispersing cryoconite granules and darkening the surface further (Shimada et al., 2016; Takeuchi et al., 2018). On 20 July only

5% of the surface was CI, compared to ∼10% on 15 July, with the majority of the area (87%) classified as LA or HA. However,

the data used to train our classifier has few examples of CI which are dark due to very thin or absent weathering crusts and so

it is likely that some CI surfaces may have been mis-classified as LA. Subsequently, CI coverage increased on 21 July and was10

associated with a 9% increase in albedo (Fig. 3d) and regrowth of the weathering crust (Fig. 4).

From 21 to 23 July there was relatively little change in proportional surface cover. However, from 23 to 24 July there was

a substantial increase in HA, together with the appearance of water and cryoconite and a 10% albedo reduction (Fig. 3d).

Furthermore, variable illumination conditions during the 24 July flight over the western half of the study area caused over-

estimation of reflectance, likely favouring classification as CI, and so we probably did not capture the full magnitude of surface15

darkening.

The apparent increase in HA coverage on 24 July was probably not driven entirely by algal growth. Population doubling

times are estimated to be 5 d (Williamson et al., 2018), longer than the 1 d here. Indeed, LA coverage declined on 24 July while

CI remained constant, whereas we would expect both LA and HA to increase in the case of widespread population growth.

Instead, cells in LA areas may have been mobilised by the abundant surface meltwater and then deposited downslope in higher20

concentrations: air temperatures stayed above 0oC overnight from 23 to 24 July (Fig. 3b) associated with higher sensible heat

fluxes (Fig. 3a), causing the most daily modelled melting of the observation period (Fig. 3b). Furthermore, the sensible heat
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flux increased the proportion of surface melting relative to sub-surface melting by shortwave penetration, likely thinning the

weathering crust and further increasing the amount of liquid meltwater available on the surface, reducing albedo and increasing

the likelihood of misclassification as HA. However, we note that our classification approach relies on coarse surface categories.

Any LA ice patch loaded with algae towards the upper bounds of 103 cells only needs a relatively small amount of growth

to become loaded with 104 cells found in HA samples (Sect. 3.5), and so in some pixels the algal population need not have5

doubled in order to switch from LA to HA. We therefore cannot rule out the role of algae in causing daily surface type changes.

We also found that albedo was a weak predictor of surface class, with considerable overlap in the albedo of the various

classes (Fig. 1c,f). Broadband albedo alone is therefore not a reliable predictor of ice surface type and cannot be used to infer

the presence of glacier algae or other LAIs.

These findings illustrate that there are two principal reasons why surface classes might change through time: (1) algal growth10

(and removal, for instance by flushing by meltwater), and (2) physical changes which result in (mis-)classification. We cannot

uniquely distinguish between changes caused by algae versus by the weathering crust. First, algal growth is associated with

enhanced melting, which reduces the thickness of the weathering crust and liberates liquid water and nutrients, stimulating

further growth (Cook et al., 2019a). Second, changes in weathering crust optics occur beneath the algae, so any diagnostic

algal feature present in our UAS images may change as the surface microtopography consitituting the cell habitat changes.15

Third, there is uncertainty in spectral biomarkers unique to glacier algae. Theoretically, a simple band ratio, spectral feature

identification or spectral mixing technique could be used to detect glacier algae as has been achieved for snow algae (Takeuchi

et al., 2015; Painter et al., 2001; Huovinen et al., 2018). However, absorption by Mesotaenium berggrenii and Ancylonema nor-

denskiöldii (Williamson et al., 2019), the species found on the GrIS, is dominated by phenolic compounds that absorb strongly

across the visible wavelengths (Williamson et al., 2018; Remias et al., 2012) and obscure potentially diagnostic spectral fea-20

tures associated with other algal pigments (Cook et al., 2017, 2019b). A subtle absorption feature related to Chlorophyll-a is

sometimes detectable using high spectral resolution measurements but is not visible in our multispectral imagery.

4.5 Upscaling to satellite scales

Our measurements at S6 were undertaken coincident with clear-sky observations by S-2 and MODIS MOD10A1. There was

generally close agreement between UAS and satellite-derived albedo measured at S6 (Fig. 3d). We attribute discrepancies to25

unavoidable differences between the radiometric calibration and narrowband-broadband conversion techniques and the dif-

ferent degrees of spatial integration. Nevertheless, the direction and magnitude of albedo change between the UAS and S-2

showed good agreement, whilst in general the UAS and MOD10A1 agreed on the direction of albedo changes (Fig. 3d). In the

following section we use our UAS data to understand variability in surface type and albedo measured by S-2 and MOD10A1.

4.5.1 Characterisation of sub-S-2-scales30

Sensor spatial resolution is important for algae detection. Classified S-2 data (Fig. 6a,b) shows that only CI and LA were

identified at 20 m resolution, whereas at 5 cm resolution UAS imagery clearly showed frequent patches of HA within any

arbitrary 20 by 20 m sub-area (Fig. 1b).
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Figure 6. Observations from S-2 in UAS and MODIS areas. (a,b) Surface type classification from S-2. (c,d) Albedo from S-2. (a,c) 20 July,

(b,d) 21 July. White rectangles indicate 500 m MODIS sinusoidal grid pixels covering study area; black rectangle indicates UAS study area.

LA⇒ LA LA⇒ CI

20 July 21 July 20 July 21 July

CI 1 % ⇑ 10 % 5 % ⇑ 18 %

LA 59 % ⇑ 65 % 73 % ⇓ 68 %

HA 33 % ⇓ 18 % 15 % ⇓ 7 %

Table 1. Changes in the sub-S-2-pixel proportional coverage of the main surface classes from 20 to 21 July, aggregated for those S-2 pixels

which did not change class (LA⇒LA) compared to those which did (LA⇒CI). Vertical arrows show direction of change between days.

15% of S-2 pixels covering the UAS area changed from LA to CI between 20 July and 21 July. We used our UAS data to

examine changes in surface class within each S-2 pixel (Table 1). The differences between those S-2 pixels which changed

class versus those which did not were small and S-2 pixels which transitioned to CI continued to be algae-dominated. This

demonstrates that the patch dynamics of algal blooms, spatio-temporal variations in snow melt, weathering crust dynamics and

surface roughness at sub-S-2-pixel scales (∼1–10 m) are highly relevant for the interpretation of S-2 measurements and hence5

the attribution of surface melting to specific processes.

Spatial aggregation favours measurement of the mean surface properties. Our measurements suggest that under predomi-

nantly snow-free conditions then for an S-2 pixel to be classified as LA, the majority (>80%) of of the pixel needs to be covered
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Figure 7. Sub-S-2-pixel albedo distributions derived from UAS measurements. (a-d) Distributions (one line per S-2 pixel), with black line

indicating mean albedo distribution; albedo on x-axis. (a) Clean-ice pixels on 20 July, (b) Clean-ice pixels on 21 July, (c), Light-algae pixels

on 20 July, (d) Light-algae pixels on 21 July. (e) Distributions of albedo change in the pixels which changed class between 20 July and 21

July (one line per pixel), in 0.02 bins. Colour of each bin corresponds to mean albedo of pixels in the bin on 21 July.

in algae, with a significant amount of HA to compensate for the impact of residual CI areas upon the spatial average. We expect

that 100% coverage by LA would also be sufficient to identify algal coverage at S-2 scales but we cannot show this with our

data.

Under reduced shortwave conditions on 20 July there was some evidence of a bi-modal albedo distribution within CI S-2

pixels (Fig. 7a). Once shortwave-dominant conditions returned the albedo distribution became more gaussian (Fig. 7b). In5

contrast, the albedo distribution within LA S-2 pixels exhibited unimodal gaussian characteristics on both days (Fig. 7c,d).

Nevertheless, within the LA class there was an appreciable shift from 20 to 21 July to a larger range in sub-S-2-pixel albedo

(Fig. 7c,d), highlighting significant variability in sub-pixel albedo. Between 20 and 21 July, 91% of the UAS study area

remained the same or increased in albedo (Fig. 7e). Areas in which albedo declined already had low albedo (as expressed by

the colour of each curve in Fig. 7e), while the surfaces which increased in albedo already had high albedo.10

It is clear that S-2 estimates of algal growth presence are conservative. This is consistent with Cook et al. (2019b) who found

much higher HA coverage in UAV imagery than S-2 imagery due to spatial integration which captures the mean reflectance of
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Figure 8. Histograms of S-2-derived albedo within the two MODIS pixels covering the UAS survey area on (a) 20 July and (b) 21 July.

the whole area of interest. This suggests that their estimates of spatial coverage by algae over the GrIS western ablation zone

and their derived estimate of total runoff attributed to glacier algal growth (6–9 %) are likely to be conservative. Furthermore,

like in our UAS imagery, detection of algae by S-2 is likely to be confounded by changes in the weathering crust which cause

optical changes of similar or greater magnitude than those attributable to glacier algae alone.

4.5.2 Characterisation of sub-MODIS pixel scales5

The daily MODIS albedo product, MOD10A1, has a coarse spatial resolution of 500 m and is known to disagree with smaller-

scale in-situ measurements of albedo at automatic weather stations, especially in the ablation zone (Ryan et al., 2017). This

may have ramifications for melt rate calculations that depend on observations of albedo made at coarse spatial resolutions. We

used S-2 observations to examine sub-MODIS-pixel MOD10A1 albedo distributions in the same way that we used UAS data

to examine sub-pixel S-2 albedo distributions. For both days of S-2 observations, we examined all 20×20 m S-2 pixels that10

fell inside two MODIS pixels at S6 (Fig. 6).

S-2 albedo within the two MODIS pixels was non-normal and left-skewed on both days of S-2 overpass (Fig. 8). Despite

substantial sub-MODIS-pixel changes in albedo there was no net change observed in the mean MOD10A1 albedo of the two

pixels (Fig. 4a). Examination of each MODIS pixel separately (Fig. 6) showed that 17% of the western pixel changed from LA

to CI yet, in contrast, MOD10A1 indicated a 1% albedo decrease, while in the eastern pixel 7% of the area changed from LA15

to CI yet no albedo change was detected by MOD10A1. Albedo increases were measured by S-2 in both MOD10A1 pixels.

This demonstrates that low spectral and spatial resolution MODIS imagery fails to resolve spatio-temporal patterns of albedo

at the surface and so it cannot be used to attribute melting to specific processes such as weathering crust dynamics, biological

growth and decline, impurity accumulation and supraglacial hydrology.

To estimate the impact of non-normal sub-MODIS-pixel albedo distributions on melt rates we ran our energy balance model20

in 0.01 albedo increments, with fluxes fixed to those observed at S6 on 21 July at 13:00 local time, to derive an hourly melt rate

for each albedo value in the distribution. We then applied these melt rates to each S-2 pixel within the two MODIS pixels as a

function of the S-2 pixel’s albedo value to estimate the melt flux between 13:00 and 14:00. On 20 July, the distribution-derived

melting caused by net shortwave radiation was 241 m3, whereas using the mean albedo computed from all S-2 pixels it was
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236 m3 w.e. On 21 July melting was estimated as 217 m3 w.e. and 213 m3 w.e respectively. The sub-MODIS-scale skew in

albedo distribution therefore has a small but non-negligible (∼2%) difference on estimated surface melting and warrants further

investigation over wider spatial and temporal scales.

5 Conclusions

Glacier algae are ubiquitous in the two areas of the western GrIS ablation zone that we surveyed. Their local distribution5

across the ice surface is principally a function of local topography and the characteristics of the surface hydrological network.

Rougher surfaces yield local depressions with lower albedos and in which concentrations of algae tend to be higher, suggesting

that environmental conditions for growth — especially liquid meltwater presence — are met more readily in these areas

and/or that cells which have grown elsewhere can be mobilised and then deposited further downstream. These bio-physical

characteristics result in significant albedo variability when compared to smoother ice surfaces where glacier algae tend to be10

distributed more homogeneously.

The distribution and concentration of algal blooms at local scales changes significantly from one day to the next, with ‘light

algae’ surface coverage varying over a range of 19% during our study at S6. However, algal population sizes require several

days to double and therefore apparent increases in high algal coverage from one day to the next are more likely to principally

be the result of local mobilisation and re-deposition in concentrated patches by supraglacial meltwater flow. Furthermore,15

whilst glacier algae are potent albedo reducers, daily albedo changes are predominantly associated with physical weathering

crust changes controlled by the surface energy budget. The optics of the weathering crust are so dominant over other albedo-

affecting processes that under high turbulent heat fluxes the albedo is principally determined by the state of the weathering

crust (i.e. density/porosity, interstital and ponded water content). Only under shortwave-dominant energy conditions can a

weathering crust develop, enabling LAIs to exert more control upon albedo both directly and by modifying the optics of the20

underlying ice surface via enhanced melting at patch scales.

Upscaling of our observations to satellite sensor scales shows that Sentinel-2 is conservative in its detection of glacier algae

and so retrievals of algal biomass by Sentinel-2 are likely to be under-estimated, especially under meteorological conditions

that enable widespread development of a weathering crust. Under shortwave-dominant energy conditions, albedo over 20 m

scales (sub-Sentinel-2-pixel) is generally uni-modal and unskewed and so is representative of sub-pixel albedo variability. At25

500 m scales, MOD10A1 does not always capture widespread albedo changes measured by other sensors. Sub-MOD10A1

albedo distributions were left-skewed over our bare-ice study area, which is equivalent to a ∼2% under-estimate in melting

derived from surface energy budget calculations which use only albedo measurements at coarse scales such as those in the

500 m MOD10A1 product. Future research should seek to further constrain weathering crust processes and their controls upon

albedo, and should favour use of higher spatial resolution albedo data in heterogeneous ablation zones.30

17



Code and data availability. Code underlying the processing and analysis: doi:10.5281/zenodo.3598382. Processed UAS data for S6 and

associated trained classifier: [awaiting DOI]. Processed UAS data for UPE: [awaiting DOI]. Algal cell counts for UPE: [awaiting DOI].

Classified Sentinel-2 data: [awaiting DOI]. Unprocessed UAS data for S6: shortdoi:10/c72x and for UPE: shortdoi:10/c72z. UPE_U AWS

data were provided by the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and the Greenland Analogue Project (GAP)

through the Geological Survey of Denmark and Greenland (GEUS) (http://www.promice.dk) and S6 AWS data were provided by the Institute5

for Marine and Atmospheric Research, Utrecht (IMAU, https://www.projects.science.uu.nl/iceclimate/aws/). MODIS MOD10A1 data were

provided by the National Snow and Ice Data Center (https://nsidc.org/data/mod10a1) and Sentinel-2 data were provided through Sinergise

(https://www.sinergise.com) by the European Space Agency SENTINEL Program (http://sentinel.esa.int).
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Appendix A: Overpass times

Table A1. Times of data acquisition by UAS, S-2 and MODIS (local time, UTC-2). Asterisk indicates variable illumination conditions during

UAS flight.

Date UAS S-2 MODIS

15 Jul 11:00 - 13:40

20 Jul 12:30 12:59 12:20

21 Jul 15:10 13:19 13:05

22 Jul 10:00 - 13:45

23 Jul 11:00 - 12:50

24 Jul 13:00* - 13:35
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Appendix B: Classifier confusion matrices
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Figure B1. Confusion matrices and normalised confusion matrices for the Random Forests models applied to the UAS (a,b) and Sentinel-2

(c,d) data. Confusion matrices show predicted class on y-axis and actual class on x-axis. The scores at the intersections show the frequency

of instances.

20



Appendix C: Algal cell counts at UPE
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Figure C1. Histogram of cell counts undertaken at UPE on 26 July 2018. The horizontal bars illustrate the range of CI (blue), LA (orange)

and HA (red) by two different metrics: (a) ’bounds’, using the boundaries of CI < 625 cells ml−1, HA > 2.9×104 cells ml−1, with LA

corresponding to the values between these boundaries, and (b) X̄ ± 1σ, which corresponds to the abundance ranges of the surface type

classes from S6 reported by Cook et al. (2019b) which were used to train the surface classifier used in this study (Sect. 3.5). Percentage

values refer to the number of surface samples which fall into each of these categories.

Seventy-five biological samples taken at randomised coordinates within the UPE survey area (Sect. 4.1) revealed the

widespread presence of glacier algae (Fig. C1). Whether using the cell abundance ranges defined with S6 measurements Cook

et al. (2019b) or using the mean S6 cell abundances to define boundaries between different surface types, it is clear that cell

abundances representative of LA and HA coverage were present on the bare ice surface. Under the bounds-based approach,5

which enables us to include all of our samples in estimating proportional surface type cover, 80% of the UPE survey area was

algae-covered.
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Appendix D: Photographs from S6 survey area

Figure D1. Oblique surface photos of the UAS survey area at S6, all angled approximately west/south-west. Yellow rectangle in each photo

shows location of the same ∼1.5 m tall pole used to co-register the photos. All capture times are in local time (LT). (a) 15 July, before

snowfall. (b) 19 July, towards the end of stormy conditions that dominated 18–19 July. (c) 20 July, following a return to shortwave-dominant

energy balance conditions. (d) Sketch map showing approximate positions from which each photo was taken. UAS survey area indicated by

grey box. Location of pole used to co-register images indicated by yellow square.
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Figure D2. Oblique photograph illustrating locally high concentrations of flushed impurities including glacier algae at a change-in-gradient

of an ephemeral surface stream incised through stagnant snowpack, 26 June 2017, with approximate scale bar. Photograph taken within∼100

m of UAS survey area.
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