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Abstract. We investigate changing precipitation patterns in the Kangerlussuaq region of west central Greenland during the

Holocene thermal maximum, using a new chronology of ice sheet terminus position through the Holocene and a novel inverse

modeling approach based on the unscented transform (UT). The UT is applied to estimate changes in annual precipitation

in order to reduce the misfit between modeled and observed terminus positions. We demonstrate the effectiveness of the UT

for time-dependent data assimilation, highlighting its low computational cost and trivial parallel implementation. Our results5

indicate that Holocene warming coincided with elevated precipitation, without which modeled retreat in the Kangerlussuaq

region is more rapid than suggested by observations. Less conclusive is if high temperatures during the HTM were specifically

associated with a transient increase in precipitation, as the results depend on the assumed temperature history. Our results

highlight the important role that changing precipitation patterns had in controlling ice sheet extent during the Holocene.

1 Introduction10

During the early Holocene (∼11.7 - 8 ka BP), terrestrial and marine climate proxies from the northern hemisphere reveal a

warmer than present peak in temperature (Kaufman et al., 2004; Marcott et al., 2013). This period of elevated temperatures,

likely initiated by greater than modern insolation, is referred to as the Holocene thermal maximum (HTM). Its onset, duration,

and severity were likely spatially variable (Kaufman et al., 2004). Records of HTM warming can be found in Greenland ice

core records. For example, temperatures measured in the Dye-3 borehole show a pronounced HTM signal occurring from 715

to 4 ka BP and having value of 2.5◦ above present temperatures (Dahl-Jensen et al., 1998; Miller et al., 2010), whereas at the

GISP2 site, the HTM appears to occur slightly earlier, following the 8.2 ka BP cold event (Kobashi et al., 2017) (Figure 1).

While warming during the HTM is well established, less is known about the regional changes in precipitation that accompa-

nied increased temperatures. Ice core records provide long term estimates of accumulation (Alley et al., 1993), but these point

measurements near ice divides are not representative of the precipitation across the ice sheet, particularly at lower elevations20

near the coast. Because the HTM was accompanied by lower Arctic sea ice extent (Polyak et al., 2010), it is possible that ad-

ditional moisture was available to the GrIS from open Arctic waters. This is supported by proxy evidence showing an increase
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in winter precipitation in western Greenland coincident with HTM warming (Thomas et al., 2016). However, temperature is

known with greater certainty than precipitation.

Understanding feedbacks between temperature and precipitation during the HTM has implications for the future of the

GrIS. Warming and declining sea ice are projected to cause an increase in Arctic precipitation (Bintanja and Selten, 2014;

Singarayer et al., 2006). On a global scale, the moisture content of the atmosphere increases by around 7% for every degree5

of warming, according to the Clausius-Clapeyron relation. On a regional scale, declining arctic sea ice is expected to cause

changes in atmospheric circulation, bringing more moisture to the Arctic (Bintanja and Selten, 2014). While there are important

differences between HTM and modern climate, the history of retreat in West Greenland may provide insights into how the GrIS

will respond to a warmer and possibly wetter future climate.

Modeling studies indicate that Holocene retreat in land terminating regions of the GrIS were controlled primarily by surface10

mass balance rather than ice dynamics (Cuzzone et al., 2019; Lecavalier et al., 2014). Given the primary importance of surface

mass balance in controlling modeled retreat, we explore the hypothesis that enhanced winter snowfall during the HTM may

have slowed retreat by partially offsetting increased surface melt (Thomas et al., 2016). We investigate changes in precipita-

tion in a land terminating sector of the western central GrIS, near Kangerlussuaq, taking advantage of a new chronology of

ice sheet terminus position (Young et al., 2019, In Review) and a novel inverse modeling approach based on the unscented15

transform (UT) (Julier and Uhlmann, 1997). In particular, we use the UT to estimate changes in annual precipitation during

the Holocene by reducing the misfit between modeled and observed terminus positions in an isothermal flowline ice dynamics

model (Brinkerhoff et al., 2017) (section 2.1).

The inverse problem is posed as a Bayesian inference problem, and its solution involves estimating a non-Gaussian poste-

rior probability distribution. Markov Chain Monte Carlo (MCMC) methods, such as Metropolis Hastings method (Chib and20

Greenberg, 1995), provide one means of solving the inference problem by generating random samples from the posterior dis-

tribution. Generating samples from the posterior, however, requires repeatedly running the ice dynamics model with different

precipitation histories as input, which is intractable even for a relatively computationally inexpensive flowline model.

The unscented transform provides a computationally efficient and trivially parallelizable alternative to MCMC methods. The

basic idea of the unscented transform is to use a small, fixed number of deterministic sample points in order to estimate the25

statistical moments (e.g. mean and covariance) of the posterior distribution. Sigma points, each of which represents a different

precipitation history input to the ice dynamics model, are generated a priori (section 2.5.3). Consequently, all model runs can

be performed simultaneously in parallel resulting in at least a 100 fold speed up compared to MCMC methods.

2 Numerical methods for inference

2.1 Ice-sheet model30

We use the 1D, isothermal, flowline model with higher-order momentum balance described in Brinkerhoff et al. (2017). The

momentum conservation equations are simplified using the Blatter-Pattyn approximation, assuming hydrostatic pressure and
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negligible vertical resistive stresses (Blatter, 1995; Pattyn, 2003). Default parameter values used in this work are specified in

Table 1.

We adopt a linear sliding law of the form

τb = β2Nub (1)

where τb is basal shear stress, β2 is a constant basal traction parameter, N is effective pressure, and ub is sliding speed. Based5

on borehole water pressure measurements in Wright et al. (2016), basal water pressure Pw is assumed to be a fixed fraction

Pfrac = 0.85 of ice overburden pressure P0. Effective pressure is therefore given by

N = P0−PfracP0. (2)

The basal traction parameter β2 is tuned to minimize the misfit between modeled and observed surface velocities from Moug-

inot et al. (2017) for modern Isunnguata Sermia.10

2.2 Flowline Selection and Moraine Age Constraints

To define the path followed by ice, we assume that flow follows the modern surface velocity field inland of the present day

margin. In ice free regions, the direction of ice flow is inferred from bedrock topography (Figure 1). Since the direction of ice

flow is unknown and time varying, we cannot directly quantify the uncertainty introduced by errors in flowline selection. To

account for some of this uncertainty, we perform inversions on two plausible, adjacent paleo-flowlines in the Kangerlussuaq15

area.

The rate of Holocene retreat on each flowline is estimated using constraints on ice sheet terminus position from (Young et al.,

2019, In Review) (Figure 1). Terminus position data in Young et al. (2019, In Review) indicates that in the early Holocene (11.6

ka BP), the ice sheet margin was some tens of kilometers inland of the present day coastline. Although the moraine patterns

are spatially complex, generally speaking there was a period of moderate retreat (∼10 km on the northern flowline and ∼3020

km on the southern flowline) from 11.6 to 10.3 ka BP, followed by rapid retreat (∼100 km on both flowlines) from 10.3 to 8.1

ka BP. By 8.1 ka BP, the margin position was within 20 km of its present position on both flowlines (Figure 5). The modern

terminus position provides one additional constraint. Moraine ages have uncertainties of up to ± 400 years.

For modern bedrock geometry along the flowlines, we use BedMachine v3 (Morlighem et al., 2017). Isostatic uplift and

relative sea level changes are accounted for using a Glacial isostatic adjustment model (Caron et al., 2018). This model,25

combined with the retreat chronology in Young et al. (2019, In Review), indicate that ice remained grounded on both the

northern and southern flowlines from 11.6 ka BP onward.

2.3 Positive degree day model

Surface mass balance is estimated using a positive degree day (PDD) model (Johannesson et al., 1995). Annual surface mass

balance is constructed in the PDD model using estimates of average monthly precipitation and temperature. Inputs into the30

PDD model include the unknown ice surface elevation S, modern monthly temperature Tm and precipitation Pm along the
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flowlines, as well as the seasonal temperature anomaly ∆T . As in Cuzzone et al. (2019) , modern temperature and precipitation

are computed as 30 year averages from 1980-2010 using Box (2013).

To assess the sensitivity of modeled retreat history to temperature, we perform experiments using temperature reconstructions

from both Buizert et al. (2018) and Dahl-Jensen et al. (1998). For the spatially explicit Buizert et al. (2018) reconstruction,

monthly temperature anomalies are computed as averages along the flowlines. In contrast, Dahl-Jensen et al. (1998) reconstruct5

temperature only at the GRIP and Dye-3 borehole locations (Figure 1). Since a full Holocene reconstruction is unavailable at

the Dye-3 borehole site, which is closer to Kangerlussuaq, we use the temperature reconstruction at GRIP. The HTM is roughly

0.3◦ C warmer and 1,500 years later in Dahl-Jensen et al. (1998) than Buizert et al. (2018) (Figure 6)

A limitation of the Dahl-Jensen et al. (1998) reconstruction is that it does not resolve seasonal temperatures. To address this,

we calculate the difference between monthly and mean annual temperatures in Buizert et al. (2018) and apply those offsets to10

the mean annual temperature at GRIP from Dahl-Jensen et al. (1998).

Surface temperature T is computed monthly as

T = Tm + ∆T +α(S−Sm) (3)

where Sm is the modern surface elevation, and α= 5◦ C km−1 is the lapse rate (Abe-Ouchi et al., 2007). Following Ritz et al.

(2001) and Cuzzone et al. (2019), precipitation P along the flowline is estimated based on the Clausius-Clapeyron relation. In15

particular precipitation is estimated by

P = PT + ∆P = Pm exp(λp(T −Tm)) + ∆P. (4)

The term PT accounts for changes in precipitation solely due to changes in temperature. Here λp = 0.07, which results in a

7% increase in precipitation for every 1◦ C increase in temperature above modern (Abe-Ouchi et al., 2007; Ritz et al., 2001).

The term PT does not capture the effects of many unknown climate factors that may have caused dynamic, regional changes20

in Holocene precipitation. Therefore, we introduce a precipitation anomaly term ∆P , analogous to the temperature anomaly

∆T . This time-dependent function, which has units of meters water equivalent (m.w.e.) a−1, is used to adjust precipitation

uniformly across a flowline in order to reduce mismatch between modeled and observed terminus positions. Unlike ∆T , which

can be inferred from ice cores, ∆P will be used as a control variable to be determined using the inverse methods detailed in

section 2.5.3. Equations 3 and 4 provide a method of accounting for elevation changes through time and downscaling inputs to25

match the mesh resolution of the model (∼ 1 km).

Positive degree days and snowfall are computed month-by-month based on mean monthly temperature and precipitation

(Johannesson et al., 1995). Snow is melted first at a rate of 5 × 10−3 m.w.e. per degree day followed by ice at a rate of 8 ×
10−3 m.w.e. per degree day. Snow melt is initially supposed to refreeze in the snowpack as superimposed ice. Runoff begins

when the superimposed ice reaches a given fraction (60%) of the snow cover (Reeh, 1991). A listing of ice-flow and PDD30

model parameters is provided in Table 1, and all data sets used in the model are shown in Table 2.
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Table 1. Summary of primary model parameters used in this work. Default values are provided where applicable.

Description Symbol Value Units

PDD Model Parameters

Std. deviation σ 5.5 C

Std. deviation, accumulation σa 5 C

Ablation rate, snow λs 5×10−3 m.w.e. C−1 d −1

Ablation rate, ice λi 8×10−3 m.w.e. C−1 d−1

Precipitation param. λp 7×10−2 C−1

Superimposed ice fraction pmax 0.6 -

Ice Flow Parameters

Rate factor A 3.5×10−25 s−1 Pa−3

Basal traction β2 1.2×10−3 Pa a m−1

Water pressure fraction Pfrac 0.85 -

Precipitation Prior

Prior kernel variance σ2
p 5×10−4 -

Prior time Scale τ 8×103 -

Measurement Prior

Prior kernel variance σ2
` 1×106 -

2.4 Modeling Limitations

A limitation of our modeling approach is that we do not account for potential ice dynamical effects caused by changes in

surface runoff or subglacial hydrology. Modeling melt water runoff would be difficult in a flowline model due to flux of

melt water in and out of the path of ice flow. Another limitation is that our model is isothermal. Unless ice temperature is

treated in a vertically averaged sense, resolving temperature would require a 2D mesh, which would considerably increase the5

computational cost of the model. We consider the consequences of this simplification in section 3.3, where we test sensitivity

to the ice hardness parameter.

The PDD scheme outlined in section 2.3 does not account for changes in surface mass balance due to orographic forcing,

or other complex interactions between the ice sheet and climate system that could be captured by coupling the ice sheet model

to an Earth system model (Bahadory and Tarasov, 2018). Since our emphasis is on estimating precipitation and surface mass10

balance using an inverse modeling approach, we believe the computational cost of such an approach outweighs the benefits.

Uncertainties related to feedbacks between ice dynamics and climate are assessed via extensive sensitivity testing (section 3.3).

2.5 Data Assimilation Approach

In order to assess the initial mismatch between modeled and observed retreat histories, we perform a reference experiment with

∆P = 0 and ∆T estimates from both Buizert et al. (2018) and Dahl-Jensen et al. (1998). To improve the fit to observations,15

we assimilate terminus position data to obtain improved estimates of Holocene precipitation anomalies. Previous modeling

studies indicate that Holocene retreat in land-terminating sectors of the GrIS were dominated by surface mass balance rather
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Table 2. Citations for the primary data sets used in this work.

Data Citation

Terminus position chronology Young et al. (2019, In Review)

Bedrock elevation Morlighem et al. (2017)

Modern ice surface velocity Mouginot et al. (2017)

Modern precipitation Box (2013)

Temperature reconstructions Buizert et al. (2018)

Dahl-Jensen et al. (1998)

Glacial Isostatic Adjustment Caron et al. (2018)

than ice dynamics (Cuzzone et al., 2019; Lecavalier et al., 2014). Uncertainty in Holocene climate, and consequently surface

mass balance, is therefore likely the primary cause of discrepancies between modeled and observed terminus positions.

In principle ∆P , ∆T , or both could be tuned to improve the fit between modeled and observed terminus positions. We focus

on precipitation because it is more poorly constrained than temperature. In the upcoming sections, we introduce a framework

for time-dependent data assimilation based on the unscented transform (UT). Sections 2.5.1 - 2.5.2 outline the basic tenets of5

the UT. Sections 2.5.3 - 2.5.7 outline how the UT can be applied to estimate precipitation anomalies.

2.5.1 Overview of the Unscented transform

In what follows, the notation xxx∼N (x0x0x0,Px) means that xxx is a normally distributed random variable with mean vector x0x0x0 and

covariance matrix Px. Suppose that xxx∼N (x0x0x0,Px), and F : Rn→ Rm is a nonlinear function. We would like to estimate the

distribution of the non-Gaussian random variable10

yyy = F(xxx) + εεε. (5)

where εεε∼N (000,R) is the measurement noise.

In general, the non-Gaussian probability distribution for yyy can be approximated using Markov chain Monte Carlo (MCMC)

methods such as the Metropolis-Hastings algorithm (Chib and Greenberg, 1995). However, if the nonlinear function is time-

consuming to compute, generating thousands of MCMC samples is often intractable. As a computationally efficient alternative15

to MCMC methods, Julier and Uhlmann (1997) introduced a method for approximating the mean and covariance of yyy called

the unscented transform (UT) 1.

The term unscented transform has been applied somewhat broadly to a family of methods that approximate the statistical

moments of a non-Gaussian random variable using a small, deterministic set of sample points called sigma points. It is known

primarily in the context of the unscented Kalman filter. However, the UT can be applied more generally as an alternative20

1According to Jeffrey Uhlmann, the creator of the UT, the term “unscented” was inspired by a stick of deodorant and has no technical significance.

6



to traditional MCMC methods. Sigma points and weight sets are designed to accurately estimate moments of a transformed

random variable using a minimal number of function evaluations.

A set of vectors, called sigma points, are chosen with the same weighted sample mean and weighted covariance structure

as xxx. There are many algorithms for generating sigma points sets with different numbers of points and orders of accuracy. A

commonly used set of 2n+ 1 sigma points is given by5

χiχiχi =


x0x0x0 i= 0

x0x0x0−
√
n+κ[

√
Px]i i= 1, · · · ,n

x0x0x0 +
√
n+κ[

√
Px]i i= n+ 1, · · · ,2n

(6)

with corresponding mean / covariance weights given by

w
(m)
i = w

(c)
i =

κ/(n+κ) i= 0

1/2(n+κ) otherwise
. (7)

The notation
[√
Px
]
i

refers to the i-th row of a matrix square root (typically computed by Cholesky factorization) of Px, and

κ is a free parameter controlling the scaling of the sigma points around the mean. Julier and Uhlmann (1997) recommend a10

default value of κ= 3−n. However, κ can be fine tuned to reduce prediction errors for a given problem.

The nonlinear function F is applied to each sigma point to yield a set of transformed points

YiYiYi = F(χiχiχi). (8)

The mean ȳ̄ȳy and covariance matrix Py of yyy are then estimated as weighted sums

ȳ̄ȳy =

2n∑
i=0

w
(m)
i YiYiYi (9)15

Py =

2n∑
i=0

w
(c)
i (YiYiYi− ȳ̄ȳy)(YiYiYi− ȳ̄ȳy)T +R. (10)

A visual example of this algorithm is shown in Figure 2.

2.5.2 Bayesian Inference using the UT

Given a measurement yoyoyo, we would like to estimate the posterior distribution20

P (xxx|yoyoyo)∝ P (yyy|xxx)P (xxx). (11)

Using an approach called statistical linearization (Sarkka, 2013) the joint distribution for [xxx, yyy]T can be approximated byxxx
yyy

∼N
xxx

µµµ

 ,
 Px Pxy

PTxy Py

 (12)
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with

µµµ=
∑
i

w
(m)
i YiYiYi (13)

Py =
∑
i

w
(c)
i (YiYiYi−µµµ)(YiYiYi−µµµ)T +R (14)

5

Pxy =
∑
i

w
(c)
i (XiXiXi−x0x0x0)(YiYiYi−µµµ)T . (15)

Here, XiXiXi and YiYiYi = F(XiXiXi) are sigma points and transformed sigma points respectively. Matrices Py and Pxy are known as the

measurement covariance and cross covariance respectively.

Given a measurement y0y0y0, the joint distribution then easily yields a Gaussian approximation of the posterior distribution.

Letting10

K = PxyP
−1
y (16)

we have

x′x′x′ = xoxoxo +K [yoyoyo−µµµ] (17)

P ′ = Px−KPyKT (18)15

where x′x′x′ and P ′ are approximations of the posterior mean and covariance respectively. Readers familiar with Kalman filters

might recognize that x′x′x′ and P ′ are computed using a Kalman “update” step given a measurement yoyoyo and Kalman gain K

(Sarkka, 2013).

2.5.3 Assimilating Glacier Length Observations

Time-dependent data assimilation using the UT involves running the ice sheet model with a set of different precipitation20

anomaly histories, each corresponding to a different sigma point. This is followed by a post-processing step, which incorporates

the ice sheet terminus chronology data via a correction of the prior mean vector and covariance matrix. Implementation of the

unscented transform is straightforward and easily parallelizable since each model run is independent. In the following section,

we outline the mathematical details of this process.

We seek to find ∆P histories that match the observed retreat history on both flowlines. An optimal solution should reproduce25

the observed retreat history within uncertainty, while not overfitting the data. We discretize the problem by estimating the

precipitation anomaly at times t1, t2, · · · , tn ranging from 11.6 - 0 ka BP. In practice, we use a regular grid of 44 points, spaced
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roughly 250 years apart. Precipitation anomaly values at these time points are denoted by ∆p1,∆p2, · · · ,∆pn respectively and

assembled in a vector

∆p∆p∆p= [∆p1,∆p2, · · · ,∆pn]T . (19)

Given a multivariate Gaussian prior ∆p∆p∆p∼N (∆p0∆p0∆p0,P0), which encodes assumptions about the structure of the precipitation

anomaly (section 2.5.4), we would like to estimate the mean and covariance of the posterior distribution5

P (∆p∆p∆p|̀ 0`0`0)∝ P (`0`0`0|∆p∆p∆p)P (∆p∆p∆p). (20)

Here, the measurement vector

`0`0`0 = [`1, `2, · · · , `m]T (21)

contains measured glacier lengths at discrete points in time. Our procedure for defining the measurement mean yoyoyo and covari-

ance R are discussed in section 2.5.5.10

We can think of the ice sheet model as a function that maps precipitation anomaly inputs to glacier length outputs with some

additive observation noise

`̀̀ = F(∆p∆p∆p) + εεε. (22)

Discrete precipitation anomaly values are linearly interpolated for input into the ice-dynamics model, which has time steps on

the order of months. The function F returns glacier lengths at the same m discrete times as in `0`0`0.15

To predict the posterior distribution, we use the methods outlined in sections 2.5.1 and 2.5.2. First, sigma points are generated

based on the prior distribution for ∆p∆p∆p. To reduce computational costs, we use a minimal set of n+1 = 45 sigma pointsPiPiPi with

corresponding weightsw(m)
i = w

(c)
i generated using the method presented in Menegaz et al. (2011). Their method includes one

free parameter 0<w0 < 1, which can be tuned to reduce prediction errors. While this method has a lower order of accuracy

than other methods, we find it often produces comparable results to other larger sigma point sets in practice.20

Sigma points are propagated through the model to obtain transformed points LiLiLi = F(PiPiPi). In this context, sigma points

PiPiPi correspond to different time-dependent precipitation anomaly histories, while the transformed points LiLiLi correspond to the

resulting glacier length histories given those precipitation anomalies as input (Figure 3). The structure of the sigma points

reflects the mathematical formulation of the Menegaz et al. (2011) sigma points. Hence they are not merely random samples

from the prior distribution.25

Transformed sigma points are computed simultaneously in parallel, using one core per sigma point. After all transformed

sigma points have been computed, the mean and covariance of the posterior distribution are estimated as outlined in Section

2.5.2. In parallel, this procedure takes roughly the same amount of time as a single forward model run. Unlike a standard

filtering approach to data assimilation, all measurement data is incorporated simultaneously rather than time step by time step.

For that reason, the Kalman update step corrects the entire time-dependent precipitation history at once. Moreover, unlike in30
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Kalman smoothing, we approximate the full posterior distribution rather rather than the probability distributions

P (∆pi |̀ 0`0`0)

i= 1, · · · ,n
. (23)

Note that the variables ∆pk with k 6= i are marginalized out of the Kalman smoothing distributions. The use of time-dependent

sigma points distinguishes our approach from standard Kalman filtering or Kalman smoothing approaches, and does not rely

on the assumptions that states (∆pi’s) and measurements (`i’s) satisfy the Markov property.5

2.5.4 Gaussian Process Prior for Regularization

We adopt a Gaussian process prior (Rasmussen, 2004) to control the temporal smoothness of ∆P . A Gaussian process can

be thought of as a distribution over functions. That is, random samples from a Gaussian process are functions rather than

individual points or vectors. A collection of random variables {f(t) : t ∈ T } is said to be drawn from a Gaussian process

with mean function m(·) and covariance function k(·, ·) if for any finite set of elements t1, · · · , tn ∈ T , the random variables10

f(t1), · · · ,f(tn) have the distribution

fff ∼N (mmm,K) (24)

with

fff = [f(t1),f(t2), · · · ,f(tn)]T , (25)

15

mmm= [m(t1),m(t2), · · · ,m(tn)]T , (26)

and

K =


k(t1, t1) · · · k(t1, tn)

...
. . .

...

k(tn, t1) · · · k(tn, tn)

 . (27)

The set T is called the index set, and specifies the domain of the Gaussian process. Here, the index set represents points in

time.20

The prior distribution for ∆p∆p∆p has mean vector ∆p0∆p0∆p0 and covariance matrix P0 =K of the form shown in Equation 27. We

use a squared exponential covariance function

k(t, t′) = σ2
p exp

(
(t− t′)2

2τ2

)
(28)

where σ2 is a scaling constant, and τ is a characteristic time scale. Variables ∆pi and ∆pk are more highly correlated the closer

they are in time. In effect, this acts as a form of temporal regularization, in which smooth precipitation history functions are25

preferred over less smooth ones. We discuss the choice of the mean ∆p0∆p0∆p0 in section 3.2.
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2.5.5 Measurement Mean and Variance

Observations of terminus position are available roughly every 1000 years between 11.6 and 7.2 ka BP, with a gap from 7.2 ka

BP to present. In contrast, model time steps are on the order of months. Due to these disparate time scales, we use the following

procedure to estimate the measurement mean `0`0`0 and covariance matrix R on a time scale more appropriate for the ice sheet

model.5

We define a Gaussian process prior of “candidate” glacier length histories `p(t) as follows. The mean function ˆ̀
p(t) is ob-

tained by linearly interpolating between glacier length observations. The Brownian covariance kernel for the Gaussian process

is defined by

kp(t, t
′) = σ2

` min(t, t′). (29)

Candidate retreat histories are generated by drawing random samples from the Gaussian process. The Brownian covariance10

kernel results in random glacier length histories that are somewhat noisy, but correlated over shorter time scales (Figure ??).

Candidate length histories are resampled so that the mean moraine formation times and uncertainties match the observations

in Young et al. (2019, In Review). Hence, highly implausible candidate histories are rejected. The average length and variance

of this culled set of samples is computed at a series of time slices to obtain a plausible measurement mean `0`0`0 and diagonal

measurement covariance matrix R (Figure 4).15

2.5.6 Iterative Optimization Procedure

Optimizations are conducted in multiple passes. In the first pass, the measurement covariance matrix R is multiplied by a

factor of 1/4 so that the measurements are initially weighted more than the prior. This produces a reasonable fit to the data,

even given a poor initial estimate of ∆P . The optimal precipitation anomaly from a given iteration is used as the prior mean in

the next iteration. We use the same prior covariance matrix P0 for regularization in each iteration. After two to three iterations,20

modeled and observed terminus positions match within measurement uncertainty (Section 3). In our experience, the results of

iteration are not dependent on the choice of prior mean in the first iteration, but we find that convergence can be improved by

choosing a sensible initial guess as in Section 3.2.

2.5.7 Approach to Sensitivity Testing

As described, the data assimilation method accounts for measurement but not model uncertainty. It can easily be extended to25

account for uncertainties in the ice flow and PDD model parameters. We define an augmented state vector

uuu= [∆p∆p∆p, θθθ]T (30)

where θθθ is a vector of scalar parameters including the natural logarithm of the rate factor for ice, the basal traction parameter,

a parameter controlling precipitation scaling with temperature, and the PDD melt rate parameters for ice and snow

θθθ = [ln(A), β2, λp, λi, λs]
T . (31)30
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The prior distribution for the augmented state vector is given by

uuu∼N

∆po

θ0θ0θ0

 ,
P0 0

0 Θ

 (32)

where θ0θ0θ0 is the parameter mean vector and Θ is a diagonal matrix containing parameter variances.

The unscented transform is applied to the augmented function

`̀̀ = F̂(uuu) + εεε (33)5

to obtain estimates of the joint distribution for [∆p∆p∆p, θθθ, `̀̀]T and the conditional distribution for [∆p∆p∆p, θθθ]T | `0`0`0. Since parameters

are included as state variables, sigma points reflect a variety of precipitation histories and parameter sets. A model run for a

particular sigma point is initialized from an appropriate steady state using the parameter set for that point.

2.6 Model Initialization

Model runs are initialized by tuning the precipitation anomaly to obtain a steady state at 12.6 ka BP, with a margin position 510

km beyond the 11.6 ka BP moraine. We invert for a precipitation anomaly time series that forces a retreat of 5 km over 1000

years to obtain an initial ice sheet configuration with the correct terminus position at 11.6 ka BP (Figure 5). This initialization

procedure is intended to ease the ice sheet out of steady state in order to avoid strong transient effects at the beginning of model

runs.

3 Results15

3.1 Reference Experiment

To assess the initial misfit between modeled and observed Holocene retreat, the model is forced with ∆T reconstructions from

Buizert et al. (2018) and Dahl-Jensen et al. (1998) and a zero precipitation anomaly. Precipitation is scaled with temperature

according to Equation 4, neglecting possible influences from changing Arctic sea ice cover, atmospheric circulation, or other

unknown climate factors. Modeled ice retreat is far more rapid than observed on both flowlines (Figure 8). Colder temperatures20

during the early Holocene (Figure 8 a) lead to a somewhat more plausible retreat history using the Dahl-Jensen et al. (1998)

temperature forcing versus the Buizert et al. (2018) forcing. However, by 8 ka BP, ice has retreated inland of the present day

margin in both reconstructions.

3.2 Precipitation Anomaly Inversions

We estimate precipitation anomalies on the northern and southern flowlines using both the Buizert et al. (2018) and Dahl-25

Jensen et al. (1998) temperature reconstructions. Given the rapid retreat in the reference experiment, we expect that a positive

precipitation anomaly will be required to match observed terminus positions in the early Holocene. Therefore, in the first round

12



of optimization, we assume a prior mean of the form

∆P =
1

2
(1− τ̂) (34)

where τ̂ is a rescaled time variable that increases from zero at 11.6 ka BP to one at 0 ka BP. The results of the iterative

optimization procedure are insensitive to the prior mean selected in the first iteration. Using a sigma point scaling parameter

w0 = 0.5 for the Menegaz et al. (2011) sigma point set ensures that a wide region around the mean is explored in each iteration.5

Positive precipitation anomalies are predicted throughout most of the Holocene for both temperature reconstructions (Figure

6). While differences between the northern and southern flowlines are relatively minor, there are significant differences in

precipitation between the Buizert et al. (2018) and Dahl-Jensen et al. (1998) inversions. In the Buizert et al. (2018) inversion,

the largest precipitation anomalies (up to 1 m.w.e. a−1) occur during the early Holocene. Precipitation remains relatively high

during the HTM (10 - 6 ka BP), but dips before the 8.2 ka BP cold event. For the Dahl-Jensen et al. (1998) inversion, ∆P10

is relatively low during the early Holocene, but increases during the HTM (8.5 - 3 ka BP). Unlike the Buizert et al. (2018)

inversion, there is an evident trend between HTM warming and increased snowfall (Figure 9).

Forcing the model with mean estimated precipitation anomalies yields plausible retreat histories on both flowlines. Modeled

and observed retreat chronologies match within within uncertainty (Figure 8). A significant fraction of Holocene precipitation

(typically > 90%) falls as snow. Hence, a positive precipitation anomaly can be interpreted directly as additional snowfall15

/ accumulation. Average HTM snowfall is around 35% higher than modern in both temperature reconstructions (Figure 9).

However, overall trends in Holocene snowfall differ between reconstructions.

3.3 Sensitivity Testing

We assess the sensitivity of Holocene precipitation anomalies to modeling uncertainties by performing an HTM inversion using

the methodology described in Section 2.5.7. To obtain accurate uncertainty estimates, we use a fifth order accurate sigma point20

set based on Li et al. (2017) (Appendix A), as we find that the second order Menegaz et al. (2011) set likely underestimates

covariance. Inversions are performed on the northern flowline using the Buizert et al. (2018) temperature reconstruction. Model

runs are initialized from steady states around at 10.5 ka BP, 500 years prior to the Buizert et al. (2018) HTM. Prior and posterior

parameter values are reported in Table 3.

Mean HTM precipitation anomalies are within 2 cm.w.e. a−1 of the inversion presented in section 3.2 (Figure 10). Parameter25

uncertainties contribute to uncertainty in ∆P . Overall, however, temperature uncertainty is far more significant than uncertainty

in model parameters. Differences in model initialization do not significantly impact the results of the inversion. Although

sensitivity tests are initialized from steady states at 10.5 ka BP, while inversions in Section 3.2 are initialized from a transient

state at 11.6 ka BP, the mean HTM precipitation anomalies are nearly identical. Estimated posterior parameter values are also

similar to the assumed prior values (Table 3).30
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Table 3. Summary of primary model parameters used in this work. Default values are provided where applicable. Prior parameter uncertain-

ties assumed for the sensitivity test are shown in the 2σ column.

Description Symbol Prior Mean 2σ Range Posterior Mean Units

Ablation rate, snow λs 5×10−3 3 - 7×10−3 2.8×10−3 m.w.e. C−1 d −1

Ablation rate, ice λi 8×10−3 6 - 10×10−3 8.9×10−3 m.w.e. C−1 d−1

Precipitation param. λp 7×10−2 5 - 9×10−2 9.8×10−2 C−1

Rate factor A 3.5×10−25 2.1 - 5.7×10−25 2×10−25 s−1 Pa−3

Basal traction β2 1.2×10−3 1.1 - 1.3×10−3 1.2×10−3 Pa a m−1

4 Discussion

We infer changes in Holocene precipitation in the Kangerlussuaq region of western Greenland using a new chronology of

ice sheet terminus position from Young et al. (2019, In Review) and an inverse modeling procedure based on the unscented

transform. We find that scaling precipitation with temperature via the Clausius–Clapeyron equation (Equation 4) results in

excessively fast retreat during the early Holocene for both the Buizert et al. (2018) and Dahl-Jensen et al. (1998) temperature5

reconstructions. Thus, temperature driven changes in precipitation / accumulation alone are not sufficient to reproduce the

observed pattern of retreat. Inversions show that adding precipitation throughout the Holocene and specifically during the

HTM yields a good fit to observations (Figures 6, 8). Since a large fraction of precipitation falls as snow, a positive precipitation

anomaly can be interpreted fairly directly as an increase in accumulation beyond what would be expected from temperature

changes alone.10

There are considerable differences in predicted precipitation anomalies depending on the assumed temperature history.

Inversions using the Buizert et al. (2018) temperature reconstruction show generally decreasing snowfall through the Holocene.

Due to high snowfall in the early Holocene (nearly 100% higher than modern) and a dip in HTM precipitation associated with

the 8.2 ka BP cold event, average HTM snowfall roughly matches the overall Holocene average, which is about 35% above

modern. In contrast, inversions using the Dahl-Jensen et al. (1998) temperature reconstruction show a clear trend between15

HTM warming and increased snowfall (Figure 9). This trend could be interpreted as a transient increase in snowfall due to

reduced Arctic sea ice cover or changes in atmospheric circulation during the HTM.

A large positive ∆P correction during the early Holocene in the Buizert et al. (2018) inversion likely reflects the dependence

of precipitation on temperature. Low temperatures during the early Holocene result in low precipitation. Without an additional

moisture source to increase snowfall, the ice sheet retreats far more rapidly than observed. In the Dahl-Jensen et al. (1998)20

reconstruction, warming occurs more gradually in the early Holocene. Accumulation and ablation are more closely balanced,

resulting in a smaller precipitation anomaly correction from 11.6 to 10 ka BP.

When interpreting results of precipitation inversions, it is important to consider that the Buizert et al. (2018) and Dahl-Jensen

et al. (1998) reconstructions are obtained using different methodologies. The Greenland-wide Buizert et al. (2018) reconstruc-

tion is obtained by merging the TraCE-21ka coupled ocean-atmosphere general circulation model of the last deglaciation (Liu25
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et al., 2009; He et al., 2013) with borehole temperature reconstructions at GISP2, NGRIP, and NEEM. Our estimated precip-

itation history in the Kangerlussuaq region is significantly different from TraCE-21ka, particularly during the early Holocene

and parts of the HTM (Figure 7). In contrast to Buizert et al. (2018), the Dahl-Jensen et al. (1998) temperature reconstruction

at GRIP offers only a pointwise estimate containing no explicit spatial or seasonal information.

While the Buizert et al. (2018) temperature reconstruction is arguably more suitable for our purposes, since it resolves spatial5

and seasonal patterns in ∆T , there is still considerable uncertainty in temperature, particularly near the ice margins. Despite

this, there is some consensus between the Buizert et al. (2018) and Dahl-Jensen et al. (1998) inversions. For example, average

HTM snowfall is roughly 35% higher than modern in both cases (Figure 9).

Predicted HTM precipitation anomalies are not particularly sensitive to uncertainties in the ice sheet or PDD model param-

eters, or to the initialization procedure. In the sensitivity test presented in Section 3.3, model runs are initialized using steady10

states at 10.5 ka BP. Runs in the full Holocene inversions in Section 3.2, which use fixed parameter sets, are initialized from a

transient state at 11.6 ka BP. Even considering these differences in model initialization, estimated HTM precipitation anoma-

lies are comparable in all inversions (Figure 10). Additionally, ∆P does not appear to be sensitive to uncertainties in bedrock

geometry, as inversions conducted with a static bedrock geometry yielded similar results to inversions accounting for isostatic

uplift.15

4.1 Conclusions

4.1.1 The Unscented Transform as a Data Assimilation Method

Significant strides have been made in time-dependent data assimilation in glaciology using adjoint based methods. Goldberg

and Heimbach (2013) infer the initial thickness and basal conditions for a synthetic ice sheet given snapshots of ice thickness

at discrete times. Larour et al. (2014) demonstrate a data assimilation framework within the Ice Sheet System Model (ISSM),20

capable of obtaining temporal estimates of surface mass balance and basal friction given surface altimetry.

In contrast to adjoint based approaches, the unscented transform (UT) does not require computing the Jacobian or Hessian

of an objective function, or special checkpointing code for time-dependent problems. Adjoint based methods are advantageous

for extremely high-dimensional problems, as the required number of model runs is independent of the number of parame-

ters. However, the UT provides more accurate uncertainty estimates than linearization (Julier and Uhlmann, 1997). Hessian25

information can be used to improve uncertainty estimates (Isaac et al., 2015). However, this methodology uses purely local

approximations to the nonlinear function around the maximum a posteriori probability (MAP) estimator, which may affect the

quality of uncertainty estimates.

The unscented transform has advantages over Markov chain Monte Carlo methods for inference problems with a relatively

small number of unknown parameters (< 1000 or so parameters). In this work, we optimize for n= 44 parameters representing30

precipitation anomaly values at discrete points in time. Since function evaluations at each sigma point are independent, the UT

is trivially parallelizable. Consequently, on a high end desktop, the iterative optimization process presented in Section 2.5.6

takes roughly the same amount of time as performing three successive forward model runs.
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MCMC methods can be parallelized to some extent by utilizing multiple interacting Markov chains running in parallel (e.g.

Chowdhury and Jermaine, 2018) or by combining samples from independent chains in a post processing step (e.g. Neiswanger

et al., 2013). Nonetheless, computational bottlenecks persist in MCMC methods since individual Markov chains are inherently

serial. Consequently, UT approximations to the posterior distribution can be generated hundreds to thousands of times faster

for small parameter sets.5

A drawback of the UT is that its accuracy is inherently limited by using a predetermined number of sample points. In

our case, for example, using a minimal set of n+ 1 sigma points for n unknown parameters yields accurate mean estimates

but appears to underestimate covariance when compared to a higher order cubature method. Without testing multiple sigma

point sets and scaling parameters, it can be difficult to assess the accuracy of UT estimates of the posterior. MCMC methods,

in contrast, can provide arbitrarily accurate estimates of the posterior given sufficient computation time. Moreover, they can10

resolve the full posterior distribution rather than computing its moments as in the UT.

An alternative to traditional MCMC methods is to use surrogate models or emulators (Gong and Duan, 2017). Here, a

computationally inexpensive surrogate model is trained to approximate the output of a more complex model function. The

surrogate model can then be used in place of the full model for the purpose of MCMC sampling, significantly reducing the

overall computational cost. A few types of surrogate models have already been applied to glaciological problems including15

deep neural networks (Tarasov et al., 2012) and Gaussian processes (e.g. Chang et al., 2016; Pollard et al., 2016).

Surrogate models require an initial training phase. Pollard et al. (2016), for example, perform 625 ice sheet model runs using

combinations of four unknown simulation parameters. A Gaussian process surrogate model is then fitted to this training data

in order to interpolate the model in parameter space for inference. The number and selection of training points significantly

affects the performance of the surrogate model.20

Interestingly, there is a strong connection between the unscented transform and Gaussian process surrogate models. It can

be shown that sigma points for the UT are optimal training points for a Gaussian process surrogate model in the sense of

minimizing the variance of the expected value of the posterior distribution (Sarkkä et al., 2016). While the details are technical,

one can think of UT sigma points as optimal training points given that (i) the prior distribution is a multivariate Gaussian and

(ii) the Gaussian process surrogate model has a polynomial covariance function.25

4.1.2 Modeling Conclusions

Our work follows a number of previous observationally constrained paleo ice sheet modeling studies (e.g. Tarasov and Peltier,

2002; Lecavalier et al., 2014; Calov et al., 2015). Perhaps most relevant to this work is Lecavalier et al. (2014), who model the

deglaciation of Greenland from the Last Glacial Maximum using a 3-D thermomechanically coupled ice sheet model. Model

runs in Lecavalier et al. (2014) are informed by constraints on relative sea level, ice core thinning, and LGM ice sheet extent.30

In contrast to previous modeling studies, the computational efficiency of the flowline model outlined in Brinkerhoff et al.

(2017) makes time-dependent data-assimilation, sensitivity testing, and robust uncertainty estimation tractable. Sensitivity

testing indicates that estimated precipitation is insensitive to parameter uncertainties in the PDD and ice-dynamics models.

This conclusion supports earlier findings showing that modeled Holocene retreat in land terminating sectors of the GrIS is
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more sensitive to surface mass balance than other factors like the flow law or basal sliding (Cuzzone et al., 2019; Lecavalier

et al., 2014).

A drawback of our modeling approach is that we cannot account for inherently map plane effects such as changes in ice

flow direction, or convergent / divergent flow in or out of the assumed flow path. These factors likely contribute to small dis-

crepancies in estimated precipitation anomalies between the northern and southern flowlines (Figure 6). Beyond computational5

efficiency, there are number of reasons why a flowline model is appropriate for our purposes. The modern flow field near

Kangerlussuaq can be characterized by relatively simple east-to-west flow, and there is an absence of strongly convergent flow

into outlet glaciers. Given the low bedrock relief in the region, and the surface mass balance dominated retreat pattern (Van

Tatenhove et al., 1996; Cuzzone et al., 2019), it is reasonable to assume that the flow regime was similar during the Holocene.

In this work, we do not treat temperature as a random variable with its own covariance structure. However, differences10

between the Buizert et al. (2018) and Dahl-Jensen et al. (1998) inversions indicate that temperature is the dominant source

of uncertainty in ∆P . This result underscores the importance of generating improved, regionally specific, temperature recon-

structions constrained by proxy records. More regionally specific estimates of temperature would help to decrease uncertainty

in the estimated precipitation history.

Despite lingering uncertainties, our modeling results indicate that the Holocene thermal maximum was accompanied by15

elevated snowfall, which slowed ice retreat in the Kangerlussuaq region of the GrIS. Inversions conducted using both the

Buizert et al. (2018) and Dahl-Jensen et al. (1998) temperature reconstructions show average HTM snowfall around 35%

higher than modern. More specifically, in the Dahl-Jensen et al. (1998) inversion, there is a clear trend between HTM warming

and increased accumulation, which could be interpreted as transient increase in precipitation due to reduced Arctic sea ice

cover or changes in atmospheric circulation.20

Code availability. The flowline ice sheet model and PDD model used in this work are available at https://github.com/JacobDowns/flow_

model.

Appendix A: A Higher Order Method for Estimating Covariance

Estimating the mean and covariance of the posterior distribution requires approximating Gaussian weighted expectation inte-

grals of the form25

E[F(xxx)] =

∫
Rn

F(xxx)N (xxx | 000, I) dxxx (A1)

via numerical integratation rules, also called cubature rules, which approximate the expectation integral as a weighted sum

E[F(xxx)]≈Q[F(xxx)] =

N∑
i=1

wiF(χiχiχi). (A2)
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Here, the notation N (xxx | 000, I) refers to a Gaussian probability density function evaluated at the point xxx. General Gaussian

weight functions N (xxx | x0x0x0,Px) are handled by changing variables. Letting
√
Px be a matrix square root of the covariance

matrix, we have∫
Rn

F(xxx)N (xxx | x0x0x0,Px) dxxx

=

∫
Rn

F(x0x0x0 +
√
Px ξξξ)N (ξξξ | 000, I) dξξξ.

(A3)

Cubature rules, including the unscented transform, are constructed to exactly integrate polynomial functions F(xxx) up to a5

certain degree d. Suppose that xxx= [x1,x2, · · · ,xn]T is a point in Rn. A monomial of degree d refers to a function xi11 x
i2
2 · · ·xinn

where the exponents are non-negative integers that sum to d. A polynomial of degree d is a linear combination of monomials

with highest degree d.

Li et al. (2017) describe a fifth-order cubature rule using fully symmetric sets of sigma points. A set X = {χ1χ1χ1,χ2χ2χ2, · · · ,χNχNχN}
is fully symmetric if it is closed under the operations of coordinate position and sign permutations. Their cubature rule has the10

form

Q[F(xxx)] = w1F(0,0, · · · ,0)

+w2

∑
full sym

F(λ,0, · · · ,0)

+w3

∑
full sym

F(λ,λ,0, · · · ,0).

(A4)

The notation
∑

full symF(···) refers to a sum of the function F evaluated at all points in the fully symmetric set generated by the

given point.

Due to the symmetry of the sigma points and the Gaussian weight function, all moments (that is, integrals of Gaussian15

weighted monomial functions) containing an odd order exponent are automatically satisfied. Exploiting this fact, and the

symmetries of the sigma points, it can be shown that satisfying the remaining moment constraint equations up the fifth order

reduces to solving the following system of four equations in four unknowns w1,w2,w3 and λ

E[1] = w1 + 2nw2 + 2n(n− 1)w3

E[x2i ] = 2λ2w2 + 4(n− 1)λ2w3

E[x4i ] = 2λ4w2 + 4(n− 1)λ4w3

E[x2ix
2
j ] = 4λ4w3.

(A5)

By slightly modifying this cubature rule20

Q[F(xxx)] = w1F(0,0, · · · ,0)

+w2

∑
full sym

F(λ1,0, · · · ,0)

+w3

∑
full sym

F(λ2,λ2,0, · · · ,0)

(A6)
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we introduce a new free parameter λ2 that allows scaling of the sigma points about the mean. The new moment constraint

equations become

E[1] = w1 + 2nw2 + 2n(n− 1)w3

E[x2i ] = 2λ21w2 + 4(n− 1)λ22w3

E[x4i ] = 2λ41w2 + 4(n− 1)λ42w3

E[x2ix
2
j ] = 4λ42w3.

(A7)

Using that E[1] = 1, E[x2i ] = 1, E[x4i ] = 3, and E[x2ix
2
j ] = 1 we obtain

λ1 =
λ2
√
n− 4

n−λ22− 1

w2 =
4−n
2λ41

w3 =
1

4λ22

w1 = 1− 2nw2− 2n(n− 1)w3

(A8)5

with n > 4 and n−λ22− 1 6= 0. A drawback of the original cubature rule, as well our modified version here, is that it requires

negative weights, which can lead to numerical instability.
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Figure 1. . K marks the position Kangerlussuaq , while D and G mark the locations of the Dye-3 and GISP2 boreholes respectively. Northern

and southern paleo-flowlines are shown as blue and red lines running left to right. The inset shows a detailed view of the modeled region.

Modern bedrock elevation is expressed in meters above sea level. Historical moraines dating from 11.6 to 7.2 ka BP are indicated by labeled

lines.
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Figure 2. (a) White points are samples from a 2D Gaussian distribution xxx∼N (000, I). The red ellipse represents the covariance of the

distribution, while red points are sigma points χiχiχi used for the unscented transform (UT). (b) White points are samples from the transformed,

non-Gaussian distribution for yyy = F(xxx)+εεε with εεε∼N (000,R). Red points are transformed sigma pointsYiYiYi = F(χiχiχi). UT approximations of

the mean ȳ̄ȳy and covariance Py of yyy are estimated via weighted sums of transformed sigma points.
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Figure 3. (a) A subset of 6 out of a total of 45 Menegaz et al. (2011) sigma pointsPiPiPi representing different precipitation anomaly histories. (b)

Six corresponding glacier length histories LiLiLi, or transformed sigma points, obtained by inputting the sigma points PiPiPi into the ice dynamics

model F .
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Figure 4. The measurement mean `0`0`0 (solid black line) and 95% confidence bands (gray shaded region) for the northern flowline are estimated

by generating random retreat histories with the same mean moraine formation ages and variances as the observations. The green, blue, and

orange lines represent four random plausible retreat histories. Red dots denote the estimated mean moraine formation ages, while red lines

show 95% confidence intervals.

27



Figure 5. Initial ice sheet configurations for the northern (a) and southern (b) paleo-flowlines. Solid black and blue lines represent the bedrock

elevation and ice surface respectively. Moraine positions are indicated by arrows with associated ages expressed in thousands of years before

present.
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Figure 6. (a) Buizert et al. (2018) and Dahl-Jensen et al. (1998) mean annual temperature anomalies are shown as blue and red lines

respectively. Gray and Black lines show average December, January, February (DJF) and June, July, August (JJA) temperature anomalies

for the Buizert et al. (2018) reconstruction. Shaded blue / pink regions demarcate the extent of the HTM for the Buizert et al. (2018) and

Dahl-Jensen et al. (1998) reconstructions. (b) Estimated precipitation anomaly histories for the Buizert et al. (2018) and Dahl-Jensen et al.

(1998) inversions are shown by blue and red lines respectively. Solid lines show estimates for the northern flowline, while dashed lines are

for the southern flowline.
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Figure 7. Average precipitation (both solid and liquid) on the northern flowline from the Buizert et al. (2018) reconstruction (black line),

which is based on the TraCE-21ka coupled ocean-atmosphere general circulation model of the last deglaciation, versus estimated precipitation

derived in this work based on reconciling the modeled and observed retreat chronologies (blue line).
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Figure 8. Modeled retreat histories for the northern (a) and southern (b) flowlines using a variety of ∆T and ∆P forcings. Blue and red

lines show modeled retreat using Buizert et al. (2018) and Dahl-Jensen et al. (1998) temperature forcings respectively. Dashed lines show

the results of forcing the model with ∆P = 0, while solid lines show the results of using optimal estimated precipitation anomalies. Black

diamonds / bars show reconstructed terminus positions along with 95% confidence intervals. Shaded blue / pink regions demarcate the extent

of the HTM for the Buizert et al. (2018) and Dahl-Jensen et al. (1998) reconstructions respectively.
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Figure 9. HTM snowfall averaged across the northern and southern flowlines for the Buizert et al. (2018) (solid blue line) and Dahl-Jensen

et al. (1998) (solid red line) inversions. Shaded blue / pink regions demarcate the extent of the HTM for the Buizert et al. (2018) and Dahl-

Jensen et al. (1998) reconstructions respectively. Dashed lines show pre-HTM, HTM, and post-HTM average snowfall for each inversion.
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Figure 10. The blue line / shaded region show the estimated mean ∆P and 95% confidence bands for the sensitivity test, accounting for

uncertainty in a number of ice-flow and PDD model parameters. The black dashed line shows the mean estimated ∆P from a previous

inversion assuming no uncertainty in model parameters.
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