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Abstract. We investigate changing precipitation patterns in the Kangerlussuaq region of west central Greenland during the
Holocene thermal maximum, using a new chronology of ice sheet terminus position through the Holocene and a novel inverse
modeling approach based on the unscented transform (UT). The UT is applied to estimate changes in annual precipitation
in order to reduce the misfit between modeled and observed terminus positions. We demonstrate the effectiveness of the UT
for time-dependent data assimilation, highlighting its low computational cost and trivial parallel implementation. Our results
indicate that Holocene warming coincided with elevated precipitation, without which modeled retreat in the Kangerlussuaq
region is more rapid than suggested by observations. Less conclusive is if high temperatures during the HTM were specifically
associated with a transient increase in precipitation, as the results depend on the assumed temperature history. The importance
of precipitation in controlling ice sheet extent during the Holocene underscores the importance of Arctic sea ice loss and

changing precipitation patterns en the future stability of the GrIS.

1 Introduction

During the early Holocene (~11.7 - 8 ka BP), terrestrial and marine climate proxies from the northern hemisphere reveal a
warmer than present peak in temperature (Kaufman et al., 2004; Marcott et al., 2013). This period of elevated temperatures,
likely initiated by greater than modern insolation, is referred to as the Holocene thermal maximum (HTM). Its onset, duration,
and severity likely depend on leeatien (Kaufman et al., 2004). Records of HTM warming can be found in Greenland ice core
reeords. For example, temperatures measured in the Dye-3 borehole show a pronounced HTM signal occurring from 7 to 4 ka
BP and having value of 2.5° above present temperatures (Dahl-Jensen et al., 1998; Miller et al., 2010), whereas at the GISP2
site, the HTM appears to occur slightly earlier, following the 8.2 ka BP cold event (Kobashi et al., 2017) (Figure 1). Recently,
Buizert et al. (2018) merged climate medel model output and ice core records to create a spatially explicit reconstruction of
Holocene temperature for all of Greenland.

While warming during the HTM is well established, less is known about the patterns of preeipitation that accompanied

increased temperatures. Ice core records provide long term estimates of accumulation (Alley et al., 1993), but these point
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measurements near ice divides are not representative of the precipitation across the ice sheet, particularly at lower elevations
near the coast. Because the HTM was accompanied by lower Arctic sea ice extent (Polyak et al., 2010), it is possible that
additional moisture was available to the GrIS from open Arctic waters. This is supported by proxy evidence showing an increase
in winter precipitation in western Greenland coincident with HTM warming (Thomas et al., 2016). However, temperatare-is

Understanding feedbacks between temperature and precipitation during the HTM has implications for the future of the GrIS.
Warming and declining sea ice are projected to cause an increase in Arctic precipitation (Bintanja and Selten, 2014; Singarayer
et al., 2006). In the near future, climatic conditions in Greenland may be similar those that are believed to have occurred during
the HTM. The history of retreat in west central Greenland therefore provides a means of assessing the stability of a warmer
and possibly wetter future GrIS.

Previous modeling studies indicate that retreat in land terminating regions of the GrIS were controlled primarily by surface
mass balance rather than ice dynamics (Cuzzone et al., 2019; Lecavalier et al., 2014). Enhanced precipitation may have stabi-
lized the ice sheet during the HTM by increasing overall surface mass balance due to elevated winter snowfall (Thomas et al.,
2016), or accelerated retreat due to the presence of more surface water in summer.

In this work, we investigate changes in precipitation patterns in the Kangerlussuaq region of the west central GrIS during
the HTM, taking advantage of a new chronology of ice sheet terminus position through the Holocene (Young et al., 2019,
In Review) and a novel inverse modeling approach based on the unscented transform (UT) (Julier and Uhlmann, 1997). In
particular, we use the UT to estimate changes in annual precipitation during the Holocene by reducing the misfit between
modeled and observed terminus positions in a flowline ice dynamics model (Brinkerhoff et al., 2017) (Section 2.1).

The inverse problem is posed as a Bayesian inference problem, and its solution involves estimating the mean and covariance
of a non-Gaussian posterior probability distribution. The unscented transform provides a computationally efficient and trivially
parallelizable alternative to Markov Chain Monte Carlo methods such as Metropolis Hastings method (Chib and Greenberg,
1995) for estimating the statistics of the posterior distribution. Even state-of-the-art MCMC methods require drawing many
thousands of random samples, each of which corresponds to a single forward run of the ice dynamics model. In contrast, the
UT uses a small, fixed number of deterministic sample points for estimate the mean and covariance of the posterior distribution
(Section 2.5.1). .

2 Numerical methods for inference

2.1 Ice-sheet model

We use the 1D, isothermal, flowline model with higher-order momentum balance described in Brinkerhoff et al. (2017). The
momentum conservation equations are simplified using the Blatter-Pattyn approximation, assuming hydrostatic pressure and
negligible vertical resistive stresses (Blatter, 1995; Pattyn, 2003). Default parameter values used in this work are specified in

Table 1.
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We adopt a linear sliding law of the form
Ty — ﬂzNub (1)

where 7, is basal shear stress, (32 is basal traction, N is effective pressure, and uy is sliding speed. Basal water pressure is

assumed to be a fixed fraction Py, = 0.85 of the ice overburden pressure. Effective pressure is given by
N:PO_PLU:PO_PfT‘LLCPO (2)

where P, is the ice overburden pressure and P, is basal water pressure. Basal traction is tuned so that surface velocities roughly

match observations from Mouginot et al. (2017) for modern Isunnguata Sermia.
2.2 Positive degree day model

Surface mass balance is estimated using a positive degree day (PDD) model (Johannesson et al., 1995). Inputs into the PDD
model include the unknown ice surface elevation S, modern monthly temperature 7},, and precipitation P, along the flowline,
as well as the temperature anomaly AT'. Modern temperature and precipitation are computed as 30 year averages from 1980-
2010 using Box (2013). Monthly temperature anomalies, computed as averages along the flowlines, are computed at 20 year
intervals using the Buizert et al. (2018) temperature reconstruction.

Surface temperature 7" is computed monthly as
T=Ty,+AT+a(S—Sn) 3)

where S,, is the modern surface elevation, and o = 5 °C km ™! is the lapse rate. Following Ritz et al. (2001), precipitation P

along the flowline is given by
P=P,exp(M(T —T))+AP. 4)

We take A, = 0.07, which corresponds to a doubling of precipitation for every 1 °C increase in temperature above modern.
Here, we also introduce a precipitation anomaly function AP, analagous to the temperature anomaly function AT. This
time-dependent function is used to adjust precipitation in order to reduce mismatch between modeled and observed terminus
positions. Unlike AT, which is known from extensions of ice core data (Buizert et al., 2018), AP will be used as a control
variable to be determined using the inverse methods detailed in Section 2.5.2. Equations 3 and 4 provide a method of accounting
for elevation changes through time and downscaling inputs to match the mesh resolution of the model (~ 1 km).

Positive degree days and snowfall are computed month-by-month based on mean monthly temperature and precipitation
(Johannesson et al., 1995). Snow is melted first at a rate of 5 x 103 meters water equivalent (m.w.e.) per degree day followed
by ice at a rate of 8 x 1073 m.w.e. per degree day. Snow melt is initially supposed to refreeze in the snowpack as superimposed

ice. Runoff begins when the superimposed ice reaches a given fraction (60%) of the snow cover (Reeh, 1991).


StephenPrice
Highlight
monthly average ?


10

15

20

25

30

https://doi.org/10.5194/tc-2019-129
Preprint. Discussion started: 25 June 2019 The Cryosphere
(© Author(s) 2019. CC BY 4.0 License. Discussions

2.3 Flowline Selection and Moraine Age Constraints

To define the path followed by ice, we assume ice flow follows the modern surface velocity field inland of the present day
margin. In ice free regions, the direction of ice flow is inferred from bedrock topography (Figure 1). Since the direction of ice
flow is unknown and time varying, we cannot directly quantify the uncertainty introduced by errors in flowline selection. To
account for some of this uncertainty, we perform inversions on two plausible, adjacent paleo-flowlines in the Kangerlussuaq
area.

The rate of Holocene retreat on each flowline is estimated using constraints on ice sheet terminus position from (Young et al.,
2019, In Review) (Figure 1). Terminus position data in Young et al. (2019, In Review) indicates that in the early Holocene (11.6
ka BP), the ice sheet margin was some tens of kilometers inland of the present day coastline. Although the moraine patterns
are spatially complex, generally speaking, there was a period of moderate retreat (~10 km on the northern flowline and ~30
km on the southern flowline) from 11.6 to 10.3 ka BP, followed by rapid retreat (~100 km on both flowlines) from 10.3 to 8.1
ka BP. By 8.1 ka BP, the margin position was within 20 km of its present position on both paleo-flowlines (Figure 3). The the

modern terminus position provides one additional constraint.
2.4 Modeling Approach

Model runs are initialized by tuning the precipitation anomaly to obtain a steady state margin position 5 km beyond the 11.6 ka
BP moraine using a fixed temperature anomaly corresponding to 12.6 ka BP. We then invert for a precipitation anomaly time
series that forces a steady rate of retreat of 5 km over 1000 years, using the methods in Section 2.5.2, to obtain an initial ice
sheet configuration with the correct terminus position at 11.6 ka BP. This initialization procedure is intended to ease the ice
sheet out of steady state in order to avoid strong transient effects at the beginning of model runs.

Reconstructions of relative sea level from Caron et al. (2018), along with the retreat chronology in Young et al. (2019, In
Review), indicate that ice remained grounded on both the northern and southern flowlines from 11.6 ka BP onward (Figure 2).
Evidence suggests the terminus was terrestrial during this period in spite of changes in sea level and bedrock elevation due to

isostatic uplift. As such, isostatic effects are neglected in the model.
2.5 Data Assimilation Approach

In order to assess the initial mismatch between modeled and observed terminus positions, we perform a reference experiment
using temperature anomalies from Buizert et al. (2018) and a precipitation anomaly AP = 0 (Section 3.1). To improve the fit
from this initial run, we assimilate terminus position observations to obtain improved estimates of the Holocene precipitation
anomaly.

Previous modeling studies indicate that retreat in land-terminating sectors of the GrIS were dominated by surface mass
balance rather than ice dynamics (Cuzzone et al., 2019; Lecavalier et al., 2014). Thus, uncertainty in Holocene climate and

thus surface mass balance is likely the primary cause of discrepancies between modeled and observed terminus positions.
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Table 1. Summary of primary model parameters used in this work. Default values are provided where applicable. Prior parameter uncertain-

ties assumed for the sensitivity test are shown in the 20 column.

Description Symbol  Value 20 Range Units

PDD Model Parameters
Std. deviation o 5.5 - C
Std. deviation, accumulation Oa 5 - C
Ablation rate, snow As 5%x1073 3-7x1073 mwe C 1d~?!
Ablation rate, ice i 8§x1073 6-10 x1073 mwe C™1d™!
Precipitation param. Ap 7 %1072 3-11 x1072 c!
Superimposed ice fraction Pmax 0.6 - -

Ice Flow Parameters

Rate factor A 35%x10725  28-42x1072%° sTipa—3
Basal traction 32 1.6x10~3 1.44-176 x10~2  Paam™!
Water pressure fraction Pfrac 0.85 - -

Unscented Transform Parameters

State vector dimension n 45 - -
Prior smoothness param. S 5x 103 - -
Sigma Scaling param. wo 0.5 - -

Table 2. Citations for the primary data sets used in this work.

Data Citation

Terminus position chronology ~ Young et al. (2019, In Review)

Bedrock elevation Morlighem et al. (2017)

Modern ice surface velocity Mouginot et al. (2017)

Modern precipitation Box (2013)

Temperature reconstructions Buizert et al. (2018)
Dahl-Jensen et al. (1998)

Relative sea level Caron et al. (2018)
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In principle, both temperature and precipitation anomalies could be tuned to improve the fit between modeled and observed
terminus positions. However precipitation is a natural choice since it is more poorly constrained than temperature.

In the upcoming sections, we outline our approach for estimating precipitation anomalies given measured terminus positions.
We introduce a framework for time-dependent data assimilation based on the unscented transform (UT) (Julier and Uhlmann,
1997). Section 2.5.1 outlines the basic tenets of the unscented transform. Sections 2.5.2 - 2.5.6 outline how the unscented

transform can be applied directly to the problem of time-dependent data assimilation.
2.5.1 Overview of the Unscented Transform

Suppose that z is an n-dimensional Gaussian random variable with mean vector Z and covariance matrix P, and F : R” — R™

is a nonlinear function. We would like to compute the mean  and covariance matrix P, of the transformed random variable
y=7F(=) )
In general, the mean and covariance of the non-Gaussian probability distribution P(y) can be approximated using Markov chain
Monte Carlo (MCMC) methods such as the Metropolis-Hastings algorithm (Chib and Greenberg, 1995). As a computationally
efficient alternative to MCMC methods, Julier and Uhlmann (1997) introduced a method for approximating the mean and
covariance of P(y) called the unscented transform (UT).

A set of vectors, called sigma points, are chosen with the same weighted sample mean and weighted covariance structure
as z. There are many algorithms for generating sigma points sets with different numbers of points. A commonly used set of

2n + 1 sigma points is given by
o 1=0

Xi= %o —Vn+r[VP]i i=1,--n ©)
xo+vn+e[VP; i=n+1,---,2n

with corresponding weights given by

k/(n+k) i=0
w; = . )
1/2(n+ k) otherwise

The notation [\/ Py |, refers to the i-th row of a matrix square root (typically computed by Cholesky factorization) of P, and
k is a free parameter controlling the scaling of the sigma points around the mean. Julier and Uhlmann (1997) recommend a
default value of K = 3 — n. However, « can be fine tuned to reduce prediction errors for a given problem.

The nonlinear function F is applied to each sigma point to yield a set of transformed points
Vi = F(xi)- ®)

The mean and covariance of P(y) are then estimated as weighted sums

g=>) wdi ©)
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2n
Py=> wiYi-9)¥i-9)". (10)
=0

The unscented transform isknewn primarily in the context of the unscented Kalman filter. However, the UT can be applied
more generally as an alternative to traditional MCMC methods. Sigma points and weights sets are designed to estimate the
first two statistical moments (mean and covariance) of the non-Gaussian distribution P(y) using a minimal number of function

evaluations.
2.5.2 Data Assimilation using the Unscented Transform

Here, we outline how the unscented transform is applied to estimate precipitation anomalies. Time-dependent data assimilation
using the UT involves running the ice sheet model with a set of different precipitation anomaly histories, each corresponding to
a different sigma point. This is followed by a post-processing step, which incorporates the ice sheet terminus chronology data
via a Kalman filter type correction of the prior mean vector and covariance matrix. Implementation of the unscented transform
is straightforward and easily parallelizable since each model run is independent.

In what follows, the notation & ~ N (2o, P,;) means that the random variable z is Gaussian or normally distributed with
mean Zo and covariance P,. Let Ap be an n-dimensional discretization of the unknown precipitation anomaly history AP
at regular time intervals, £ be an m-dimensional vector of glacier length observations through time, and F : R® — R™ be a
nonlinear function that maps temperature and precipitation forcings to glacier length measurements via the ice dynamics and
PDD models. Given a multivariate Gaussian prior Ap ~ N (Apg, Py) with mean Apg and covariance matrix P, we would like

to estimate the mean and covariance of the posterior distribution

P(Aplt) < P(£|Ap) P(Ap). (11)
Suppose that
L=F(Ap)+r (12)

where r ~ N'(0, R) represents the measurement noise. The unscented transform is applied to estimate the joint distribution of
[Ap £]T as a multivariate Gaussian distribution. To reduce computational costs, we use a minimal set of n + 1 sigma points P;
with corresponding weights w; generated using the method presented in Menegaz et al. (2011). Their method includes one free
parameter 0 < wg < 1, which can be tuned to reduce prediction errors. Parameter values related to the UT, including wy, are
displayed in Table 1.

Sigma points are propagated through the model to obtain transformed points £; = F(P;). In this context, the sigma points
P; correspond to different time-dependent precipitation anomaly inputs, while the transformed points £; correspond to the
resulting glacier length histories given those precipitation anomalies as input (Figure 4). The prior mean and covariance matrix

used to generate the sigma points in Figure 4 are discussed in Sections 3.2 and 2.5.3 respectively. The sawtooth structure of


StephenPrice
Cross-Out
awkward: "has been applied" ?

StephenPrice
Highlight
Could be useful to include a footnote on how the unscented KF differs from the standard KF (or are they the same?).



10

15

20

https://doi.org/10.5194/tc-2019-129
Preprint. Discussion started: 25 June 2019 The Cryosphere
(© Author(s) 2019. CC BY 4.0 License. Discussions

the sigma points reflects the mathematical formulation of the Menegaz et al. (2011) sigma points, rather than some assumption
that there is a spike in the precipitation anomaly during the Holocene.

Using the UT, we obtain the following approximation to the joint distribution

A Apo P C
p Y P 7 0 (13)
£ m cr s
with
p=> wLi (14)
i=0
S=> wili—p)(Li—w)" +R (15)
i=0
C:Zwi(Pi—Apo)(,Ci—M)T. (16)
i=0

Matrices .S and C' are known as the measurement covariance and cross covariance respectively. Given a measurement £, the

joint distribution then easily yields a Gaussian approximation of the posterior distribution for Ap|€p (Sarkka, 2013). Letting

K=08"1 A7)
we have

Ap' = Ap, + K [l — p] (18)
P =Py— KSKT (19)
Aplly ~ N'(Ap', P'). (20)

where Ap’ and P’ are approximations of the posterior mean and covariance respectively. Thus, Ap’ is a discrete approximation
of the optimal precipitation anomaly history. Readers familiar with the Kalman filter will recognize that Ap’ and P’ are
computed using a standard Kalman update step given measurement £g and Kalman gain K (Sarkka, 2013).

It is worth noting that unlike a standard filtering approach to data assimilation, all measurement data is incorporated si-

multaneously rather than time step by time step. For that reason, the Kalman update step corrects the entire time-dependent



10

15

20

https://doi.org/10.5194/tc-2019-129
Preprint. Discussion started: 25 June 2019
(© Author(s) 2019. CC BY 4.0 License.

The Cryosphere

Discussions

precipitation history at once. Moreover, unlike in Kalman smoothing, we approximate the full posterior distribution rather

rather than the probability distributions

P(Ap;le)
21
/I: = 17 ... s n
where Ap = [Ap1,---,Ap,]T. The use of time-dependent sigma points distinguishes our approach from standard Kalman

filtering or Kalman smoothing approaches.
2.5.3 Gaussian Markov Random Field Prior for Regularization

We use a Gaussian Markov random field (GMRF) prior to control the temporal smoothness of AP (Bardsley, 2013). The

inverse covariance or precision matrix () of the prior takes the form

[2 -1 0 0]
-1 2 -1
Q=F'=6|lo . . . 0 (22)
-1 2 -1
0 - 0 -1 2|

Larger § values produce smoother optimized solutions, whereas smaller values allow for more variation from the prior mean.

We use 6 = 5 x 103, which we find eliminates high frequency oscillations in AP (Secion 3).

2.5.4 Measurement Mean and Variance

Observations of terminus position are available roughly every 1000 years between 11.6 and 7.2 ka BP, with a gap from 7.2 ka
BP to present. In contrast, model time steps are on the order of months. Due to these disparate time scales, we use the following
procedure to estimate the measurement mean £y and covariance matrix R on a time scale more appropriate for the ice sheet
model.

We randomly sample curves from a multivariate Gaussian with the same covariance structure as the GMRF prior outlined
in Section 2.5.3. These curves are resampled in such a way that the mean formation age and variance for each moraine
approximately matches observations. The average length and variance of these curves is computed at a series of time slices to

obtain a plausible measurement mean £y and a diagonal measurement covariance matrix R (Figure 5).
2.5.5 [Iterative Optimization Procedure

The state vector Ap contains values of AP at roughly 250 year intervals from 11.6 ka BP to present. Sparse precipitation
anomaly values are linearly interpolated for input into the ice sheet model (Figure 4). Using a low temporal resolution dis-

cretization of A P reduces the total number of forward model runs required for the unscented transform.
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Optimizations are conducted in multiple passes. In the first pass, the measurement covariance matrix R is multiplied by a
factor of 1/4 so that the measurements are initially weighted more heavily than the prior. This produces a reasonable fit to the
data, even given a poor initial estimate of AP. The optimal AP from a given iteration is used as the prior mean in the next
iteration. We use the same prior covariance matrix Py for regularization in each iteration. After two to three iterations, modeled
and observed terminus positions match within measurement uncertainty (Section 3). In our experience, the results of iteration
are not dependent on the choice of prior mean in the first iteration, but convergence can be improved by choosing a sensible

initial guess as in Section 3.2.
2.5.6 Approach to Sensitivity Testing

The data assimilation procedure can be modified to account for uncertainties in the ice flow and PDD model parameters. We

define an augmented state vector
u=[Ap 0] (23)

where 6 is a vector of scalar parameters including the natural logarithm, the rate factor for ice, basal-traction, a parameter

controlling precipitation scaling with temperature, and the PDD melt rate parameters for ice and snow,
6 =[In(A), 5% A\p, \i s Al (24)
The prior distribution for the augmented state vector is given by

Ap.| P 0
u~ N[ 7P |0 (25)
9, 0 e

where 6 is the parameter mean vector and © is a diagonal matrix containing parameter variances.

The unscented transform is applied to the augmented function
L=F (u)+r
to obtain estimates of the joint distribution for [Ap 8 £] and the conditional distribution for [Ap 6] | £o. Since parameters are
included as state variables, sigma points reflect a variety of precipitation histories and parameter sets. A model run for a
particular sigma point is initialized from an appropriate steady state using the parameter set for that point.
3 Results

3.1 Reference Experiment

Here, we force the model with monthly temperatures from Buizert et al. (2018) (Figure 6 a) and a zero precipitation anomaly.
Ice retreats rapidly through the Kangerlussuaq region during the early Holocene. By 10 ka BP, the terminus has retreated inland

of the present day margin on both the northern and southern flowlines (Figure 6 e).

10


StephenPrice
Inserted Text
discussed


StephenPrice
Inserted Text
of

StephenPrice
Cross-Out
the basal traction parameter

StephenPrice
Cross-Out
as a function of 

StephenPrice
Inserted Text
,


10

15

20

25

30

https://doi.org/10.5194/tc-2019-129
Preprint. Discussion started: 25 June 2019 The Cryosphere
(© Author(s) 2019. CC BY 4.0 License. Discussions

3.2 Buizert Temperature Inversion

We estimate precipitation anomalies on the northern and southern flowlines using the Buizert et al. (2018) temperature recon-
struction. Given the rapid retreat in the reference experiment, we expect that additional precipitation will be required in the
early Holocene in order to match observed terminus positions. Therefore, in the first round of optimization, we assume a prior

mean of the form
AP =0.5(1—7) 26)

where 7 is a rescaled time variable that increases from zero at 11.6 ka BP to one at 0 ka BP. The results of the iterative
optimization procedure are insensitive to the prior mean selected for the first iteration. A wide region around the mean is
explored in each iteration due to the spread of the sigma points.

Positive precipitation anomalies are predicted throughout the Holocene (Figure 6 c, d). Assuming the Holocene thermal
maximum extends from 10 to 6 ka BP as in Buizert et al. (2018), average HTM snowfall is 42% greater than modern on the
northern flowline and 26% greater on the southern flowline (Figure 7 a). However, average snowfall during the HTM is lower

than the overall Holocene average due to high precipitation from 11.6 to 10 ka BP.
3.3 Dahl-Jensen Temperature Inversion

Interpretation of the Buizert et al. (2018) temperature reconstruction is difficult due to the absence of a clear HTM. As an al-
ternative, we estimate precipitation anomalies using the Dahl-Jensen et al. (1998) temperature reconstruction. A full Holocene
temperature reconstruction is unavailable at the Dye-3 borehole site, so we use the temperature reconstruction at GRIP. The
Dahl-Jensen reconstruction does not resolve seasonal temperatures. To account for this, we introduce seasonality by calculating
the difference between monthly and mean annual temperatures in Buizert and adding those offsets to the mean annual temper-
ature from Dahl-Jensen (Figure 6 b). The HTM is roughly 0.3° C warmer and 1,500 years later than indicated by Buizert et al.
(2018).

Predicted precipitation anomalies are positive through most of the Holocene (Figure 6 b). Snowfall peaks during the HTM
at 43% and 35% above modern on the northern and southern flowlines respectively. Average snowfall during the HTM is 25%
greater than modern, whereas overall average Holocene snowfall is roughly equivalent to modern (Figure 7 b). Consequently,

there is an evident relationship between HTM warming and increased snowfall.
3.4 Uncertainty Estimates during the HTM

The unscented transform is a third order accurate method for estimating the mean of a transformed Gaussian random variable,
but only first order accurate for estimating covariance (Sarkka, 2013). Hence, while the unscented transform tends to be a
good approximation for many nonlinear functions, it is not a full-fledged substitute for MCMC methods, which can compute
expectation integrals to higher levels of accuracy. Due to this limitation, ensemble filters and the unscented Kalman filter

may underestimate covariance for highly nonlinear problems (Luo and Hoteit, 2013). Practitioners will sometimes artificially
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inflate covariance estimates obtained from unscented or ensemble Kalman filters in order to prevent filter divergence and
increase accuracy (Anderson and Anderson, 2002).

In an effort to obtain conservative uncertainty estimates, we compare the unscented transform to a higher order cubature
method that is second order accurate for estimating the covariance (Appendix A). Since the fifth order method is more compu-
tationally expensive than the UT, requiring 2n? + 1 sigma points for n unknown parameters, inversions are performed only on
the southern flowline, and uncertainty estimates are restricted to the HTM. Model runs are initialized using the ice sheet con-
figuration just prior to the Buizert et al. (2018) HTM obtained by forcing the model with the optimized precipitation anomaly
from a previous inversion.

Mean precipitation anomaly estimates are nearly identical between the UT and fifth-order cubature methods. However, the
UT appears to underestimate uncertainty during the latter half of the HTM (Figure 8). It is possible that other sigma point
sets might capture the covariance structure better than the minimal sigma point from Menegaz et al. (2011). Nonetheless, the

minimal sigma point set performs reasonably well considering its low computational cost.
3.5 Sensitivity Testing

We assess the sensitivity of Holocene precipitation anomalies to parameter uncertainties by performing an HTM inversion
using the methodology described in Section 2.5.6. To obtain accurate uncertainty, estimates we use the Sth order cubature
method. Inversions are performed on the southern flowline using the Buizert et al. (2018) temperature reconstruction. Model
runs are initialized from steady states slightly before the start of the Buizert et al. (2018) HTM at 10 ka BP. Assumed parameter
uncertainties are reported in Table 1.

The estimated precipitation anomaly in this experiment is within 7 cm water equivalent per year of that obtained in Section
3.4 (Figure 9). Parameter uncertainties contribute to higher uncertainty in the estimated precipitation anomaly, particularly at
the beginning of the HTM. Even considering this uncertainty, the general pattern of precipitation changes is consistent with

previous inversions that assumed fixed parameter values.

4 Discussion

We infer changes in Holocene precipitation in the Kangerlussuaq region of western Greenland using a new chronology of ice
sheet terminus position, and inverse modeling procedure using the unscented transform. We find that a standard thermodynamic
scaling of modern precipitation results in excessively fast ice retreat during the early Holocene. Precipitation inversions using
both the Buizert et al. (2018) and Dahl-Jensen et al. (1998) temperature reconstructions indicate that additional precipitation
is required to match the observed retreat history in the region. However, the timing of the Holocene thermal maximum (HTM)
and the predicted precipitation histories differ between the two temperature reconstructions.

Inversions using the Buizert et al. (2018) temperature reconstruction predict elevated snowfall throughout the Holocene.
Average HTM snowfall is around 30% greater than modern. Due to high snowfall in the early Holocene (nearly 100% higher
than modern) and a dip in HTM precipitation associated with the 8.2 ka BP cold event, the HTM average nearly matches the
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overall Holocene average. In contrast, inversions using the Dahl-Jensen temperature reconstruction show a clear trend between
HTM warming and increased precipitation. HTM snowfall is around 25% higher than the Holocene average.

Differences in the Buizert et al. (2018) and Dahl-Jensen et al. (1998) temperature reconstructions result in inconsistencies in
estimated precipitation anomalies. In the Buizert et al. (2018) reconstruction, mean annual temperature increases rapidly from
11.6 to 10 ka BP. Rapid warming results in high predicted snowfall, stabilizing the ice sheet during a period of relatively slow
retreat from 11.6 to 10.3 ka BP. High snowfall in the early Holocene significantly influences the overall Holocene average.
Temperatures increase more gradually in the Dahl-Jensen et al. (1998) temperature reconstruction, and precipitation anomalies
are therefore low at the onset of the Holocene.

Estimated precipitation anomalies during the HTM are not particularly sensitive to uncertainties in the ice sheet or PDD
model parameters, or to the initialization procedure (Figure-9)- In the sensitivity test in Section 2.5.6, model runs are initialized
using one of a set of several steady states using different parameter combinations. In Section 3.4, which compares the UT to a
fifth order cubature method, model runs are initialized from a single transient ice sheet state using output from a previous inver-
sion. Despite these differences in model initialization, and the effects of parameter uncertainties, estimated HTM precipitation
anomalies are comparable in both inversions.

Unexpectedly, using the Dahl-Jensen et al. (1998) reconstruction results in a non-zero precipitation anomaly at 0 ka BP.
Aside from the distance of GRIP from Kangerlussuaq (over 500 km,) a possible explanation for this feature is that the Dahl-
Jensen et al. (1998) reconstruction is obtained by inverting for surface temperatures given an ice core temperature profile. Ice
core temperatures carry a diffuse record of surface temperature, with greater uncertainty earlier in time. These uncertanties
may alter the inverted precipitation history. Moreoever, ice sheet terminus position may respond to changes in temperature
and precipitation on a shorter timescale than can be resolved using borehole temperature data alone (Lesnek and Briner, 2018;

Young et al., 2019, In Review; Winsor et al., 2015).
4.1 Conclusions
4.1.1 The Unscented Transform as a Data Assimilation Method

Significant strides have been made in time-dependent data assimilation in glaciology using adjoint based methods. Goldberg
and Heimbach (2013) infer the initial thickness and basal conditions for a synthetic ice sheet given snapshots of ice thickness
at discrete times. Larour et al. (2014) demonstrate a data assimilation framework within the Ice Sheet System Model (ISSM),
capable of obtaining temporal estimates of surface mass balance and basal friction given surface altimetry.

In contrast to these adjoint based approaches, the unscented transform does not require computing the Jacobian or Hessian
of an objective function, or special checkpointing code for time-dependent problems. Adjoint based methods are advantageous
for extremely high-dimensional problems, as the required number of model runs is independent of the number of parameters.
However, the UT provides more accurate uncertainty estimates than linearization (Julier and Uhlmann, 1997). Hessian infor-
mation can be used to improve uncertainty estimates (Isaac et al., 2015), but to our knowledge, this approach has not been

applied to time-dependent problems in glaciology.
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The unscented transform also has significant advantages over Markov chain Monte Carlo methods for some problems.
Since function evaluations at each sigma point are independent, the UT is trivially parallelizable. MCMC methods can be
parallelized to some extent by utilizing multiple interacting Markov chains running in parallel (e.g. Chowdhury and Jermaine,
2018) or by combining samples from independent chains in a post processing step (e.g. Neiswanger et al., 2013). Nonetheless,
computational bottlenecks persist in MCMC methods since individual Markov chains are inherently serial.

The potential accuracy of the unscented transform is limited since it uses a predetermined number of points. In our case, using
a minimal set of n + 1 sigma points for n unknown parameters yields accurate mean estimates but appears to underestimate
covariance when compared to a higher order cubature method (Figure 7). MCMC methods can provide more accurate estimates
given sufficient computation time. In theory, MCMC methods are more viable than the UT for extremely high dimensional
problems since their convergence rate is independent of dimension. In practice, however, the number of function evaluations

needed for MCMC methods makes them intractable for some problems.
4.1.2 Modeling Conclusions

Our work follows a number of previous observationally constrained paleo ice sheet modeling studies (e.g. Tarasov and Peltier,
2002; Lecavalier et al., 2014; Calov et al., 2015). Perhaps most relevant to this work is Lecavalier et al. (2014), who model the
deglaciation of Greenland from the Last Glacial Maximum using a 3-D thermomechanically coupled ice sheet model. Model
runs in Lecavalier et al. (2014) are informed by constraints on relative sea level, ice core thinning, and LGM ice sheet extent.

In contrast to previous modeling studies, the computational efficiency of the flowline model outlined in Brinkerhoff et al.
(2017) makes time-dependent data-assimilation, sensitivity testing, and robust uncertainty estimation tractable. Sensitivity tests
indicate that precipitation anomaly inversions are consistent when accounting for parameter uncertainties in the ice-dynamics
model. This result supports earlier findings showing that modeled Holocene retreat in land terminating regions is more sensitive
to surface mass balance than other factors like the flow law or basal sliding (Cuzzone et al., 2019; Lecavalier et al., 2014).

A drawback of our modeling approach is that we cannot account for inherently map plane effects like changes in ice flow
direction, or convergent and divergent flow in or out of the modeled flow path. These factors likely contribute to discrepancies
in estimated precipitation anomalies between the northern and southern flowlines (Figure 6). Precipitation anomalies are also
highly sensitive to the temperature forcing, which introduces another source of uncertainty. In this work, we have not treated
temperature as a random variable with its own covariance structure. However, differences in the Buizert et al. (2018) and
Dahl-Jensen et al. (1998) temperature reconstructions suggest the effect of temperature uncertainties on estimated precipitation
anomalies can be pronounced. This result underscores the importance of generating improved temperature reconstructions
constrained by proxy records.

Despite lingering uncertainties, our modeling results support our hypothesis that the Holocene thermal maximum was ac-
companied by greater than modern precipitation, which reduced the rate of retreat through the Kangerlussuaq region. Forcing
the model with estimated precipitation anomalies results in a plausible retreat history on both paleo-flowlines (Figure 6 e, f).
Arctic warming and changing sea ice extent are expected to cause similar changes in precipitation that will influence future

GrIS mass balance. According to Bintanja and Selten (2014), declining sea ice may cause an increase in net accumulation
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O

over areas of Arctic land ice. Similarly, Singarayer et al. (2006) link increased Arctic warming and sea-ice decline to increased

precipitation, projecting precipitation will increase by more than 50% by the end of the century.

Code availability. The flowline ice sheet model and PDD model used in this work are available at https://github.com/JacobDowns/flow_

model.

Appendix A: A Higher Order Method for Estimating Covariance

Estimating the mean and covariance of the posterior distribution requires approximating Gaussian weighted expectation inte-

grals of the form

E[F(z)] = / F@)N(0,1) dz (A1)
Rn
via numerical integratation rules, also called cubature rules, which approximate the expectation integral as a weighted sum
N
E[F (@)~ QIF ()] = Y wiF(xa)- (A2)
i=1

General Gaussian weight functions N (zg, P, ) are handled by changing variables. Letting /P, be a matrix square root of the

covariance matrix, we have

/]’(z)N(mo,Px) dx

K (A3)
~ [ Flao+ VR ONO.D) de
R'n.

Cubature rules, including the unscented transform, are constructed to exactly integrate polynomial functions F () up to a
certain degree d. Suppose that = [z1, 7, -+, 2,7 is a point in R™. A monomial of degree d refers to a function xlf a:éz gl
where the exponents are non-negative integers that sum to d. A polynomial of degree d is a linear combination of monomials
with highest degree d.

Li et al. (2017) describe a fifth-order cubature rule using fully symmetric sets of sigma points. A set X = {x1,x2, " ;XN }
is fully symmetric if it is closed under the operations of coordinate position and sign permutations. Their cubature rule has the

form
+wy Y F(A0,-+-,0)

full sym

+ws Y F(AN0,---,0).

full sym

(A4)
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The notation g, 7 (+) refers to a sum of the function F evaluated at all points in the fully symmetric set generated by the
given point.

Due to the symmetry of the sigma points and the Gaussian weight function, all moments (that is, integrals of Gaussian
weighted monomial functions) containing an odd order exponent are automatically satisfied. Exploiting this fact, and the
symmetries of the sigma points, it can be shown that satisfying the remaining moment constraint equations up the fifth order

reduces to solving the following system of four equations in four unknowns w1y, ws, w3 and A

E[l] = w1 + 2nwy 4+ 2n(n — 1)ws
E[z?] = 2)\%wy +4(n — 1)\ w3

(A5)
Elz}] = 2\ ws +4(n — D) A\ w3
Elzix3] = 4\ ws.
By slightly modifying this cubature rule
Q[]:(.’L‘)] =w1F(0,0,---,0)
+ws .7()\1,0,"',0)
fu%;m (A6)
+ws Y F(A,A9,0,--,0)
full sym

we introduce a new free parameter A\, that allows scaling of the sigma points about the mean. The new moment constraint

equations become

E[1] = w1 + 2nwy 4+ 2n(n — 1)ws
Elz?] = 2X2wy + 4(n — 1) A2ws

(A7)
Elz}] = 2X\ wy + 4(n — 1) \jws
Elz}a3] = 4\jw;.
Using that E[1] = 1, E[27] = 1, E[z}] = 3, and E[z}x7] = 1 we obtain
)\2 n—4
A =2V R
A P
w 4—n
2 = ——
201 (A8)
Wy —
5T N2

wy =1 —2nwy —2n(n — 1)ws

with n >4 and n — A2 — 1 # 0. A drawback of the original cubature rule, as well the modification of it presented here, is that

it requires negative weights, which can lead to numerical instability.
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Figure 1. Bedrock geometry in the Kangerlussuaq region of western Greenland in meters above sea level. K and N mark the locations of
Kangerlussuaq and Nuuk respectively. D and G mark the locations of the Dye-3 and GISP2 boreholes respectively. Northern and southern

paleo-flowlines are shown as blue and red lines running left to right. Historical moraines dating from 11.6 to 7.2 ka BP are shown as colored

lines.
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Figure 2. Bedrock elevation and sea level changes in the Kangerlussuaq region from 11.5 ka BP to modern. Paleo-flowlines are shown in

black. Approximate terminus positions during each time period are indicated by black dots.
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Figure 3. Steady state ice sheet configurations for the northern (a) and southern (b) paleo-flowlines. Solid black and blue lines represent the

bedrock elevation and ice surface respectively. Moraine positions are shown with dashed lines, with associated ages expressed in thousands

of years before present.
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Figure 4. Transformation of a subset of sigma points P; (circles connected by lines), which correspond to different precipitation anomaly

inputs, into transformed points £; (solid lines), which give the resulting glacier length histories obtained from the ice sheet model F.
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Figure 5. The measurement mean £g (solid black line) and 95% confidence bands (gray shaded region) for the northern flowline are estimated

by generating random curves (e.g. the green, blue, and orange lines) with the same mean moraine formation ages and variances as the

observations. Red dots denote the estimated mean moraine formation ages, while red lines show 95% confidence intervals.
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Figure 6. Buizert et al. (2018) and Dahl-Jensen et al. (1998) temperature anomalies are displayed in (a) and (b) respectively. Black lines

show mean annual temperature anomalies, blue lines show December, January, February averages, and red lines show June, July, August

averages. The HTM for each temperature record is shaded gray. Panels (c) and (d) show estimated precipitation anomalies on both flowlines

for the Buizert and Dahl-Jensen temperature reconstructions respectively. Modeled terminus positions obtained from using the estimated

precipitation anomalies for Buizert and Dahl-Jensen temperature inversions are shown in (e) and (f) respectively. Observed terminus positions

and 95% uncertainty intervals are indicated by colored points and black lines. The dashed lines in panel (e) show modeled terminus positions

for both flowlines using the Buizert temperature reconstruction and a zero precipitation anomaly.
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Figure 7. Average snowfall across the northern and southern flowlines during the HTM, expressed as a percentage of modern, for the Buizert
et al. (2018) (a) and (Dahl-Jensen et al., 1998) (b) temperature inversions. The HTM for each reconstruction is shaded gray. Gray lines show

average snowfall prior, during, and after the HTM. Average Holocene snowfall is indicated by blue dashed lines.
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Figure 8. Estimates of the precipitation anomaly AP on the southern flowline during the Buizert et al. (2018) HTM. Red and blue lines /
95% confidence bands show A P estimates for the UT and a fifth order cubature method respectively.

28



https://doi.org/10.5194/tc-2019-129 %
Preprint. Discussion started: 25 June 2019 The Cryosphere 3 EG U
(© Author(s) 2019. CC BY 4.0 License. Discussions §

—_—— -Default
—e— Sensitivity

10 9 8 7 6
Age (ka BP)

Figure 9. Estimates of the precipitation anomaly AP on the southern flowline during the Buizert et al. (2018) HTM. Red and blue lines
/ 95% confidence bands show AP estimates for the sensitivity experiment (accounting for uncertainties in the ice flow and PDD model

parameters) and a default inversion (which uses a fixed parameter set) respectively.
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