Supplementary material

Dynamics of ionic species in Svalbard annual snow: the effects of rain event and melting

Elena Barbaro¹, Cristiano Varin², Xanthy Pentelli^{2,3}, Jean Marc Christille^{4,5}, Torben Kirchgeorg², Fabio Giardi⁶, David Cappelletti⁷, Clara Turetta¹, Andrea Gambaro², Andrea Bernagozzi⁴, Jean Charles Gallet⁸, Mats P. Björkman⁹, Andrea Spolaor¹.

¹Institute for the Dynamics of Environmental Processes, IDPA-CNR, Via Torino 155, 30172 Venice-Mestre, Italy

²Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172 Venice-Mestre, Italy.

³Athens University of Economics and Business, Department of Statistics, 76 Patision Street, 10434 Athens, Greece.

⁴Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA), Loc. Lignan 39, 11020 Nus (AO), Italy.

⁵Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, I-06123 Perugia, Italy

⁶Chemistry Department – Analytical Chemistry, Scientific Pole, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Florence) Italy.

⁷Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia I-06123 Perugia, Italy

⁸Norwegian Polar Institute, Tromsø, NO-9296, Norway

⁹University of Gothenburg, Department of Earth Sciences, Box 460, 40530 Göteborg, Sweden

Correspondence to: Andrea Spolaor IDPA-CNR, (andrea.spolaor@unive.it)

Keywords: ions, Svalbard, snow, melting effect.

Table S1. Median concentrations of biogenic ions subdivided by depth (10-20 cm, 30-50 cm, 60-100 cm) and phase (I: from 27th March to 16th April; II: from 17th April to 15th May; III: from 16th May to 31st May).

	NO) ₃ (ng	g ⁻¹)	MS	A (ng	g g ⁻¹)	C2	2 (ng	g ⁻¹)	C5 (ng g ⁻¹)			
depth \period	Ι	II	III	Ι	Π	III	Ι	II	III	Ι	II	III	
10-20 cm	220	353	570	16	34	136	2	2	5	2	3	7	
30-50 cm	105	255	312	5	14	22	2	2	2	1	2	4	
60-100 cm	118	175	260	1	1	2	2	2	2	0.1	1	1	

Table S2. Median concentrations of Br⁻, K⁺, Mg²⁺, Ca²⁺, Cl⁻, Na⁺, I⁻ and SO₄²⁻ by depth (10-40 cm, 50 cm, 60-90 cm and 100 cm) and phase (I: from 27th March to 16th April; II: from 17th April to 15th May; III: from 16th May to 31st May).

	$Br^{-}(ng g^{-1})$		$K^{+} (ng g^{-1})$		$Mg^{2+} (ng g^{-1})$			$Ca^{2+} (ng g^{-1})$			Cl ⁻ (ng g ⁻¹)			$Na^+ (ng g^{-1})$			I ⁻ (ng g ⁻¹)			SO_4^{2-} (ng g ⁻¹)				
depth\ ^{period}	Ι	II	III	Ι	II	III	Ι	II	III	Ι	II	III	Ι	II	III	Ι	II	III	Ι	II	III	Ι	II	III
10– 40 cm	0.5	0.6	0.7	64	66	58	177	120	50	133	104	64	1662	1872	1711	1830	1676	871	0.3	0.2	0.1	1083	1437	1713
50 cm	0.5	0.8	1.4	481	91	58	1396	205	65	593	136	69	3812	2373	1773	14218	2281	1034	0.7	0.3	0.1	3265	1839	1767
60-90 cm	0.5	1.1	1.0	113	122	146	306	319	222	205	171	133	2348	2754	2859	3234	3301	3637	0.3	0.4	0.3	1129	1866	2317
100 cm	0.5	1.0	0.94	355	362	277	1066	600	596	543	347	283	3497	3792	3935	10429	9199	6508	0.6	0.6	0.3	2690	3022	3037

Figure S1. Evolution of the annual snow stratigraphy in the first meter of annual snow. All data are corrected in function of the accumulation. The layers detected are classified by their resistance of penetration (hardness) using the hand test. The color scale represents the hardness of the layers: red (equal to 5) corresponds to the hardest, ice or melted/refrozen layer, and light blue represents very soft strata such as fresh snow depositions (Spolaor et al., 2016).

Figure S2. Box plots of average concentration of each ionic species found in the 1-m snow pit collected at Austre Brøggerbreen glacier, monitored daily from the 27^{th} of March until to the 31^{st} of May 2015.

Figure S3. The concentrations of SO_4^{2-} and nss- SO_4^{2-} (ng g⁻¹) were measured in the daily 1-m snow pit with a 10 cm resolution: dark red represents the highest concentration, light colors the lowest concentration. Each value is corrected for the daily accumulation/ablation. Air temperature and snow temperature of the first meter of snow are also reported.

Figure S4. Time series plots of averaged concentrations of biogenic ions (NO₃⁻, MSA, C2 and C5) on the logarithm scale for each considered stratum (10-20 cm, 30-50 cm and 60-100 cm). The red vertical lines identify the rain event (16^{th} April) and the melting phase (15^{th} May).

Figure S4. [Time series plots of averaged concentrations of non-biogenic ions (Br⁻, Ca²⁺, Mg²⁺, Cl⁻, K⁺, $SO_4^{2^-}$, I⁻, Na⁺) on the logarithm scale for each considered stratum (10-40 cm, 50 cm, 60-90 cm and 100 cm). The red vertical lines identify the rain event (16th April) and the melting phase (15th May).

References

Spolaor, A., Barbaro, E., Christille, J.M., Kirchgeorg, T., Giardi, F., Cappelletti, D., Turetta, C., Bernagozzi, A., Björkman, M.P., Bertolini, E., Barbante, C., 2016. Evolution of the Svalbard annual snow layer during the melting phase. Rend. Lincei 27. https://doi.org/10.1007/s12210-015-0500-8