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Abstract. Improving our knowledge of the temporal and spatial variability of the Antarctic Ice Sheet (AIS) Surface Mass Bal-

ance (SMB) is crucial to reduce the uncertainties of past, present and future Antarctic contributions to sea level rise. Here, we

show that Global Climate Models (GCMs) can reproduce the present-day (1979–2005) AIS SMB and the temporal variations

over the last two centuries. An examination of the surface temperature–SMB relationship in model simulations demonstrates a

strong link between the two. Reconstructions based on ice cores display a weaker relationship, indicating a model-data discrep-5

ancy that may be due to model biases or to the non-climatic noise present in the records. We find that, on the regional scale, the

modelled temperature-SMB relationship is stronger than the relationship between δ18O-temperature. This suggests that SMB

data can be used to reconstruct past surface temperatures. Using this finding, we assimilate isotope-enabled model SMB and

δ18O output with ice-core observations, to generate a new surface temperature reconstruction. Although an independent eval-

uation of the skill is difficult because of the short observational time series, this new reconstruction outperforms the previous10

reconstructions for the continental-mean temperature that were based on δ18O alone with a linear correlation coefficient with

the observed surface temperatures (1958–2010 CE) of 0.73. The improvement is largest for the East Antarctic region, where

the uncertainties are particularly large. Finally, we provide a spatial SMB reconstruction of the AIS over the last two centuries

showing 1) large variability in SMB trends at regional scale; and 2) a large SMB increase (0.82 Gt year-2) in West Antarctica

over 1957–2000 while at the same time, East Antarctica has experienced a large SMB decrease (-3.3 Gt year-2), which is15

consistent with a recent reconstruction.

1 Introduction

The spatial coverage of climate observations in Antarctica and the Southern Ocean is sparse (e.g. Jones et al., 2016; Neukom

et al., 2018). Consequently, the climate dynamics of the high southern latitudes are still poorly understood, leading to large

uncertainties in the processes governing climate variability (Church et al., 2013). Since around 1995, the contribution to the20

1

https://doi.org/10.5194/tc-2019-111
Preprint. Discussion started: 3 June 2019
c© Author(s) 2019. CC BY 4.0 License.



global sea level rise from the ice sheets – Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS) – has strongly increased,

and are slowly outpacing the contributions from mountain glaciers and ocean thermal expansion (Shepherd et al., 2018). The

GrIS has been dominating the ice sheet contribution so far (Rignot et al., 2011), but AIS mass loss has increased five-fold in

2012–2017 relative to 1992–1997, with current AIS mass loss values that approach those of the GrIS.

The (grounded) AIS Mass Balance (MB) is the difference between the surface mass balance (SMB) and the solid ice dis-5

charge (Lenaerts et al., 2019; Fyke et al., 2018). Reliable estimates of AIS MB and its relationship with internal climate

variability and transient climate forcing are needed to constrain future climate and sea level projections (Bamber et al., 2018).

The current AIS MB is negative (Rignot et al., 2011) because of large values of ice discharge (IMBIE team, 2018). The AIS

SMB displays large spatial variations that mask the trend at the continental scale (Wouters et al., 2013).

The SMB is defined as the difference between the incoming and outgoing mass at the surface of the ice sheet. In Antarctica,10

the main source term of the SMB, and its interannual variations, is precipitation in the form of snow (e.g. Lenaerts et al.,

2012; Agosta et al., 2018). Unlike Greenland, AIS surface melt is small, and most surface melt water refreezes in place, not

contributing to SMB (Trusel et al., 2015; Kuipers Munneke et al., 2012). As a result, the surface sublimation and sublimation

of blowing snow are the main sink terms of the AIS SMB (e.g. Frezzotti et al., 2013; van Wessem et al., 2018).

Ice cores provide information on past changes in surface temperature and SMB across Antarctica on time scales of centuries15

to millennia (e.g. Stenni et al., 2017; Thomas et al., 2017). In particular, it has become standard to reconstruct past temperature

changes from stable isotope ratios of oxygen (δ18O; e.g. Jouzel, 2003; Masson-Delmotte et al., 2006). However, ice core

studies suffer from several limitations: 1) the ice core network is still relatively sparse, despite recent coordinated international

drilling efforts (Thomas et al., 2017; Stenni et al., 2017); 2) annually resolved surface temperature and SMB records are not

available from extremely dry areas, such as the East Antarctic Plateau; 3) changes in precipitation seasonality (e.g. Sime et al.,20

2008), moisture origin (e.g. Holloway et al., 2016a) and other processes can modify the expected relationship between δ18O

and surface temperature (e.g. Jouzel et al., 1997; Klein et al., 2019). Combined, these factors lead to large uncertainties in the

reconstruction of surface temperatures.

Until recently, AIS SMB had been considered to display no significant trends since the mid-twentieth century (Monaghan

et al., 2006; Frezzotti et al., 2013). Based on recent work, this hypothesis has been revised: using a larger ice core network25

(PAGES2k database), Thomas et al. (2017) and Medley and Thomas (2019) have shown that AIS SMB has increased sig-

nificantly since 1900, albeit with important regional differences. The Antarctic Peninsula has witnessed a considerable SMB

increase during the twentieth century (e.g. Thomas et al., 2015; Goodwin et al., 2016), as well as some regions of Dronning

Maud Land (e.g. Philippe et al., 2016; Lenaerts et al., 2013; Medley et al., 2018; Shepherd et al., 2012). In contrast, other

regions of Droning Maud Land are subjected to a SMB decrease over the recent past (Schlosser et al., 2014; Altnau et al.,30

2015). All these studies point out the need to densify the ice-core network over Antarctica, but also to retrieve more insight in

what is driving the trends in AIS SMB and its spatial signatures. For the latter, output of climate model simulations can be very

useful (e.g Lenaerts et al., 2018).

In the last decade, output of several climate model simulations that cover the last millennium has become available (Schmidt

et al., 2011). Thus far, model evaluation has been mainly focussed on surface temperature (PAGES 2k-PMIP3 group, 2015).35
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These results have shown discrepancies in AIS surface temperature between climate model simulations and reconstructions

during the last millennium. In contrast to climate model results, surface temperature reconstructions show no clear warming

over the 20th century at the continental scale (Goosse et al., 2012; Stenni et al., 2017; PAGES 2k-PMIP3 group, 2015; Neukom

et al., 2018). This mismatch can be explained by an overestimation of the response of climate models to external forcing, or

by an underestimation of the signal from proxy overwhelmed by a strong natural variability occurring in Antarctica, or by a5

combination of both (Jones et al., 2016; Neukom et al., 2018). Unlike temperature changes, modelled AIS SMB variations over

the past millennium are poorly documented.

In a warmer climate, AIS SMB is expected to increase due to higher snowfall associated to the greater moisture holding

capacity of warmer air (e.g. Lenaerts et al., 2016). Taken alone, this straightforward thermodynamical effect would mitigate sea

level rise (Huybrechts et al., 2004; Krinner et al., 2007; Frieler et al., 2015). According to Monaghan et al. (2008), the observed10

sensitivity of Antarctic snowfall accumulation to surface temperature was about 5% K-1 during the 1960–1999 period. Based

on climate model simulations, this sensitivity is expected to increase in future with an estimated conversion value of 7.4% K-1

for the end of the 21th century (2080–2099; Palerme et al., 2017). The link between surface temperature and SMB has been

confirmed for small regions at the centennial time scale (200 years; e.g. Oerter et al., 2000; Medley et al., 2018) and on longer

time scales (glacial-interglacial; Frieler et al., 2015) for the full AIS using climate models and ice cores. However, some studies15

(Fudge et al., 2016; Altnau et al., 2015; Philippe et al., 2016; Goursaud et al., 2019) indicate that this SMB-surface temperature

relationship (estimated by δ18O) is not always positive, and varies spatially and temporally. These results suggest that in some

regions, especially along the AIS coasts, the variability of thermodynamic processes (such as the Clausius-Clapeyron effect)

on SMB is dominated by the large-scale atmospheric circulation, limiting the correlation with δ18O.

The first goal of this study is to document the relationship between surface temperature and SMB in Antarctica on a regional20

scale using climate models and ice-core records over the two past centuries and over the last millennium. The final goal is to

use the covariance between both variables to reconstruct past changes over the last two centuries by using a data assimilation

procedure. While the statistical methods classically used to infer past surface temperature (see for instance Stenni et al., 2017)

rely on the length of the calibration period, on the quality of the record during this period, and on the stationarity of the

link between the proxy and the variable of interest, which can be strong assumptions in the case of the δ18O-temperature25

relationship (Klein et al., 2019), data assimilation does not. In recent years, data assimilation has become a standard procedure

in paleoclimatology to optimally combine the information from model results and proxies and to provide estimates of past

climate states (e.g. Hakim et al., 2016; Widmann et al., 2010; Goosse et al., 2010; Matsikaris et al., 2015; Steiger et al., 2014).

However, Antarctic SMB to the best of our knowledge has never been assimilated in a climate model. The biggest advantage

of using data assimilation is that it takes into account information brought by both SMB and δ18O without making the strong30

assumptions that the statistical methods do. Additionally, using the covariance between them might lead to better estimates of

past changes in the two variables, particularly over time periods when proxy records are scarce and few instrumental data are

available, which is the case for the Antarctica. The resulting reconstructions will have the benefit of being compatible with the

physics of the climate system as represented by the models.
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2 Data: model simulations and observations

2.1 Global climate model simulations

The climate model simulations selected for this study are those for which the required variables (i.e. precipitation and subli-

mation/evaporation) are available for the last millennium from the PMIP3-CMIP5 database (Otto-Bliesner et al., 2009; Taylor

et al., 2012). In addition to these simulations, the CESM1-CAM5 model simulations covering the last millennium (Lehner5

et al., 2015) are also used. The characteristics and references of each model are described in Tab. A1. All these GCMs use the

GMTED2010 elevation dataset (Danielson and Gesch, 2011) as topography, adapted to their spatial horizontal resolution. The

simulations are driven by both natural (orbital, solar and volcanic) and anthropogenic (greenhouse gases, land use, aerosol and

ozone) forcings through the last millennium (Schmidt et al., 2011, 2012). Except for CESM1-CAM5, CSIRO- Mk3L-1-2 and

MPI-ESM-P, the simulations do not cover the entire millennium. Historical simulations covering 1851-2005 CE were launched10

independently of simulations covering 850-1850 CE (referred to as past1000 experiment). In order to obtain results over the

full millennium, we adopt the approach from Klein and Goosse (2018) and merge the first ensemble members (r1i1p1) of the

past1000 experiment with the corresponding ensemble members of the historical experiment. Although not continuous, there

is no large discrepancy between the two merged simulations (e.g. Klein and Goosse, 2018).

Simulations performed with the isotope-enabled climate models, ECHAM5-MPI/OM (Sjolte et al., 2018), ECHAM5-wiso15

(Steiger et al., 2017) and iHadCM3 (Tindall et al., 2009; Holloway et al., 2016b) are also analyzed. These simulations allow

for a direct comparison with observed water isotope content. ECHAM5/MPI-OM is a fully coupled General Circulation Model

(GCM). The simulation used here covers the period 800–2000 CE forced by natural and anthropogenic forcing (Sjolte et al.,

2018). The horizontal resolution of the atmospheric model is 3.75◦ × 3.75◦. The simulation of ECHAM5-wiso, which only

includes an atmospheric component, was performed by Steiger et al. (2017) and covers the period 1871–2011 CE at ∼ 1◦20

resolution. The model is driven by the sea surface temperature and sea ice from the Rayner et al. (2003) dataset. Finally,

iHadCM3 is the version of HadCM3 (fully coupled climate model; Turner et al., 2016) which has an explicit representation

of the water isotopes. The resolution of the atmospheric model is 3.75◦ × 2.5◦. While only one simulation is available for

ECHAM5-MPI/OM and ECHAM5-wiso, we have an ensemble of seven iHadCM3 simulations spanning the industrial period

from 1851 to 2003 CE. The initial conditions for each of these simulations correspond to different years in the pre-industrial25

control simulation of the iHadCM3 model. Comparisons of the results of these three isotope-enabled models with modern δ18O

observations indicate that they all reproduce the main characteristics of the spatial distribution of the isotopic composition of

precipitation over Antarctica (see reference for each model).

Klein et al. (2019) has recently described an evaluation of Antarctic surface temperature in reconstructions and model simu-

lations over the last millennium. In accordance with Abram et al. (2016), they highlighted the early onset of industrial warming30

simulated by the PMIP/CMIP models, which is not observed in the δ18O-based temperature reconstructions of Stenni et al.

(2017). This suggests that the Antarctic surface temperatures simulated by the models are too sensitive to the anthropogenic

forcing.
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2.2 The regional climate model RACMO2 simulation

The evaluation of AIS SMB simulated by GCMs for the present period (1979–2005) is mainly based on the results of the re-

gional atmospheric climate model RACMO2.3p_2 (RACMO2 hereafter) covering the entire AIS over 1979–2016 (van Wessem

et al., 2018). This is because 1) the SMB observations are very sparse on the AIS (Favier et al., 2013); 2) the interannual

(year-to-year) variability is different between observations and GCMs given that the latter are freely-evolving coupled mod-5

els. Consequently, the comparison can be only made on multi-decadal time scales (> 20 years), which drastically reduces the

availability of observations; 3) unlike observations, RACMO2 provides a complete SMB field over the entire AIS; and, fi-

nally, (4) the output of RACMO2 for the AIS SMB agrees very well with available measurements (correlation coefficient with

observations of 0.9; van Wessem et al., 2018). In an intercomparison of AIS SMB from reanalysis, atmospheric models and

observations, Wang et al. (2016) showed that the RACMO2 model best fits the recent AIS SMB observations compared to all10

other available datasets.

RACMO2 combines the physics package of the European Centre for Medium- Range Weather Forecasts (ECMWF, 2008)

integrated Forecast System and the hydrostatic dynamics of the High Resolution Limited Area Model (HIRLAM, Unden

et al., 2002). RACMO2 is specially adapted to polar regions since it includes the interactions between the atmosphere and the

multi-layered snow model that calculates physical processes occurring in the firn: meltwater production, percolation, runoff,15

refreezing, as well as snow grain size and resulting snow albedo (Greuell and Thomas, 1994; Ettema et al., 2010). RACMO2

also includes a drifting snow scheme simulating the interactions between the near-surface air with snow (Lenaerts et al., 2010).

All the SMB components are explicitly calculated by this regional model on a 27 km resolution grid. The Digital Elevation

Model of Bamber et al. (2009) is taken as reference of the Antarctic topography. ERA-Interim reanalysis data (Dee et al., 2011)

are used to force the regional model at its lateral boundaries. For more details on RACMO2, see van Wessem et al. (2018).20

2.3 Snow accumulation database from Antarctica2k

The annually resolved Antarctica2k (Ant2k) snow accumulation database (Thomas et al., 2017) is used for the evaluation of

AIS SMB simulated by GCMs before 1979. The estimate of the SMB from ice cores is based on the physical distance between

suitable age markers within the ice core. The age markers used depend on the timescale of interest ranging from glacial cycles

(e.g. bulk changes in isotopic compositions) to seasonal variations reflected by changes in stable water isotopes, while volcanic25

eruptions can inform on decadal to millennial timescales (Dansgaard and Johnsen, 1969). Once the age markers are identified,

since the firn density generally increases with depth in the ice core, it is necessary to consider those variations to convert the

age and depth to mass (Van Den Broeke et al., 2008). Doing so, SMB is converted to meters of water equivalent based on

measured density and corrected for the vertical strain rate effect – the differential vertical velocity with depth leading to layer

thinning with depth (Thomas et al., 2017).30

This database is composed of 79 records that are assigned to seven geographical regions (Fig. 1) with distinctly different

climates. East Antarctica above 2000 m elevation constitutes the East Antarctica Plateau (EAP). West Antarctica is separated

into two parts: the Antarctic Peninsula (AP) and the West Antarctica Ice Sheet (WAIS), with a division at 88◦ W. The coastal
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region of East Antarctica is divided into four regions: Victoria Land (VL; 150-170◦ E), the Wilkes Land Coast (WL; 70-150◦

E), Dronning Maud Land (DML; 15◦ W-150◦ E) and the Weddell Sea Coast (WS; 15-60◦ E). For each region, this database

covers the past 1000 years except for EAP, AP and DML, for which the period covered is 1240–2005 CE, 1703–2010 CE and

1737–2010 CE, respectively. Hereafter, West Antarctica is composed of WAIS and AP, while East Antarctica comprises all

of the other regions. Since some Antarctic regions lack long-term data, the SMB reconstruction for the whole Antarctic ice5

sheet is only available from 1737 AD. This regional SMB reconstruction has been compared to RACMO2, concluding that the

reconstruction captures a large proportion of the regional spatial SMB variability as defined by RACMO2 for the 1979-2010

period (Thomas et al., 2017).

Figure 1. Antarctic regions used in this study. The definitions of the regions are those of Thomas et al. (2017).

2.4 Water stable isotopes records and surface temperatures reconstructions from Antarctica2k

Stenni et al. (2017) built δ18O regional composites from 112 individual ice cores compiled in the framework of the PAGES10

Antarctica2k working group for similar seven Antarctic subregions as in Thomas et al. (2017; see Sec. 2.3) over the last two

millennia. This temporal averaging reduces uncertainties in dating linked to the noise induced by non-climatic processes (e.g.

Laepple et al., 2018; Fan et al., 2014). Based on those δ18O composites, they reconstructed regional surface temperatures over

the last two millennia based on the statistical relationship between δ18O and surface temperature. Three methods have been

used to scale the δ18O composites. The second reconstruction (borehole reconstruction) is used throughout this study for two15

reasons: 1) this is not based on surface temperature observations, which are used here to estimate the skill of the reconstructions

which would have led to a bias; 2) because it is based on more information, the borehole reconstruction is expected to be better

(see Supplementary materials for details). The temporal resolution is the same as for the δ18O composites: 10 years over 0–1800

and 5 years over 1800–2010.
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3 Methods: Reconstructing SMB and surface temperatures using data assimilation

3.1 Data assimilation method: a particle filter using fixed ensembles

Data assimilation optimally combines observations (proxy data in our case) and climate model states. Two types of data as-

similation methods are usually applied in paleoclimatology. First, online methods follow standard sequential data assimilation

approaches, in which the analysis at a single time step depends on the state at the previous step. Information is thus propagated5

forward in time. However, because data assimilation requires a large ensemble of model simulations (tens to hundreds), for

paleoclimate reconstructions, performing online data assimilation at high spatial climate model resolution (e.g. CMIP5 class

as used here) becomes impractical. Second, when working with so-called offline methods, ensemble members are constructed

from existing model simulations, which is of great interest in terms of computation time compared to online methods. Here, en-

semble members are constructed by individual years and not by independent model simulations. Therefore, in contrast to online10

methods, offline methods do not maintain temporal consistency. However, when the predictability on inter-annual time-scales

is limited, such as surface temperature or precipitation because of the dominant role of their chaotic nature, online methods

do not outperform offline ones (Matsikaris et al., 2015). Indeed, offline methods have provided skilful data assimilation-based

reconstructions for various types of data (e.g Steiger et al., 2017; Klein and Goosse, 2018; Hakim et al., 2016). Nevertheless,

the online approach is preferred when focussing on ocean dynamics because of the ocean long memory (e.g. Goosse, 2017;15

Pendergrass et al., 2012).

The offline data assimilation method applied in this study is based on a particle filter (e.g. van Leeuwen, 2009; Dubinkina

et al., 2011) using fixed ensembles from climate model outputs. The implementation described in Dubinkina et al. (2011)

is identical to previous studies (e.g. Klein and Goosse, 2018; Goosse et al., 2012). Hence, only a brief description of the

methodology will be given here. At each time step of the data assimilation procedure (yearly, see Sec. 3.2), each ensemble20

member, called particle, is compared to the proxy-based reconstruction by computing its likelihood, taking into account data

uncertainties. Depending on its likelihood, each particle receives a weight. Considering all particles weights, we can compute

a weighted average, providing a reconstruction for this time step. In this study, the ensemble members are derived from three

climate model outputs: ECHAM5-MPI/OM (Sjolte et al., 2018), ECHAM5-wiso (Steiger et al., 2017) and iHadCM3 (Tindall

et al., 2009; Holloway et al., 2016b). These models have been chosen because they explicitly simulate δ18O.25

3.2 Experiment design

Data assimilation is used in this study to reconstruct surface temperature and SMB by taking advantage of the covariance

between these variables. They are assimilated together as well as separately in three different experiments. In the first exper-

iment, the seven subregion composites of δ18O data (Stenni et al., 2017) are used to constrain model results. Assimilating

δ18O instead of surface temperature potentially accounts for the non-stationary and the non-linearity of the stable oxygen30

ratios–surface temperature link (Masson-Delmotte et al., 2008; Klein et al., 2019). For the second experiment, the SMB re-

construction for the seven subregions (Thomas et al., 2017) is used in the data assimilation process. Finally, both δ18O and

SMB are taken into account together in the last experiment. This allows us to estimate independently the consistency of the
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SMB and surface temperature reconstructed between the various records and model results. In addition, our experiments allow

us to assess the information acquired on surface temperature by assimilating SMB, and on SMB by assimilating δ18O. In all

the experiments, we assimilate annual-mean proxies. All modelled δ18O are precipitation-weighted as this quantity is most

realistic and comparable to ice cores which are themselves weighted.

Since the number of ice cores is limited before 1800 CE (both for δ18O and for SMB), which drastically decreases the quality5

of the regional composites (Thomas et al., 2017), the experiments are performed on the 1800–2010 period. Contrary to the SMB

composites, which have an annual resolution, the composites of δ18O are 5-year averages. Consequently, the δ18O data have

been interpolated linearly over the studied period to match the temporal resolution of the SMB reconstruction. However, as

recommended by Stenni et al. (2017), the results are analyzed only for the 5-year averages.

In order to assess the skill our data assimilation-based surface temperature reconstructions, we evaluate them at first with10

the reconstructions of Stenni et al. (2017). But this is biased since they are only based on δ18O and we cannot thus evaluate

the added value brought by SMB data and model physics in the data assimilation experiments. Therefore, independent data is

needed to properly assess the potential of SMB and δ18O in reconstructing surface temperature. This is done here using the

surface temperature reconstruction from Nicolas and Bromwich (2014), which is based on surface temperature records and not

on δ18O data, over the 1958–2010 period.15

4 Results

4.1 AIS SMB simulated by GCMs over the recent past and the past millennium

The AIS SMB over the last millennium has been estimated for each GCM by computing the difference between precipitation

and sublimation/evaporation. Runoff is assumed to be negligible as surface meltwater generally refreezes in the cold firn

(Magand et al., 2008; Kuipers Munneke et al., 2012). Overall, the AIS SMB simulated by GCMs is in good agreement with the20

SMB simulated by the regional climate model RACMO2 over the last decades (1979–2005, R2 = 0.53; Fig. 2 and S1 for the

SMB of each model). Both display high values of SMB along the coast (>300 mm w.e. year-1) – especially for West Antarctica

and the Antarctic Peninsula – and lower values at high elevations (e.g. the Plateau: <100 mm w.e. year-1). The median of the

SMB over the entire AIS simulated by CMIP5 models is 1.16% lower than the SMB simulated by RACMO2 (see Fig. S2 for

the integrated SMB over the entire AIS for each model).25

However, Figure 2 shows that the GCMs, compared to RACMO2, underestimate SMB in areas below 1500 m (mean bias of

-55 mm w.e. year-1; relative bias: -15%) over 1979–2005. For the areas above 1500 m, the mean bias of the simulated SMB by

GCMs compared to RACMO2 is 11 mm w.e. year-1 (relative bias: 11%). These results are in agreement with previous studies

(e.g. Palerme et al., 2017; Genthon et al., 2009; Krinner et al., 2008) who have shown that due to the lower spatial resolution of

GCMs in comparison to the regional model, SMB is underestimated at the coasts while an overestimation occurs in the interior30

of the ice sheet. The bias in the difference between the coastal and higher elevation regions are smaller for the models that

have a higher spatial resolution, such as CCSM4 (Fig. S3), confirming that the spatial resolution has a crucial impact on the

simulated SMB.
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Figure 2. Antarctic Ice Sheet Surface Mass Balance [mm w.e. y-1] over 1979–2005 CE averaged over all the GCMs simulations (see Tab.

A1 for the list) (top left), for RACMO2 (van Wessem et al., 2018) (top right), the difference between them (bottom left) and the distribution

of the SMB simulated by RACMO2 and the GCMs as a function of elevation, binned in 400m elevation intervals (bottom right). The bars

represent one standard deviation of the cell grids within each elevation bin. The equivalent of the latter panel for each model is provided on

Fig. S3.

Before the 19th century, all GCMs simulations are characterized by large decadal variability, but no long-term trend (Fig. 3).

A positive trend, albeit initiated at different times, is shown at the end of the simulation (around 1950 AD). All models agree

on an AIS SMB increase from ∼1975 onwards, which is consistent with the SMB reconstruction of Thomas et al. (2017).

However, the contrast in the SMB trends between East Antarctica and West Antarctica is stronger in the reconstruction based

on ice cores than in GCMs on average. Indeed, over the last decades (1950–2000), the ice core SMB reconstruction shows5

a large increase for West Antarctica (25.6 Gt year-1 per decade) and a small decrease (-3.6 Gt year-1 per decade) for East

Antarctica, while, on average, the GCMs simulate a strong SMB increase in both regions (8.9 ± 9.2 Gt year-1 per decade

and 14.2 ± 13.5 Gt year-1 per decade respectively; Figs. 3 and 4 and Tab. S1). Nevertheless, when analyzing the individual

simulations of the ensemble performed with CESM1-CAM5, the contrast between East Antarctica and West Antarctica is as

large as in recent observations (Fig. 4). This indicates that 1) the observed SMB trends between the two regions are within the10

range of the simulated values; 2) internal variability has an important role in the current Antarctic SMB changes.
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Figure 3. Surface Mass Balance anomalies [Gt y-1] simulated by the GCMs (Tab. A1) and snow accumulation reconstructions (Thomas

et al., 2017) during 1000 to 2005 and during 1800 to 2005 for West Antarctica, East Antarctica and Antarctica as a whole. Anomalies are

computed for the period 1871–2000. The shaded area corresponds to the range of the CESM1-CAM5 simulations. For visibility, data has

been smoothed with a 100 years moving average for the last millennium and a 30 year moving average for the last 200 years. The equivalent

for the seven subregions is given on Fig. S4.

4.2 Relationship between SMB and surface temperatures in Antarctica

Averaged across all GCMs, the relationship between SMB and surface temperature is positive for each Antarctic region (Fig. 5).

A very similar result is obtained when the annual mean surface temperature and SMB derived from the RACMO2 simulation

over the recent period (1979–2016) are used. The regional correlations are much weaker for the reconstructions based on ice

cores than those obtained from model outputs (Fig. 5). These results are also true for detrended times series, indicating that5

this modelled link is valid at the inter-annual time-scale (not shown). To quantify more precisely the link between surface
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Figure 4. Comparison between the reconstructed and the simulated surface mass balance trends (mm w.e./100y-2) over the period 1950–2000

CE in West Antarctica (y axis) and East Antarctica (x axis). West Antarctica comprises both the Antarctic Peninsula and WAIS here while

East Antarctica comprises the remaining regions of Antarctica.

temperature and SMB in model outputs and reconstructions, the SMB sensitivity to temperature – defined as the slope of

the linear fit between near-surface air temperature and SMB – has been calculated. On average over the entire continent, this

sensitivity reaches 3.6 % K-1 in ice cores-based reconstructions for the 1850–1949 period. According to these reconstructions,

this sensitivity has increased a lot for the recent period (1950–2005; 15.52 % K-1), confirming the findings of Frieler et al.

(2015). However, this recent increase is not represented by the GCMs: on average, the simulated sensitivity of SMB to near-5

surface temperatures is 5.0 ± 1.1 % K-1 over 1850–1949 and 5.4 ± 2.0 % K-1 over 1950–2005. When looking at the regional

scale over 1850–2005, the average SMB sensitivity over all models for West Antarctica (6.8 % K-1) is in good agreement with

the one deduced from the reconstructions (8.0 % K-1; Fig. 6), while for East Antarctica, the sensitivity of the model mean is

higher than the one obtained from the reconstructions (6.2 % K-1 and 2.1 % K-1 respectively). The very low SMB sensitivity

in the reconstructions for East Antarctica, especially on the Antarctic Plateau (0.5 % K-1) is somewhat unexpected, given that10

this region is continental and thus less affected by synoptic activities than coastal areas (Monaghan and Bromwich, 2008).

In the study of Neukom et al. (2018), the authors claim that the data sampling, the noise in proxy data and the deficiencies in

the reconstruction methods can partly explain the discrepancy between models and reconstructions for the surface temperature

during the last millennium, especially for the southern hemisphere. The spatial coverage of the surface temperature and SMB

reconstructions based on ice cores is poor, in particular for East Antarctica (Stenni et al., 2017; Thomas et al., 2017). Moreover,15

due to the low snow accumulation in some regions, the uncertainties of the reconstruction are large for both surface tempera-

tures and SMB, leading to noise in the time series (Stenni et al., 2017; Thomas et al., 2017; Frezzotti et al., 2007). Since the

SMB reconstruction is only based on direct snow accumulation measurements, this is expected to be more accurate than the

δ18O-based temperature reconstruction, which is built by assuming a stationary link between δ18O and surface temperature.

Because a lot of processes (such as precipitation seasonality or moisture origin) can significantly modify this relationship over20

time (e.g. Jouzel et al., 1997; Sime et al., 2008), this is computed over a short calibration period, but this might be too short

to be representative (Klein et al., 2019). Thus, the high sensitivity resulting from ice cores could arise from using δ18O as a
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Figure 5. 5 yearly correlations (r) between SMB and surface temperature for seven Antarctic regions (see Fig. 1 for geographical definitions)

for GCMs over the 1850–2000 CE (left), for RACMO2 over 1979–2016 CE (center) and for ice core reconstructions (Thomas et al., 2017;

Stenni et al., 2017) for 1850–2000 CE (right). For the CMIP5 models and RACMO2, their correlations are all statistically significant (p-

value<0.05). For the reconstructions, the statistically significant (p-value<0.05) correlations are obtained for the Antarctic Peninsula and

Dronning Maud Land Coast.

surface temperature proxy. When using the observed surface temperatures (e.g. Nicolas and Bromwich, 2014) instead of the

reconstructed ones of Stenni et al. (2017), the Antarctic SMB sensitivity to temperature is strongly reduced (4.02 % K-1 for the

1958–2010 period), and thus closer to the resulting sensitivity found in the GCMs (5.4± 2.0 % K-1 for the 1950–2005 period).

4.3 SMB and surface temperature reconstructions from data assimilation

The high correlation values obtained between SMB and surface temperatures in GCMs suggest that we can potentially use SMB5

to reconstruct Antarctic near-surface temperature. The analysis of isotope-enabled models results reinforces this hypothesis

(Fig. 7): the iHadCM3 outputs show high correlations between these two variables. For most regions, the link between surface

temperature and SMB (r=0.70 on average over the seven subregions for the 1850–2000 period) is higher than that between

surface temperatures and δ18O (r=0.55 on average over the seven subregions for the 1850–2000 period). This is consistent with

the observations: the regional correlations between SMB from ice cores (e.g. Thomas et al., 2017) and the observed surface10

temperatures (i.e. Nicolas and Bromwich, 2014) are high for several regions over the 1960–2010 period (5-year averages). In

particular, this correlation for East Antarctica is 0.82 (statistically significant). The results with the outputs of ECHAM5-wiso

and ECHAM5/MPI-OM are similar (Figs. S6 and S7).

4.3.1 Surface temperatures reconstruction

When constraining the model with the SMB reconstruction of Thomas et al. (2017), the obtained surface temperature recon-15

struction is less well correlated with the reconstruction of Stenni et al. (2017) than for the data assimilation reconstruction

constrained by only the δ18O (Fig. 8). However, the difference is relatively small, despite the fact that SMB and surface tem-

peratures are more strongly correlated in models than in the ice core reconstruction (0.86 for iHadCM3 against 0.16 for ice

12
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SMB Sensitivity to ST: 850–1850 vs 1850–2005 time periods

Figure 6. SMB sensitivity to Surface Temperatures (ST) over the 850–1850 and the 1850–2005 periods for each Antarctic region (see Fig. 1

for geographical definitions) for GCM outputs. Additionally, the SMB-δ18O sensitivity for ice cores based-reconstructions (i.e Thomas et al.,

2017; Stenni et al., 2017) over 1850–2005 is represented by a solid black vertical line while a solid red vertical line represents the SMB-

observed surface temperatures sensitivity Thomas et al. (2017); Nicolas and Bromwich (2014) over 1960–2010. For the CESM1-CAM5

model, the 12 simulations are plotted as grey points.

cores; Fig. 7). When comparing to observed surface temperature over the 1958–2010 period (i.e. Nicolas and Bromwich, 2014),

the surface temperature reconstruction of Stenni et al. (2017) as well as the reconstruction when only δ18O is assimilated is in

good agreement with the observed surface temperatures for West Antarctica (Tab. 1, coefficient correlations are 0.79 and 0.69

respectively, both statistically significant) but not for East Antarctica (coefficient correlations are 0.10 and 0.13 respectively,

both not statistically significant).5

In contrast to the data assimilation experiment, in which only δ18O is assimilated, the skill of the surface temperature

reconstruction is almost identical for both regions in the data assimilation experiment where only SMB is assimilated: r=0.55

(p-value<0.1) for West Antarctica and r=0.60 (p-value<0.1) for East Antarctica. Assimilating SMB thus provides a more

spatially robust temperature reconstruction than when assimilating δ18O. When both δ18O and SMB are taken into account in

the data assimilation process, the skill of the surface temperature reconstructions for the two sub-Antarctic regions is higher10

(r=0.72 and 0.61 for West Antarctica and for East Antarctica respectively, both significant) than when assimilating separately
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Figure 7. 5 year correlations between SMB and δ18O, surface temperature and δ18O, and SMB and surface temperature for the seven

Antarctic regions over 1850–1995 period from the iHadCM3 outputs. The error bars correspond to the range (maximum and minimum)

of the iHadCM3 simulations while the dot is the mean of the simulation ensemble. In black circles, the correlation between the SMB ice

core reconstructions from Thomas et al. (2017) and the δ18O of Antarctic ice cores aggregated for the seven Antarctic regions (Stenni et al.,

2017). In black squares, the correlation between the SMB reconstructions from Thomas et al. (2017) and the observed surface temperatures

aggregated for the seven Antarctic regions (Nicolas and Bromwich, 2014). This latter dataset covers only the 1960–2010 period (5-year

averages). Non-significant correlations (p-value>=0.05) are shown in pale.

Table 1. 5-year mean correlations between the three surface temperature reconstructions from data assimilation experiments using the

iHadCM3 outputs and the statistical reconstruction of Stenni et al. (2017), with the surface temperature reconstructions from Nicolas and

Bromwich (2014) over the 1958–2010 period for West Antarctica, East Antartica and Antarctica as a whole. Stars represent statistically

significant correlations (p-value<0.10).

West Antarctica East Antarctica Antarctica

DA δ18O 0.69* 0.13 0.34

DA SMB 0.55 0.60* 0.65*

DA δ18O and SMB 0.72* 0.61* 0.73*

Stenni et al. (2017) 0.79* 0.10 0.57*

the δ18O or the SMB. Moreover, the only reconstruction that provides statistically significant results for all the regions (West,

East and the entire Antarctica; p-value<0.1) is when both δ18O and SMB are assimilated, implying that assimilating both

proxies offers more robust results than only assimilating one of them.

When looking at the linearly detrended time series, our final reconstruction (i.e. when δ18O and SMB are assimilated) dis-

plays a null correlation with observed surface temperature (p-value=0.99) for West Antarctica, but the correlation remains high5

14

https://doi.org/10.5194/tc-2019-111
Preprint. Discussion started: 3 June 2019
c© Author(s) 2019. CC BY 4.0 License.



West Antarctica East Antarctica Antarctica

D
A

δ
18

O
D

A
SM

B
D

A
δ

18
O

an
d

SM
B

Figure 8. Reconstructed temperatures (5-year mean) for West Antarctica, East Antarctica and for Antarctica as a whole from data assimilation

experiment (red) using the iHadCM3 outputs and δ18O (Stenni et al., 2017) and SMB reconstruction (Thomas et al., 2017) as constrain in the

data assimilation process. The period is 1800–2010. The surface temperature reconstruction of Stenni et al. (2017) are represented in black

and those from Nicolas and Bromwich (2014) are in blue. DA δ18O (first row) is the data assimilation experiment using only the δ18O data

to constrain the model while DA SMB (second row) uses the SMB reconstruction and DA δ18O and SMB (third row) uses both. For each

experiment and each region, the correlation (r) between the reconstruction based on ice cores (in black) and that based on data assimilation

is computed (in red). The shaded areas represent ± 1 standard deviation of the model particles. Stars represent the statistically significant

correlation (p-value<0.05).

for East Antarctica (r=0.60; p-value=0.07). During the 1958–2012 period, a significant warming is observed in West Antarc-

tica while no significant change is noticed for East Antarctica (Nicolas and Bromwich, 2014). Consequently, data assimilation

tends to reproduce the warming for West Antarctica and the inter-annual variability for East Antarctica, explaining our dif-

ferent results between the original and detrended time series. Additionally, as well as our reconstruction based on only δ18O,

the correlation of the detrended δ18O-based temperature reconstruction of Stenni et al. (2017) with the observed one for East5

Antarctica is non-significant and negative suggesting that SMB constitutes a better proxy than δ18O for surface temperatures,

at least at the inter-annual time-scale (see Tab. S4).
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Regarding surface temperature trends over the last two centuries, our reconstructions displays an increase of 0.02◦C per

decade for West Antarctica and 0.023◦C per decade for East Antarctica, which finally leads to an increase of 0.022◦C per

decade for Antarctica as a whole (all statistically significant). For the 1961–2010 period, our reconstruction is able to simulate

the observed contrast between West and East Antarctica (0.22 ◦C per decade (significant) and 0.053 ◦C per decade (not signif-

icant), respectively, for Nicolas and Bromwich (2014) compared with 0.1 ◦C per decade and 0.06 ◦C per decade, respectively,5

for our reconstruction, both significant). The resulting contrast in our reconstruction is thus less large than observed (see Tab.

S2 for details). However, because of the short time period considered, these values can highly vary depending on the time

interval chosen (not shown).

4.3.2 SMB reconstruction

Constraining the model with the δ18O data leads to a poor SMB reconstruction, especially for West Antarctica (correlation10

coefficient of 0.29; Fig. 9). Moreover, the constraint derived from observed δ18O on SMB is weak as illustrated by the large

error band of the reconstruction (estimated by the weighted variance of the particles with non-zero weight). When assimilating

both δ18O and SMB, the SMB reconstruction is in good agreement with the reconstruction of Thomas et al. (2017).

Table 2. SMB trends over grounded West Antarctica, East Antarctica and Antarctica as a whole from 1) our reconstruction based on data

assimilation using iHadCM3 outputs and, SMB and δ18O data in the data assimilation procedure; 2) Medley and Thomas (2019); 3) RACMO2

outputs for various time intervals (in Gt year-2). Stars stand for statistically significant trends at 5% level.

In this study Medley and Thomas (2019) RACMO2

1801

–

2000

1957

–

2000

1979

–

2000

1801

–

2000

1957

–

2000

1979

–

2000

1979

–

2000

West Antarctica 0.07 0.82* 1.6 0.1 1.3 1.7 2.0

East Antarctica 0.19* -0.13 -3.3* 0.3* -0.4 -4.5* -3.7

Antarctica 0.26* 0.7 -1.7 0.4* 1 -2.7 -1.7

According to this data assimilation-based SMB reconstruction, the AIS SMB has increased at a 0.33 Gt year-2 pace (p-

value<0.001) during the 1801–2000 period and 0.88 Gt year-2 (p-value=0.1) for the 1957–2000 period. Over this latter period,15

West Antarctica has witnessed an increase of 1.0 Gt year-2 while East Antarctica was subjected to a decrease of 0.12 Gt year-2

(p-values=0.7). Unlike West Antarctica, the high non statistical significance of the SMB trend for East Antarctica might imply

that internal variability currently plays a large role in the SMB variability there (e.g. Jones et al., 2016). However, if we focus

on the shorter 1979–2000 period, a significant decrease is obtained for East Antarctica (-3.9 Gt year-2; p-value <0.01) while it

is still positive for West Antarctica (1.9 Gt year-2; p-value=0.2), which is consistent with RACMO2 outputs (-3.4 Gt year-2 for20

East Antarctica and 2.1 Gt year-2 for West Antarctica, both not significant).
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Figure 9. Reconstructed SMB (5-year mean) for West Antarctica, East Antarctica and Antarctica as a whole from data assimilation exper-

iment using the iHadCM3 outputs and δ18O (Stenni et al., 2017) and SMB reconstruction (in black; Thomas et al., 2017) as constrain in

the data assimilation process. The period is 1800–2010. DA δ18O (first row) is the data assimilation experiment using only the δ18O data

to constraint the model while DA SMB (second row) uses the SMB reconstruction and DA δ18O and SMB (third row) uses both. For each

experiment and each region, the correlation (r) between the reconstruction based on ice cores (in black) and that based on data assimilation

is computed (in red). The shaded areas represent ± 1 standard deviation of the model particles. Stars represent the statistically significant

correlation (p-value<0.05).

5 Discussion and conclusions

This paper discusses the AIS SMB over the last two centuries and its links with surface temperature in reconstructions and

model simulations. The SMB simulated by GCMs has been evaluated using the regional climate model RACMO2 and re-

constructions based on ice cores. The GCMs are able to simulate relativity well the current AIS SMB, as well as its temporal

variations over the last two centuries, including the positive SMB trend since around 1960 AD. This evaluation gives confidence5

in the use of GCMs to study the SMB over Antarctica.

The analysis of the relationship between SMB and surface temperature in models and in ice core reconstructions highlighted

the covariance between both variables that can potentially be used to reconstruct past changes. The relevance of SMB in the
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reconstruction of surface temperature in Antarctica is based on a relatively simple concept: Antarctic precipitation originates

mainly from lower latitudes, in the form of warm and wet air masses (Goodwin et al., 2016; Turner et al., 2016; Clem et al.,

2018). Nevertheless, δ18O also provides useful temperature-related information that can be used to complement the information

provided by SMB, such as changes in moisture origin (e.g. Holloway et al., 2016a). Our analyses pointed out significant model-

data discrepancies in the SMB-surface temperature relationship. On the one hand, models show a strong correlation between5

δ18O and SMB for all the Antarctic regions and on the other hand the reconstructions based on ice cores display a weak

relationship. Furthermore, unlike previous studies (e.g. Frieler et al., 2015) who suggest an increase of the SMB sensitivity to

surface temperature for the future in Antarctica, we show that current sensitivity is not exceptionally high compared to the last

200 years, according to CMIP5 models.

These large discrepancies between model results and reconstructions can be explained by different factors. The GCMs may10

have biases in the simulated temperature changes or in their response to anthropogenic forcing. This may contribute to an

overestimation of the contribution of the simple thermodynamic link between temperature and precipitation and thus snow

accumulation while it underestimates the role of changes in atmospheric circulation variability. Nevertheless, by removing

the linear trend of time series, we obtained similar results. They may also neglect processes such as blowing snow that can

reduce the correlation between temperature and SMB. On the other hand, RACMO2, which includes a simple representation of15

blowing snow and is nudged to observed temperature and large-scale circulation changes, displays similar correlations to that

of the GCMs. Another hypothesis is that differences could rather arise from uncertainties in the reconstructions. According to

Neukom et al. (2018), uncertainties in the reconstructions (the noise in proxy data and the deficiencies in the reconstruction

methods) and the data sampling could be an explanation of the observed discrepancy between models and reconstructions.

By analyzing isotope-enabled climate models, we showed that the relationship between SMB and surface temperature is20

often higher than the one between surface temperature and δ18O. This is true both on the continental and regional scale. Unlike

SMB, δ18O can be subject to large uncertainties linked to precipitation seasonality (Sime et al., 2008) or changes in moisture

origins (Holloway et al., 2016a), which can explain the weaker correlations.

Our data assimilation experiments confirm the benefits of using both proxies – SMB and δ18O – to reconstruct surface

temperature. When assimilating both δ18O and SMB data, the resulting reconstruction shows a higher correlation with observed25

surface temperature over the period 1958–2010 for the entire Antarctic continent (r=0.73) than the one obtained with the

reconstruction based on the statistical method of Stenni et al. (2017; r=0.57). The difference is larger for East Antarctica,

where the reconstruction skill is enhanced by incorporating SMB data (r=0.61 for our reconstruction against 0.10 for the

reconstruction of Stenni et al., 2017). For West Antarctica, our reconstruction is very similar to Stenni et al. (2017)’s statistical

method. This improvement can be explained by the large uncertainties in δ18O data for East Antarctica, probably because of30

the low number of ice cores and low snow accumulation in those areas. In comparison to Stenni et al. (2017) and Klein et al.

(2019), who obtain a higher surface temperature trend over the last two centuries for East Antarctica (0.03 ◦C per decade and

0.018 ◦C per decade respectively, both significant) than for West Antarctica (0.011 ◦C per decade and 0.01 ◦C per decade

respectively, both not significant), our data assimilation-based reconstruction reveals similar surface temperature trends for

both regions (0.02 ◦C per decade and 0.023 ◦C per decade respectively, both significant). However, over the entire continent,35
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the trend is almost the same between the different datasets (0.022 ◦C per decade in this study (significant), 0.019 ◦C per decade

for Stenni et al., 2017, significant, and 0.016 ◦C per decade for Klein et al., 2019, not significant). Over the last decades (1961–

2010), all the reconstructions are able to reproduce the observed contrast between West Antarctica (large warming) and East

Antarctica (weak warming), but overall, they underestimate it (see Tab. S2 for details).

Regarding changes in SMB over the last two centuries, our reconstruction shows large regional differences in SMB trends,5

both in magnitude and in sign, in accordance with Medley and Thomas (2019; Fig. S12). While they obtain a statistically

significant SMB increase of 0.4 Gt year-2 over the grounded AIS for 1801–2000, our result suggest a weaker increase (0.26 Gt

year-2; p-value<0.001; see Tab. 2 for details). A similar underestimation is noticed for the 1957–2000 period, (1.0 Gt year-2 for

Medley and Thomas (2019), not significant, and 0.70 Gt year-2 for our reconstruction, p-value=0.130). Over the last decades

(1979–2000), both Medley and Thomas (2019) and our results reveal that grounded West Antarctica gains mass at its surface10

(1.6 Gt year-2 in this study and 1.7 Gt year-2 for Medley and Thomas, 2019, both not significant) while grounded East Antarctica

has experienced a very large SMB decrease (-3.3 Gt year-2 and -4.5 Gt year-2 respectively, both significant), which is consistent

with the value obtained in the RACMO2 outputs (2.0 Gt year-2 for West Antarctica -3.7 Gt year-2 for East Antarctica, both not

significant).

More generally, in contrast to statistical methods, data assimilation ensures that reconstructions are compatible with the15

physics of the system as represented in the models chosen. Considering our good results regarding surface temperatures and

SMB reconstructions, our data assimilation-based reconstructions suggest that the strong simulated correlation between surface

temperatures and SMB in GCMs is not a model artefact. This is supported by a strong link between these two variables in

observations, in particular for East Antarctica (r=0.82, statistically significant). Therefore, data assimilation appears particularly

well-adapted for reconstructing surface temperatures in this framework as the covariance between variables is obtained directly20

from climate models that explicitly include physical processes while statistical approaches restrict the problem to empirical

linear relationships. By using data assimilation, no assumption such as stationarity or long calibration periods is required to

estimate th link between variables, assumptions which can strongly vary in time and space (Klein et al., 2019).
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Appendix A: Characteristics of GCMs

Table A1. PMIP3/CMIP5 GCMs characteristics and references.

Model name
Atmospheric model

resolution (lat × lon)

Number of

simulations for

850-1850 period

Number of

simulations for

1850-2005 period

Reference

BCC-CSM1-1 64 × 128 1 3 Wu et al. (2014)

CCSM4 192 × 288 1 6 Gent et al. (2011)

CESM1-CAM5 96 × 144 12 12 Lehner et al. (2015)

CSIRO-Mk3L-1-2 56 × 64 1 1 Rotstayn et al. (2010)

GISS-E2-R 90 × 144 1 6 Schmidt et al. (2014)

HadCM3 73 × 96 1 10 Turner et al. (2006)

IPSL-CM5A-LR 96 × 96 1 6 Dufresne et al. (2013)

MPI-ESM-P 96 × 192 1 2 Stevens et al. (2013)

MRI-CGCM3 160 × 320 1 3 Yukimoto et al. (2012)

Code and data availability. The resulting Antarctic SMB and surface temperature reconstructions will be available when the manuscript

is accepted. All CMIP5/PMIP3 model simulations can be directly downloaded on http://pcmdi9.llnl.gov. iHadCM3 data are available by

request to Max Holloway (Max.Holloway@sams.ac.uk). ECHAM5-wiso data covering the 1871-2011 period can be downloaded from

https://doi.org/10.5281/zenodo.1249604. Products from the ECHAM5/MPI-OM model simulation are available by request to Jesper Sjolte5

(jesper.sjolte@geol.lu.se). RACMO2 data are available by request to Jan Lenaerts (Jan.Lenaerts@Colorado.EDU). δ18O, surface tempera-

ture and SMB reconstructions are stored at UK Polar Data Centre and at NOAA World Data Center for Paleoclimatology (https://www.ncdc.

noaa.gov/paleo-search/study/22589), or by request from Elizabeth R. Thomas (lith@bas.ac.uk). Antarctic observed surface temperatures are

available at http://polarmet.osu.edu/datasets/Antarctic_recon/.
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