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Dalaiden Quentin 



  

The Referee’s comments below are in italics, our answer in plain font in blue 

The authors answered to all my comment, and I thank them for taking them into account.
I still have 3 minor and 1 major comments bellow.

We  would  like  to  thank  again  the  Referee  for  their  careful  evaluation  and  for  all  the
suggestions that helped improve the manuscript.

= minor =
"More specifically,  with only  a few uncertain  data,  it  is  expected that  the reconstruction
based  on  our  data  assimilation  method  may  show  less  variance  than  reconstructions
provided  by  some  other  methods  (as  observed  previously;  e.g.  Goosse  et  al.  2010).
Nevertheless, we did not discuss much this point in the manuscript as it critically depends on
the uncertainty of the input data, that is itself not well known. »

Can you add a short sentence on this point in the text, maybe in the discussion?

We accordingly have added a sentence regarding the variance of our reconstruction in the
discussion section:

“Our reconstruction displays smaller variance in time than the reconstruction from Stenni et
al. (2017), which is a standard characteristic of estimates based on data assimilation using
only a few uncertain data (e.g. Goosse et al., 2010).“

= minor =
In the text, at the end of Section 3.1:

«  Considering  all  particles  weights,  we  can  compute  a  weighted  average,  providing  a
reconstruction for this time step. In this study, the ensemble members are derived from three
climate model outputs: ECHAM5-MPI/OM (Sjolte et al., 2018), ECHAM5-wiso (Steiger et al.,
2017) and iHadCM3 (Tindall et al., 2009; Holloway et al., 2016b). »

As models  have already  been presented with  more details  in  Section  1.2,  I  suggest  to
change for something like:
«  Considering  all  particles  weights,  we  can  compute  a  weighted  average,  providing  a
reconstruction for this time step. In this study, the ensemble members are derived from the
three  isotope-enabled  climate  model  outputs  ECHAM5-MPI/OM,  ECHAM5-wiso  and
iHadCM3, presented at Section 1.2. »

We have applied  the change in the new version of  the manuscript.  Thank you for  your
suggestion.

= major =
« Throughout the text we mainly focused on the iHadCM3 model because, in contrast to the
other isotope-enabled models (ECHAM5-wiso and ECHAM5-MPI/OM), iHadCM3 offers an
ensemble of simulations, which is a significant advantage for data assimilation.



We added a few words on the reason of our choice at the end of the section 3.1.:
“Because iHadCM3 offers an ensemble of seven simulations, while the other isotope-enable
models  have only  a  single  realization,  we mainly  focus on the iHadCM3 outputs in  the
manuscript.  Dealing  with  an  ensemble  instead  of  a  single  simulation  increases  the
probability  of  finding  model  results  close  to  the  assimilated  records  during  the  data
assimilation process.” »

I computed the number of years by simulation:

ECHAM5-MPI/OM: 800–2000 = 1200 years
ECHAM5-wiso: 1871–2011 = 141 years
iHadCM3: seven x 1851-2003 = 7 x 153 years = 1071 years

If indeed ECHAM5-wiso gives a much lower number of particles than ECHAM5-MPI/OM and
iHadCM3, you did not quantify how much the long simulation from ECHAM5-MPI/OM covers
less internal variability than iHadCM3. I am not convinced it is necessarily true. The reason
for which you chose to focus on iHadCM3 seems weak to me. One can wonder if it is related
to the fact that iHadCM3 DA is the only reconstruction for which using both δ18O and SMB
gives better results than δ18O alone for West Antarctica.

To answer to this comment, I suggest to include the results of the 3 models, or at least
results of ECHAM5-MPI/OM together with iHadCM3, to draw your conclusions.  I  believe
your  results  are  robust,  and  the  fact  that  it  remains  robust  for  the  3  models  for  East
Antarctica and all-Antarctica is a strong assessment of it in my point of view (Table S4).
In particular I think Table S4 should replace Table 1 and be commented in the text, and Fig.
6 should be updated to include ECHAM5-MPI/OM.

We  agree  that  the  potential  number  of  particles  is  similar  for  iHadCM3  and
ECHAM5-MPI/OM ensembles. However, the climate variability of the iHadCM3 ensemble is
larger  than the variability  of  the ECHAM5-MPI/OM simulation.  For example,  the regional
variability  in  surface  air  temperature  for  the  iHadCM3  are  always  larger  than  for  the
ECHAM5-MPI/OM ensemble (Table 1). We also generally observe a greater variance for the
δ18O and SMB variables for  the iHadCM3 ensemble compared to the ECHAM5-MPI/OM
ensemble (Tables 2 and 3). A wide climatic range increases the probability of finding model
results close to the assimilated records and limits the risk of an overconfident reconstruction
or of a degeneracy of the assimilation. Consequently, even though the ECHAM5-MPI/OM
ensemble is slightly larger than the iHadCM3 ensemble, the ECHAM5-MPI/OM ensemble
covers a more limited climatic range compared to the iHadCM3.

We first analysed the results from iHadCM3 because working with an ensemble allowed us
to  assess the uncertainty  of  the  Antarctic  SMB-SAT and  δ18O-SAT relationships  due to
internal variability over the recent past (1850-2000) when comparing to observations and
reconstructions based on proxies, which is not feasible with only one simulation such as the
ECHAM5-MPI/OM simulation. Additionally, the iHadCM3 ensemble provides a more realistic
Antarctic climate than the Antarctic climate provided by the ECHAM5-MPI/OM simulation:

1. Klein  et  al.  (2019)  have  shown  that  the  ECHAM5-MPI/OM simulation  displays  a
surface warming  during  the  850-1850  period (+0.02 degree Celsius  per  century)



while  other  model  simulations  (7 different  models)  and reconstructions  based on
proxies show all a cooling (-0.03 and -0.06 degree Celsius per century, respectively;
Figure 1 from the mentioned paper). Over the last decades, this simulation shows a
cooling  (-0.24  degree  Celsius  per  century)  while  in  models,  reconstructions  and
observations, a warming is noticed for the Antarctic continent (1.54, 1.74 and 1.00
degree Celsius per century, respectively). iHadCM3 displays a warming from 0.28 to
3.10 degree Celsius per century for Antarctica as a whole over 1960-2000 AD.

2. According  to  our  evaluation  of  the  current  AIS  SMB,  when  comparing  to  the
RACMO2 SMB, iHadCM3 shows a higher R2 and a smaller bias than ECHAM5-MPI/
OM (Figure S8).

Given that the manuscript already contains a lot of information, we think that adding figures
from  ECHAM5-MPI/OM  in  the  main  text  will  make  the  manuscript  less  readable.  The
discussion regarding the surface air temperature and snow accumulation reconstructions will
contain  much  more  numbers,  making  the  reading  difficult.  Besides,  as  the  Referee
mentioned,  our  results  are  consistent  between  all  the  models  and  thus  including  these
results will not change our main conclusions. If the reader would look at the results for the
other  models,  all  the  results  are  in  Supplementary  Materials.  We thus  propose  to  only
present figures from iHadCM3 in the main manuscript to avoid overloading the manuscript
by information that  only  confirms our main findings.  The figure for the other models are
presented in the Supplementary Materials. Besides, as suggested by the Referee, we have
replaced in the manuscript the Table 1 by the Table S4 including results from the three
models with a discussion mainly focused on the results from iHadCM3. 

Accordingly  to  the  Referee’s  comment,  we  also  have  modified  our  initial  paragraph
discussing the reasons why we chose iHadCM3:

“Because iHadCM3 offers an ensemble of seven simulations, while the other isotope-enable
models  have only  a  single  realization,  we mainly  focus on the iHadCM3 outputs  in  the
manuscript.  Dealing  with  an  ensemble  instead  of  a  single  simulation  increases  the
probability  of  finding  model  results  close  to  the  assimilated  records  during  the  data
assimilation process.”

by this:

“Because iHadCM3 offers an ensemble of seven simulations, while the other isotope-enable
models have only a single realization, we mainly focus on the iHadCM3 outputs in the main
manuscript. The results from the other models are shown in the Supplementary Materials
and provide similar conclusions to the ones obtained with iHadCM3. Using an ensemble
allow us estimating the contribution of internal variability over the last century and the range
provided by this ensemble is larger than the one given by the other two models, increasing
the probability  of  finding  model  results  close  to the assimilated records  during the data
assimilation process.  Additionally,  iHadCM3 ensemble provides a more realistic  Antarctic
surface temperature and snow accumulation over recent past than the ECHAM5-MPI/OM
simulation (Fig. S8; Klein et al., 2019).”

= minor =



In Figure 7 vs. Fig. S11, the red shaded area show larger spread for iHadCM3 DA than for
ECHAMwiso DA. This is logical as you show 1-sigma of model particles, and the number of
particules  is  much lower  in  ECHAMwiso than in  iHadCM3.  But  ideally  the shaded area
should reflect this,  giving more uncertainty on reconstructions coming from ECHAMwiso,
no? Can you compute a metric of the uncertainty of your DA reconstruction that decreases
with increasing number of particle?

Thank you for  your  comment.  Indeed the variance of  the reconstruction  using iHadCM3
(Figure 7) is larger (0.47 degree Celsius for Antarctica as a whole when the two proxy types
are assimilated) than for ECHAM5-wiso (0.30 degree Celsius respectively; Figure S11). We
could think that dealing with a larger ensemble provides a more accurate reconstruction.
However, the resulting uncertainty of the posterior (i.e. the final reconstruction) - computed
as the standard deviation of the particles kept - depends on the prior (our data assimilation
ensemble built from climate models outputs) and the observation network (here the proxies).
Increasing  the  number  of  particles  will  not  necessarily  result  in  a  more  accurate
reconstruction. A convergence is achieved after a critical number of particles. However, as
the resulting variance of the DA reconstruction depends on the variance of the prior, if this
prior underestimates the climate variability, it will  fatally lead to an underestimation of the
uncertainty of our reconstruction. Actually,  the regional standard deviations of surface air
temperature in the iHadCM3 ensemble are almost always larger than the variance in the
ECHAM5-wiso ensemble (Table 1), which partly explains why we obtained a larger variability
on our reconstruction based on iHadCM3. Furthermore, the data uncertainties have also a
larger impact on the final uncertainty. 



Table 1. Regional standard deviations of surface air temperature for each ensemble used in
data assimilation (degree Celsius).

ECHAM5-wiso
(142 particles)

ECHAM5-MPI/OM
(1201 particles)

iHadCM3
(1071 particles)

Plateau 0.72 0.68 0.84

Wilkes Land 0.68 0.74 0.81

Weddell 0.96 0.94 0.96

Peninsula 0.64 0.78 0.88

WAIS 0.91 0.88 1.03

Victoria Land 0.89 0.69 0.84

Dronning Maud Land 0.65 0.64 0.76

West Antarctica 0.66 0.67 0.82

East Antarctica 0.66 0.64 0.78

Antarctica 0.58 0.58 0.72

Table 2. Regional standard deviations of δ18O for each ensemble used in data assimilation
(‰).

ECHAM5-wiso
(142 particles)

ECHAM5-MPI/OM
(1201 particles)

iHadCM3
(1071 particles)

Plateau 0.69 0.43 0.82

Wilkes Land 0.38 0.40 0.86

Weddell 0.81 0.69 1.2

Peninsula 0.46 0.51 0.88

WAIS 0.44 0.52 1.1

Victoria Land 0.75 0.74 1.4

Dronning Maud Land 0.53 0.65 0.71

West Antarctica 0.35 0.43 0.82

East Antarctica 0.56 0.38 0.74

Antarctica 0.47 0.35 0.68



Table 3. Regional standard deviations of SMB for each data assimilation ensemble (Gt year-

1).

ECHAM5-wiso
(142 particles)

ECHAM5-MPI/OM
(1201 particles)

iHadCM3
(1071 particles)

Plateau 38 44 43

Wilkes Land 49 26 36

Weddell 26 26 25

Peninsula 51 43 50

WAIS 72 54 66

Victoria Land 26 28 22

Dronning Maud Land 33 25 29

West Antarctica 87 65 85

East Antarctica 102 85 101

Antarctica 122 107 137
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Abstract. Improving our knowledge of the temporal and spatial variability of the Antarctic Ice Sheet (AIS) Surface Mass

Balance (SMB) is crucial to reduce the uncertainties of past, present and future Antarctic contribution to sea level rise. An

examination of the surface temperature–SMB relationship in model simulations demonstrates a strong link between the two.

Reconstructions based on ice cores display a weaker relationship, indicating a model-data discrepancy that may be due to

model biases or to the non-climatic noise present in the records. We find that, on the regional scale, the modelled relationship5

between surface temperature and SMB is often stronger than between temperature and δ18O. This suggests that SMB data can

be used to reconstruct past surface temperatures. Using this finding, we assimilate isotope-enabled model SMB and δ18O output

with ice-core observations, to generate a new surface temperature reconstruction. Although an independent evaluation of the

skill is difficult because of the short observational time series, this new reconstruction outperforms the previous reconstructions

for the continental-mean temperature that were based on δ18O alone. The improvement is largest for the East Antarctic region,10

where the uncertainties are particularly large. Finally, using the same data assimilation method as for the surface temperature

reconstruction, we provide a spatial SMB reconstruction for the AIS over the last two centuries showing large variability in

SMB trends at regional scale, with an increase (0.82 Gt year-2) in West Antarctica over 1957–2000 and a decrease in East

Antarctica during the same period (-3.3 Gt year-2). As expected, this is consistent with the recent reconstruction used as a

constraint in the data assimilation.15

1 Introduction

The spatial coverage of climate observations in Antarctica and the Southern Ocean is sparse (e.g. Jones et al., 2016; Neukom

et al., 2018). Consequently, the climate dynamics of the high southern latitudes are still poorly understood, leading to large

uncertainties in the processes governing climate variability (Church et al., 2013). Since around 1995, the contribution to the

global sea level rise from the ice sheets – Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS) – has strongly increased,20

1



and are slowly outpacing the contributions from mountain glaciers and ocean thermal expansion (Shepherd et al., 2018). The

GrIS has been dominating the ice sheet contribution so far (Rignot et al., 2019), but AIS mass loss has increased fivefold in

2012–2017 relative to 1992–1997, with current AIS mass loss values that approach those of the GrIS.

The (grounded) AIS Mass Balance (MB) is the difference between the surface mass balance (SMB) and the solid ice dis-

charge (Lenaerts et al., 2019; Fyke et al., 2018). Reliable estimates of AIS MB and its relationship with internal climate5

variability and transient climate forcing are needed to constrain future climate and sea level projections (Bamber et al., 2018).

The current AIS MB is negative (Rignot et al., 2019) because of large values of ice discharge (IMBIE team, 2018).

The SMB is defined as the difference between the incoming and outgoing mass at the surface of the ice sheet. In Antarctica,

the main source term of the SMB, and its interannual variations, is precipitation in the form of snow (e.g. Lenaerts et al.,

2012; Agosta et al., 2018). Unlike Greenland, AIS surface melt is small, and most surface melt water refreezes in place, not10

contributing to SMB (Trusel et al., 2015; Kuipers Munneke et al., 2012). As a result, the surface sublimation and sublimation

of blowing snow are the main sink terms of the AIS SMB (e.g. Frezzotti et al., 2013; van Wessem et al., 2018).

Ice cores provide information on past changes in surface temperature and SMB across Antarctica on time scales of centuries

to millennia (e.g. Stenni et al., 2017; Thomas et al., 2017). In particular, it has become standard to reconstruct past temperature

changes from water stable isotopes, and in particular δ18O (e.g. Jouzel, 2003; Masson-Delmotte et al., 2006). However, ice core15

studies suffer from several limitations: 1) the ice core network is still relatively sparse, despite recent coordinated international

drilling efforts (Thomas et al., 2017; Stenni et al., 2017); 2) annually resolved surface temperature and SMB records are not

available from extremely dry areas, such as the East Antarctic Plateau; 3) changes in precipitation seasonality (e.g. Sime et al.,

2008), moisture origin (e.g. Holloway et al., 2016a) and other processes can modify the expected relationship between δ18O

and surface temperature (e.g. Jouzel et al., 1997; Klein et al., 2019). Combined, these factors lead to large uncertainties in the20

reconstruction of surface temperatures.

Until recently, AIS SMB had been considered to display no significant trends since the mid-twentieth century (Monaghan

et al., 2006; Frezzotti et al., 2013). Based on recent work, this hypothesis has been revised: using a larger ice core network

(PAGES2k database), Thomas et al. (2017) and Medley and Thomas (2019) have shown that AIS SMB has increased sig-

nificantly since 1900, albeit with important regional differences. The Antarctic Peninsula has witnessed a considerable SMB25

increase during the twentieth century (e.g. Thomas et al., 2015; Goodwin et al., 2016), as well as some regions of Dronning

Maud Land (e.g. Philippe et al., 2016; Lenaerts et al., 2013; Medley et al., 2018; Shepherd et al., 2012). In contrast, other

regions of Droning Maud Land are subjected to a SMB decrease over the recent past (Schlosser et al., 2014; Altnau et al.,

2015). All these studies point out the need to densify the ice-core network over Antarctica, but also to retrieve more insight in

what is driving the trends in AIS SMB and its spatial signatures. For the latter, output of climate model simulations can be very30

useful (e.g Lenaerts et al., 2018).

In the last decade, output of several climate model simulations that cover the last millennium has become available (Schmidt

et al., 2011). Thus far, model evaluation has been mainly focussed on surface temperature (PAGES 2k-PMIP3 group, 2015).

These results have shown discrepancies in AIS surface temperature between climate model simulations and reconstructions

during the last millennium. In contrast to climate model results, surface temperature reconstructions show no clear warming35
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over the 20th century at the continental scale (Goosse et al., 2012; Stenni et al., 2017; PAGES 2k-PMIP3 group, 2015; Neukom

et al., 2018). This mismatch can be explained by an overestimation of the response of climate models to external forcing, or the

strong natural variability occurring in Antarctica or an underestimation of the signal in proxy-based reconstructions, or by a

combination of all those (Jones et al., 2016; Neukom et al., 2018). Unlike temperature changes, modelled AIS SMB variations

over the past millennium are poorly documented.5

In a warmer climate, AIS SMB is expected to increase due to higher snowfall associated to the greater moisture holding

capacity at higher air temperature (e.g. Lenaerts et al., 2016). Taken alone, this straightforward thermodynamical effect would

mitigate the sea level rise (Huybrechts et al., 2004; Krinner et al., 2007; Frieler et al., 2015). According to Frieler et al. (2015),

the observed sensitivity of Antarctic snowfall accumulation to surface temperature was about 5% K-1 during the 1960–1999

period. Based on climate model simulations, this sensitivity is expected to increase in future with an estimated conversion value10

of 7.4% K-1 for the end of the 21st century (2080–2099; Palerme et al., 2017). The link between surface temperature and SMB

has been confirmed for small regions at the centennial time scale (200 years; e.g. Oerter et al., 2000; Medley et al., 2018) and

on longer time scales (glacial-interglacial; Frieler et al., 2015) for the full AIS using climate models and ice cores. However,

some studies using surface temperature reconstructions based on δ18O data (Fudge et al., 2016; Altnau et al., 2015; Philippe

et al., 2016; Goursaud et al., 2019) suggest that this SMB-surface temperature relationship is not always positive and varies15

spatially and temporally. These results suggest that in some regions, especially along the AIS coasts, the SMB variability is

dominated by large-scale atmospheric circulation rather than by thermodynamic processes (such as the Clausius-Clapeyron

relation), limiting the correlation with δ18O.

The first goal of this study is to document the relationship between surface temperature and SMB in Antarctica on a regional

scale using climate models and ice-core records over the two past centuries and over the last millennium. The final goal is to20

use the covariance between both variables to reconstruct past changes over the last two centuries by using a data assimilation

procedure. All reconstruction methods depend on the number and quality of the input data. However, while the statistical

methods classically used to infer past surface temperature (see for instance Stenni et al., 2017) rely on the length of the

calibration period, on the quality of the record during this period, and on the stationarity of the link between the proxy and

the variable of interest, which can be strong assumptions in the case of the δ18O-temperature relationship (Klein et al., 2019),25

data assimilation does not. In recent years, data assimilation has become a standard procedure in paleoclimatology to optimally

combine the information from model results and proxies and to provide estimates of past climate states (e.g. Hakim et al.,

2016; Widmann et al., 2010; Goosse et al., 2010; Matsikaris et al., 2015; Steiger et al., 2014). Nevertheless, Antarctic SMB to

the best of our knowledge has never been assimilated in a climate model. The biggest advantage of using data assimilation is

that it takes into account information brought by both SMB and δ18O without making the strong assumptions that the statistical30

methods do. Additionally, using the covariance between them might lead to better estimates of past changes in the two variables,

particularly when proxy records are scarce and few instrumental data are available, which is the case for the Antarctica. The

resulting reconstructions will have the benefit of being compatible with the physics of the climate system as represented by the

models.
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2 Data: model simulations and observations

2.1 Global climate model simulations

The climate model simulations selected for this study are those for which the required variables (i.e. precipitation and subli-

mation/evaporation) are available for the last millennium from the PMIP3-CMIP5 database (Otto-Bliesner et al., 2009; Taylor

et al., 2012). In addition to these simulations, the CESM1-CAM5 model simulations covering the last millennium (Otto-5

Bliesner et al., 2015) are also used. The characteristics and references of each model are described in Tab. A1. All these GCMs

use the GMTED2010 elevation dataset (Danielson and Gesch, 2011) as topography, adapted to their spatial horizontal resolu-

tion. The simulations are driven by both natural (orbital, solar and volcanic) and anthropogenic (greenhouse gases, land use,

aerosol and ozone) forcings through the last millennium (Schmidt et al., 2011, 2012). Except for CESM1-CAM5, CSIRO-

Mk3L-1-2 and MPI-ESM-P, the simulations do not cover the entire millennium. Historical simulations covering 1851-200510

CE were launched independently of simulations covering 850-1850 CE (referred to as past1000 experiment). In order to obtain

results over the full millennium, we adopt the approach from Klein and Goosse (2018) and merge the first ensemble members

(r1i1p1) of the past1000 experiment with the corresponding ensemble members of the historical experiment. Although not

continuous, there is no large discrepancy between the two merged simulations (e.g. Klein and Goosse, 2018).

Simulations performed with the isotope-enabled climate models, ECHAM5-MPI/OM (Sjolte et al., 2018), ECHAM5-wiso15

(Steiger et al., 2017) and iHadCM3 (Tindall et al., 2009; Holloway et al., 2016b) are also analyzed. These simulations allow

for a direct comparison with observed water isotope content. ECHAM5/MPI-OM is a fully coupled General Circulation Model

(GCM). The simulation used here covers the period 800–2000 CE forced by natural and anthropogenic forcing (Sjolte et al.,

2018). The horizontal resolution of the atmospheric model is 3.75◦ × 3.75◦. The simulation of ECHAM5-wiso, which only

includes an atmospheric component, was performed by Steiger et al. (2017) and covers the period 1871–2011 CE at ∼ 1◦20

resolution. The model is driven by the sea surface temperature and sea ice from the Rayner et al. (2003) dataset. Due to a lack

of Antarctic sea ice data before 1973, this dataset is based on historical climatologies of sea ice concentration for the period

1871–1973 CE, with no interannual variability. Finally, iHadCM3 is the version of HadCM3 (fully coupled climate model;

Turner et al., 2016) which has an explicit representation of the water isotopes. The resolution of the atmospheric model is

3.75◦ × 2.5◦. While only one simulation is available for ECHAM5-MPI/OM and ECHAM5-wiso, we have an ensemble of25

seven iHadCM3 simulations spanning the industrial period from 1851 to 2003 CE. The initial conditions for each of these

simulations correspond to different years in the pre-industrial control simulation of the iHadCM3 model. Comparisons of

the results of these three isotope-enabled models with modern δ18O observations indicate that they all reproduce the main

characteristics of the spatial distribution of the isotopic composition of precipitation over Antarctica including the latitudinal

distribution (negative δ18O gradient from the coasts to the Plateau). According to Tindall et al. (2009) and Sime et al. (2008),30

the small biases in δ18O (for example, an underestimation of the spatial δ18O variability in rugged areas) in the iHadCM3

simulation mainly come from the coarse horizontal resolution of the model and not from the isotopic model itself. ECHAM5-

wiso and ECHAM5/MPI-OM display an overall underestimation of δ18O in Antarctica but reproduce well the general Antarctic

δ18O pattern (Goursaud et al., 2018; Klein et al., 2019, see reference of each model for more details).
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Klein et al. (2019) has recently described an evaluation of Antarctic surface temperature in reconstructions and model simu-

lations over the last millennium. In accordance with Abram et al. (2016), they highlighted the early onset of industrial warming

simulated by the PMIP/CMIP models, which is not observed in the δ18O-based temperature reconstructions of Stenni et al.

(2017). This suggests that the Antarctic surface temperatures simulated by the models are too sensitive to the anthropogenic

forcing.5

2.2 The regional climate model RACMO2 simulation

The evaluation of AIS SMB simulated by GCMs for the present period (1979–2005) is mainly based on the results of the re-

gional atmospheric climate model RACMO2.3p_2 (RACMO2 hereafter) covering the entire AIS over 1979–2016 (van Wessem

et al., 2018). This is because 1) the SMB observations are very sparse on the AIS (Favier et al., 2013); 2) the interannual

(year-to-year) variability is different between observations and GCMs given that the latter are freely-evolving coupled mod-10

els. Consequently, the comparison can be only made on multi-decadal time scales (> 20 years), which drastically reduces the

availability of observations; 3) unlike observations, RACMO2 provides a complete SMB field over the entire AIS; and, finally,

(4) RACMO2 has been extensively evaluated against available measurements and displays a very good agreement (e.g. van

Wessem et al., 2018; Lenaerts et al., 2012). In an intercomparison of AIS SMB from reanalysis, atmospheric models and ob-

servations, Wang et al. (2016) showed that the RACMO2 model best fits the recent AIS SMB observations compared to all15

other available datasets.

RACMO2 combines the physics package of the European Centre for Medium- Range Weather Forecasts (ECMWF, 2008)

integrated Forecast System and the hydrostatic dynamics of the High Resolution Limited Area Model (HIRLAM, Unden

et al., 2002). RACMO2 is specially adapted to polar regions since it includes the interactions between the atmosphere and the

multi-layered snow model that calculates physical processes occurring in the firn: meltwater production, percolation, runoff,20

refreezing, as well as snow grain size and resulting snow albedo (Greuell and Thomas, 1994; Ettema et al., 2010). RACMO2

also includes a drifting snow scheme simulating the interactions between the near-surface air with snow (Lenaerts et al., 2010).

All the SMB components are explicitly calculated by this regional model on a 27 km resolution grid. The Digital Elevation

Model of Bamber et al. (2009) is taken as reference of the Antarctic topography. ERA-Interim reanalysis data (Dee et al., 2011)

are used to force the regional model at its lateral boundaries. For more details on RACMO2, see van Wessem et al. (2018).25

2.3 Snow accumulation database from Antarctica2k

The annually resolved Antarctica2k (Ant2k) snow accumulation database (Thomas et al., 2017) is used for the evaluation of

AIS SMB simulated by GCMs before 1979. The estimate of the SMB from ice cores is based on the physical distance between

suitable age markers within the ice core. The age markers used depend on the timescale of interest ranging from glacial cycles

(e.g. bulk changes in isotopic compositions) to seasonal variations reflected by changes in stable water isotopes, while volcanic30

eruptions can inform on decadal to millennial timescales (Dansgaard and Johnsen, 1969). Once the age markers are identified,

since the firn density generally increases with depth in the ice core, it is necessary to consider those variations to convert the

age and depth to mass (Van Den Broeke et al., 2008). Doing so, SMB is converted to meters of water equivalent based on
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measured density and corrected for the vertical strain rate effect – the differential vertical velocity with depth leading to layer

thinning with depth (Thomas et al., 2017).

This database is composed of 79 records that are assigned to seven geographical regions (Fig. 1) with distinctly different

climates. East Antarctica above 2000 m elevation constitutes the East Antarctica Plateau (EAP). West Antarctica is separated

into two parts: the Antarctic Peninsula (AP) and the West Antarctica Ice Sheet (WAIS), with a division at 88◦ W. The coastal5

region of East Antarctica is divided into four regions: Victoria Land (VL; 150-170◦ E), the Wilkes Land Coast (WL; 70-150◦

E), Dronning Maud Land (DML; 15◦ W-150◦ E) and the Weddell Sea Coast (WS; 15-60◦ E). For each region, this database

covers the past 1000 years except for EAP, AP and DML, for which the period covered is 1240–2005 CE, 1703–2010 CE and

1737–2010 CE, respectively. Hereafter, West Antarctica is composed of WAIS and AP, while East Antarctica comprises all

of the other regions. Since some Antarctic regions lack long-term data, the SMB reconstruction for the whole Antarctic ice10

sheet is only available from 1737 AD. This regional SMB reconstruction has been compared to RACMO2, concluding that the

reconstruction captures a large proportion of the regional spatial SMB variability as defined by RACMO2 for the 1979–2010

period (Thomas et al., 2017).

Figure 1. Antarctic regions used in this study. The definitions of the regions are those of Thomas et al. (2017).

2.4 Water stable isotopes records and surface temperatures reconstructions from Antarctica2k

Stenni et al. (2017) built δ18O regional composites from 112 individual ice cores compiled in the framework of the PAGES15

Antarctica2k working group for similar seven Antarctic subregions as in Thomas et al. (2017; see Sec. 2.3) over the last

two millennia. Based on those δ18O composites, they reconstructed regional surface temperatures over the last two millennia

based on the statistical relationship between δ18O and surface temperature. Three methods have been used to scale the δ18O

composites. The second reconstruction (borehole reconstruction) is used throughout this study for two reasons: 1) this is not

based on surface temperature observations, which are used here to estimate the skill of the reconstructions which would have20

led to a bias; 2) because it is based on more information, the borehole reconstruction is expected to be more accurate (see
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section S1 for details). The temporal resolution is the same as for the δ18O composites: 10 years over 0–1800 and 5 years over

1800–2010.

3 Methods: Reconstructing SMB and surface temperatures using data assimilation

3.1 Data assimilation method: a particle filter using fixed ensembles

Data assimilation optimally combines observations (proxy data in our case) and climate model states. Two types of data as-5

similation methods are usually applied in paleoclimatology. First, online methods follow standard sequential data assimilation

approaches, in which the analysis at a single time step depends on the state at the previous step. Information is thus propagated

forward in time. However, because data assimilation requires a large ensemble of model simulations (tens to hundreds), for

paleoclimate reconstructions, performing online data assimilation at high spatial climate model resolution (e.g. CMIP5 class

as used here) becomes impractical. Second, when working with so-called offline methods, ensemble members are constructed10

from existing model simulations, which is of great interest in terms of computation time compared to online methods. Here, en-

semble members are constructed by individual years and not by independent model simulations. Therefore, in contrast to online

methods, offline methods do not maintain temporal consistency. However, when the predictability on inter-annual time-scales

is limited, such as surface temperature or precipitation because of the dominant role of their chaotic nature, online methods

do not outperform offline ones (Matsikaris et al., 2015). Indeed, offline methods have provided skilful data assimilation-based15

reconstructions for various types of data (e.g Steiger et al., 2017; Klein and Goosse, 2018; Hakim et al., 2016). Nevertheless,

the online approach is preferred when focussing on ocean dynamics because of the ocean long memory (e.g. Goosse, 2017;

Pendergrass et al., 2012).

The offline data assimilation method applied in this study is based on a particle filter (e.g. van Leeuwen, 2009; Dubinkina

et al., 2011) using fixed ensembles from climate model outputs. The implementation described in Dubinkina et al. (2011) is20

identical to previous studies (e.g. Klein and Goosse, 2018). Hence, only a brief description of the methodology will be given

here. At each time step of the data assimilation procedure (yearly, see Sec. 3.2), each ensemble member, called particle, is

compared to the proxy-based reconstruction by computing its likelihood, assumed here to be Gaussian, taking into account

data uncertainties (see Dubinkina et al. (2011) for details). Depending on its likelihood, each particle receives a weight. Then,

all the weights are multiplied by the number of particles and rounded to the nearest integer toward negative infinity by ensuring25

that the sum of the weights equals the number of particles throughout the data assimilation process (see Dubinkina et al. (2011)

for details). Considering all particles weights, we can compute a weighted average, providing a reconstruction for this time

step. In this study, the ensemble members are derived from three
::
the

:::::
three

:::::::::::::
isotope-enabled

:
climate model outputs : ECHAM5-

MPI/OM(Sjolte et al., 2018), ECHAM5-wiso (Steiger et al., 2017) and iHadCM3(Tindall et al., 2009; Holloway et al., 2016b

),
::::::::
presented

::
at

:::::::
Section

:::
2.1. These models have been chosen because they explicitly simulate δ18O. Because iHadCM3 offers an30

ensemble of seven simulations, while the other isotope-enable models have only a single realization, we mainly focus on the

iHadCM3 outputs in the manuscript. Dealing with an ensemble instead of a single simulation increases
::::
main

::::::::::
manuscript.

::::
The

:::::
results

:::::
from

:::
the

::::
other

:::::::
models

:::
are

:::::
shown

::
in

:::
the

:::::::::::::
Supplementary

::::::::
Materials

:::
and

:::::::
provide

::::::
similar

::::::::::
conclusions

::
to

:::
the

::::
ones

::::::::
obtained
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::::
with

:::::::::
iHadCM3.

:::::
Using

:::
an

::::::::
ensemble

:::::
allow

::
us

:::::::::
estimating

:::
the

:::::::::::
contribution

::
of

:::::::
internal

:::::::::
variability

::::
over

:::
the

:::
last

:::::::
century

::::
and

:::
the

::::
range

::::::::
provided

:::
by

:::
this

:::::::::
ensemble

::
is

:::::
larger

::::
than

:::
the

::::
one

:::::
given

::
by

:::
the

:::::
other

::::
two

:::::::
models,

:::::::::
increasing the probability of finding

model results close to the assimilated records during the data assimilation process.
:::::::::::
Additionally,

::::::::
iHadCM3

::::::::
ensemble

::::::::
provides

:
a
::::
more

:::::::
realistic

::::::::
Antarctic

::::::
surface

::::::::::
temperature

::::
and

::::
snow

:::::::::::
accumulation

::::
over

::::::
recent

:::
past

::::
than

:::
the

:::::::::::::::::
ECHAM5-MPI/OM

:::::::::
simulation

::::
(Fig.

:::
S8;

::::::::::::::
Klein et al., 2019

:
).
:

5

3.2 Experiment design

Data assimilation is used in this study to reconstruct surface temperature and SMB by taking advantage of the covariance be-

tween these variables. They are assimilated together as well as separately in three different experiments. In the first experiment,

the seven subregion composites of δ18O data (Stenni et al., 2017) are used to constrain model results. Assimilating δ18O instead

of surface temperature potentially accounts for the non-stationary and the non-linearity of the stable oxygen ratios–surface tem-10

perature link (Masson-Delmotte et al., 2008; Klein et al., 2019). For the second experiment, the SMB reconstruction for the

seven subregions (Thomas et al., 2017) is used in the data assimilation process. Finally, both δ18O and SMB are taken into

account together in the last experiment. This allows us to estimate independently the consistency of the SMB and surface

temperature reconstructed between the various records and model results. In addition, our experiments allow us to assess the

information acquired on surface temperature by assimilating SMB, and on SMB by assimilating δ18O. In all the experiments,15

we assimilate annual-mean proxies. All modelled δ18O are precipitation-weighted as this quantity is most similar to the one

measured in ice cores.

Since the amount of ice cores is limited before 1800 CE (both for δ18O and for SMB), which drastically decreases the quality

of the regional composites (Thomas et al., 2017), the experiments are performed on the 1800–2010 period. Contrary to the SMB

composites, which have an annual resolution, the composites of δ18O are 5-year averages. Consequently, the δ18O data have20

been interpolated linearly over the studied period to match the temporal resolution of the SMB reconstruction. However, as

recommended by Stenni et al. (2017), the results are analyzed only for the 5-year averages. This temporal averaging reduces

uncertainties in dating and the noise induced by non-climatic processes (e.g. Laepple et al., 2018; Fan et al., 2014).

In order to assess the skill our data assimilation-based surface temperature reconstructions, we evaluate them at first with

the reconstructions of Stenni et al. (2017). But this is biased since they are only based on δ18O and we cannot thus evaluate25

the added value brought by SMB data and model physics in the data assimilation experiments. Therefore, independent data is

needed to properly assess the potential of SMB and δ18O in reconstructing surface temperature. This is done here using the

surface temperature reconstruction from Nicolas and Bromwich (2014), which is based on surface temperature records and not

on δ18O data, over the 1958–2010 period. SMB estimates are also available for the last decades (e.g. Medley et al., 2014), but

they cover a too short period or have a too small spatial coverage to provide an independent validation of our reconstruction. It30

is thus not possible to estimate if the assimilation of SMB and δ18O measurements provides an improvement for this field.
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4 Results

4.1 Reconstructed and simulated SMB changes over the last centuries

The AIS SMB over the last millennium has been estimated for each GCM by computing the difference between precipitation

and sublimation/evaporation. Runoff is assumed to be negligible as surface meltwater generally refreezes in the cold firn

(Magand et al., 2008; Kuipers Munneke et al., 2012). Our short evaluation of SMB simulated by GCMs over the present-day5

(see section S3) suggests that the selected GCMs (including the isotope-enable models) display reasonable SMB climatology

when compared to RACMO outputs.

Before the 19thth century, all GCMs simulations are characterized by large decadal variability, but no long-term trend (Fig. 2).

A positive trend, albeit initiated at different times, is shown at the end of the simulation (around 1950 AD). All models agree

on an AIS SMB increase from ∼1975 onwards, which is consistent with the SMB reconstruction of Thomas et al. (2017).10

However, the contrast in the SMB trends between East Antarctica and West Antarctica is clearly stronger in the reconstruction

based on ice cores than in GCMs on average. Indeed, over the last decades (1950–2000), the ice core SMB reconstruction

shows a large increase for West Antarctica (25.6 Gt year-1 per decade) and a small decrease (-3.6 Gt year-1 per decade) for

East Antarctica, while, on average, the GCMs simulate a strong SMB increase in both regions (8.9 ± 9.2 Gt year-1 per decade

and 14.2 ± 13.5 Gt year-1 per decade respectively; Figs. 2 and 3 and Tab. S1). When analyzing the ensemble of simulations15

performed with CESM1-CAM5, the ensemble mean also shows a relatively homogeneous increase, but some simulations

display a contrast between East Antarctica and West Antarctica close to the one observed in the reconstruction (Fig. 3). This

suggests that internal variability has a dominant contribution in the current Antarctic SMB changes and might explain why the

observed contrast between East and West Antarctica is only present in a few simulations.

4.2 Relationship between SMB and surface temperatures in Antarctica20

Averaged across all GCMs, the relationship between SMB and surface temperature is positive for each Antarctic region (Fig. 4).

A very similar result is obtained when the annual mean surface temperature and SMB derived from the RACMO2 simulation

over the recent period (1979–2016) are used. The regional correlations are much weaker for the reconstructions based on ice

cores than those obtained from model outputs (Fig. 4). These results are also true for detrended times series, indicating that

this modelled link is valid at the inter-annual time-scale (not shown).25

To quantify more precisely the link between surface temperature and SMB in model outputs and reconstructions, the SMB

sensitivity to temperature – defined as the slope of the linear fit between near-surface air temperature and SMB – has been

calculated. Firstly, the GCMs and reconstruction (i.e. Thomas et al., 2017; Nicolas and Bromwich, 2014) suggest that this

sensitivity is similar for both West Antarctica and East Antarctica over the 1950–2000 period (Fig. 3). Secondly, on average over

the entire continent, this sensitivity reaches 3.6 % K-1 in ice cores-based reconstructions for the 1850–1949 period. According30

to these reconstructions, this sensitivity has increased a lot for the recent period (1950–2005; 15.52 % K-1), confirming the

findings of Frieler et al. (2015). However, Frieler et al. (2015) do not obtain such an increase in SMB sensitivity (only ∼+40%).

Additionally, this recent increase found here in the reconstructions is not represented by the GCMs: on average, the simulated
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Figure 2. Surface Mass Balance anomalies [Gt y-1] simulated by the GCMs (Tab. A1) and snow accumulation reconstructions (Thomas et al.,

2017) during 1000 to 2005 and during 1800 to 2005 for West Antarctica, East Antarctica and Antarctica as a whole. Anomalies are relative

to the 1871–2000 period. The shaded area corresponds to the range of the CESM1-CAM5 simulations. For visibility, data has been smoothed

with a 100 years moving average for the last millennium and a 30 year moving average for the last 200 years. The equivalent for the seven

subregions is given on Fig. S1.

sensitivity of SMB to near-surface temperatures is 5.0 ± 1.1 % K-1 over 1850–1949 and 5.4 ± 2.0 % K-1 over 1950–2005. When

looking at the regional scale over 1850–2005, the average SMB sensitivity over all models for West Antarctica (6.8 % K-1) is

in good agreement with the one deduced from the reconstructions (8.0 % K-1; Fig. 5), while for East Antarctica, the sensitivity

of the model mean is higher than the one obtained from the reconstructions (6.2 % K-1 and 2.1 % K-1 respectively). The very

low SMB sensitivity in the reconstructions for East Antarctica, especially on the Antarctic Plateau (0.5 % K-1) is somewhat5

unexpected, given that this region is continental and thus less affected by synoptic activities than coastal areas (Monaghan and

Bromwich, 2008). Actually, when using the observed surface temperatures (e.g. Nicolas and Bromwich, 2014) instead of the
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Figure 3. (left) Comparison between the reconstructed and the simulated SMB trends (mm w.e./100y-2) over the period 1950–2000 CE in

West Antarctica (y axis) and East Antarctica (x axis). (right) As on the left but for SMB/SAT sensitivity factors (% K-1). For the reconstruction,

data from Thomas et al. (2017) and Nicolas and Bromwich (2014) are used.

reconstructed ones of Stenni et al. (2017), the Antarctic SMB sensitivity to temperature is strongly reduced (4.02 % K-1 for the

1958–2010 period), and thus closer to the resulting sensitivity found in the GCMs (5.4 ± 2.0 % K-1 for the 1950–2005 period).

Figure 4. 5 yearly correlations (r) between SMB and surface temperature for seven Antarctic regions (see Fig. 1 for geographical definitions)

for GCMs over the 1850–2000 CE (left), for RACMO2 over 1979–2016 CE (center) and for ice core reconstructions (Thomas et al., 2017;

Stenni et al., 2017) for 1850–2000 CE (right). For the CMIP5 models and RACMO2, their correlations are all statistically significant (p-

value<0.05). For the reconstructions, the statistically significant (p-value<0.05) correlations are obtained for the Antarctic Peninsula and

Dronning Maud Land Coast. See Fig. S2 for the correlations for each CMIP5 model.

In the study of Neukom et al. (2018), the authors argue that the data sampling, the noise in proxy data and the deficiencies in

the reconstruction methods can partly explain the discrepancy between models and reconstructions for the surface temperature

during the last millennium, especially for the southern hemisphere. The spatial coverage of the surface temperature and SMB5

reconstructions based on ice cores is poor, in particular for East Antarctica (Stenni et al., 2017; Thomas et al., 2017). Moreover,

due to the low snow accumulation in some regions, the uncertainties of the reconstruction are large for both surface tempera-

tures and SMB, leading to noise in the time series (Stenni et al., 2017; Thomas et al., 2017; Frezzotti et al., 2007). Since the
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SMB/SAT sensitivity factors [% K-1] : 850–1850 vs 1850–2005 time periods

Figure 5. SMB sensitivity to Surface Air Temperature (SAT) over the 850–1850 and the 1850–2005 periods for each Antarctic region (see

Fig. 1 for geographical definitions) for GCM outputs. Additionally, the SMB-δ18O sensitivity for ice cores based-reconstructions (i.e Thomas

et al., 2017; Stenni et al., 2017) over 1850–2005 is represented by a solid black vertical line while a solid red vertical line represents the SMB-

observed surface temperature sensitivity (i.e. Thomas et al., 2017; Nicolas and Bromwich, 2014) over 1960–2010. For the CESM1-CAM5

model, the 12 simulations are plotted as grey points.

SMB reconstruction is only based on direct snow accumulation measurements, this is expected to be more accurate than the

δ18O-based temperature reconstruction, which is built by assuming a stationary link between δ18O and surface temperature.

Because a lot of processes (such as precipitation seasonality or moisture origin) can significantly modify this relationship over

time (e.g. Jouzel et al., 1997; Sime et al., 2008), this is computed over a short calibration period, but this might be too short

to be representative (Klein et al., 2019). Consequently, all these processes could explain the large differences between models5

and proxy-based reconstructions in the estimation of SMB sensitivity to surface temperatures.

4.3 SMB and surface temperature reconstructions from data assimilation

The high correlation values obtained between SMB and surface temperatures in GCMs suggest that we can potentially use SMB

to reconstruct Antarctic near-surface temperature. The analysis of isotope-enabled model results reinforces this hypothesis

12



(Fig. 6): the iHadCM3 outputs show high correlations between these two variables. For most regions, the link between surface

temperature and SMB (r=0.70 on average over the seven subregions for the 1850–2000 period) is higher than that between

surface temperatures and δ18O (r=0.55 on average over the seven subregions for the 1850–2000 period). This is consistent with

the observations: the regional correlations between SMB from ice cores (e.g. Thomas et al., 2017) and the observed surface

temperatures (i.e. Nicolas and Bromwich, 2014) are high for several regions over the 1960–2010 period (using 5-year averages5

as for Stenni et al., 2017). In particular, this correlation for East Antarctica is 0.82 (statistically significant). The results with the

outputs of ECHAM5-wiso and ECHAM5/MPI-OM are a bit more nuanced than those from iHadCM3 (Fig. S3). The results of

ECHAM5-wiso and ECHAM5/MPI-OM confirm this strong link between SMB and temperature but, in contrast to iHadCM3,

the correlations are not systematically higher than between δ18O and temperature. When analyzing the long ECHAM5/MPI-

OM simulation (800–2000), the relationship between SMB and surface temperature is generally higher than between δ18O and10

surface temperature but the difference is small. For some regions, the SMB-surface temperature link is much higher than the

δ18O-surface temperature link but it is weaker for other regions. Compared to the δ18O-surface temperature link, the SMB-

surface temperature is also less spatially variable (minimum regional correlation is 0.54 against 0.07 for the δ18O-surface

temperature link).

Figure 6. 5 year correlations between SMB and δ18O, surface temperature and δ18O, and SMB and surface temperature for the seven

Antarctic regions over 1850–1995 period from the iHadCM3 outputs. The error bars correspond to the range (maximum and minimum)

of the iHadCM3 simulations while the dot is the mean of the simulation ensemble. In black circles, the correlation between the SMB ice

core reconstructions from Thomas et al. (2017) and the δ18O of Antarctic ice cores aggregated for the seven Antarctic regions (Stenni et al.,

2017). In black squares, the correlation between the SMB reconstructions from Thomas et al. (2017) and the observed surface temperatures

aggregated for the seven Antarctic regions (Nicolas and Bromwich, 2014). This latter dataset covers only the 1960–2010 period (5-year

averages). Non-significant correlations (p-value>=0.05) are shown in pale.
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4.3.1 Surface temperatures reconstruction

When constraining the model with the SMB reconstruction of Thomas et al. (2017), the obtained surface temperature recon-

struction is less well correlated with the reconstruction of Stenni et al. (2017) than for the data assimilation reconstruction

constrained by only the δ18O (Fig. 7). However, the difference is relatively small, despite the fact that SMB and surface tem-

peratures are more strongly correlated in models than in the ice core reconstruction (0.86 for iHadCM3 against 0.16 for ice5

cores; Fig. 6). When compared to observed surface temperature over the 1958–2010 period (i.e. Nicolas and Bromwich, 2014),

the surface temperature reconstruction of Stenni et al. (2017) as well as the reconstruction when only δ18O is assimilated is in

good agreement with the observed surface temperatures for West Antarctica (Tab. ??
:
1, coefficient correlations are 0.79 and 0.69

respectively, both statistically significant) but not for East Antarctica (coefficient correlations are 0.10 and 0.13 respectively,

both not statistically significant).10

Table 1. 5-year mean correlations between the three surface temperature reconstructions from data assimilation experiments using the

:::::::::::::::
ECHAM5-MPI/OM,

::::::::::::
ECHAM5-wiso

:::
and

:
iHadCM3 outputs and the statistical reconstruction of Stenni et al. (2017), with the surface tem-

perature reconstructions from Nicolas and Bromwich (2014) over the 1958–2010 period for West Antarctica, East Antartica
::::::::
Antarctica and

Antarctica as a whole. Stars represent statistically significant correlations (p-value<0.10).

West Antarctica East Antarctica Antarctica

ECHAM5-

MPI/OM

ECHAM5-

wiso
iHadCM3

ECHAM5-

MPI/OM

ECHAM5-

wiso
iHadCM3

ECHAM5-

MPI/OM

ECHAM5-

wiso
iHadCM3

DA δ18O 0.57* 0.78* 0.69* 0.19 0.08 0.13 0.50 0.47 0.34

DA SMB 0.40 0.52 0.55 0.27 0.53 0.60* 0.28 0.58* 0.65*

DA δ18O and SMB 0.53 0.65* 0.72* 0.34 0.48 0.61* 0.59* 0.71* 0.73*

Stenni et al. (2017) 0.79* 0.10 0.57*

In contrast to the data assimilation experiment, in which only δ18O is assimilated, the skill of the surface temperature

reconstruction is almost identical for both regions in the data assimilation experiment where only SMB is assimilated: r=0.55

(p-value<0.1) for West Antarctica and r=0.60 (p-value<0.1) for East Antarctica. Assimilating SMB thus provides a more

spatially robust temperature reconstruction than when assimilating δ18O. When both δ18O and SMB are taken into account in

the data assimilation process, the skill of the surface temperature reconstructions for the two sub-Antarctic regions is higher15

(r=0.72 and 0.61 for West Antarctica and for East Antarctica respectively, both significant) than when assimilating separately

the δ18O or the SMB. Moreover, the only reconstruction that provides statistically significant results for all the regions (West,

East and the entire Antarctica; p-value<0.1) is when both δ18O and SMB are assimilated, implying that assimilating both

proxies offers more robust results than only assimilating one of them.

When looking at the linearly detrended time series, our final reconstruction (i.e. when δ18O and SMB are assimilated) dis-20

plays a null correlation with observed surface temperature (p-value=0.99) for West Antarctica, but the correlation remains high

for East Antarctica (r=0.60; p-value=0.07). During the 1958–2012 period, a significant warming is observed in West Antarc-
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Figure 7. Reconstructed temperatures (5-year mean) for West Antarctica, East Antarctica and for Antarctica as a whole from data assimilation

experiment (red) using the iHadCM3 outputs and δ18O (Stenni et al., 2017) and SMB reconstruction (Thomas et al., 2017) as constrain in the

data assimilation process. The period is 1800–2010. The surface temperature reconstruction of Stenni et al. (2017) are represented in black

and those from Nicolas and Bromwich (2014) are in blue. DA δ18O (first row) is the data assimilation experiment using only the δ18O data

to constrain the model while DA SMB (second row) uses the SMB reconstruction and DA δ18O and SMB (third row) uses both. For each

experiment and each region, the correlation (r) between the reconstruction based on ice cores (in black) and that based on data assimilation

is computed (in red). The shaded areas represent ± 1 standard deviation of the model particles. Stars represent the statistically significant

correlation (p-value<0.05).

tica while no significant change is noticed for East Antarctica (Nicolas and Bromwich, 2014). Consequently, data assimilation

tends to reproduce the warming for West Antarctica and the inter-annual variability for East Antarctica, explaining our dif-

ferent results between the original and detrended time series. Additionally, as well as our reconstruction based on only δ18O,

the correlation of the detrended δ18O-based temperature reconstruction of Stenni et al. (2017) with the observed one for East

Antarctica is non-significant and negative suggesting that SMB constitutes a better proxy than δ18O for surface temperatures,5

at least at the inter-annual time-scale (see Tab. S2).
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Regarding surface temperature trends over the last two centuries, our reconstructions displays an increase of 0.02◦C per

decade for West Antarctica and 0.023◦C per decade for East Antarctica, which finally leads to an increase of 0.022◦C per

decade for Antarctica as a whole (all statistically significant). For the 1961–2010 period, our reconstruction is able to simulate

the observed contrast between West and East Antarctica (0.22 ◦C per decade (significant) and 0.053 ◦C per decade (not signif-

icant), respectively, for Nicolas and Bromwich (2014) compared with 0.1 ◦C per decade and 0.06 ◦C per decade, respectively,5

for our reconstruction, both significant). The resulting contrast in our reconstruction is thus less large than observed (see Tab.

S3 for details). However, because of the short time period considered, these values can highly vary depending on the time

interval chosen (not shown).

4.3.2 SMB reconstruction

Constraining the model with the δ18O data leads to a poor SMB reconstruction, especially for West Antarctica (correlation10

coefficient of 0.29; Fig. 8). Moreover, the constraint derived from observed δ18O on SMB is weak as illustrated by the large

error band of the reconstruction (estimated by the weighted variance of the particles with non-zero weight). When assimilating

both δ18O and SMB, the SMB reconstruction is in good agreement with the reconstruction of Thomas et al. (2017) as expected.

Table 2. SMB trends over grounded West Antarctica, East Antarctica and Antarctica as a whole from 1) our reconstruction based on data

assimilation using iHadCM3 outputs and, SMB and δ18O data in the data assimilation procedure; 2) Medley and Thomas (2019); 3) RACMO2

outputs for various time intervals (in Gt year-2). Stars stand for statistically significant trends at 5% level.

In this study Medley and Thomas (2019) RACMO2

1801

–

2000

1957

–

2000

1979

–

2000

1801

–

2000

1957

–

2000

1979

–

2000

1979

–

2000

West Antarctica 0.07 0.82* 1.6 0.1 1.3 1.7 2.0

East Antarctica 0.19* -0.13 -3.3* 0.3* -0.4 -4.5* -3.7

Antarctica 0.26* 0.7 -1.7 0.4* 1 -2.7 -1.7

According to this data assimilation-based SMB reconstruction, the AIS SMB has increased at a 0.33 Gt year-2 pace (p-

value<0.001) during the 1801–2000 period and 0.88 Gt year-2 (p-value=0.1) for the 1957–2000 period. Over this latter period,15

West Antarctica has witnessed an increase of 1.0 Gt year-2 while East Antarctica was subjected to a decrease of 0.12 Gt year-2

(p-values=0.7). Unlike West Antarctica, the non statistical significance of the SMB trend for East Antarctica might imply that

internal variability currently plays a large role in the SMB variability there (e.g. Jones et al., 2016). However, if we focus on

the shorter 1979–2000 period, a significant decrease is obtained for East Antarctica (-3.9 Gt year-2; p-value <0.01) while it is

still positive for West Antarctica (1.9 Gt year-2; p-value=0.2), which is consistent with RACMO2 outputs (-3.4 Gt year-2 for20

East Antarctica and 2.1 Gt year-2 for West Antarctica, both not significant).
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Figure 8. Reconstructed SMB (5-year mean) for West Antarctica, East Antarctica and Antarctica as a whole from data assimilation exper-

iment using the iHadCM3 outputs and δ18O (Stenni et al., 2017) and SMB reconstruction (in black; Thomas et al., 2017) as constrain in

the data assimilation process. The period is 1800–2010. DA δ18O (first row) is the data assimilation experiment using only the δ18O data

to constraint the model while DA SMB (second row) uses the SMB reconstruction and DA δ18O and SMB (third row) uses both. For each

experiment and each region, the correlation (r) between the reconstruction based on ice cores (in black) and that based on data assimilation

is computed (in red). The shaded areas represent ± 1 standard deviation of the model particles. Stars represent the statistically significant

correlation (p-value<0.05).

5 Discussion and conclusions

This paper discusses the AIS SMB over the last two centuries and its links with surface temperature in reconstructions and

model simulations. The analysis of the relationship between SMB and surface temperature in models and in ice core recon-

structions highlighted the covariance between both variables that can potentially be used to reconstruct past changes. The

relevance of SMB in the reconstruction of surface temperature in Antarctica is based on a relatively simple concept: Antarctic5

precipitation originates mainly from lower latitudes, in the form of warm and wet air masses (Goodwin et al., 2016; Turner

et al., 2016; Clem et al., 2018). Nevertheless, δ18O also provides useful temperature-related information that can be used to

complement the information provided by SMB, such as changes in moisture origin (e.g. Holloway et al., 2016a). Our analyses
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pointed out significant model-data discrepancies in the SMB-surface temperature relationship. On the one hand, models show

a strong correlation between δ18O and SMB for many Antarctic regions and, on the other hand, the reconstructions based on

ice cores display a weak relationship. Furthermore, unlike previous studies (e.g. Frieler et al., 2015) who suggest an increase

of the SMB sensitivity to surface temperature for the future in Antarctica (∼ 40%), we show that the current sensitivity is not

exceptionally high compared to the last 200 years, according to CMIP5 models.5

These large discrepancies between model results and reconstructions can be explained by different factors. The GCMs may

have biases in the simulated temperature changes. For example, as shown by Klein et al. (2019), GCMs display on average a

homogeneous warming over Antarctica during the last decades while observations mainly show warming for West Antarctica

with no significant change for East Antarctica. Additionally, climate model simulations generally display a warming starting

in the 19th century in Antarctica while it begins much later in proxy-based reconstructions (Abram et al., 2016). This suggests10

that reconstructions underestimate the response to anthropogenic forcing or that climate models overestimate it. In this latter

case, this may contribute to an overestimation of the contribution of the simple thermodynamic link between temperature and

precipitation and thus snow accumulation while it underestimates the role of changes in atmospheric circulation variability

(Abram et al., 2016; Klein et al., 2019; PAGES 2k-PMIP3 group, 2015). Nevertheless, by removing the linear trend of time

series, we obtained similar results. Models may also neglect processes such as blowing snow that can reduce the correlation15

between temperature and SMB. On the other hand, RACMO2, which includes a simple representation of blowing snow and

is nudged to observed temperature and large-scale circulation changes, displays similar correlations to that of the GCMs.

Another hypothesis is that differences could rather arise from uncertainties in the reconstructions. To understand the potential

origin of the disagreements between model results and reconstructions over the last millennium, Neukom et al. (2018) used

pseudoproxy experiments. They found that uncertainties in the reconstructions and the data sampling could be an explanation20

for many observed discrepancies between models and reconstructions.

By analyzing isotope-enabled climate models, we showed that on average over the models, the relationship between SMB

and surface temperature is often higher (or at least equivalent) and more stable than the one between surface temperature and

δ18O. This is true both on the continental and regional scale. Unlike SMB, δ18O can be subject to large uncertainties linked

to precipitation seasonality (Sime et al., 2008) or changes in moisture origins (Holloway et al., 2016a), which can explain the25

weaker correlations.

Our data assimilation experiments confirm the benefits of using both proxies – SMB and δ18O – to reconstruct surface

temperature. When assimilating both δ18O and SMB data, the resulting reconstruction shows a higher correlation with observed

surface temperature over the period 1958–2010 (i.e. Nicolas and Bromwich, 2014) for the entire Antarctic continent (r=0.73)

than the one obtained with the reconstruction based on the statistical method of Stenni et al. (2017; r=0.57). The difference is30

larger for East Antarctica, where the reconstruction skill is enhanced by incorporating SMB data (r=0.61 for our reconstruction

against 0.10 for the reconstruction of Stenni et al., 2017). For West Antarctica, our reconstruction is very similar to Stenni et al.

(2017)’s statistical method. This improvement can be explained by the large uncertainties in δ18O data for East Antarctica,

probably because of the low amount of ice cores and low snow accumulation in those areas. In comparison to Stenni et al.

(2017) and Klein et al. (2019), who obtain a higher surface temperature trend over the last two centuries for East Antarctica35
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(0.03 ◦C per decade and 0.018 ◦C per decade respectively, both significant) than for West Antarctica (0.011 ◦C per decade

and 0.01 ◦C per decade respectively, both not significant), our data assimilation-based reconstruction reveals similar surface

temperature trends for both regions (0.02 ◦C per decade and 0.023 ◦C per decade respectively, both significant). However,

over the entire continent, the trend is almost the same between the different datasets (0.022 ◦C per decade in this study

(significant), 0.019 ◦C per decade for Stenni et al., 2017, significant, and 0.016 ◦C per decade for Klein et al., 2019, not5

significant). Over the last decades (1961–2010), all the reconstructions are able to reproduce the observed contrast between

West Antarctica (large warming) and East Antarctica (weak warming), but overall, they underestimate it (see Tab. S3 for

details).
:::
Our

::::::::::::
reconstruction

::::::::
displays

::::::
smaller

::::::::
variance

::
in

:::::
time

::::
than

:::
the

::::::::::::
reconstruction

:::::
from

::::::::::::::::
Stenni et al. (2017),

::::::
which

::
is

::
a

:::::::
standard

:::::::::::
characteristic

::
of

::::::::
estimates

:::::
based

:::
on

:::
data

:::::::::::
assimilation

::::
using

::::
only

::
a
:::
few

::::::::
uncertain

::::
data

:::::::::::::::::::::
(e.g. Goosse et al., 2010).

:

Regarding changes in SMB over the last two centuries, our reconstruction shows large regional differences in SMB trends,10

both in magnitude and in signs, in accordance with Medley and Thomas (2019; Fig. S4) who used the same ice core dataset but

a different method. While they obtain a statistically significant SMB increase of 0.4 Gt year-2 over the grounded AIS for 1801–

2000, our result suggests a weaker increase (0.26 Gt year-2; p-value<0.001; see Tab. 2 for details). A similar underestimation

is noticed for the 1957–2000 period, (1.0 Gt year-2 for Medley and Thomas (2019), not significant, and 0.70 Gt year-2 for our

reconstruction, p-value=0.130). Over the last decades (1979–2000), both Medley and Thomas (2019) and our results reveal15

that grounded West Antarctica gains mass at its surface (1.6 Gt year-2 in this study and 1.7 Gt year-2 for Medley and Thomas,

2019, both not significant) while grounded East Antarctica has experienced a very large SMB decrease (-3.3 Gt year-2 and -4.5

Gt year-2 respectively, both significant), which is consistent with the value obtained in the RACMO2 outputs (2.0 Gt year-2 for

West Antarctica -3.7 Gt year-2 for East Antarctica, both not significant).

More generally, in contrast to statistical methods, data assimilation ensures that reconstructions are compatible with the20

physics of the system as represented in the models chosen. Although it is not possible to independently evaluate our SMB

reconstruction, our good results regarding surface temperatures and SMB reconstructions suggest that the strong simulated

correlation between surface temperatures and SMB in GCMs is not a model artefact. This is supported by a strong link be-

tween these two variables in observations when using snow accumulation data from Thomas et al. (2017) and surface tem-

peratures from Nicolas and Bromwich (2014), in particular for East Antarctica (r=0.82, statistically significant). Therefore,25

our study shows that SMB records seem to be a relevant proxy in reconstructing surface temperature in complementary with

δ18O records. Since only a few records are available before the instrumental period over Antarctica, any relevant record to re-

construct the Antarctic climate and more specifically surface temperature is welcome. Additionally, data assimilation appears

particularly well adapted for reconstructing surface temperatures as the covariance between variables is obtained directly from

climate models that explicitly include physical processes while statistical approaches restrict the problem to empirical linear30

relationships. By using data assimilation, no assumption such as stationarity or long calibration periods is required to estimate

the link between variables, assumptions whose validity can strongly vary in time and space (Klein et al., 2019). However, to get

a skillful data assimilation-based reconstruction, it is essential that the selected climate models have an adequate representation

of climate variability and that good uncertainty estimates are available for the chosen datasets.
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Appendix A: Characteristics of GCMs

Table A1. PMIP3/CMIP5 GCMs characteristics and references.

Model name
Atmospheric model

resolution (lat × lon)

Number of

simulations for

850–1850 period

Number of

simulations for

1850–2005 period

Reference

BCC-CSM1-1 64 × 128 1 3 Wu et al. (2014)

CCSM4 192 × 288 1 6 Gent et al. (2011)

CESM1-CAM5 96 × 144 12 12 Otto-Bliesner et al. (2015)

CSIRO-Mk3L-1-2 56 × 64 1 1 Rotstayn et al. (2010)

GISS-E2-R 90 × 144 1 6 Schmidt et al. (2014)

HadCM3 73 × 96 1 10 Turner et al. (2006)

IPSL-CM5A-LR 96 × 96 1 6 Dufresne et al. (2013)

MPI-ESM-P 96 × 192 1 2 Stevens et al. (2013)

MRI-CGCM3 160 × 320 1 3 Yukimoto et al. (2012)

Code and data availability. The resulting Antarctic SMB and surface temperature reconstructions will be available when the manuscript

is accepted. All CMIP5/PMIP3 model simulations can be directly downloaded on http://pcmdi9.llnl.gov. iHadCM3 data are available by

request to Max Holloway (Max.Holloway@sams.ac.uk). ECHAM5-wiso data covering the 1871–2011 period can be downloaded from

https://doi.org/10.5281/zenodo.1249604. Products from the ECHAM5/MPI-OM model simulation are available by request to Jesper Sjolte5

(jesper.sjolte@geol.lu.se). RACMO2 data are available by request to Jan Lenaerts (Jan.Lenaerts@Colorado.EDU). δ18O, surface temperature

and SMB reconstructions are stored at UK Polar Data Centre and at NOAA World Data Center for Paleoclimatology (https://www.ncdc.

noaa.gov/paleo-search/study/22589), or by a request from Elizabeth R. Thomas (lith@bas.ac.uk). Antarctic observed surface temperatures

are available at http://polarmet.osu.edu/datasets/Antarctic_recon/.
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S1: Statistical surface temperature reconstructions from Stenni et al. (2017)

Using the δ18O composites, Stenni et al. (2017) reconstructed regional surface temperature over the last two millennia based on

the statistical relationship between δ18O and surface temperature. Three methods have been used to scale the δ18O composites.

In the first approach, the regional slopes between δ18O and temperatures were computed from the outputs of the ECHAM5-

wiso model forced by ERA-Interim atmospheric reanalysis (Goursaud et al., 2018) over the 1979–2013 period. In the second5

method, the reconstruction obtained from the first method for the WAIS region is corrected using an independent temperature

record: the borehole temperature reconstruction at WAIS divide (Orsi et al., 2012). This allows to match the cooling trend over

the 1000–1600 period (Stenni et al., 2017). This method provides a different reconstruction for the WAIS region – implying

thus also the West Antarctic and the whole Antarctic reconstructions –, but not for the regions in East Antarctica. Finally, in the

third method, the regional normalized δ18O composites have been scaled to the variance of the surface temperature observations10

(e.g. Nicolas and Bromwich, 2014) over the 1960–1990 period. The second reconstruction is used throughout this study for

two reasons: 1) the third method is based on the surface temperature observations, which are used here to estimate the skill of

the reconstructions which could lead to a bias; 2) the correction introduced in the second method is expected to improve the

reconstruction compared to the previous method. The temporal resolution of these surface temperature reconstruction is the

same as the δ18O composites: 10 years for 0–1800 period and 5 years for 1800–2010 period.15

S2: Defining uncertainties associated with proxy data used during data assimilation process

Data assimilation requires estimates of the uncertainty associated with the proxy data used. Unfortunately, uncertainty estima-

tions are not provided with published reconstructions used here and the instrumental time series are too short to reliably derive

the uncertainty. If we apply the same error for all the Antarctic regions, the assimilation will tend to give more weight to the

time series that have more variance (i.e. the high-accumulation regions). On the other hand, if we apply an error proportional to20

the standard deviation of the time series, each region will tend to have the same weight. The uncertainly could also be related to

the amount of ice cores included in each regional composite, but the link between this number and the quality of the composite

is not straightforward (Stenni et al., 2017). Several experiments have been performed to test the impact of different estimates

of the data uncertainties on the data assimilation results. The results are qualitatively similar to standard choices of the uncer-

tainty (Klein et al., 2019). The experiments shown here assume a signal to noise ratio of 1 for each regional composite. This25

is probably an optimistic estimate but this has the advantage of providing a strong data constraint and the comparison of the

reconstruction using data assimilation with instrumental data indicates a good skill of the methods using this value.

S3: Present-day AIS SMB simulated by GCMs

Overall, the AIS SMB simulated by GCMs is in good agreement with the SMB simulated by the regional climate model

RACMO2 over the last decades (1979–2005, R2 = 0.63; Figs. S5, S6, S7 and S8). As expected, both display high values of30

SMB along the coast (>300 mm w.e. year-1) – especially for West Antarctica and the Antarctic Peninsula – and lower values

1



at high elevations (e.g. the Plateau: <100 mm w.e. year-1). The mean of the SMB over the entire AIS simulated by the selected

models (including isotope-enable models) is 6.4 mm w.e. year-1 lower than the SMB simulated by RACMO2 over the 1979–

2005 period (relative bias: -3.4%; Fig. S8 for the correlation plots for each model and Fig. S9 for the integrated SMB over the

entire AIS for each model).

However, Figure S5 shows that the GCMs, compared to RACMO2, underestimate SMB in areas below 1500 m (mean bias of5

-55 mm w.e. year-1; relative bias: -15%) over 1979–2005. For the areas above 1500 m, the mean bias of the simulated SMB by

GCMs compared to RACMO2 is 11 mm w.e. year-1 (relative bias: 11%). These results are in agreement with previous studies

(e.g. Palerme et al., 2017; Genthon et al., 2009; Krinner et al., 2008) who have shown that due to the lower spatial resolution of

GCMs in comparison to the regional model, SMB is underestimated at the coasts while an overestimation occurs in the interior

of the ice sheet. The bias in the difference between the coastal and higher elevation regions are smaller for the models that10

have a higher spatial resolution, such as CCSM4 (Fig. S10), confirming that the spatial resolution has a crucial impact on the

simulated SMB. However, models with similar resolutions may also have very different results, in particular in coastal regions

(relative SMB biases of +47% and +100% for CCSM4 and MRI-CGCM3 respectively compared to RACMO for DML coast

over the 1979–2005 period), suggesting a critical role of model physics in some of the GCM biases.
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Figure S1. Surface mass balance anomalies [Gt y-1] simulated by the GCMs (the average of all the available simulations has been represented;

Tab. A1) and snow accumulation reconstructions (Thomas et al., 2017) for 1000–2005 and for 1800–2005 for all the Antarctic subregions.

Anomalies are computed for the 1800–2000 period. The shaded area corresponds to the range of the CESM1-CAM5 simulations. For

visibility, data has been smoothed with a 100 year moving average for the last millennium and a 30 years moving average for the last 200

years.
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Figure S2. Annual correlations (r) between surface mass balance and surface temperature for all seven Antarctic regions (see Fig. 1 for

geographical definitions) for all the GCMs over the 1850–2005 period.

Figure S3. 5-year mean correlations between surface temperature and δ18O (blue) and between SMB and surface temperature (green) for the

seven Antarctic regions for the entire period simulation (1871–2010 for ECHAM5-wiso and 801–2000 for ECHAM5/MPI-OM).
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Figure S4. Spatial Antarctic surface mass balance trends (mm w.e. y-1 decade-1) over the 1801–2000, 1957–2000 and 1979–2000 periods

from 1) our data assimilation-based reconstruction using the iHadCM3 outputs constrained by both δ18O and SMB (first row) and from 2)

Medley and Thomas (2019; second row).
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Figure S5. Antarctic Ice Sheet Surface Mass Balance [mm w.e. y-1] over 1979–2005 CE averaged over all the GCMs simulations (see Tab.

A1 for the list) (top left), for RACMO2 (van Wessem et al., 2018) (top right), the difference between them (bottom left) and the distribution

of the SMB simulated by RACMO2 and the GCMs as a function of elevation, binned in 400m elevation intervals (bottom right). The bars

represent one standard deviation of the cell grids within each elevation bin. The equivalent of the latter panel for each model is provided on

Fig. S10.
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Figure S6. Correlation plot of SMB climatology from GCM mean (average over all the GCMs including isotope-enabled models) as a

function of RACMO SMB over the 1979–2005 period. R2 is the determination coefficient and bias the average of the difference between

GCM mean and RACMO (in mm w.e. year-1). Red (blue) dots are for places where the altitude is lower (higher) than 1500m. See Fig. S8 for

each model.
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Figure S7. Antarctic Ice Sheet surface mass balance [mm w.e. y-1] for all the models used in this study over the 1979–2005 period.
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Figure S8. As in Fig. S6 but for all GCMs.
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Figure S9. Mean Antarctic Ice Sheet surface mass balance (Gt year-1) simulated by all the models used in this study.
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Figure S10. Distribution of the surface mass balance simulated by all climate models used in this study as a function of elevation, binned in

400m elevation intervals. The bars represent one standard deviation of the cell grids within each elevation bin.
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Figure S11. Reconstructed surface temperatures (5-year mean) for West Antarctica, East Antarctica and Antarctica as a whole from our data

assimilation experiment using the ECHAM5-wiso outputs and, δ180 (Stenni et al., 2017) and SMB reconstruction (Thomas et al., 2017) as

data. The period is 1800–2010. DA δ18O is the data assimilation experiment using only the δ18O data to constrain the model while DA SMB

uses only the SMB reconstruction and DA δ18O and SMB uses both. For each experiment and each region, the correlation (r) between the

reconstruction based on ice cores and that based on data assimilation is computed. The shaded areas represent ± 1 standard deviation of the

model particles.
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Figure S12. Reconstructed surface temperatures (5-year mean) for West Antarctica, East Antarctica and Antarctica as a whole from data

assimilation experiment using the ECHAM5-MPI/OM outputs and, δ18O (Stenni et al., 2017) and SMB reconstruction (Thomas et al., 2017)

as data. The period is 1800–2010. DA δ18O is the data assimilation experiment using only the δ18O data to constrain the model while DA

SMB uses only the SMB reconstruction and DA δ18O and SMB uses both. For each experiment and each region, the correlation (r) between

the reconstruction based on ice cores and that based on data assimilation is computed. The shaded areas represent ± 1 standard deviation of

the model particles.
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Figure S13. Reconstructed SMB (5-year mean) for West Antarctica, East Antarctica and Antarctica as a whole from data assimilation

experiment using the ECHAM5-wiso outputs and, δ18O (Stenni et al., 2017) and SMB reconstruction (Thomas et al., 2017) as data. The

period is 1800–2010. DA δ18O is the data assimilation experiment using only the δ18O data to constrain the model while DA SMB uses only

the SMB reconstruction and DA δ18O and SMB uses both. For each experiment and each region, the correlation (r) between the reconstruction

based on ice cores and that based on data assimilation is computed. The shaded areas represent± 1 standard deviation of the model particles.
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Figure S14. Reconstructed SMB (5-year mean) for West Antarctica, East Antarctica and Antarctica as a whole from data assimilation

experiment using the ECHAM5-MPI/OM outputs and, δ18O (Stenni et al., 2017) and SMB reconstruction (Thomas et al., 2017) as data. The

period is 1800–2010. DA δ18O is the data assimilation experiment using only the δ18O data to constrain the model while DA SMB uses only

the SMB reconstruction and DA δ18O and SMB uses both. For each experiment and each region, the correlation (r) between the reconstruction

based on ice cores and that based on data assimilation is computed. The shaded areas represent± 1 standard deviation of the model particles.
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Table S1. Surface mass balance trends (in Gt 100y-2) for West Antarctica, East Antarctica and Antarctica as a whole in GCMs, in isotopic

climate models (ECHAM5-wiso, ECHAM5/MPIOM and HadCM3) and in reconstructions based on ice cores (Thomas et al., 2017) over

1950–2000. The number in brackets is the number of simulations. The trend computation is based on yearly data.

West Antarctica East Antarctica Antarctica

min max mean min max mean min max mean

bcc-csm1-1 (3) -29.46 152.47 77.62 -63.11 381.09 200.39 -92.57 533.56 278.01

CCSM4 (6) 148.02 390.50 234.13 274.32 455.65 368.19 469.24 846.15 602.32

CSIRO-Mk3L-1-2 (1) 3.14 135.86 139.00

GISS-E2-R (6) 25.69 183.66 107.27 -71.92 250.18 140.43 -46.23 416.21 247.71

HadCM3 (10) 4.79 150.27 70.75 -68.85 242.18 89.39 -34.18 303.11 160.14

IPSL-CM5A-LR (6) 57.07 123.78 99.07 -104.18 66.82 -10.06 -47.11 174.30 89.01

MPI-ESM-P (2) -33.85 -28.74 -31.30 54.75 231.84 143.29 26.01 197.99 112.00

MRI-CGCM3 (3) 28.62 178.64 86.45 -59.28 242.24 125.66 -7.19 420.89 212.11

CESM1-CAM5 (12) 30.90 349.67 153.07 55.72 340.24 162.27 161.99 592.43 315.34

iHadCM3 (6) 76.23 232.69 162.29 15.52 350.87 213.61 115.85 542.61 375.90

ECHAM5-wiso (1) -8.79 195.22 186.43

ECHAM5/MPIOM (1) 41.44 35.43 76.87

Reconstructions (1) 256.74 -35.80 220.95

Table S2. 5-year mean correlations between the three surface temperature reconstructions from data assimilation experiments using the

iHadCM3 outputs and the statistical reconstruction of Stenni et al. (2017), with the surface temperature reconstructions from Nicolas and

Bromwich (2014) over the 1958–2010 period for East Antarctica, West Antartica and Antarctica as a whole. All the correlations are performed

on detrended time series. Stars represent statistically significant correlations (p-value<0.10).

West Antarctica East Antarctica Antarctica

DA δ18O -0.02 -0.16 -0.25

DA SMB -0.19 0.51 0.31

DA δ18O and SMB 0 0.60* 0.44

Stenni et al. (2017) 0.45* -0.20 0.12*
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Table S3. Slopes (◦C 100yr-1) of each surface temperature reconstruction (Stenni et al., 2017; Klein et al., 2019; Nicolas and Bromwich,

2014; in this study) over the 1961–2010 period for West Antarctica, East Antarctica and the Antarctica. Statistically significant (p-value <

0.05) trends are represented by a star.

Dataset
West

Antarctica

East

Antarctica
Antarctica

Stenni et al. (2017)

Stat ECHAMvariance 1.69* 0.75* 1.27

Stat borehole 2.07* 0.75* 0.77*

Klein et al. (2018)

DA ECHAM5-wiso 1.15 0.94 0.98

DA ECHAM5/MPI-OM 1.0 0.48 0.59

Nicolas and Bromwich (2014)

2.22* 0.53 0.90*

In this study

DA δ18O and SMB iHadCM3 0.99* 0.60* 0.69*

5-year mean correlations between the three surface temperature reconstructions from data assimilation experiments using the

ECHAM5-MPI/OM outputs, ECHAM5-wiso outputs, the iHadCM3 outputs and the two surface temperature reconstructions

of Stenni et al. (2017) with the surface temperature reconstruction from Nicolas and Bromwich (2014) over the 1958–2010

for East Antarctica, West Antarctica and Antarctica as a whole.
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