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Abstract.

Sea ice thickness is an Essential Climate Variable. Current L-Band sea ice thickness retrieval methods do not account for sea

ice surface roughness that is hypothesized to be not relevant to the process. This study attempts to validate this hypothesis that

has not been tested yet. To test this hypothesis, we created a physical model of sea ice roughness based on geometrical optics

and merged it into the L-band emissivity model of sea ice that is similar to the one used in the operational sea ice thickness5

retrieval algorithm. The facet description of sea ice surface used in geometrical optics is derived from 2-D surface elevation

measurements. Subsequently the new model was tested with TB measurements performed during the SMOSice2014 field

campaign. Our simulation results corroborate the hypothesis that sea ice surface roughness has marginal impact on near-nadir

TB (used in the current operational retrieval). We demonstrate that the probability distribution function of surface slopes can

be approximated with a parametric function whose single parameter can be used to characterize the degree of roughness. Facet10

azimuth orientation is isotropic at scales greater than 4.3 km. The simulation results indicate that surface roughness is a minor

factor in modeling the sea ice brightness temperature. The change in TB is most pronounced at incidence angles greater than 40

degrees, and can reach up to 8 K for vertical polarization at 60 degrees. Therefore current and future L-band missions (SMOS,

SMAP, CIMR, SMOS-HR) measuring at such angles can be affected. Comparison of the brightness temperature simulations

with the SMOSice2014 radiometer data does not yield definite results.15
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1 Introduction

The L-band brightness temperature (TB) is sensitive to sea ice thickness. This feature is used for sea ice thickness retrieval

from L-band TB (over thin ice, <1.5 m) (Tian-Kunze et al., 2014; Huntemann et al., 2014; Kaleschke et al., 2016). Several

factors influence TB measurements over ice-covered regions, among them: ice concentration, ice temperature, snow cover, sea5

ice surface roughness and the shape of the interfaces between the snow and ice layers (Maaß et al., 2013; Ulaby, F. T. and

Long, D. G. et al., 2014, p. 422).

Here, we investigate the effects of surface roughness on the L-band TB , specifically the large scale roughness. So far this

factor is not included in the modeling of sea ice emissions in operational sea ice thickness retrieval. Electromagnetic scattering

theory assumes that the roughness of a random surface is characterized by statistical parameters including standard deviation10

of surface height (σz), and correlation function (R(ξ)) measured in units of wavelength (Ulaby, F. T. and Long, D. G. et al.,

2014, p. 422). These roughness statistical parameters are derived from measurements of surface elevation (z), conducted with

altimeters that are characterized by their accuracy (δ) and sampling distance (∆x). As usual, the measurement method has an

impact on the outcome, in this case by filtering out both high and low spatial frequencies of the surface roughness. Sea ice

elevation measurements obtained from airborne altimeters (Ketchum, 1971; Dierking, 1995) and supplemented with terrestrial15

laser scanners (Landy et al., 2015) draw a picture of sea ice roughness as a multi-scale feature covering several orders of

magnitude from large floes and pressure ridges (from tens to hundreds meters) to frost flowers and small ripples (in the

centimeter to millimeter scale). The incident radiation of a given wavelength (λ) reacts differently with individual components

of the superimposed roughness of many scales (Ulaby, F. T. and Long, D. G. et al., 2014, p. 252).

At small end of the roughness spectrum i.e. when the change of surface elevation over sampling distance (∆z/∆x) is20

much smaller than λ (∆z/∆x << λ), the surface roughness is negligible. It means that the angular characteristics of scattered

radiation are the same as for the secular surface. As a rule of thumb, ∆x should be smaller than 0.1λ (Dierking, 2000). Sea

ice roughness measurements with terrestrial lidar carried out by Landy et al. (2015) show that standard deviation of surface

height σz ranges from 0.001 m to 0.0064 m, after high-pass filtering (cut off at 4 m−1, ∆x = 0.002 m). These results indicate

that, according to the Fraunhofer’s smoothness criterion (σz<λ/32cosθ, where θ is the angle of incidence), most sea ice types25

(except artificially grown frost flowers) can be treated as a smooth surface for L-band at scales lower than 0.25 m.

In this study, we focus on the other side of the roughness spectrum i.e. the large-scale surface roughness of sea ice

(∆z/∆x >> λ). In this case, changes in surface elevation are not negligible and alter the local incidence angle (θi). Stud-

ies of surface scattering by Lawrence et al. (2011, 2013) conclude that region of 8λ× 8λ is sufficient to model small-scale

roughness. Here, we assume that at larger spatial scales (larger then 8λ× 8λ) the surface roughness can be characterized in30

terms of geometrical optics (GO); for sea ice with εice = 4.1, λice = λ/
√
εice ≈ 0.1 m.

GO approximation describes the surface as a set of facets (Ulaby, F. T. and Long, D. G. et al., 2014, p. 564-567). This

approach was applied for modeling the effective emissivities of mountainous terrain (Matzler and Standley, 2000) and ocean

2



surface (Prigent and Abba, 1990). The latter study involved probability distribution of slopes in crosswind and downwind

directions. A similar method was used in the context of sea ice to assess the uncertainties caused by roughness in sea ice

concentration products derived from passive microwaves (Stroeve et al., 2006). Liu et al. (2014) measured ice surface slopes

and other roughness statistics in the Bohai Sea. Their result was obtained with linear (1-D) scans under the assumption of

isotropic roughness characteristics. The study by Beckers et al. (2015) has demonstrated that the statistics of sea ice roughness5

(mean z, σz , kurtosis and skewness) obtained from 1-D altimeter and 2-D laser scanner converge, on the condition that the

surface is not strongly heterogeneous. Nonetheless, the 1-D altimeter data cannot properly represent the spatial orientation of

surface facets. The surface facet orientation is characterized by both the slope (α) and the azimuthal angle in which it is facing

(γ).

In this paper, we address the knowledge gap regarding the influence of large-scale surface roughness on L-band TB . The10

paper comprises four main sections. The introduction, presenting the context is in Section 1.

Section 2 introduces the experimental data collected during SMOSice2014 campaign (section 2.1). Among them are the

EMIRAD2 L-band radiometer TB measurements, which will serve as reference for the TB simulations. Another instrument

is the airborne laser scanner (ALS) used for surface elevation measurements. The surface elevation measurements are used

to construct a digital elevation model (DEM) of sea ice surface. From the DEM we derive the facet surface slopes and their15

orientation. In section 2.2 we analyze the statistics of the facet orientation. Based on facet orientation statistics, we derive

a parametrization of the probability distribution function of surface slopes (PDFα), that will serve as surface roughness

representation in TB simulations.

Section 2.3 presents the setup used for sea ice TB simulation. For the simulation of the sea ice TB we use the MIcrowave

L-band LAyered Sea ice emission model (MILLAS) (Maaß et al., 2013). In section 2.4 we show how we integrate the surface20

roughness statistics (PDFα) with MILLAS using geometrical optics.

The three key results of this study, namely (a) surface roughness reduces the polarization difference, this change is most

pronounced at incidence angles greater than 50°, (b) nadir TB is little affected and (c) comparison with the radiometer data and

sensitivity study indicate that snow cover has greater impact on the TB than surface roughness are subsequently presented and

discussed in section 3.25

Section 4 summarizes the results and discusses the implications of this study for current and future L-band missions.

2 Materials and Methods

In this section we present the SMOSice2014 campaign that is the key dataset of this study (subsection 2.1). Section 2.2 presents

the sea ice surface roughness measurements in the context of geometrical optics. Section 2.3 presents the sea ice emission model

that we used.30
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2.1 SMOSice2014 Campaign

The SMOSice2014 campaign took place between March 21, 2014 and March 27, 2014 in the area between Edgeøya and Kong

Karls Land, east of Svalbard. Hendricks et al. (2014) and Kaleschke et al. (2016) described the campaign extensively. In this

study we analyzed the data acquired during the flights on March 24/26. From this point onwards, we focus solely on the parts

relevant to the presented work.5

In the period preceding the experiment from late January until early March the meteorological conditions in the region

deviated strongly from the climatological means. The air temperature measured at Hopen Island meteorological station was

on average 9 to 12°C higher than the climatological value for the period 1961-1990 (Strübing and Schwarz, 2014). Prevailing

southerly winds pushed sea ice against the coasts of Nordaustlandet and into Hinlopen Strait, leaving a small strip of compacted

ice along the coasts of Edgeøya. When sea ice returned with southerly drift in early March, the scene was set for the experiment.10

The thickest, most deformed ice was located in the western part of the studied region with a gradual decrease in thickness

eastwards, where thin newly-formed ice was dominant. This pattern can be observed in the SMOS sea ice thickness product

displayed in Figure 1a. In this work, we focus on the data from the low altitude flight at 70 m, because it is the data with

highest spatial resolution of the Airborne Laser Scanner (ALS) among all the flights. The analysis was further reduced to the

24th of March, it is due to the fact that the region covered on the 26th of March had a discontinuous ice cover and a large15

scale swell was interfering with the surface elevation measurements. On March 24, the Polar 5 research aircraft of the Alfred

Wegener Institute (Bremerhaven, Germany), undertook measurement flights starting from the eastern coast of Edgeøya, along

the lines marked in red and green on Figure 1b. The figure also shows TerraSAR wide swath scenes, taken in the region.

Flight A made between 10:05 and 10:41 UTC, flight B occured from 11:25 to 12:07 UTC. The set of instruments mounted

on the aircraft included an aerial camera to visually register the ice conditions, the Heitronics KT19.85 pyrometer for surface20

temperature measurements, the L-band radiometer EMIRAD-2, and the Airborne Laser Scanner (ALS) for high-resolution

surface elevation measurements.

2.1.1 EMIRAD-2 Radiometer

The EMIRAD-2 L-band radiometer (developed by DTUSpace) is a fully polarimetric system with advanced radio frequency

interference (RFI) detection features (Søbjaerg et al., 2013). The setup mounted on the aircraft consists of two Potter horn25

antennae, one nadir pointing, one side looking at 45°incidence angle. As the aircraft flew at the altitude of 70 m, the footprint

of each antenna was 60 m× 90 m for the nadir pointing antenna, and 70 m× 90 m for the side looking antenna. The receiver’s

sensitivity is 0.1 K for a 1 s integration window. Along with the L-band measurements, navigation data was collected as to

transform the polarimetric brightness temperature into the Earth reference frame (Hendricks et al., 2014). The EMIRAD-2

data was screened by evaluating kurtosis, polarimetric (Balling et al., 2012), and brightness temperature (TB) anomalies. The30

screening showed RFI contamination for up to 30% of the samples. After subtracting of the mean value of the RFI-flagged

data from the mean value of the full data, we found a 10 K difference for the nadir-looking horn, while the difference was non

significant for the side looking horn. The analysis of the TB during the "wing wags" calibration maneuvers further revealed a
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(a) Sea ice thickness on March 24 2014, derived from SMOS. The
SMOS sea ice thickness product with a resolution of 40 km is pre-
sented on a 15 km grid. An aggregation of thick ice (>1m) is visible
along the Edgeoya’s eastern coast.

(b) Sea ice conditions in the flight region on March 24. The
TerraSAR-X wide swath mode (HH polarization), with frames taken
at 05:35 UTC and 14:58 UTC. The aircraft tracks are marked in green
- A at 10:05-10:41 UTC and red - B at 11:25-12:07 UTC.

Figure 1. The region of SMOSice2014 Campaign.

20 K offset relative to the nadir-looking vertical channel caused by a continuous wave signal from the camera that was mounted

on the airplane to obtain visual images. The analysis concludes a purely additive characteristic that allowed for bias correction

(Hendricks et al., 2014). In this study, we use the data pre-processed by the DTU-team. The radiometer data was RFI cleaned

and bias-corrected and validated using aircraft wing wags and nose wags over open ocean (Hendricks et al., 2014).

2.1.2 Airborne Laser Scanner5

In this study, the ALS (Riegel VQ-580 laser scanner) has two purposes: (1) to measure the surface elevation for subsequent es-

timation of the ice thickness and (2) to characterize the surface topography. The ALS near-infrared laser (wavelength 1064 nm)

measures snow and ice elevation with the accuracy and precision of 0.0025 m. Across-track and along-track elevation mea-

surements were obtained every 0.25 m and 0.50 m, respectively. These sampling characteristics resulted from the combination

of the flight altitude (70 m) and the setup of the ALS (pulse repetition rate of 50 kHz, cross track range of ±30 degrees). The10

field of view of the radiometer side-looking antenna was only partially covered by the ALS scans. Nonetheless, we assume that

the roughness characteristics measured by ALS are representative for both antennae fields of view. The data were calibrated

and geo-referenced to the WGS84 datum. Further processing involved manual classification of tie points in leads in order to

obtain local sea level and sea ice free-board (Hendricks et al., 2014). The geo-referenced surface elevations are used to compute

surface roughness statistics. The elevation data is interpolated to a regular 0.5 m by 0.5 m grid to form a digital elevation model15

(DEM) of the sea ice surface. The DEM serves to derive surface slopes orientation.
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The estimate of sea ice thickness was built on the hydro-static equilibrium assumption. The data required to estimate sea ice

thickness consists of (a) the densities of water and ice, and (b) the snow load classically described by snow density and snow

thickness, (c) ALS’s free-board data.

The water, ice, and snow densities retained are 1027 kg/m3 (water) and 917 kg/m3 after Ricker et al. (2014), and 300 kg/m3

after Warren et al. (1999).5

Snow thickness was meant to be provided by the onboard snow radar, however the equipment was still in test phase at the

time of the experiment. As a workaround, we followed Kaleschke et al. (2016) and used the approximations found in Yu and

Rothrock (1996) and Mäkynen et al. (2013)) that set the snow thickness to 10% of the sea ice thickness.

2.2 Sea Ice Surface Roughness

In this subsection we will analyze the data from the airborne laser scanner (ALS) that we presented in section 2.1.2. We use10

the ALS data to measure the decimeter-scale surface roughness. The ALS is a laser instrument that measures the distance to

the surface. If snow covers the ice the ALS will register the snow-air interface as the elevation. Therefore, the relief of the

ice is modified by snow cover. During the SMOSice2014 campaign the snow measurements were unavailable. We assume that

snow cover is a plane-parallel layer over sea ice. This assumption does not account for snow dunes and drifts that may form

on the ice. The implications of snow thickness on the radioactive transfer modeling are discussed in the section presenting the15

sensitivity analysis (section 3.2).

In the context of radiation transfer, the surface roughness is characterized in relation to incident wavelength. The ALS

along-track spatial sampling of 0.5 m is a few times larger than the L-band wavelength in sea ice (λice = λ/
√
εice ≈ 0.1 m),

which makes it suitable to measure the large-scale roughness, the part of the roughness spectrum where GO can be used to

approximate the path of radiation. The analysis of ALS elevation data is done in three steps.20

In the first step, we identify the ice with different degree of surface roughness. For that purpose we divide the flight tracks

into one-second sections (approximately 70 m long), large enough to cover the entire nadir radiometer footprint and we build

a histogram of the standard deviations of surface heights computed for these sections. The number of bins in the histogram

is set according to the formula: Nbins = 5log10(Ndata), after Panofsky and Brier (1958). We chose standard deviation as a

criterion for defining the roughness classes, as it is widely used to characterize surface roughness from elevation profiles. Also,25

unlike visual interpretation of the aerial photography of sea ice it does not introduce personal biases. The resulting histogram

in Figure 2 shows the sea ice roughness classes as histograms bins. No sections within the lowest standard deviation of surface

height were found. That is probably due to the fact that no refrozen lead of the scale of 70 m was found or the ALS laser signal

was not reflected back from the surface resulting in missing data.

In the second step, we interpolate the ALS elevation measurements to a regular 0.5 m grid in order to form a digital elevation30

model (DEM) of the sea ice surface. The sea ice surface in the DEM is represented as a set of triangular facets. Each facet

orientation in the 3D Cartesian space (for simplicity we assume the base vectors x̂, ŷ, ẑ to be aligned with the aircraft principal
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Figure 2. Histogram of the standard deviation of surface heights
computed from 70m flight strips, bins define the roughness classes
of sea ice. Examples for three roughness classes "smooth", "medium
rough" and "rough" are marked in colors blue, green and red, respec-
tively.

Figure 3. The fR parameter illustrating the deviation from the uni-
form azimuth distribution along 1000 randomly selected samples.
The average value of fR is marked as thick red line. The considered
threshold of uniform distribution 4.3 km is marked by blue dashed
line.

axis, so ŷ points to the flight direction), is described by two angles: facet slope α (0≤ α < π) and facet azimuthal direction γ

(-π ≤ γ < π). Therefore, the i-th facet local normal vector is described by:

n̂i =−x̂sin(αi)cos(γi)− ŷ sin(γi)sin(αi) + ẑ cos(αi) (1)

In the third step, we compute the normal vectors and their orientations for the individual facets. This is done for all roughness

classes. We found that the azimuthal orientation angle γ does not show any preferred directions within any given roughness5

class. In the next subsections we present the analysis of the two angles characterizing the facet: azimuthal direction and surface

slope.

2.2.1 Facet azimuth orientation

In the previous section we used the DEM to calculate the vectors normal to the surface facets. In this subsection we analyse the

orientations of facet azimuths. In order to evaluate the distribution of the facet azimuths, we define parameter fR (eq. 2). This10

parameter is calculated from a histogram of azimuth orientation. In eq. 2 the denominator is the total number of measurments

expressed as the number of angular bins multiplied by the mean number of samples per bin (aka. total number of samples).

The numerator is a sum of the differences between the mean number of samples per bin and the actual number of samples

in each bin. There are 36 bins. The number of bins was determined with Nbins = 5log10(Ndata) considering the maximal
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number of samples in 25 km flight track. The fR parameter equals to zero for the perfectly uniform distribution, in which case

the number of counts in each bin (ni) equals to a mean number of counts (µ). The fR parameter reaches its maximum value of

fRmax = 2− 4/Nbins when the slopes are aligned, i.e. grouped in two bins.

fR =

∑Nbins

i (|ni−µ|)
Nbinsµ

, µ=
1

Nbins

Nbins∑
i

ni (2)

5

To evaluate fR we selected 1000 random 15 km samples from the flight tracks. The analysis of the samples shows that the

deviation from the uniform distribution decreases sharply with increasing distance over first kilometer (figure 3). For distances

along the flight track greater than 4.3 km the curve flattens at value of fR = 0.05 in 90% of the samples. We assume that at

scales greater than 4.3 km( marked by vertical dashed line on figure 3) slope orientations do not have a preferential direction

beyond natural variability. This distance corresponds to approximately 60 s section. In figure 3 the average value of fR is10

marked as thick red line. Several sample profiles are plotted in gray lines to illustrate the variability.

2.2.2 Facet slope angle

Section 2.2.1 looked at the azimuthal orientation of surface facets. This section focuses on the analysis of facet slopes. For

all roughness classes we observe a similar probability density function (PDF) of surface slopes. The PDFs have a maximum

at zero and a gradual decline in the likelihood of encountering the steeper slopes. Figure 4 shows the PDFα in a logarithmic15

scale for the three distinct roughness classes: smooth 0.05 m < σz <0.11 m (in blue), medium rough 0.28 m < σz <0.34 m (in

green) and rough 0.45 m < σz <0.51 m (in red).

We decide to approximate the PDF of surface slopes with an exponential curve:

PDFα = Cnorm exp(−(α/sα)), (3)

whereCnorm is the normalization constant and sα is the “geometrical-slope roughness parameter”. Figure 4 presents the data20

and the exponential approximations. The log scale is very relevant because it becomes obvious that the chances of encountering

steep slopes are getting slimmer the higher the slope angle. Consequently, it makes sense that the approximation functions

misfit the observations at high slope angles as it is irrelevant to fit an approximation there. As sα is the only parameter of the

approximation function, it is descriptive of the surface roughness.

Figure 5 shows the relation between sα and the standard deviation of surface heights corresponding to the roughness classes25

defined above. The error bars represent the uncertainty associated with each data point. Very rough ice has large uncertainty

because the number of samples was small (classes with σz>0.6 m, accounted for less than 75 s of flight, out of total 78 min).

The quadratic relation is holding well for ice with up to 0.5 m standard deviation of surface heights. The equation of the fitted

curve is: sα = 51.61σ2
z + 1.50σz + 0.14
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Figure 4. Density of probability of surface slopes in logarithmic scale
for three roughness classes: smooth 0.05m <σz<0.11m (in blue),
medium rough 0.28m <σz <0.34m (in green) and rough 0.45m <σz
<0.51m (in red). The exponential fits to the respective curves are
marked in thin color dotted lines.

Figure 5. Surface roughness parameter sα describing the probability
distribution of surface slopes. Error bars are inversely proportional
to the number of data points in each roughness class. The "smooth",
"medium rough" and "rough" classes are marked in colors blue, green
and red, respectively. The red dashed line marks the fitted curve.

2.3 Sea Ice Brightness Temperature Simulation

In this subsection we present the emission model for simulating the sea ice brightness temperature (TB). We use the MIcrowave

L-band LAyered Sea ice emission model described by Maaß et al. (2013), further referred to as MILLAS. This model is based

on the radiative transfer model of Burke et al. (1979) (who used it for soils), with infinite half-space of seawater covered with

layers of sea ice, snow and a top semi-infinite layer of air. In contrast to the original model of Burke et al. (1979) and its usage5

by Maaß et al. (2013), the current version of MILLAS takes into account multiple reflections at the layer boundaries. The

multiple reflections are expressed as subsequent terms of a geometric series. The summation over series stops when terms of

the series contribute less than a given threshold to the total (in following calculations the threshold was set to 0.001). MILLAS

describes the brightness temperature above snow-covered sea ice as a function of temperature and permittivity of the layers.

The water permittivity depends mainly on the water temperature and salinity (Klein and Swift, 1977). Ice permittivity can10

be approximately described as a function of brine volume fraction (Vant et al., 1978), which depends on ice salinity and the

densities of the ice and brine (Cox and Weeks, 1982), which in turn depends mainly on ice temperature. We set the ice salinity

to 4 g/kg which is a mean value for first year ice determined by Cox and Weeks (1974). The permittivity of dry snow can be

estimated from its density and temperature (Tiuri et al., 1984). In the simulation, the ice and water salinity are kept constant

(see Table 1). Furthermore, we assume that the system is in thermal equilibrium and that the water beneath the ice is at the15

freezing point. In this configuration, the TB is simulated as a function of ice thickness (dice), snow thickness (dsnow) and

surface temperature (Tsurf ). In our setup, the snow is assumed to be dry with a density of 300 kg/m3 , that is the average snow
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Table 1. Brightness temperature simulation setup of the MIcrowave L-band LAyered Sea ice emission model (MILLAS).

Parameter Value

Sn
ow

surface temperature measured (KT19)

snow wetness 0%

snow density 300 kg/m3

snow thermal conductivity 0.31 W/(mK)
Ic

e
ice thermal conductivity 2.034 W/(mK) + 0.13 W/m ·Sice (g/kg)/Tice(K)

ice salinity 4 g/kg

W
at

er water salinity 33 g/kg

water temperature 271.2 K

density value for December Arctic measurements from 1954-91 Warren et al. (1999). The TB simulations are only slightly

sensitive to snow density, see Figure 3 in Maaß et al. (2013). The permittivities of snow and ice are linked to their temperature.

The temperature profiles within snow and ice are assumed to be continuous and linear. The values for the ice and snow thermal

conductivity are taken from Yu and Rothrock (1996); Untersteiner (1961). As the optimization of the emission model lies

beyond the scope of this work, we use the simplest setup variant of MILLAS consisting of a single layer of ice covered with a5

single layer of snow.

2.4 Simulation of Brightness Temperature of Rough Sea Ice

In the previous sections, we described the sea ice surface as composed of facets with an orientation described by two angles:

the slope α and the azimuthal direction γ. Subsequently, we analyzed the ALS data to extract information about statistical

distributions of slopes and their orientation. We concluded that the exponential function is suitable to describe the probability10

density function of surface slopes for a range of ice surfaces with different degree of surface roughness.

In this section, we describe how we integrate the probability description of faceted sea ice surface with the MILLAS emission

model. We will start by describing the coordinate system that we used in the TB simulations. The relations between radiometer

antenna-look direction (r̂) and the horizontal (ĥ) and vertical (v̂) polarization vectors are described in Cartesian coordinate

system. We show how these relations are represented in the coordinate system associated with a facet. The vectors defined in15

the tilted facet coordinate system are denoted with the subscript i. Subsequently, we will derive the equation that sums up the

emissions originating from multiple facets.

We consider the Cartesian coordinate system (x̂, ŷ, ẑ ) with the origin in the center of the nadir sensor footprint. In this

reference frame the radiometer antenna-look direction (r̂) is described as:

r̂ = x̂sin(θ0)cos(φ0) + ŷ sin(θ0)sin(φ0)− ẑ cos(θ0), (4)20
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where the θ0 is the antenna incidence angle and the φ0 is the azimuthal direction of the antenna. In this particular case we set

the reference system so as φ0 = 0 and x̂ is parallel to the ground. The antenna setting defines the directions of the horizontal

(ĥ) and vertical (v̂) polarization vectors:

ĥ=−x̂sin(φ0) + ŷ cos(φ0), v̂ =−x̂cos(θ0)cos(φ0)− ŷ cos(θ0)sin(φ0)− ẑ sin(θ0). (5)

We are interested in finding a relationship between the radiation originating from a tilted facet and from a flat one. For that5

purpose we must consider the tilted coordinate system associated with i-th facet (variables associated with individual facets are

denoted with subscript i). The z-coordinate in this tilted coordinate system is aligned with the facet normal vector n̂i, followed

by x̂i and ŷi calculated accordingly:

ẑi = n̂i ŷi =
n̂i× r̂
|n̂i× r̂|

x̂i = ŷi× ẑi (6)

Therefore, the local incidence angle θi is:10

θi = cos−1(−r̂ · n̂i) (7)

and the local horizontal and vertical polarization vectors are:

ĥi = ŷi, v̂i =−x̂i cos(θi)− ẑi sin(θi) (8)

The emissions from the facet at an angle θi and polarization p are denoted with an asterisk: T ∗
B(θi;p). In order to calculate the

brightness temperatures observed in the global horizontal and vertical polarization it is necessary to account for the coordinates15

rotation (Ulaby, F. T. and Long, D. G. et al., 2014, p. 443):

TBi(θi;H) = (ĥ · ĥi)2T ∗
B(θi;H) + (ĥ · v̂i)2T ∗

B(θi;V ) (9a)

TBi(θi;V ) = (v̂ · ĥi)2T ∗
B(θi;H) + (v̂ · v̂i)2T ∗

B(θi;V ) (9b)
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We model the sea ice surface as a set of facets. Therefore the brightness temperature registered at the antenna aperture is a

sum of contributions from N facets. We assume that each facet area A, at the distance R is visible at the incidence angle θi and

covers a patch of antenna field of view, equal to the solid angle Ωi:

Ωi =
Acos(θi)

R2 cos(αi)
(10)

The formula summing the contributions from N visible facets is:5

TB(θ0;p) =
1

N cos(θ0)

N∑
i=1

ωiTBi(θi;p)Ωi (11)

with ωi the antenna gain component.

At this stage of our study, we aim at modeling the effect of surface roughness on the TB . As a first order approximation we

assume that the antenna gain is constant across the whole field of view and that the antenna is in a far field so the incidence

angle θ0 is assumed constant across the field of view. This assumption is more suitable for the space-born system. The resulting10

formula is:

TB(θ0;p) =
1

N cos(θ0)

N∑
i=1

TBi(θi;p)sec(αi)(−r̂ · n̂i) (12)

This is the formula that we implement in the geometrical roughness model. Figure 6 presents the data flow in the geometrical

roughness model. The model merges the MILLAS emission model (suitable for sea ice) with the geometrical characterization

of the faceted surface. In the presented setup the MILLAS emission model uses the sea ice surface temperature (Tsurface), sea15

ice thickness (dice) and snow thickness (dsnow) as input variables. The GO part needs the cumulative probability distribution

of surface slopes (CDFα) and the antenna look direction (r̂). The orientation of N facets representing the sea ice surface is

calculated with the inverse transform sampling (ITS) (Devroye, 2006). This method returns a random slope value from a given

non-uniform distribution. The non-uniform distribution is described by a cumulative probability distribution, which in this case

depends on the geometrical roughness parameter sα. Similarly, the azimuthal angle γi is drawn from a uniform distribution.20

The result of this processing step is the set of N pairs of angles (αi, γi) describing the orientation of N facets. In the next step,

the local normal vector and the local incidence angle (θi) are calculated for each of the N facets. The θi is used to calulate the

brightness temperature emitted from the i-th facet with the emission model. Shadowing occurs when θi > π/2 and the radiation

is emitted away from the antenna. In the current setup the double-bounce effects are not accounted for. r̂ and n̂i are used to

calculate the local and global polarization directions, as well as Ωi. For the final step, the summed contributions from N facets25

are summed as in the equation 12. The result is the brightness temperature of the surface observed under θ0 and polarization p.
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Tsurface

dice

dsnow

Emission
Model

(MILLAS)

CDFα

r̂
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∑

TBH,V

GO

Figure 6. Flowchart showing the processing chain within the geomet-
rical roughness model. The model consists of two principal blocks:
the emission model and the inverse transport sampling ITS module
responsible for generating the facet orientation. The input parame-
ters: surface temperature Tsurface, ice thickness dice, snow thickness
dsnow, cumulative distribution of surface slopes CDFα, antenna di-
rection r̂ are colour coded in red.

Figure 7. Effects of the large-scale surface roughness on the bright-
ness temperature of sea ice, simulated with geometrical roughness
model. Vertical polarization in red, horizontal in blue. The black
dashed lines mark the TB for the specular surface. The surface rough-
ness parameter sα varies between 2 to 20, the thicker the line the
higher the sα. The inputs for the MILLAS emissivity model are kept
constant: Tsurface=260K, dice =1.42m, dsnow =0.14m.

The number of facets N impacts the quality of the simulation and the reproducibleity of the results. In order to set the value

of N we looked at the standard deviation of 20 TB simulations results for nadir and 45 degrees. We decided that the standard

deviation of TB should be lower than 0.1 K, as this is the accuracy of the EMIRAD-2 radiometer for the one second integration

time. This criterion is met for N greater than 104, which we take as the N value for further simulations.

3 Results5

The three main results of this study are: (a) surface roughness reduces the polarization difference, this change is most pro-

nounced at incidence angle greater than 50°, (b) nadir TB is little affected and (c) comparison with the radiometer data and

sensitivity study indicate that snow cover has greater impact on the TB than surface roughness.

In section 3.1 we show the brightness temperature simulations for sea ice with different degrees of large-scale surface

roughness. To interpret the results we make a sensitivity analysis (section 3.2). The comparison of the simulated vs. measured10

TB over 4.3 km flight track samples is shown in section 3.3.

3.1 Brightness temperature simulations

In section 2.2.2 we derived a parametrization of the degree of surface roughness. We approximate the roughness by an expo-

nential probability distribution function (PDF) of surface slopes. The shape of the PDF is fully described by the sα parameter.
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In our simulation sα varies between 2 and 20 in accordance with the measurements of surface slopes done during the

SMOSice2014. As the aim of this study is to characterize the effect of surface roughness on L-band TB , in this section we

keep the other parameters of the emissivity model constant: surface temperature and ice and snow thickness (Tsurface =260 K,

dice =1.42 m, dsnow =0.14 m). The brightness temperatures are calculated for every degree of incidence angle in range 0-70

degrees. Figure 7 shows the simulation results.5

The effect of increasing surface roughness is two-fold. First, the overall near-nadir intensity is lowered by 2.6 K. Second, the

polarization difference decreases. For the highest value of the roughness parameter, at Brewster’s angle the vertical polarization

decreases by 8 K and horizontal polarization experiences a 4 K increase. The effect of roughness is more pronounced for larger

values of roughness parameter sα and is most visible at higher incidence angles (60°).

The polarization mixing can be explained by the approach used in this study. The emissions from the facet in horizontal (ĥi)10

and vertical (v̂i) polarizations are partially mixed when expressed in the (ĥ, v̂) coordinate system (see eq. 12).

The lowering of the intensity has two possible explanations. First is that our model does not take into account shadowing

effects. When local incidence angle is greater than 90°, the facet is emitting away from the antenna. For the "near-nadir" angles

(0°-30°), the likelihood of shadowing is less than 1% for the most rough ice (see fig. 4).

The second explanation of this effect is associated with shape of the Fresnel emissivity curves. The polarization difference15

for large incidence angles is larger than for the near-nadir ones. Therefore, the mean of the two polarizations (TB(θ0;H) +

TB(θ0;V ))/2 i.e. total intensity) is fairly constant up to 30°and than drops continuously∼ 10 K by 60°. The trend continues for

higher incidence angles. High values of sα increase the likelihood of returning a large incidence angle in the inverse transform

sampling. These large incidence angles contribute to the overall lowering of the TB . The contribution of this mechanism

is ≈2 K for TB(0) in case of the most rough ice. The 2 K estimate was obtained by integrating the drop in total intensity20

weighted by the PDFα.

The above results are obtained with a Monte Carlo simulation. This method is a time consuming approach. Therefore, we

propose a parametrization of the simulation results. The two effects: the polarization mixing and the lowering of brightness

temperature can be expressed in a fashion similar to the HQ model proposed by Choudhury et al. (1979). Here we propose a

formulation with two parameters Hα and Qα.25

TB(θ;p) = [(1−Qα) ·T ∗
B(θ;p) +QαT

∗
B(θ;q)] ·Hα (13)

where p and q stand for the polarization.
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Hα accounts for the change in total intensity and Qα for the polarization mixing. The emissions from the specular surface

are denoted with an asterisk: T ∗
B(θ;p,q). The proposed parametrization approximates the results obtained with the Monte Carlo

simulation with a root mean square difference of 0.45 K

Hα = a1s
2
α + a0 Qα = b1s

2
α + b0 (14)

where a1 = 0.018× 10−3, a0 = 1 and b1 = 0.532× 10−3, b0 = 0.5

The emissions from the specular surface are an essential input for the geometrical roughness model used in this study. The

exact shape of the simulated brightness temperature curves depends on the probability distribution of slopes as well as on

the emission characteristics of the specular surface. In this paragraph, we will investigate how the shape of the T ∗
B(θ;p,q)

influences the geometrical roughness model results. The shapes of the polarization curves i.e. the reflectivities for a given

incidence angle, are described by the Fresnel equations. Equations that are determined by the permittivity of the medium (ε).10

(In this section we omit the question of penetration depth assuming that the emissions are coming from the isothermal ice

layer of constant permittivity). To investigate the impact of the varying ε we take a range of permittivities specific to sea ice

as calculated within the MILLAS model. In the present setup the sea ice permittivity depends on bulk ice salinity and ice

temperature. We calculate the ε for a range of ice temperatures (250 K< Tice <271 K) and salinities (1 g/kg< Sice <12 g/kg).

The sea ice permitivities from the MILLAS model range between ε = 3.1 + 0.05i (for Tice =271 K, Sice =7 g/kg) and ε =15

4.6 + 0.8i (for Tice =253 K, Sice =1 g/kg), where Tice is the bulk ice temperature and Sice is the bulk ice salinity. The curves

corresponding to those values lie close together indicating that the proposed parametrization is suitable for all types of sea ice.

The effect of permittivity on the polarization mixing parameter (Qα) is less pronounced. The dependence of the Qα parameter

on the roughness follows a similar quadratic curve regardless of the surface permittivity.

3.2 Sensitivity analysis20

In this section, we investigate how sensitive the model is to its main variables: surface temperature, ice thickness, snow thick-

ness, surface roughness and the implicit assumption of 100% sea ice concentration. This is a mandatory step toward the

evaluation of the model (section 3.3).

The two most important factors influencing the L-band brightness temperature over sea ice are the ice concentration and the

ice thickness. We calculate the sensitivity of our model with regard to sea ice concentration by assuming a linear mixing of25

water and thick ice fractions within the radiometer footprint. The brightness temperature of sea water TBw (salinity of 33 g/kg,

temperature 271.2 K) is approximately 110 K and TBi(0;p,q) of thick sea ice (Tsurf =260 K, dice =1.5 m, bulk salinity of

3 g/kg) is 240 K. The resulting sensitivity to sea ice concentration is ≈ 1.5K/%.

The sensitivity of the TB to sea ice thickness over thin sea ice (dice <0.75 m) is fundamental for the sea ice thickness

retrieval from L-band radiometry. TBi saturates when the sea ice thickness is significantly larger than the penetration depth of30
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(a) Horizontal or vertical polarization at 0°:
TB(0)

(b) Horizontal polarization, incidence angle
45°: TB(45,H)

(c) Vertical polarization, incidence angle
45°: TB(45,V )

Figure 8. Change in the brightness temperature as predicted by the MILLAS emission model as a function of surface temperature. The
different line styles correspond to the different snow thickness assumptions. The calculation was done for the sea ice thickness of one meter
and surface roughness set to zero.

the L-band radiation. Therefore, our analysis focuses on sea ice thicker than 1 m, in order to single out the contributions of

surface roughness.

Table 2 contains the sensitivities of the geometrical roughness model to the input parameters: roughness parameter sα, ice

thickness dice, snow thickness dsnow and surface temperature Tsurf . Presented values are grouped into columns corresponding

to the polarization and three incidence angles: 0°, 45°and 60°. The angles are chosen to reflect the antennae configuration during5

the SMOSice2014 with an addition of 60°, close to Brewster’s angle where surface roughness effects are most pronounced.

The assumption about snow thickness has a considerable effect on the sea ice TB (Maaß et al., 2013). For this reason the

values of sensitivities are considered for a number of snow thickness values. Figures 8a, 8b and 8c show the simulated L-band

brightness temperature at 0°, 45°as a function of the surface temperature. In this study we make considerable assumptions

about snow thickness. To illustrate the uncertainty associated with the assumptions, the simulations are made for a range of10

snow thicknesses plotted in different line styles.

In the MILLAS model, ice permittivity is parameterized with ice temperature. The non-monotonic shape of the curves is

caused by change in ice permittivity. Therefore, the sensitivities are calculated for two temperature ranges: lower (250 K-265 K)

and higher (265 K-270 K). Table 2 contains the calculated sensitivities.

As far as the large-scale surface roughness is concerned, the sensitivity increases almost linearly for the values of sα between15

0°and 20°which is the maximal value measured during the SMOSice2014 campaign.

In order to interpret the results of the comparison between the simulation and measurements, it is necessary to evaluate the

uncertainties associated with the input parameters: surface temperature, ice thickness and snow thickness. In the following

paragraphs, we use "mean model sensitivity for the cold conditions" for the averaged absolute sensitivity of TB(0;H,V ) and

TB(45;H,V ) at 250 K. We take the values for the lower temperature range as they match the conditions during SMOSice201420

campaign.
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Table 2. Table with sensitivities of the brightness temperature at nadir, 45°and 60°as simulated with Geometrical Optics surface roughness
model. The input parameters: roughness parameter salpha, ice thickness dice, snow thickness dsnow, surface temperature Tsurf .

TB(0;H,V )(K) TB(45;H)(K) TB(45;V )(K) TB(60;H)(K) TB(60;V )(K)
∂/∂sα
| dsnow=0 -0.01 to -0.20 0.06 to 0.80 -0.08 to -1.20 0.11 to 1.70 -0.14 to -2.10

∂/∂sα
| dsnow=0.1m -0.01 to -0.21 0.02 to 0.30 -0.05 to -0.74 0.05 to 0.77 -0.08 to -1.19

∂/∂sα
| dsnow=0.25m -0.01 to -0.21 0.02 to 0.33 -0.05 to -0.76 0.05 to 0.80 -0.14 to -1.22

∂/∂sα
| dsnow=0.35m -0.01 to -0.21 0.02 to 0.34 -0.05 to -0.77 0.05 to 0.82 -0.14 to -1.24

∂/∂sα
| dsnow=0.45m -0.01 to -0.21 0.02 to 0.35 -0.05 to -0.78 0.05 to 0.83 -0.14 to -1.25

∂/∂sα
| dsnow=0.5m -0.01 to -0.21 0.02 to 0.37 -0.05 to -0.79 0.05 to 0.85 -0.14 to -1.26

range (K) 250-265 265-270 250-265 265-270 250-265 265-270 250-265 265-270 250-265 265-270
∂/∂dice -0.91 2.05 0.18 3.49 -1.77 0.16 0.58 3.28 -2.12 -1.24
∂/∂dsnow 8.51 -2.03 6.58 -3.18 10.71 0.23 5.68 -2.45 10.10 0.89
∂/∂Tsurf
| dsnow=0 0.50 -0.43 0.4 -0.95 0.61 0.15 0.29 -1.32 0.69 0.66

∂/∂Tsurf
| dsnow=0.1m 0.34 -0.23 0.3 -0.5 0.41 0.02 0.26 -0.63 0.44 0.19

∂/∂Tsurf
| dsnow=0.25m 0.18 -0.38 0.12 -0.59 0.24 -0.11 0.09 -0.68 0.27 0.05

∂/∂Tsurf
| dsnow=0.35m 0.11 -0.39 0.05 -0.61 0.17 -0.16 0.01 -0.66 0.21 -0.01

∂/∂Tsurf
| dsnow=0.45m 0.06 -0.40 0.01 -0.58 0.13 -0.19 -0.03 -0.67 0.17 -0.05

∂/∂Tsurf
| dsnow=0.5m 0.05 -0.40 0.01 -0.57 0.11 -0.19 -0.05 -0.66 0.15 -0.06

The uncertainty associated with surface temperature is estimated as the product of the sensitivity of the model times the

measurement uncertainty. The surface temperature measurements done with the KT19.85 have an accuracy of 0.5 K. The mean

surface temperature in the region covered by ice was 251.7±3.5 K. We take the standard deviation of surface temperature

measurements as the parameter uncertainty. We estimate the uncertainty associated with surface temperature to be 0.7 K.

The uncertainty associated with sea ice thickness is estimated as the product of the sensitivity of the model times the5

measurement uncertainty. The sea ice thickness measurements in this study are derived from the re-sampled ALS elevation

data. The mean standard deviation of the re-sampled elevation measurements is 0.08 m. The assumption about the densities of

snow, ice and water combined with the assumption on the snow thickness of 1/10 of ice thickness are leading to the uncertainty

of 0.4 m. Taking into account the mean model sensitivity for the cold conditions prevailing during the flights, we estimate that

the uncertainty associated with sea ice thickness is 0.5 K.10
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The uncertainty associated with snow thickness is estimated as the product of the sensitivity of the model times the measure-

ment uncertainty. Unfortunately, the snow thickness measurements are not available. The snow layer, although transparent for

the L-band radiation, is not invisible. The refraction on the snow-ice and snow-air interfaces alters the local incidence angles.

Snow cover also has an effect on the temperature profile within the ice. This indirectly affects the permittivity of sea ice. All

these factors make an estimation of the uncertainty caused by snow thickness especially hard to quantify. We assume that snow5

thickness uncertainty is equal to the mean standard deviation of the re-sampled elevation measurements, that is 0.08 m. The

mean model sensitivity to snow thickness for the cold conditions is 8.6 K/m. Therefore, we estimate the uncertainty associated

with snow thickness to be 0.7 K.

An important factor which is not directly included in the model is the sea ice concentration. In the model we assume sea

ice concentration to be 100% in order to single out the much smaller contribution of surface roughness. However, if a linear10

mixing model is applied the sensitivity to sea ice concentration is −1.5 K/%. During the pre-processing of the airborne laser

scanner (ALS) data we excluded the seventy-meter sections with more than 5% missing values. The missing values are caused

by the instrument setup (rotating mirror, edge of swath) or by the lack of return reflection from open water or thin ice. We

estimate that the uncertainty associated with the sea ice concentration is up to 7.5 K.

To put the partial sensitivities into perspective, the expected changes in the TB caused by the strongest surface roughness15

measured during SMOSice2014 campaign do not exceed −2.2 K for nadir and 1 K and −5.6 K for the horizontal and vertical

polarization of the 45°antenna, respectively.

To conclude, the sensitivity analysis of the geometrical roughness model leads to the conclusion that the surface roughness

effects will be hard to observe in the SMOSice2014 flights data with the current emission model setup.

3.3 Simulations vs. Measurements20

In this section, we compare the brightness temperature measured with the EMIRAD-2 radiometer with the brightness tempera-

ture simulations. The comparison is done on a 4.3 km section as to justify the assumption of the isotropic azimuth distribution.

We want to determine the simulation setup that best reproduces the radiometer measurements. And whether the inclusion of

the surface roughness in the simulation brings significant improvement. The limitation of this approach is that we assume that

the ice observed by the side looking antenna and the ice below the flight path have the same properties. We consider the surface25

temperature, the sea ice thickness and the surface roughness along the flight and we use them to run the statistical roughness

model, described in section 2.4 with MILLAS single ice layer setup as the brightness temperature module. In setups including

snow layer, the snow thickness is set to be 10% of the sea ice thickness. The calculation is done for 60 s averages, during

which the aircraft covers the distance of approximately 4.3 km. At this scale we consider the surface slopes orientation to be

isotropic. The measured surface slopes are used to compute empirical CDFα. Analysis at 4.3 km scale is justified by the fact30

that the antennae gains are not known. Furthermore, the averaged sea ice properties are more representative for the space-born

radiometers.

For each radiometer channel we made four simulation setups: two without roughness (Flat no- snow, Flat snow), and two

with roughness included: (Rough (GO) no-snow, Rough (GO) snow). As for the performance metrics of the model setups, we
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(a) θ = 0, p=H (b) θ = 0, p=V (c) θ = 45, p=H (d) θ = 45, p=V

Figure 9. Scatter plots illustrating the comparisons between the EMIRAD-2 data and the TB simulated without GO roughness included -
specular. Results corresponding to the setup with snow are marked in green, without snow in blue.

(a) θ = 0, p=H (b) θ = 0, p=V (c) θ = 45, p=H (d) θ = 45, p=V

Figure 10. Scatter plots illustrating the comparisons between the EMIRAD-2 data and the TB simulated with GO roughness included.
Results corresponding to the setup with snow are marked in green, without snow in blue.

use the coefficient of determination (r2), the root-mean-square error (RMSE) and bias. These metrics are widely used in the

assessment of the performance of satellite measurements (Entekhabi et al., 2010). Table 3 contains the results of the comparison

expressed in terms of r2, RMSE and bias. The corresponding scatter-plots illustrating the comparison between measured and

modeled brightness temperatures are presented on figures 9 and 10.

The values of r2 for all “channel - simulation setup” combinations do not exceed 0.36. The simplified one-layer model5

managed to capture only 36% of the signal variance even with surface roughness included. Furthermore, the inclusion of

surface roughness brings little improvement to the statistics. In case of vertical polarization, where the model studies indicate

the most sensitivity to roughness, the r2 is even a little lower. The inclusion of a very crude snow thickness parametrization

is more successful in capturing the radiometer measurements variability. All metrics show that the four model setups perform

poorly in reproducing the EMIRAD-2 measurements.10

The results of the comparison are also presented in the form of histograms of the difference between the measured and

simulated TB (figure 11). For all four antenna feeds the RMSE between simulated and measured TB decreases whenever the

setups include snow. However, the bias gets higher.

The high values of RMSE and bias show a general miss-fit of the model to the data. The sensitivity study of the model

presented in section 3.2 indicates that the effects of surface roughness are of comparable magnitude or smaller than uncertainties15

associated with the model input parameters. The side looking vertical polarization is predicted to be most affected by the
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(a) θ = 0, p=H (b) θ = 0, p=V (c) θ = 45, p=H (d) θ = 45, p=V

Figure 11. Histograms of the differences between the EMIARAD2 measurements and simulation setups for four antenna feeds.

surface roughness. However, the surface roughness is not measured directly in side-looking antenna footprint. The scatter plots

on figures 9 and 10 and the calculated statistics show that a simplified one-layer model struggles to capture the dynamics of

the sea ice TB regardless of the simulation setup.

Table 3. Performance metrix for the different TB simulation setups in terms of coefficient of determination r2, RMSE (K), bias (K). For
EMIRAD-2 channels four model setups are tested: Flat no snow, Flat snow, GO no snow, GO snow.

TB(0,H) TB(0,V ) TB(45,H) TB(45,V )

r2
RMSE
(K)

bias
(K) r2

RMSE
(K)

bias
(K) r2

RMSE
(K)

bias
(K) r2

RMSE
(K)

bias
(K)

Se
tu

p

Flat, no snow 0.27 27.2 11.7 0.26 28.5 6.8 0.22 41.7 71.3 0.19 26.7 -41.2

Flat, snow 0.36 23.7 -18.2 0.35 24.1 23.9 0.33 25.0 68.5 0.29 25.2 -89.8

GO, no snow 0.27 27.3 12.3 0.25 28.5 7.4 0.26 28.2 78.2 0.19 26.0 -41.9

GO, snow 0.36 23.7 -17.8 0.35 24.1 -23.4 0.34 27.2 72.2 0.28 24.7 -108.7

4 Discussion and Conclusions

In this paper we address the knowledge gap concerning the influence of the decimeter-scale surface roughness on the L-band5

brightness temperature of sea ice. We used the airborne laser scanner (ALS) data to characterize the sea ice surface and to

produce the digital elevation model (DEM) of the sea ice surface. From the DEM we derived the probability distribution of

surface slopes (α) and their azimuthal orientation (γ). We found that the probability distribution function of α (PDFα) can be

described with an exponential function regardless of the degree of roughness of sea ice surface. The exponent parameter (sα) is

a quasi-quadratic function of the standard deviation of surface heights. In the second part of this work, we used the PDFα in a10

Monte Carlo simulation of the emission from a faceted sea ice surface. The effect of surface roughness is marginal at near-nadir,

accounting for up to 2.6 K decreases in TB . The polarization curves around Brewster’s angle are most affected. The vertical

polarization decreases by 8 K and horizontal polarization increases by 4 K for the roughest ice, compared with the specular sea
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ice surface. The effect of the large-scale surface roughness on polarization curves is not linear with the degree of the surface

roughness described by sα. Meaning that the alteration of the TB curves is strongest for the roughest surface. The overall

change of emission due to the large-scale surface roughness can be expressed as a superposition of change in intensity (Hα)

and an increase in polarization mixing (Qα). The change in intensity depends primarily on the surface permittivity, whereas

the polarization mixing shows little dependence on ε. This parametrization is suitable for all types of sea ice. However, the5

sensitivity analysis of the simplified emission model demonstrates that the expected change in TB is comparable in magnitude

to the uncertainty associated with the model input parameters.

The results have implication for the current and future L-band missions. The operational SMOS sea ice thickness product

relies on near-nadir TB observations (0°-30°). Therefore, the large scale surface roughness will have little effect on the re-

trieval. The SMAP and CIMR missions, that operate at incidence angles of 40°and 55°, respectively, are more exposed to the10

surface roughness effects. The effect on the vertical polarization is stronger than on the horizontal polarization. Lastly, we

compared the simulation of the brightness temperature (with and without surface roughness) with the radiometer measure-

ments. Unfortunately, this showed that our model is not capturing the brightness temperature variability at the scale of 4.3 km.

The inclusion of surface roughness is less important than the inclusion of a crude snow thickness parameterization. This is

confirmed by the sensitivity analysis of the model. Another possible explanation is that the sea ice in the studied region was15

highly heterogeneous in terms of its thickness and snow cover. Furthermore, a simple two-layer emission model used in this

study has its limitations in capturing the TB variability. Better results might be obtained if a multi-layer model together with

the snow thickness measurements is used. With such setup the direct inclusion of sea ice facets orientation in the radiometer

field of view will be a valuable option to improve the TB simulation. However, this would require in-situ measurements of sea

ice permittivity, snow thickness, temperature and roughness as well as detailed characterization of the antenna gain. Thus, the20

authors recommendation for future studies is to measure the microphysical snow and sea ice properties together with surface

roughness directly in the radiometer’s field of view.
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The following abbreviations are used in this manuscript:

10
ALS Airborne Laser Scanner

CDF Cumulative Distribution Function

DEM Digital Elevation Model

GO Geometrical Optics

ITS Inverse Transform Sampling

MILLAS MIcrowave L-band LAyered Sea ice emission model

PDF Probability Distribution Function

RFI Radio Frequency Interference

SAR Synthetic Aperture Radar

SMAP Soil Moisture Active and Passive Mission

SMOS Soil Moisture and Ocean Salinity Mission

TB brightness temperature
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