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Abstract. Calving is a crucial process for the recently observed dynamic mass loss changes of the Greenland ice sheet. Despite 

its importance for global sea level change, major limitations in understanding the process of calving remain. This study presents 

high resolution calving event data and statistics recorded with a terrestrial radar interferometer at the front of Eqip Sermia, a 

marine terminating outlet glacier in Greenland. The derived digital elevation models with a spatial resolution of several meters 

recorded at one-minute intervals were processed to provide source areas and volumes of 906 individual calving events during 5 

a 6 day period. The calving front can be divided into sectors ending in shallow and deep water with different calving statistics 

and styles. For the shallow sector, characterised by an inclined and very high front, calving events are more frequent and larger 

than for the vertical ice cliff of the deep sector. We suggest that the calving volume deficiency of 90% in our observations of 

the deep sector is removed by oceanic melt, subaquatic calving and small aerial calving events. Assuming a similar ice 

thickness for both sectors implies that subaqueous mass loss must be substantial for this sector with a contribution of up to 10 

65% to the frontal mass loss. The size distribution of the shallow sector is represented by a log-normal model, while for the 

deep sector the log-normal and power law model fit well, but none of them is significantly better. Variations in calving activity 

and style between the sectors seem to be controlled by the bed topography and the front geometry. Within the short observation 

period no simple relationship between environmental forcings and calving frequency or event volume could be detected. 

1 Introduction 15 

Over the past decade rapid retreat, thinning and flow acceleration of many outlet glaciers contributed substantially to the 

observed increasing mass loss of the Greenland ice sheet (Moon et al., 2012; Enderlin et al., 2014; King et al., 2018) and 

consequently to global sea level rise (Rignot et al., 2011; IPCC, 2014). These dynamic changes seem to be related to a general 

warming of air temperature and water masses around Greenland (Straneo et al., 2013). Several studies have shown a high 

sensitivity of outlet glaciers to environmental forcings (Holland et al., 2008; Howat et al., 2010; Carr et al., 2017), while the 20 

fjord topography is an important control for the dynamic behaviour of the outlet glaciers (Warren, 1991; Catania et al., 2018). 

However, major limitations in understanding and predicting the dynamics of outlet glaciers remain, e.g. a complex link between 

atmospheric forcing and calving activity and insufficient resolution in models and observations. The detailed relationship 

between climate and dynamic changes is still poorly understood (McFadden et al., 2011; Vieli and Nick, 2011; Straneo et al., 

2013).  25 

Calving is a crucial process for the dynamic behaviour of tidewater glaciers, but the detailed mechanisms and relation to 

environmental forcing are not well understood (Joughin et al. 2004; Thomas, 2004; Nick et al., 2009). Calving rates are 

generally a function of the stress state at the terminus. When stresses exceed the strength of the ice, fractures form and 

propagate, until blocks of ice separate from the front. Mechanisms causing fractures to propagate are: 1) spatial gradients in 

the glacier velocity, 2) changes in frontal geometry (front position, height), 3) undercutting of the glacier front by melting at 30 

or below the water line and 4) buoyancy forces (Pralong and Funk, 2005; Benn et al., 2007). Direct and continuous observations 

of the calving process are difficult and therefore the underlying mechanisms are observationally under-constrained. Most 
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existing studies investigated the calving process on longer time scales by considering time averaged calving rates or fluxes. 

Available studies on individual calving events focus mostly on discontinuous (Warren et al., 1995; O’Neel et al., 2003) or 

indirect measurements (O'Neel et al., 2010; Walter et al., 2010; Bartholomaus et al., 2012; Glowacki et al., 2015). Several 

studies investigating the process of ice break-off over short time scales show that the process of calving has a very high 

temporal and spatial variability and that the observed calving size distribution for grounded tidewater glaciers is following a 5 

power law (Chapuis and Tetzlaff, 2014; Åström et al., 2014; Pętlicki and Kinnard, 2016). However, these investigations focus 

mostly on time averaged estimates of volumes, discontinuous datasets, indirect measurements or a combination thereof and 

thus lack continuous direct observations of the calving event size. For an accurate representation of the calving process in 

current flow models and to link calving activity with potential environmental forcings more detailed observations with high 

temporal and spatial resolution are necessary.  10 

During the last 20 years observational data for monitoring calving glaciers were mainly obtained through satellites at a 

sampling frequency that is not suitable to observe individual calving events. Other more in-situ based approaches such as 

terrestrial photogrammetry using time-lapse cameras (dependent on weather and daylight) (Vallot et al., 2019) and drone data 

(limited temporal resolution) (Jouvet et al., 2017) also show severe limitations regarding the observation of the highly variable 

calving process. Promising results were obtained with seismic monitoring of calving (Amundson et al., 2012; Walter et al., 15 

2013; Bartholomaus et al., 2015, Köhler et al., 2016, Köhler et al., 2019) and maximum wave amplitudes as a proxy for calving 

fluxes (Minowa et al., 2018), but those methods cannot quantify calving event volumes directly. Terrestrial laser scanning 

allows to measure the volume of individual calving events (Pętlicki and Kinnard, 2016), but requires suitable meteorological 

conditions and lacks the temporal resolution to detect individual calving events. Terrestrial radar interferometers can overcome 

most of the mentioned limitations and have been used to study the effects of tidal forcing on the front of an outlet glacier 20 

(Voytenko et al., 2015), to investigate calving rate and velocity (Rolstad and Norland, 2009), to determine calving event 

frequency (Chapuis et al., 2010), velocity variations and grounding line motion (Xie et al., 2018), pro-glacial mélange thickness 

(Xie et al., 2019), glacier’s response to calving (Cassotto et al., 2018) or to estimate the volume of a single large calving event 

(Lüthi and Vieli, 2016). 

This study aims at investigating the calving process and event statistics by using a terrestrial radar interferometer (TRI). For 25 

this purpose the calving front of the tidewater outlet glacier Eqip Sermia in Greenland was investigated with a TRI at one- 

minute intervals during a 6-day field campaign in 2016. The resulting high resolution time-series of individual calving event 

volumes and related source areas allow us to investigate the relationship between calving front geometry, calving flux and 

environmental forcings such as tides or air temperature. 
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2 Study area and data acquisition methods 

2.1 Study area 

Eqip Sermia (69°47’N, 50°15’W) is an ocean terminating outlet glacier located at the western margin of the Greenland ice 

sheet. Observations of the glacier front position, surface elevation and flow speed are available at decadal resolution since 

1912 and show a doubling of discharge and accelerated retreat within the last two decades (Lüthi et al., 2016).  Between 1912 5 

and 2006 velocities between 2.5 and 5 m d-1 were observed, whereas today the glacier front velocities measured over the 

observation period in 2016 are reaching up to 16 m d-1. After a rapid retreat starting in 2010, the calving front position stabilized 

during the last five years. 

The calving front has a width of 3.2 km and a height above the water line between 50 and 170 m. The entire front is grounded 

but the water depth in the northern half is very shallow (0 – 20 m, termed ‘shallow sector’ from now on) and locally the bedrock 10 

protrudes above the water. In the southern sector the water depth is 70 to 100 m (subsequently termed ‘deep sector’). Directly 

at the calving front no depth sounding data are available and the given depth estimates are extrapolated from bathymetric 

surveys in the proximity of the current front position (Rignot et al., 2015; Lüthi et al., 2016). The difference in bed topography 

between the deep sector and the shallow sector is also visible in the bathymetry from BedMachine v3 (Fig. S8; Morlighem et 

al., 2017). Related to the contrast in water depth, the geometry of the front is distinctly different between the two frontal 15 

sectors. In the deep southern sector the front is vertical and the frontal cliff height lower than in the shallow northern sector 

where the front is inclined (Figs. 1 and 2). 

2.2 Terrestrial radar interferometer 

A terrestrial radar interferometer (TRI, Gamma GPRI) was installed on bedrock 150 m above sea level across the bay of Eqip 

Sermia at 4.5 km distance (69.7523 N / 50.2520 W; Figs. 1 and 2) with the line-of-sight in flow direction of the glacier. The 20 

measurements were repeated at one-minute intervals from 19 August 2016, 18:40 UTC to 27 August 2016, 10:30 UTC. This 

allowed to produce an almost continuous record of velocity and elevation change over 7.65 days with a 1.53 days break (22 

August 2016, 00:55 UTC to 23 August 2016, 13:00 UTC) due to an instrument failure.  

The Gamma GPRI is a real-aperture radar interferometer featuring one transmitting and two receiving antennas. Acquisitions 

are obtained by antenna rotation along the vertical on a precision astronomical mount. Consecutive interferograms from one 25 

of the receiving antennas are used to calculate the velocity. The two receiving antennas facilitate reconstruction of the 

topography. The radar interferometer operates at a wavelength of λ = 17.4 mm (Ku-Band, 17.2 GHz). The range resolution is 

approximately 0.75 m, while the azimuth resolution is 0.1 degrees corresponding to 7 m at a slant range of 4.5 km (Werner et 

al., 2008a). 

 30 
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Figure 1: Overview of Eqip Sermia and measurement sites. The positions of the terrestrial radar interferometer (TRI), the pressure 

sensor (PS) and the two weather stations (AWS) are indicated by triangles. The deep and shallow calving front sectors are marked 

with red and blue lines. Background: Sentinel-2A scene from 3 August 2016 (from ESA Copernicus Science Hub: 

https://scihub.copernicus.eu). 5 

 

Figure 2: The terrestrial radar interferometer (TRI) located opposite of the front of Eqip Sermia at a distance of 4.5 km (image: M. 

Lüthi, 2016). The TRI has one transmitting (TX) and two receiving antennas (RX1, RX2). 

 



6 

 

2.3 Environmental data 

Two automatic weather stations (AWS) with Decagon Em50 data loggers were installed at the sites indicated in Figure 1 and 

collected data in one hour intervals during the entire field campaign. AWS2 located next to the ice edge at 362 m a.s.l. 

(69.79442 N / 50.16115 W) measured air temperature and relative humidity (VP-3 humidity temperature and vapor pressure 

sensor) and wind (DS-2 sonic anemometer). AWS1 near the TRI at 60 m a.s.l. (69.75556 N / 50.25301 W) measured 5 

additionally incoming shortwave radiation (PYR solar radiation sensor) and precipitation (ECRN-100 high-resolution rain 

gauge). The meteorological conditions at the ice edge (AWS2) are influenced by the ice sheet while at AWS1 next to the TRI 

it is more representative for the weather conditions at the shore of the fjord.  

Tides and waves induced by calving were recorded in the fjord with a RBRsolo pressure sensor (PS; Fig. 1) at a sampling rate 

of two seconds. The pressure sensor was installed at the shore at a distance of 4.5 km from the ice front (69.75731 N / 50.26490 10 

W, Fig.1). To protect the sensor from floating ice and moving rocks it was fixed in a metal pipe that was attached to a rock at 

the shore by a steel cable. 

3 Data processing methods 

3.1 TRI data processing 

The GPRI transmits the radar signal from antenna TX and records it by the two receiver antennas RX1 and RX2, which enables 15 

spatial interferometry (Fig. 2). To reconstruct topography, interferograms were produced using a standard workflow following 

Caduff et al. (2015) using the Gamma software stack. The resulting interferograms were unwrapped, using stable features on 

bedrock as reference. Following Strozzi et al. (2012), the unwrapped phases were then converted to topography z: 

z =
𝜆
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where 𝜆 = 17.4 mm is the wavelength, R the range to a point on the ground, B = 0.25 m the baseline between the two receiving 20 

antennas, and 𝜙 the measured interferometric phase. To correct for systematic error sources, which can be caused by errors in 

the reference heights and instrumental geometry, baseline errors and errors caused by a not perfectly vertical mounting of the 

three antennas (Strozzi et al., 2012), a correction factor was calculated. This was done by comparing the calculated DEMs with 

the Arctic DEM and choosing control points on stable terrain at different distances from the radar. The resulting correction 

factor was multiplied with the calculated topography to minimize absolute uncertainty in the height estimates. To reduce noise 25 

from atmospheric disturbances 10 consecutive elevation models were stacked. This noise is mainly due to phase shifts in the 

interferogram induced through changes in air pressure, temperature and humidity (Goldstein, 1995). The final elevation models 

have a resolution of 3.75 m in range and about 8 m in azimuth direction at the glacier front and were obtained at 10 min 

intervals over the whole campaign.  
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The accuracy of the so obtained DEMs was evaluated by comparing them on stable terrain with the Arctic DEM (Porter et al., 

2018) as a reference DEM. The variability between the calculated TRI elevation models on stable terrain was investigated by 

looking at the DEM differences over time and space.  

In a next step consecutive stacked elevation models were subtracted. The negative height changes at the glacier front were 

interpreted as calving events. Due to the stacking, calving events within 10 minutes are merged together. The aerial extent of 5 

individual calving events were extracted from the calculated height changes with the watershed segmentation method from 

scikit-image (van der Walt et al., 2014) with a height change of 15 m as starting points for the calving events and 5 m as 

threshold. This threshold corresponds to the maximum variability of the height between elevation models on stable terrain 

outside the glacier. Height changes of less than 5 m are considered as noise and filtered out. Additionally, calving events 

smaller than 10 adjacent pixels and with a bounding box width smaller than 3 pixels (11.25 m) were excluded as noise. Thus, 10 

only calving events with both, ≥ 10 adjacent pixels and a bounding box width larger than 3 pixels, were extracted. Due to the 

asymmetric grid, events extended in range direction are more likely to be filtered out with the 10 pixel filter than wide ones. 

As noise has mostly an irregular shape, calving events smaller than 40 pixels also needed to fulfil the condition (number of 

pixels · 1.6) ≥ (number of pixels in bounding box). This condition is subsequently termed shape condition. When applying 

these filtering thresholds, the signal-to-noise ratio is higher on stable terrain than for the non-filtered events. To exclude volume 15 

changes from collapsing seracs in the highly crevassed ice surface further upstream a mask around the glacier front was used. 

The mask is defined as a line along the front with a buffer of 20 pixels (approximately 75 m) on each side of the line (Fig. 4). 

All height changes outside the mask were ignored in the data processing. 

For visualization the radar image pixels were mapped into cartesian coordinates. Since resampling is a possible source of error, 

all calculations were performed in the radar geometry and only the final results were georeferenced. Nearest neighbour 20 

interpolation was used to resample the radar data to the cartesian UTM22N grid.  

Next, we investigated whether the calving event sizes follow a size-frequency distribution. To test whether the measured 

calving volumes V are explained by an exponential (𝑒−𝛽𝑉), a log-normal (
1

𝑉
exp [−

(ln 𝑉−𝜇)2

2𝜎2 ]) or a power law (𝑉−𝛼) size 

frequency distribution a statistical analysis using the Python package powerlaw was applied (Alstott et al., 2014). The package 

uses maximum-likelihood methods (Clauset et al., 2009) due to the non-linearity of the fitted curve and gives as result the log-25 

likelihood ratio R, which is used to investigate which model fits the data better on a relative score, and the probability value p, 

which tells if one can trust the sign of R (when p ≥ 0.1).  

Ice flow velocities were calculated from consecutive interferograms of TRI acquisitions in one-minute intervals. To reduce 

noise, 120 interferograms (2 hours) were stacked before phase unwrapping with respect to a reflector on stable terrain. The 

unwrapped phases can then be converted into line-of-sight displacement 𝛿 =  
−𝜆𝜙

4𝜋
 (Werner et al., 2008b), with a displacement 30 

measurement sensitivity smaller than 1 mm. 
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3.2 Pressure sensor data processing 

The pressure sensor (PS; Fig.1) recorded the water pressure in the fjord opposite of the calving front, which can then be 

converted to water height and thus the amplitudes of the tides and calving waves are known. A high-pass filter with a pass 

frequency of 0.001 Hz was used to extract the calving waves which were then compared with the calving events detected by 

the TRI. The peaks of the calving waves were detected by using the peak detection algorithm detect_peaks (Duarte and 5 

Watanabe, 2018). Similarly, the tides were extracted with a low-pass filter with a pass frequency of 0.001 Hz and are compared 

with the extracted calving events in order to identify a potential relationship between the tides and the calving events.  

4 Results 

4.1 DEM generation and calving event extraction 

A DEM calculated with the TRI data and stacked over 60 minutes is presented in Figure 3. The elevation above sea level is 10 

with 50 to 90 m lower on the southern side of the glacier, while at the northern side the elevation reaches up to 170 m.  

To assess their uncertainty, the DEMs were compared to the Arctic DEM (Fig. S7). This comparison shows that on stable 

terrain, marked with a yellow box, the difference is around 5 m in flat areas, while it reaches about 15 m in steeper areas. The 

variability between the TRI derived DEMs was investigated over time and space for the stable area marked in Figure 3. The 

mean height difference between the consecutive TRI derived DEMs is between 1 and 2 m. The mean height difference as well 15 

as the standard deviation increases with distance and is higher in steeper areas (Fig. S2). The mean height difference of the 

stable terrain shows no clear trend over time (Figs. S3 and S4).  

The calving events were extracted by using the height changes of the consecutive TRI derived DEMs. In Figure 4 an example 

of unstacked height differences, of stacked height differences and of the finally extracted calving event is given in radar 

geometry. It is clearly visible that the stacking improves the quality of the height difference map. The same calving event is 20 

also traceable on the raw radar images as it generated waves (Fig. S5). The filtering methods used for the extraction of calving 

events reduce the number of calving events but also increase the signal-to-noise ratio. Comparing the amount of extracted 

events for a threshold of 1 m and of 5 m shows that with the threshold of 5 m 77% less events were extracted for both, the 

deep and the shallow sectors. The usage of the shape condition for events smaller than 40 pixels leads to 49% less events for 

the shallow and 54% less events for the deep sector.  25 

To assess the distribution of the noise along the front, positive height changes were calculated using a minimum size of 10 

pixels, a width of 3 pixels and the shape condition for all events (Fig. S6). The result shows that the shallow sector is likely 

more influenced by noise than the deep sector even after filtering. However, looking at unstacked and stacked height changes 

(Fig. 4) and the mean variabilities of the differentiated DEMs, the signal-to-noise ratio was increased considerably.  
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Figure 3: TRI derived DEM stacked over 60 minutes. The yellow square marks the stable terrain area where the mean variability 

was investigated. The origin of the coordinate system corresponds to 527350o E / 7739550o N (UTM 22N). Background: Sentinel-

2A scene from 3 August 2016 (from ESA Copernicus Science Hub: https://scihub.copernicus.eu). 5 

 

Figure 4: Example of a calving event extraction on 20 August 16:40 UTC in radar geometry. The left image shows the elevation 

difference between two unstacked DEMs, while in the middle the difference is calculated between two stacked DEMs. The right 

image shows the final extracted calving event (blue colour). The red arrow indicates the general flow direction of the glacier, while 

the purple shaded area shows the front mask. 10 
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 4.2 Flow velocities 

Ice flow velocities from TRI measurements in vicinity of the calving front are presented in Figure 5a. Figure 5b shows the 

complete velocity field including the areas of radar line-of-sight shadow, which has been derived from repeated UAV surveys 

from August 2016 (Rohner et al. 2019). Speeds are increasing towards the calving front with highest values reaching 16 m d-

1. Along the front the velocities are non-uniform, with two areas of high velocity separated by a frontal area where a bedrock 5 

ridge was visible during the field campaign (orange bar in Fig. 5; inset of Fig. 6). Further upstream the glacier velocity field is 

more uniform with generally higher velocities in the centre.  

 

 
Figure 5: The velocity field at the glacier front. (a) measured with the TRI (line of sight) on 19 August 2016 and (b) with a UAV 10 
(between 21 and 25 August 2016; Rohner et al., 2019). The red arrow indicates the general flow direction. The orange lines indicates 

an area where bedrock was observed at the foot of the front. The origin of the coordinate system corresponds to 528350 E / 7741550 

N (UTM 22N). Background: Sentinel-2A scene from 3 August 2016 (from ESA Copernicus Science Hub: 

https://scihub.copernicus.eu). 
 15 

4.3 Magnitude and source area of calving events 

During the field campaign 2016 a total of 906 calving events were identified within 6.12 days with a mean event volume of 

17686 m3. Due to the distinctly different characteristics in cliff geometry and water depth the two front sectors were analysed 

separately. Within the shallow sector 725 events were found, whereas within the deep sector only 193 events were detected, 

which results in a mean calving activity of 4.9 and 1.3 events per hour, respectively. Note that 12 events were detected on the 20 

border of the two sectors and were thus counted for both sectors but only once for the total number of events. An overview of 

the number, volumes and event sizes is given in Table 1. The extracted calving event sizes are spread over four orders of 

magnitude and the total volume of all calving events detected in the deep sector is 5.8 times smaller than in the shallow sector. 
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Only small variations in the position of the calving front were observed with the TRI (Fig. S1) over the observation period, 

which implies that the ice loss by calving is compensated by the ice flow (Fig. 5). 

Calving heights in each radar pixel (ca. 30 m2 area) were added up over the measurement period and are referenced to as 

cumulative calving height. Figure 6 shows that within the shallow sector the cumulative calving height locally exceeds 350 m, 

while it is considerably lower in the deep sector (D). Within the shallow sector variations in cumulative calving height are 5 

observable such that it can be divided into four sub-sectors named SL, SM, SR and M (Figs. 6 and 7). The highest cumulative 

calving heights are detected in sector SL, while sector M shows the lowest cumulative heights within the shallow sector. Sector 

SM has slightly lower values for the cumulative calving height than the sectors SR and SL. For sector D the south-eastern part 

next to the mainland was not in sight of the radar as it is situated behind a moraine. 

 10 

Table 1: Detected calving events within each sector during the observation period of 6.12 days. 

 

Figure 7 shows the detailed record of calving activity along the different sectors of the calving front. Figure 7b presents how 

frontal height and velocity vary. The front height is fluctuating strongly along the front due to the highly crevassed surface. 

The frontal cliff in the deeper sector D is mostly vertical and between 50 and 90 m high, while in the shallow sector the front 15 

is inclined at a slope of 50 degrees and reaching up to 170 m. In general, as shown in Figure 5, the velocities at the front 

increase from the margins towards the centre, with the exception of the area around the bedrock outcrop in sector M where 

velocities are slightly decreased.  

Figure 7c summarizes the observed calving activity with event volumes and timing. The spatial pattern reflects the pattern 

shown on the map of cumulative calving height (Fig. 6). In sector D fewer and smaller events were observed than in the sectors 20 

SL, SM and SR. The four subsectors of the shallow front show well distinguishable calving event volume patterns throughout 

the observation period. In the central, very shallow sector M less calving events were observed, but several of them are 

significantly larger than those observed in the other sectors. Interestingly, the cumulative calving height in this area is almost 

 Whole front Shallow sector (SL, SM, SR, M) Deep sector (D) 

Total event number  906 725 193 

Total event volume (m3) 16023400 13655800 2367600 

Event sizes    

   Mean (m3) 17700 18800 12300 

   Median (m3) 11600 12900 8500 

   Minimum (m3) 660 660 2115 

   Maximum (m3) 275700 275700 108900 
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three times smaller than the shallow sectors SL and SR and similar to the values observed in sector D. Sector SL with the 

highest cumulative calving height also has a large number of events, but they are substantially smaller than for sector M.  

Figure 7c shows continuous calving activity without any obvious temporal pattern throughout the different sectors. The only 

visually observable cluster of calving events was detected on 26 August in the afternoon when a phase with many big events 

in the sectors M and SR occurred. A strong spatial variation in observable calving volumes and fluxes along the front is visible 5 

in Figure 7d. The sectors SL and SR contribute the highest volumes, whereas only little calving was observed in sector D.  

Given the observations of Figure 7d the important question arises of how much ice mass loss at the calving front remained 

undetected by the TRI. Assuming similar mass fluxes over the front and a constant front position only about 10% of the mass 

loss is detected in sector D. 

 10 

 

Figure 6: Spatial distribution of cumulative calving height during the 6 day measurement period. The capital letters correspond to 

the sectors of the calving front (see also Fig. 7a). The deep sector (D) shows lower values than the shallow sector. Variations within 

the shallow sector were used to define the sectors SL, SM, SR and M. Orange lines indicate areas where bedrock was observed at 

the base of the front an example is shown in the inset (position and view angle of inset photograph is indicated by letter ‘a’ and 15 
dashed white lines, respectively). The meltwater plume due to subglacial discharge is well visible. Background: Sentinel-2A scene 

from 3 August 2016 (from ESA Copernicus Science Hub: https://scihub.copernicus.eu). 
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Figure 7: The calving front of Eqip Sermia with all calving volume measurements. (a) The calving front with indication of sectors 

with specific calving behaviour. The differences in geometry between the sectors SL, SM, SR (steep) and sector D (flat) are well 5 
visible. (b) Elevation and velocity of the cliff top along the glacier front show strong variations. (c) Observed calving volumes in m3 

along the front over time (20 to 27 August 2019). In the data gap (white area) the corresponding front sectors are marked. The 

orange lines indicate bedrock outcrops and the blue line represents the location of the meltwater plume. (d) Cumulative calving 

volume and ice flux (per bin width of 55 m) in m3 along the front. The ice flux is calculated with the corresponding front height 

above sea level and velocity and with an assumed ice thickness of 150 m (termed as ‘Ice Flux 150 m’). 10 
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Figure 8: Event size statistics of the observed calving events. (a) The size distribution of the calving events for the shallow sector (b) 

and the deep sector. (c) Distributions of calving event sizes for the shallow (d) and the deep sectors. Blue, red and green lines represent 

the best fit power law, exponential and log-normal distribution. 

 5 

4.4 Calving event size distribution 

The sizes of the calving events from the different sectors were analysed statistically with the methods described in section 3.1. 

The calving event size distributions were compared with non-linear fitting models to investigate if a self-organised critical 
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system can be observed. The event size statistics were studied separately for the shallow sectors (SL, SM, SR, M) and the deep 

sector D and are shown in Figure 8. The distributions of the event sizes differ substantially between the shallow and the deep 

sector in the number of events (Fig. 8a and b), whereas the shapes of the event size distributions are similar. This results in a 

much lower cumulative volume of sector D, illustrated by the blue lines in Figures 8a and b. The result of the maximum-

likelihood method is shown in the Figures 8c and d. The maximum-likelihood method uses the two values R and p to describe 5 

the best fit. The probability value p should be ≥ 0.1 and tells if one can trust the sign of the log-likelihood ration R. If R is 

positive the first model fits better, while if it is negative the second model is more likely. Both the power law and the log-

normal model seem to explain well the event size distribution for both, the shallow and the deep sector. Comparing the different 

models to test, which model can describe the observed event size distribution better, results in a better fit of the log-normal 

model for the shallow sector (R = -1.2, p = 0.1) (Fig. 8c). The event size distribution of the deep sector is better represented 10 

by a log-normal model than by an exponential model (R = 4.7, p = 0.4), but comparing the power law and the log-normal 

model shows no significant better representation (R = -8.0, p = 0.02).  

 

4.5 Pressure sensor records  

Figure 9 shows the time series of short-term variations in the fjord water levels caused by calving events and recorded by the 15 

pressure sensor. The calving waves have an amplitude of up to 3.3 m and their duration ranged from several minutes up to 

about 50 min (Fig. S10). The wave events caused by larger calving events are recorded with a time delay of 3-4 min to the 

corresponding calving event. The calving-induced wave events are often difficult to attribute to single calving events due to 

reflection from fjord sides and superposition with subsequent events. Two types of wave oscillations can be observed: The 

first and most common type has a sharp onset in wave amplitudes, which are slowly damped (left inset of Fig. 9). The second 20 

type is more symmetric with a gradual increase and decrease of wave amplitude (right inset of Fig. 9). 

 

 

Figure 9: Calving waves detected with a pressure sensor. The light blue inset panels show details of the two wave types due to calving 

events. The left one has a sharp onset, while the right one shows gradual increase and decrease of wave amplitude. 25 
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5 Discussion 

Using a terrestrial radar interferometer we established a detailed and continuous 6-day record of calving event volumes along 

the whole calving front. The detected calving event volumes were highly variable and ranged over four orders of magnitude, 

consistent with other studies of grounded tidewater glaciers (Chapuis and Tetzlaff, 2014; Pętlicki and Kinnard, 2016; Minowa 

et al., 2018). The observed calving events show no obvious temporal or spatial pattern, except for a series of bigger events on 5 

26 August.  

5.1 Relation to ice flux  

The detected total calving volume is smaller than the ice fluxes estimated from the flow speeds and the frontal height except 

for sector SL, where the calving volume is too high (Fig. 7d). For the sectors SM and SR the detected cumulative calving 

volume is about 65% of the estimated ice flux, while for sector M the calving volume is only about 25%. For sector D the 10 

cumulative calving volume is about 15 % of the estimated aerial ice flux, while for an assumed total front thickness of 150 m 

the ice flux is 90% larger than the calving volume. Assuming a total ice thickness of 150 m for both sectors to calculate the 

total ice flux seems reasonable as this corresponds to the approximate height of the shallow sector and no signs of changes in 

the ice flux and ice thickness can be seen upstream of the glacier. This suggests that within the deep sector a large fraction of 

the ice removed at the terminus is missing from the TRI-calving detection. This missing calving volume of 17.7 · 106 m3 can 15 

be explained by three main processes. 

First, the missing volume may be removed by oceanic melt below the water line. The relatively warm saline water provides 

energy for ice melt where there is contact. Oceanic melt has been shown to be an important process in the mass balance of 

Greenland’s glaciers with estimates of summer melt rates at Eqip Sermia of 0.7 m d-1 for 2008 (Rignot et al., 2010). Assuming 

an ice thickness of 100 m below the water line for sector D this would result in a total oceanic melt volume of 0.47 · 106 m3 20 

during the observation period. However, Beaird et al. (2015) showed that this estimate is likely too small as they found a ratio 

of surface melt water derived to submarine melt of 26% within the fjord, which would result in higher submarine melt rates of 

4 m d-1 when considering the melt water discharge in summer of Rignot et al. (2010). This higher melt rate would over the 

observation period result in a total mass loss through oceanic melt of 2.7  · 106 m3, which is however still substantially smaller 

than the estimate of the ice flux for the deep sector (Fig. 7d). For the shallow sector oceanic melt is likely less pronounced as 25 

the contact area exposed to ocean water is with a water depth between 0 and 20 m much smaller.  

The second process explaining the missing volume is subaqueous calving, which cannot be detected with the TRI. In-situ 

observations by the authors and inspection of high-rate time-lapse camera imagery (Fig. 10) indicate that subaqueous calving 

is a frequent process but only occurs in sector D.  

The third process is frequent calving of small volumes. Filtering of the TRI-data for event sizes smaller than 660 m3 leads to 30 

a reduction of uncertainty but discards the potentially frequent small events below the detection limit. At the deep sector small, 

not detectable events are likely more frequent and contribute more to the cumulative volume due to undercutting of the calving 
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front caused by oceanic melt. If the missing volume is indeed dominated by undetected small calving events, our data would 

suggest that the calving style in the deep sector is dominated by very small but frequent calving events. 

The calving at the southern side of sector M may also be affected by undercutting through enhanced submarine melt caused 

by the subglacial meltwater plume (blue bar in Figs. 6 and 7; Fried et al., 2015; Fried et al., 2019) and produce small and 

undetectable but frequent calving events. Indeed, the TRI record only shows a few small events and several larger events on 5 

20 and 25 August resulting in low total cumulative calving volumes (Fig. 7d).  

In summary, for the deep sector the three processes of oceanic melt, subaqueous calving and calving events with small volumes 

provide together up to 90 % of the mass removal, while for the shallow sector calving of small volumes dominates and would 

explain the missing volume of about 35 – 40 %.  

5.2 Influence from cliff height and shape 10 

The shallow sector of the front with an inclined and higher ice cliff not only shows more but also larger calving events than 

the deep sector. This can be explained by the different geometries, which have an impact on the calving type as the stress 

regime is different. Mercenier et al. (2018) showed that an inclined ice cliff results in lower stresses, which can result in larger 

stable heights of the ice cliff and as a consequence at the shallow sector the calving events can release larger ice volumes. At 

the vertical front of the deep sector therefore smaller calving events are expected, which consistent with the observations may 15 

not be detectable with the TRI. Further, our calving event record suggests that the geometry of the front (cliff height, slope 

and water depth) has an important control on the calving type. Calving events in the deep sector mostly occur as whole blocks 

or towers that fall into the water (visual observation by the authors). In contrast, for the sectors SL, SM, SR and M the calving 

events can be described mostly as avalanche like blocks or seracs that are shearing off.  

The higher volumes and frequency detected for the sector SL (Fig. 7) can be explained by a rock ridge below the front of this 20 

sector. There, the water is very shallow and calving can be detected over almost the full frontal thickness. The strongly episodic 

but very large calving events in sector M (Fig. 7) might be related to a rock ridge over which the front is pushed (Fig. 6). 

Mercenier et al. (2018) found that for a smaller water level in front of the glacier stress maxima tend to reach further upstream 

and hence likely larger calving sizes occur. 

5.3 Calving event size distribution  25 

The size distribution of calving events for the shallow and the deep front are well represented by both a log-normal and a 

power law model. A comparison between the two models using the maximum-likelihood method indicates that the shallow 

sector is better represented by a log-normal model, while for the deep sector none of the two models fits significantly better 

than the other (Figs. 8c and d). The power law exponent of the deep sector is with α = 2.3 in the range of other studies, which 

found an exponent between 1.2 and 2.1 (Chapuis and Tetzlaff, 2014; Åström et al., 2014; Pętlicki and Kinnard, 2016). 30 

As for the shallow sector the event size distribution can be better represented by a log-normal model, it is unlikely that this 

sector has the characteristics of a self-organized critical system. However, for the deep sector this cannot be excluded as neither 
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the log-normal nor the power law model is significantly better. Other studies found a clearer power-law distribution and 

concluded that the calving process shows characteristics of a self-organised critical system (Chapuis and Tetzlaff, 2014; 

Åström et al., 2014; Pętlicki and Kinnard, 2016),  A potential difference between the shallow and the deep sector in the event 

size distribution leads to the suggestion that the dominant mechanisms of break-off are different. This suggestion seems 

reasonable as for the shallow front the contact area exposed to sea water is small and thus submarine calving less important. 5 

A study of Kirkham et al. (2017) supports those findings as they suggest by looking at size distribution of icebergs that a 

reduction of the number of mechanisms in their disintegration and thus a lower complexity leads to the transition from power 

law to log-normal distributions. To verify this suggestion and for a clear assignment of the deep sector to one of the proposed 

models more events would be needed. Also the event size distribution might change if a longer observation period is used as 

the calving activity is not constant over time. 10 

 

 

Figure 10: An example of a subaquatic calving event recorded with a time-lapse camera in 2018. Pictures were taken every 10s. 

 

5.4 Comparison with pressure sensor data  15 

Figure 11 shows a comparison of pressure sensor data and detected calving events during a 12 hour period. In addition, in 

Figure 12 peaks detected in the wave amplitudes are shown in comparison with the TRI derived calving events. Bigger events 



19 

 

are clearly visible in both data sets. In the pressure sensor data, those events mostly are of the first asymmetric type described 

in section 4.5 and displayed in Figure 9. The second symmetric type can be found in the pressure sensor data, but in general, 

they cannot be clearly assigned to a single event in the TRI dataset. These symmetric wave peaks, like the one at 2:00 on 25 

August (Fig. 11), likely are due to larger subaqueous calving events in the deep sector as detected by the time-lapse camera 

(Fig. 10) (Sect. 5.1) with big up-floating icebergs that cannot be detected by the TRI. These subaquatic calving events could 5 

explain parts of the missing calving volume. This reasoning is supported by other studies who found that aerial events have a 

gradually decreasing amplitude after the maximum wave amplitude, while subaqueous calving events showed no clear onset 

and a sudden drop of the amplitude after the maximum wave amplitude (Minowa et al., 2018). Also an experimental study 

showed that for aerial events the largest wave is earlier than for buoyancy driven events (Heller et al., 2019). For verification 

of this distinction between subaquatic and aerial calving events additional observations, such as time-lapse cameras with a 10 

high temporal resolution, would be required. 

In summary, the pressure sensor data together with the calving volume record (Fig. 11) indicate that large events can be well 

detected from pressure sensor data. Thus, pressure sensor observation could be exploited as a simple method to derive calving 

event numbers, volumes and potentially even calving style (aerial or subaqueous). However, the analysis of pressure sensor 

data remains challenging as subglacial hydrological events, overturning of icebergs and superposition of reflected signals also 15 

produce waves and obstruct the recorded signal. 

 

 

Figure 11: Comparison between pressure sensor derived wave amplitudes (right) and detected calving events (left) for a 12 hour 

period on 25 August. Big calving events are clearly visible in both data sets. 20 
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5.5 Relation to external forcings 

Calving activity has been hypothesized to be triggered by external forcings such as changes in stress state due to tides 

(Bartholomaus et al., 2015) and melt water accumulation in crevasses (Benn et al., 2007). Therefore, calving activity might be 

linked to high air temperatures and incoming radiation leading to surface melt. 

Figure 12 compares air temperature, incoming shortwave radiation and tides with volume and number of calving events for 5 

the second part of the observation period (the first part is shown in Fig. S11). This comparison does not show any obvious 

relationship, but as the observation time of 6 days is rather short, we cannot exclude the influence of environmental forcings 

on calving activity. Consistent with our observations, Pętlicki and Kinnard (2016) and Chapuis and Tetzlaff (2014) also found 

that the calving activity during their observation period of a few days was not dependent on environmental forcings, while 

others found an influence of ocean temperature on calving activity over seasonal timescales (Luckman et al., 2015; Schild et 10 

al., 2018). 

 

Figure 12: Comparison between forcing and detected calving during a 3 day period. (a) Air temperature and incoming shortwave 

radiation from the AWS1. (b) Tides in meters. (c) Volume of calving events in m3 for the shallow and deep sectors. (d) Number of 

calving events. The calving events in the deep sector are plotted above those in the shallow sector. (e) Pressure sensor derived wave 15 
amplitudes and detected peaks.  

6 Conclusion 

We developed a novel calving detection method applicable to high-rate TRI scans of glacier calving fronts. By differencing 

high-resolution DEMs generated from the TRI data, a detailed calving event catalogue was established, providing timing, 

source area and calving volume of aerial calving events. 20 
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The calving front of the observed glacier is characterized by sectors of different water depth and front height. The shallow 

sector features an inclined front, and frequent calving events release larger ice volumes, whereas the deep sector produces less 

and smaller icebergs. A rock ridge in the centre of the calving front influences the calving activity there and leads to fewer but 

larger events. 

During the 6 day observation period a total of 906 calving events were detected, of which 80% occurred in the shallow sector 5 

where mean calving volumes were 35% larger than in the deep sector. Since ice flux in both sectors is of similar magnitude, 

processes other than aerial calving seem to remove an important fraction of ice in the deep sector. Our analysis shows that the 

mass loss due to subaqueous calving, oceanic melt, and small aerial calving events contribute 90% to the total mass loss. 

Further, the event size distribution differs between the sectors, and fits a log-normal model in the shallow sector, whereas for 

the deep sector both a log-normal and a power law model fit well but none significantly better. These differences in calving 10 

behaviour are clearly linked to basal topography and calving front geometry. 

Comparison of the calving events with wave data registered with a pressure sensor shows that big events are clearly discernible 

in both data sets. Several events detected in the wave record, that do not occur in the TRI data, show a different wave 

characteristic, and likely correspond to subaqueous calving events. For the time span of the observations no obvious 

relationship between the observed calving activity and environmental forcings, such as tides, temperature and incoming 15 

shortwave radiation, could be established. 

This study shows the potential of detailed high-rate observations to elucidate the processes and forcings leading to iceberg 

calving from tidewater glaciers. The resulting statistics of calving event sizes in relation to geometry, bathymetry and external 

forcings are important benchmarks for calving models. Testing and calibrating such models with field data is mandatory for 

the understanding of the delicate dynamics of outlet glaciers which control the evolution of large parts of the Greenland ice 20 

sheet. 
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