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1 Model Description1

1.1 Ice Model2

We use a vertically and laterally integrated Shallow Shelf Approximation (SSA) flowband3

model. The effects of side drag and flow convergence are parameterized through a variable4

flowband width, W . The equations for conservation of mass and momentum are, respec-5

tively,6
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where x is the along-flow coordinate, t is time, H is the ice thickness, u is the vertically7

and laterally averaged velocity, ḃ is the surface mass balance, ṁ is the basal melt rate, ρi is8

ice density, g is the acceleration due to gravity, S is the surface elevation, µ is the effective9

viscosity, Aside is a rate factor for side drag, τb is basal drag, and n = 3 is the rheological10

exponent for ice. Effective viscosity is defined by,11
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where ϵ̇eff is the effective strain rate, and Along is the rate factor for longitudinal stresses.12

We included the cross-flow strain rate in the equation for effective viscosity because includ-13

ing an additional non-zero term has the effect of stabilizing the numerical solution in the14

vicinity of local velocity extrema without resorting to an arbitrary stabilizing term. Local15

velocity extrema are more likely with flowband geometries based on real glaciers that include16

topographic variability, as opposed to idealized configurations. The model uses a separate17

rate factor for longitudinal stress and lateral drag to parameterize the effect of shear mar-18

gins, where ice rheology can be very different from surrounding regions. The best-fit rate19

factors are solved for simultaneously with the inversion that solves for the best-fit basal drag20

(Section 1.4).21

Surface elevation is given by,22

S = max

[
B +H,

(
1− ρi

ρw

)
H

]
(5)

where B is bedrock elevation and ρw is the density of seawater. Sub-grid grounding line23

position is interpolated using a cubic scheme based on the two cells upstream and downstream24

of the grounding line. In the event that the glacier geometry contains multiple grounding25

lines, sub-grid interpolation is performed for all of them. The interpolated position is used26

to partition basal drag and basal melt in partially grounded cells. Basal drag is given by a27

Weertman-type (Weertman, 1957) power-law sliding rule,28
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where τ0(x) is a spatially variable stress scale, u0(x) is a spatially variable velocity scale,29

and r is a spatially invariant slip exponent. These parameters are related to the rate factor30

in the classic form of Weertman-type sliding (u = Cτ rb ) by: C = τ0/u
r
0. We expressed the31

sliding law this way so that experiments could change the slip exponent without having to32

solve for a new rate factor or change the units. The sliding law was constrained to match33

present-day surface velocities (Rignot et al., 2011). The inversion (Section 1.4) fit observed34

width-averaged velocities using a linear sliding rule with a spatially variable rate factor35

and two additional scalar parameters, Along and Aside. Once the best-fit linear sliding rule36

was obtained, the model velocity and basal drag were taken to represent u0(x) and τ0(x).37

This procedure ensured that all values of r fit present-day surface velocities. We varied38

r in different model experiments to represent the difference between viscous and plastic39

beds, but the model does not represent spatial variations in r that could be caused by the40

uneven distribution of subglacial sediments, nor does it represent temporal changes in the41

distribution of subglacial water.42

1.2 Plume Model43

The ice model is coupled to a bouyant turbulent plume model for determining the melt rate44

under floating ice shelves and at the vertical calving front. The plume model (Jenkins, 1991,45

2011) solves the equations for the conservation of mass, momentum, heat, and salt. Those46

equations are,47
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where s is the along-plume coordinate, measured along the underside of the floating shelf48

and up the vertical calving front, d is the thickness of the plume, v is the velocity of the49

plume, T and S are the temperature and salinity of the plume, ė = e0v
∗sin(α) is the50

entrainment rate, e0 is the dimensionless entrainment constant, v∗ =
√

v2 + v2tidal is the51

effective mixing velocity, vtidal = 10 cm/s is the assumed tidal velocity, α is the slope of the ice52

bottom, cd is a drag coefficient, ΓTS is the Stanton number, and subscript a indicates ambient53

water properties, which are allowed to vary vertically. The Stanton number, representing54

exchange between the laminar ice-contact boundary layer and the turbulent plume, is poorly55

constrained (Jenkins, 2011). We calibrated the Stanton number separately for each glacier56

geometry (Section 1.3) by letting the model run freely for 10 years and selecting the value57

that best preserved the relative shape of the ice shelf, defined as the ratio of the ice bottom58

slope near the grounding line to the average slope over the whole ice shelf. We used the59

relative shape of the ice shelf to calibrate the plume model in order to strike a balance60

between an over-aggressive plume that concentrates too much melt near the grounding and61

a weak plume that spreads out the melt too much over the shelf bottom, while still allowing62

the mean melt rate under the shelf to be out of balance in the initial condition. The Stanton63

numbers we derived in this way were within a factor of 2 of the number recommended by64

Jenkins (Jenkins, 2011). The far-field ocean profiles are converted into ambient profiles65

at the ice-ocean interface by assuming that the water properties at the depth of the sill66

top overflow and fill the basin behind the sill. In experiments without an artificial sill67
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the maximum bedrock elevation seaward of the grounding line was used instead of the sill68

top. The conservation equations have been modified from Jenkins (Jenkins, 1991, 2011) to69

account for variable flowband width. Melt rate is given by the simplified two-equation model70

(Jenkins, 2011),71

ṁ =
cwv

∗ΓTS (T − Tf )

L+ ci (Tf − Ti)
, and (11)

Tf = λ1S + λ2 + λ3z, (12)

where cw and ci are the specific heats of water and ice, Ti is the temperature of the ice, λ1–λ372

are the coefficients of a linear equation of state, and z is the depth of the plume at that point.73

The boundary conditions at the grounding line are zero salinity, temperature equal to the74

melting point, and a flux given by integrating basal and surface melt across the grounded75

domain. A constant basal melt rate of 1 mm/yr was used, which is probably representative of76

many outlet glacier catchment basins, while surface melt followed an assumed seasonal cycle77

with a 4 month ablation season every year. We ran an additional test in which the grounded78

melt rate was set to 20 mm/yr, closer to the mean value for the Thwaites basin (Joughin79

et al., 2009). For the test we reran the warming and large sill scenarios for one experiment.80

Increasing the grounded melt rate by a factor of 20 caused the collapse to accelerate by81

10 years in the warming scenario; the sill scenario was still a successful intervention, with82

the model glacier gaining mass after the sill was built. The plume model operated on a83

separate grid from the ice model and melt rate was interpolated back to the ice grid in84

a mass-conserving manner. At the corner between the underside of the floating ice shelf85

and the vertical calving front the properties of the under-shelf plume are used as boundary86

conditions for the calving front plume.87

5



1.3 Flowband Construction88

In order to create flowband models representing a real glacier, it is necessary to convert89

2D maps of various ice properties– surface and basal geometry, velocity, and surface mass90

balance– into 1D along-flow profiles. Interpolating along a centerline is unlikely to produce91

results that are representative of the full glacier (Sergienko, 2012), so some form of across-flow92

averaging must be used. There are two main steps needed to perform an across-flow averag-93

ing: 1) the lateral boundaries of the glacier must be defined, and 2) an along-flow distance94

must be computed. For complex real geometries, neither of these steps are trivial. We used95

two sets of lateral boundaries, a wide set and a narrow set. We drew the wide boundaries96

to include all major tributaries, as well as the slow-flowing areas in between the tributaries.97

We drew the narrow set to only include the central trunk of the glacier. The narrow bound-98

aries provide a better representation of the dynamically important fast-flowing trunk of the99

glacier, but at the price of drawing a large fraction of their mass input from unmodeled100

tributaries entering the lateral margins of the flowband. The wide boundaries include very101

little unmodeled mass inputs, but at the price of averaging together bed topography in deep102

fast-flowing troughs with bed topography in the intervening shallow slow-flowing areas. To103

compromise between these two extremes, We generated a third set of flowbands using the104

wide boundaries, but with bed and surface geometry generated from a flux-weighted average105

in the across-flow dimension, rather than a simple average. In all nomenclature used in this106

paper, “A” flowbands have wide boundaries with unweighted-average topography, “B” flow-107

bands have narrow boundaries, and “C” flowbands have wide boundaries with flux-weighted108

topography. In general, the B and C flowbands had deeper beds and more overdeepened109

geometries than the A flowbands.110

Once we defined the flowband boundaries, we computed along-flow distance by first111

defining a flux gate near the calving front and then integrating the velocity direction field112

upstream from that line. We used a combined velocity field constructed by merging the113

observed surface velocity with modelled balance velocity in order to produce a final product114

6



without gaps. All of the flowbands continued beyond the present-day calving front in order115

to permit the model glacier to advance. We used the orientation of the flowband boundaries116

to produce the direction field necessary to continue the distance integration beyond the117

present–day calving front. Once along-flow distance was defined throughout the flowband,118

we performed the across-flow averaging using a 5km along-flow smoothing. Flowband width119

was computed in an area-conserving manner, such that
∫
W (x)dx computed in the along-flow120

coordinate is equal to the area enclosed by the flowband boundaries on the map.121

1.4 Velocity Inversion122

We solve for a best-fitting sliding rule by fitting to width-averaged surface velocity computed123

from the merged velocity field (observations (Rignot et al., 2011) with balance velocity124

to fill the gaps) during flowband construction. We solved for both a spatially variable125

sliding coefficient in a linear Weertman-type sliding law (C(x)) and spatially invariant rate126

factors for side drag and longitudinal stress (Along and Aside). We used an evolutionary127

algorithm to find the inputs that minimized a cost function. Starting from an initial guess,128

the evolutionary algorithm creates a new population of input models at every generation from129

random red noise mutations to the previous generation. After evaluating the cost function130

for each population member, the algorithm discards the worst half of the population and131

then creates a new population from the best half. An example of the convergence behavior of132

the evolutionary algorithm is shown in Figure S1. The cost function used a hierarchical set133

of data and prior constraints to ensure that the inversion was both well-posed and produced134

reasonable profiles of all the relevant variables. The cost function and its components are,135
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where Mtotal, Mdata, and Mprior are the total cost, data cost, and prior cost, respectively,136

Mu is the velocity data cost, Mϵ̇ is the velocity gradient data cost, Mτ is the basal drag137

prior cost, MC is the drag coefficient prior cost, MA is the rate factor prior cost, RMS() is138

the root-mean-square operator, nτ and nC are normalization parameters chosen to ensure139

that those prior costs have magnitudes of order 1, C is the drag coefficient, A0 = 5× 10−25
140

Pa−3s−1 is the default value of the rate factor, ∆A is an assumed range of uncertainty in the141

rate factor, and β is a tunable weighting parameter between 0 and 1. Note that for Along we142

penalized both positive and negative deviations from the experimental value, but for Aside143

we wanted to allow weak shear margins so we only penalized the model if it was too strong.144

We use both velocity and strain rate in the data constraint to ensure that the model captures145

local structure in the width-averaged velocity field; however, these are not truly independent146

constraints and the choice to include both was arbitrary. We tested the sensitivity of the147

inversion to our choice of weighting parameter, β, and found that the results were relatively148

insensitive between values of approximately 0.3–0.7. We ran the inversion with β set at 0.5.149
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Once the inversion was performed, we used smoothed model drag and velocity to represent150

τ0 and u0, and then extrapolated those values beyond the present-day grounding line. An151

example of the inversion results is shown in the main text in Figure 3.152

Figure 1: An example of the convergence of the evolutionary algorithm. Plot shows the cost function for
every individual population member as a function of generation number. Note that the cost function for the
final ensemble mean is lower than the cost function for any individual ensemble member.

2 Resolution Tests153

The ability of ice models to simulate grounding line evolution is known to be dependent154

on grid resolution (Gladstone et al., 2017), so we ran resolution tests of our model against155

the analytical results of Schoof (Schoof, 2007). We used the polynomial overdeepened bed156

profile from that paper– which later became MISMIP experiment 3 (Pattyn et al., 2012)–157

in order to test whether our model could accurately capture the hysteresis loop associated158

with overdeepened bed geometries. The hysteresis associated with an overdeepened bed is a159
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fundamental part of the Marine Ice Sheet Instability: in this hysteresis loop, stable steady160

states do not exist for a grounding line on a retrograde slope, only on the prograde slopes161

landward and seaward of it. As forcings are changed, the grounding line will resist crossing162

the overdeepening for as long as it can. The level of forcing required to make the grounding163

line retreat across the overdeepening is different than the level of forcing required to make164

it advance across the overdeepening, with a large swath of parameter space in the middle in165

which stable steady states are possible on either side of the overdeepening. The notion of166

societally–relevant “tipping points” for marine ice sheets in a warming climate is essentially167

an application of this mathematical concept to the real world: if the climate warms enough168

to force an ice sheet grounding line across the threshold into an overdeepening, then the169

grounding line will retreat rapidly, with a rapid simultaneous reduction in ice volume, and170

the climate would have to be cooled far below its present level to cause the ice sheet to171

advance again. Our results in this paper depend on the ability of our model to capture this172

dynamic behavior, so we explicitly used the hysteresis loop produced by an overdeepened173

bed geometry as the test case for the resolution tests.174

For the test, we set flowband width to a uniform 1 m and we disabled side-drag. We175

varied grid resolution between 250 m and 32 km and we varied timesteps between 0.0625 yr176

and 8 yr. We changed both grid size and timestep by factors of 2 in between those extremes,177

for a total of 8 runs. The calving front was held at the end of the model domain throughout178

the experiment. We generated a full hysteresis loop by cycling accumulation from 20 cm/yr179

to 1 m/yr and back down again in steps of 10 ka. We lengthened the steps associated with180

jumps across the overdeepening to 20 ka to enable more sluggish low-resolution runs to cross181

the overdeepening as well (Fig S2). For each value of accumulation, we computed the true182

steady-state grounding line position by equating grounding line flux from (Schoof, 2007,183

eq.16) with integrated accumulation.184

We found that the agreement between the model grounding line position and the an-185

alytical grounding line position improved as grid resolution improved (Figs S2, S3). The186
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results showed a systematic increase in model sensitivity as resolution improved, such that187

low-resolution grounding lines migrated less in response to a change in forcing than high-188

resolution grounding lines (Figs S2, S3). Grid resolutions coarser than 4 km were not sensitive189

enough to make the jump across the overdeepening that is critical to defining the hysteresis190

loop, effectively producing a step change in model performance at this resolution. When191

resolution is better than this threshold (and when resolution is worse and the bifurcation192

point has not yet been reached) the error in grounding line position scales with the 0.6 power193

of grid resolution, while the error in ice volume scales roughly linearly with resolution (Fig194

S3). The model results presented in the rest of this paper were run with a nominal resolution195

of 500 m and a timestep of 0.02 yr. The timestep we used in the actual experiments was196

smaller than the one we used for the resolution tests because high sub–shelf melt rates pro-197

duced steep slopes near the grounding line, which necessitated smaller timesteps to preserve198

numerical stability.199

In addition to steady state grounding line position, we were also interested in testing the200

transient response of the model, since the results discussed in this paper depend strongly201

on transient grounding–line dynamics. To test the transient response, we used the highest202

resolution run to represent “truth”, since an analytic solution for transient grounding line203

position does not exist. We used the rate of change during the bifurcation when the grounding204

line crosses the overdeepening to test the transient response, since the rate of migration across205

an overdeepened bed is the most important to the marine ice sheet instability. Both the error206

in grounding line migration rate and the error in sea level change rate scale roughly linearly207

with grid resolution (Fig S4).208
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Figure 2: Resolution Tests Time Series: (a) accumulation rate forcing, (b) grounding line position, and (c)
volume above flotation. Lines in (b) and (c) are colored by grid resolution. Dashed lines in (b) indicate
analytic solution for grounding line position. Note that only runs with a resolution of 4 km or better are
sensitive enough to cross the overdeepening, and even the 4 km run does only does so after a delay. The low
sensitivity of the coarse runs can also be seen in their weaker response to small changes from 0-40 ka.
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Figure 3: Resolution Tests Steady-State Error Analysis: (a) hysteresis loop, (b) grounding line errors, and
(c) volume above flotation errors. Marker color in (a) represents grid resolution while marker color in (b) and
(c) represent step number (Fig S2a). Black line in (a) indicates the analytic steady state solution, with solid
lines representing stable solutions and dashed line representing unstable solutions. Arrows in (a) indicate
the direction of the hysteresis loop in the experiment. Note that only runs with a resolution better than
4 km were sensitive enough to make the jump across the overdeepening in step 5 (and only runs with a
resolution better than 2 km were done making the jump when the step completed). Runs that did not cross
the overdeepening were excluded from the fit in panels (b) and (c).

Figure 4: Resolution Tests Dynamic Error Analysis: (a) grounding line migration rate, and (b) sea level
change rate. The highest resolution runs were taken to represent “truth” and separate fits were performed for
the advance phase and for the retreat phase. In both cases, the rate being measured is the mean migration
rate across the steepest part of the overdeepening, defined as those locations where the bed gradient is within
a factor of 2 of the maximum overdeepened bed gradient.
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3 Movies209

We made animations showing model evolution for selected model runs. In each animation,210

light blue represents grounded ice, purple represents floating ice shelf, brown represents211

bedrock, gray represents the artificial sill (if present), and the ocean has been color–coded212

by temperature between -1.25◦C and 1◦C. Vertical lines within the ice are passive flow213

markers that advect with the ice velocity. Dashed lines represent the initial configuration of214

the glacier. We show five animations depicting various forcing scenarios associated with the215

experiment shown in Figure 5 of the main text: Animation 1 shows the warming scenario216

with no sill, Animation 2 shows the small sill with 0% water blockage, Animation 3 shows217

50% water blockage (the same scenario shown in Figure 5 of the main text), Animation 4218

shows 100% water blockage, and Animation 5 shows the large sill with 100% water blockage.219

The animations can be accessed at [URL].220
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