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Abstract. Differencing of digital surface models derived from Structure from Motion (SfM) processing of airborne imagery
has been used to produce SD maps with between ~2 cm to ~15 cm horizontal resolution and accuracies of +/-10 cm over
relatively flat surfaces with little or no vegetation and overalpine regions. This study builds on thesefindings by testing two
hypotheses across a broader range of conditions: i) that the vertical accuracy of SfM processing of imagery acquired by
commercial low-cost UAV systems can be adequately modelled using conventional photogrammetric theory and ii) that SD
change canbe more accurately estimated by differencing snow covered elevation surfaces rather than based on differencing a
snow covered andsnow free surface. Seventy one UAVmissionswere flown over five sites, ranging fromshort grass to a
regenerating forest, with ephemeral snow packs. Point cloud geolocation performance agreed with photogrammetric theory
that predicts uncertainty is proportional to UAValtitude and linearly related to horizontal uncertainty. The root mean square
difference (RMSD) over the observation period, in-comparison to the average of in-situ measurements along ~50 m transects,
ranged from1.58 cmto 10.56 cm forweekly SD and from2.54 cm to 8.68 cm for weekly SD change. RMSD was notrelated
to micro-topography as quantified by the snow free surface roughness. SD change uncertainty was unrelated to vegetation
coverbutwas dominated by outliers corresponding torapidin-situmelt or onset; the median absolute difference of SD change
ranged from 0.65 cm to 2.71 cm. These results indicate that the accuracy of UAV based estimates of weekly snow depth
change was, excepting conditions with deep fresh snow, substantially better than for snow depth and was comparable to in-
situ methods.

1 Introduction

The temporaland spatial pattern of snow depth (SD) is of importance to hydrological, ecological and climate studies (GCOS,
2016). Together with representative estimates of snow density, time series of SD are indicative of changes in s now water
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equivalentthatin turn are ofimportance to streamflow forecasting and management of hydroelectric resources (Clyde, 1939;
Barnett et al., 2005; DeWalland Rango, 2008). In many ecosystems, SD is an important determinant of winter habitatin tenrs
ofrange and access to forage (Bokhorstet al., 2016). Snowdepth also exerts an influenceon local climate through insulation
of permafrost and ice and global climate through its role in snow albedo feedbacks (IPCC, 2013; IPCC, 2014; Bokhorstetal,
2016).

Systematic monitoring of SD is currently performed using in-situ networks (e.g. Worley et al., 2015; Reges et al., 2016;

https://globalcryospherewatch.org/projects/snowreporting.html) providing daily measurements using automated sensors and
less frequent measurements using manual sampling with rulers. The former are typically fixed in location with spatial sampling
footprints from 1 n? to 10 n? (e.g. Ryan et al. 2008; de Haij, 2011) with the exception of global positioning system (GPS)
instruments that can estimate the mean snow depth overa footprint of ~10* n? (Larson etal. 2014). The sampled footprint
for manual measurements is typically under 10 (US Department of Commerce, 1997; Ryan et al., 2008; Meteorological
Service of Canada, 2016). While in-situ monitoring networks offer frequent temporal sampling, with the exception of GPS
approaches, their spatial sampling can be imprecise and are often biased in terms of their representativeness of surrounding
landscapes (CGelfan et al. 2004; Essery and Pomeroy, 2004; Neumann et al. 2010; Wrzesien et al., 2017). GPS survey may
offer a solution for an average SD estimation over open terrain although measurement error is larger than manual methods
(e.g. Larson et al. (2014) report bias and precision of -5.7 cmand 10.3 cm respectively when estimating SD of a snowpack
typically under 1 m in depth). Irrespective of measurement method, in-situ SD monitoring sites can have vastly different
microclimates and topographic conditions than less accessible areas nearby thus increasing the potential for biases in estimated
SD (Brown et al., 2003). One solution toaddress the limitation of sparseand potentially spatially biased in-situ SD monitoring
is to estimate the spatiotemporal SD pattern by combining in-situ SD time series and maps of SD change (ASD)derived from
remote sensing methods (e.g. Liu et al. 2017).  Remote SD mapping at a similar or better resolution of automated in-situ
measurements (i.e. <1 m?) can be performed using airbornesurvey with LIDAR (e.g. Deems et al., 2013) or photogrammetric
imaging (e.g. Nolan et al., 2015). Here we consider photogrammetric imaging approaches due to both their potential cost
effectiveness and the widespread availability of unmanned aerial vehicle (UAV) systems. Nolan et al. (2015) used Structure
from Motion (SfM; Westoby et al., 2012) processingof 15 cm ground sampling distance (GSD) digital images froma manned
aircraft at an altitude of ~750m above ground level (a.g.l.) to map SD with an accuracy (precision) of +/-10 cm (8 cm at one
standard deviation) in comparison to individual probe measurements over relatively flat surfaces. Similar results were
subsequently reported using UAV systems, with GSD ranging from~2cmto ~10cmand altitude from60 ma.g.l. to 130 m
a.g.l., over prairies (Harder et al. 2016), alpine shrub lands (Buhler et al. 2016; De Michele et al. 2016; Harder et al. 2016;
Avanzietal. 2017) and glaciers (Gindrauxetal., 2017). Even greateraccuracy (1.5 cm to 3.8 cm) and precision (4.2 cmto
9.8 cmat 1standard deviation) have beenreported for ASD mapping over tundra (Cimoli et al. 2015) and alpine terrain (Vander
Jagtetal., 2015) when using very low (10 ma.g.l. —30 ma.g.l.) altitude acquisitions with GSD less than4cm.
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While current studies provide increasing evidence of the potential for SD mapping over certain landscapes using multi-date
UAYV imagery there are a number of issues that must be addressed if this approach is to be applicable for routine seasonal
estimation of SD or ASD over natural landscapes. A pressing issue is the needto test the performanceofthis approach overa
range of snowpack, vegetationand terrain conditions (de Michele etal., 2016). Studies indicate the presence of large (>10cm)
errors under specific illumination, snowpack, vegetation or terrain conditions. Thereduced contrastin imagery of homogenous
snowpacks (due tofresh snow coveringall vegetation) under overcast conditions results in reduced pointcloud density (Nolan
et al. 2015; Buhler et al. 2017) and can lead to the failure of commercial SfM algorithms (Harder et al., 2016). While this
issue may be partly addressed by using both visible and near-infrared imaging (Buhler et al. 2017), it may also be less of a
factorwhen there is structure in the snowpack due to emergent vegetation and when GSD is sufficiently high to identify the
intersectionofsnowand vegetation. Denselow vegetation compressed by the snowpack can result in SD underestimates due
to a positive elevation bias in the snow free reference image (Nolan et al., 2015; Buhler et al. 2016; Cimoli et al., 2015; Di
Michele etal., 2016). Vegetation abovethesnowpack canresult in local overestimates of SD if they are incorrectly interpreted
as the snowpack surface (Nolanet al., 2015; Harder et al., 2016). Topographic shadowing can havethe same impactas overcast
conditions when estimating SD over homogenous snow packs (Buhler et al. 2017). However, the shading fromvegetationand
micro-topography on SD estimates has not been studied systematically in the sense of considering different terrain roughness

underthe same snowpack and acquisition conditions.

A secondissue that has yet to be addressed is the performance of UAVimaging approaches for estimating ASD between two
dates with partial or complete snow cover. Current UAVimaging methods may havea practical lower limit of ~30cm SD due
to the combined errors in estimating the snow covered and snow free surface elevation (Harder et al., 2016; Schrimer and
Pomeroy, 2018). However, in many circumstances ASD may still have relevance (e.g. for temporal monitoring or for
estimating SD usingasingle referencesnow covered date where SD is well-approximated using in-situ methods). Errors due
to factors such as vegetation and terrain may be spatially correlated so that estimates of ASD between short periods (e.g.
weekly) may be substantially more accurate that estimates of SD itself. There is a need to compare the relativeaccuracy and
temporal precisionof SD and ASD estimates, especially for areas with ephemeral snow packs.

A third issue is the need to model the uncertainty of elevation estimates as a function of UAV mission parameters. This is
required both to guide mission parameters and to understand the potential limits of current technologies and prospects for
improvements as UAV performance and camera systems improve. Nasrullah (2016) demonstrated that photogrammetric
theory could be used for this purpose when estimating the elevation of fabricated targets using UAV imagery and Sfv over
fabricated targets. A similar modelling approach has yet to betested over snow covered surfaces.
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A fourth issue is the need to have robust low-cost equipment and software for data acquisition and processing (Nolan et al.
2015). Lightweight systems that require minimal flight certification are especially desirable considering that snow surveys
may be episodic in both time and space. Nasrullah (2016) foundthat using commercial SfM software (Pix4D Version 2.1.100)
with imagery from off-the-shelf UAV systems weighing less than 2kg and costing under $US 1000 (Phantom2 Vision+)
provided comparable performance to larger drones. There is a needto evaluate similar systems for ASD mapping over a range
of environmental and surface conditions.

The issues that remain to be addressed regarding UAV based mapping of SD require multiple experimental treatments
including climate and snow conditions that cannoteasily be controlled and land surface conditions thatcan be controlled. Here
we chose to control the survey methodology by using a single low-cost commercially available solution for UAV based
mapping of three dimensional point clouds and select mission parameters that should maximize the accuracy of elevation
estimation based on photogrammetric theory, even ifthe solution may not be optimal in the sense of logistical constraints of
time or cost. Secondly we select sites with a range of micro-topography and vegetation cover but limit vegetation cover to
<50% and only validate SD in openings. This strategy simplifies the approachused to extract surface locations within three
dimensional point clouds leaving the issue of UAV based SD mapping under closed canopies for further study. Thirdly we
locate the sites within regions of ephemeral snowpack sincethis should correspond to a worst case assessmentof uncertainty,
especially with respect to ASD. Given these limitations, the initial broad research question regarding snow depth mapping is

refined into two specific research questions addressed in this study:

What is the accuracy and uncertainty of SD and weekly ASD maps derived using small commercial UAV and commercial
SfM technology as a function of varying micro-topography and snowpack condition in sparsely vegetated regions with

ephemeral snow packs?

How well does the uncertainty of ASD maps and their corresponding digital surface models correspond to a priori estimates

based onphotogrammetric theory?

Our nullhypothesis is that SD accuracy will be similar to previous studies, with greater biases in the presence of vegetation,
but the accuracy of weekly ASDwill be lower due to correlated errors related to surface conditions. Further, we hypothesize
that, except for very smooth snow pack conditions, the accuracy of weekly ASD and digital surface models will correspond to
the expected accuracy from photogrammetric theory. For very smooth snow pack conditions we hypothesize that there will
be a decrease in key point matching density (as observed over glaciers by Gindrauxet al. 2017) that in turn will result in
accuracy lessthanexpected fromtheory.
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In Sect. 2 the study sites and methods used to estimate and validate ASD maps are described. A theoretical estimate of the
precision of ASD as a function of mission parameters is also proposed. Results are presented in Sect. 3. Sect. 4 discusses these
results in thecontext of the experimental conditions and their applicability totheresearch question. Conclusions with respect
to the two researchquestions are given in Sect. 5.

2 Methods

2.1 Study Sites

Five studysites were located in two study regions: Gatineauand Acadia. To simplify the acquisition of permits forin-situand
UAV surveys, bothstudy regions corresponded to land owned by the Governmentof Canada. The separation between regions
was partly due to the availability of staff to perform surveys but also due to a desire to sample different snowpack and land
surface conditions. Climate and weather data were acquired fromthe based on Environment and Climate Change Canada
data (http://climate.weather.gc.ca/historical_data/search_historic_data_e.html).

The Gatineau region (Figure 1) was located at 45°35' N latitude and 75°54' W longitude in Gatineau Park (a 391 kn?? federal
park near Ottawa, Canada). The regionconsisted of land used for hay productionwith the meandering Meech Creek flowing
across the southern half. Table 1 indicates recorded and climatological monthly rain, snowand temperatures for the nearest
climate station (Chelsea, Quebec at 45°31' N, 75°47' W, 11250 m above sea level (a.s.l.)). During 2016, monthly air
temperature was similar to the climate normal but rain (snow) was substantially higher (lower) than normal for March and
lower (higher) for April. Two sites with alternatively flat and hilly macro-topography wereestablished in the Gatineau region.

Gatineau North (GN)was a rectangular site of ~2.0ha with grass cover less than5cmhigh overa flat surface. Gatineau South
(GS) was a rectangular site of ~3.2 ha centred on Meech Creek. The northern portion of GS (Figure 1) shared the same
conditions as GN. The centre and southern portion of GS covered the river valley including spur hillslopes. Northem
hillslopes where in-situ transects were located, were covered by low shrubsand grasses (<10cm). Shrubs upto 1 min height
covered southern hillslopes. A small forestedarea was located at the SouthWestcorner of GS.

The Acadia region (Figure 1) was located at 45°58' N latitude and 66°19' W longitude in the Acadian Research Forest (a
91.6kn? managed forest near Fredericton, Canada). The region consisted of three parcels of managed forest land,
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corresponding tosites Acadia A (AA), Acadia B (AB) and Acadia C (AC) respectively, separated by mature forest boundaries
on gently undulating terrain. Table 1 indicates recorded and climatological monthly rain, snow and temperatures for the nearest
climate station (Fredericton, New Brunswick at 45°52'08" N, 66°32'14" W, 20.70 m a.s.l.). During 2016, air temperature was
similar to the climate normal but rain (snow) was substantially lower (higher) than normal fromFebruary to April.

AA was a relatively flat trapezoidal site of ~3ha with grass (<5 cm) and stumps (<20 cm). AB was hummocky rectangular
site of ~4.5ha with stumps (<20 cm) and substantial brush and shrubs (<1 m) left over from clearing. AC was a rectangular
site of ~4.5ha with recently planted BalsamFir (Abies balsamea (L.) Mill.) ranging from1 m to 5 m in height. ACwas ako
hummocky although shrubs and herbs had covered most stumps. The sites were separated by mature mixed wood stands up
to 20 m in height with balsamfir, red maple (AcerrubrumL.), and white birch (Betula papyrifera Marsh.).

Table 1. Monthly climate data representative of study sites. Normals correspondto 1981 t02010.

Chelsea, Quebec (Gatineau Region) Fredericton, New Brunswick (Acadia Region)
T (°C) Rain Fall (mm) Snow Fall (mm) T (°C) Rain Fall (mm) | Snow Fall (mm)
MONTH 2016 | Normal | 2016 | Normal | 2016 | Normal | 2016 | Normal | 2016 | Normal | 2016 | Normal

JANUARY -9.2 -11.0 37.2 22.7 29.2 47.9 -6.5 -9.4 25.4 42.4 10.7 59.5
FEBRUARY | -9.8 -8.8 10.0 20.5 41.0 38.7 -5.4 -7.5 12.0 31.7 89.9 38.4

MARCH 1.9 -3.0 106.9 | 34.6 5.2 26.5 -2.1 -2.2 7.2 45.2 82.0 44.9
APRIL 25 5.7 21.4 68.4 27.4 6.0 3.7 4.8 20.4 68.1 23.9 13.5
MAY 12.4 12.6 7.3 89.0 0 0 11.8 11.3 56.7 103.1 0 0.7




N45°35'6"

o

W75°53'30” W66°19°48”

©GoogleEarth o B o - ©Googlearth

Figure 1. (a) Gatineau regionshowingGN (pink) and GS (yellow) sites and (b) Acadia Region showing AA (red), AB (magenta)and
AC (gold) sites. Also indicated are ground control points (hollow circles) and in-situ transects (blue lines). Map data: Google,
Digital Globe.
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2.2 Ground Control Points

Ground Control Points (GCPs) were established for each site for geolocation of UAVimagery and derived maps. Thenurrber
and location of GCPs were determined based on Tonkin and Midgley (2016) who assessed the performance of a digital surface
model (DSM) derived from SfM processingof UAVimagery acquired at 100ma.g.l. overagrassy landscape. Following their
recommendationat least 5 GCPs were positioned within the UAV coverage at eachsite andat least one GCP near the comer
ofeach site. ACwas anexception as GCPs could notbe located at the northernedgedueto accessconstraints. Six GCPs were
located in GN and 10 GCPs in GS with 95% circular error probably of less than2.05 cm (Prevost, 2016a). For Acadia, four
GCPs were located in AA, five GCPs in AB and two GCPs in AC with a 95% circular error probable of less than 2.46 cm
(Prevost, 2016b). GCP targets of either 30 cm square plywood or 15 cm diameter plastic disks suspended between 1 m and
1.3 m above ground level to avoid artificially increasing the accuracy of SD estimates by placing control points on the
snowpack surface (Supplementary Material Section 1). GCPs were located using ASHTECT Zextreme dual frequency

instruments using precise point positioning.

2.3 In-Situ ASD Measurement

Transects of ~50m length (see Figure 1) were positioned at each sitewithin 5m ofa GCP. Each site had one transect except
for GS where two transects were located (GS-1 in the flat northern portionand GS-2 along and across a spur hillslope leading
into the floodplain). Alongeachtransect, twelve 48” X 2” X 1” wooden stakes were placed equally spaced apart ~10 cm deep
and approximately vertical. The attitude of the stakes was measured at the start and end of the field season using a digital
level to a precision 0f0.1°. The elevation ofthe stakes above the soil layer was measuredat the end of the field season using
a plumb line and tape measure to a precision of better than +/-0.5cm (95% confidence interval). In-situ ASD was estimated
at each stake using the protocol described in Oakes et al. (2016) to process digital images of stakes taken using a 14Mpixel
camera with telephotolens (Supplementary Material Section 2). When comparing snow covered conditions, the uncertainty
for measuring the ASD assumingindependenterrors in determining the exposed stake freeboard is ~2.06 cm (95% confidence
interval) for typical uncertainties in delineating the snowpack at the base ofa stake and measuring the stake angle (Oakes et
al. 2016). As bothsources of uncertainty are spatially randomthe uncertainty in estimating the average snow depth using all
12 stakesin atransect is estimated at ~0.60 cm (95% confidence interval).



10

15

20

25

30

2.4 UAV Missions

Missions were performed weekly at Gatineau (26/01/2016 to 19/04/2016) and Acadia (10/02/2016 to 14/04/2016), during
periods without precipitation at the start of the mission, using a PhantomPro 3 Plus UAV (https://mww.dji.com/phantom-3-

pro; P3P). The same UAV was used forall missions inaregion. Imagery was acquired usingthe provided gimbal mounted
12.4 Mpixel rolling-shutter camera with a 2.8 fixed aperture in auto-exposure mode recording in 4K MPEG-4 AVC/H.264
format (MP4) (see Supplementary Material Table S1). MP4was used in preference tofull resolution photographs sincei) the
system firmware limited the maximum photograph sampling rate to 1 frames/2s and ii) the 4K video frames have almost
identical resolution to the full resolution photographs (Leblanc, 2018).  Auto-exposure mode was used since the flights
encountered rapid variations between sunlit and shaded snow and vegetation areas making it challenging to adjust exposure
manually during the flight.

Lichee V3.0.4 (https://fflylitchi.com/new) flight planning software was used to create flight plans. The same flight plan was

used for all missions ata site. Flight plans were defined using equally spaced parallel linear tracks flying oriented North to
ensure consistent locations of shadows between dates. The exceptionwas ACwhere tracks were oriented parallel to the GPS
targets at AB to maximize overlap over these targets. Cross tracks were not used since this would increase flight time and
since Nasrullah (2016) found thatthey did notsignificantly improve point cloud accuracy or density when using dataacquired
using a similar consumer grade UAV and SfM software. Flight plans, using nadir view geometry, were defined to cover
rectangular (triangular in the case of AA) regions with a buffer of 100 m to ensure adequate side views at the edges of each
study area and to include GCPs from adjacent sites. Flights were planned such that the UAV was always flying along the
vertical axis of the camera to minimize post processing complexity. Turns were limited to 90° with smoothing of arcs to

provide adequate side overlap during the turn.

Mission parameters were optimized to minimize the vertical precision error in altitude H (a,) derived from the block
triangulation of images at matching key points covering a nominal mapped extent of 10ha assuming a 15 minute flight
(Supplementary Material Section 3). For a matching key point found in K images each acquired at a lateral distance ofd,
fromthe key point (Forstner, 1998):

__H? oy12

Oy = — Y @
¢ Z§=1dk

where g, is the averagehorizontal uncertainty when matching the location in each image pair on the camera focal plane andc

is the lens focal length. Ignoring edges of flight tracks, {d } and therefore a,, will be a function of the along track imege
9


https://www.dji.com/phantom-3-pro
https://www.dji.com/phantom-3-pro
https://flylitchi.com/new

10

15

20

25

spacing (b, ), the across trackimage spacing (b,)and H. With 4K video it is generally possible to choosea frame sampling

rate f suchthat b, < b,.

Eqg. 1 assumesthatmatchesare foundin alloverlappingimages. Based strictly on geometric considerations, for the P3P with
H < 100mand b,<40 mwe expect K > 20 matches. In practice, K is much less than 20due to thedifficulty in matching the
same feature in multiple images (Nasrullah, 2016). Adopting the worst case assumption that the matched images are closest
to the key point location and assuming similar along and across track spacing, fromForstner (1998):

H2 o,V12
< X
= chy JK(KZE-1) o)

Oy

Here, o, was estimated as the Euclidean sum of the mean reprojection error after block adjustment o,., , the uncorrected
motion blur during integration of the detector signal (¢,,,), and the uncorrected rolling shutter motion (o).

0Z=0%f+0k + 04 ©)
Mean reprojectionerror is computed during block adjustment by the PIX4D Mapper Pro. Motionbluris given by

VyCT
om =35 @

where v, is the along track velocity, c is the lens focal length, 7, is the exposure time and [ is the detector size along track
Rolling shutter correction error is determined by the uncertainty in v and the sensor readouttime z,:

Ors = 0y —— (5)
Estimates of K, o,,. o0, and o, wererequiredto modela,. Trial flights (Supplementary Material Section 3) were used to
determine ranges for K (4.3 matches to 7.4 matches) o, (0.179 pixels to 0.209 pixels) and 7, (0.017 s to 0.005 s). Worst
case valuesof g,., =0.25pixels and 7, =0.02 s were used for selecting flight parameters. We did not have sufficiently accurate

on-boardsensorstoprovidereferencevalues of o,,. Instead, we relied on a published comparison of v based onimagery from
a PIX4D blockadjustment and on-board measurement (Vautherin et al., 2016) indicating o,, = 0.05 v.
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Using measurements fromthe training flights the relationship between o, and H was modelled for the average and extreme
values of K using the 10ha minimum area constraint to relate v, to b,. Figure 2 indicates that o, increases almost linearly
with H for any given K althoughtherateofincreaseis steeperforlow K. This result indicates it is critical to selectthe lowest
feasible H. At H = 50 m the sensitivity of o, to b,, is negligible (<10% ) for 15 m < b, < 30 m. Here we selectedb,, =
15 mto maximize acrosstrackoverlap sincewe were able to increase f to achieve a constantalongtrack overlap irrespective
of b,. This was importantsince thedensity of key point matches per square metre mapped (D) increases with overlap with all
other parameters fixed (Nasrullah 2016). The selected flight parameters predicta o, = 1.44 cm for K = 5 matches (ranging
fromoy =0.92 cm for K = 8 matches too, = 3.73 cmfor K = 3) matches. AsASD was later estimated by computing the
temporal difference of DSM (Sect. 2.7) the precision error inASD, assuming uncorrelated errors in H between two dates,
corresponds to the Euclidean sumof o, foreach date. Ignoring uncertainty due to surface roughness for snow free conditions,
Oxsp = 1.2 cmwhere both dates have K = 8 matches, g,5,, = 2.14 cmwhere both dates have K = 5 matches and a worst
case o,5p = 5.25 cmwhere both dates have K = 3 matches.

Each UAV mission resulted in two consecutive MP4 videos (due to a limitation of 3.91Gbytes for a single MP4 file) and an
ephemeris file providing the P3P positionand attitude with a temporal resolution of about 0.1s. Data fromeach mission was
processed in PixdD Mapper PRO Version3.2 (https://pixdd.com/product/pixddmapper-photogrammetry-software/) as
describedin Supplementary Material Section 5.
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Figure 2. Theoretical relationship between vertical uncertainty and UAV height. Solid lines correspond to five matching images
per key point. Upper (lower) bars correspond to three (eight) matching images per key point.

2.6 Assessmentof Micro-topography

Micro-topography was assessed for each transectwithin eachsiteusing a snow free PC acquired within one week of complete
snowmelt. Compressed vegetationwas included within micro-topographysince it also acts to bias estimates of SD (Harding
et al. 2016). Micro-topography was quantified as the deviation froma local robust linear slope trend (MATLAB function
‘Imfit” with robustoption, https:/Amww.mathworks.com/help/stats/fitlm.html) with a 15 m moving window oriented along the

transect. Deviations greater than the maximum snowpack elevation at each transect during the season were removed when
computing the RMSD over a transect to eliminate overstory vegetation thatnormally would be above the snowpack.
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2.7 Elevation and Owerstory Cover Extraction

Surface elevations were extracted fromeach PC in a sampling region at a constant sampling region around each stake. The
sampling region corresponded to a 2 m tall vertical elliptic cylinder centred onthe nominal horizontal location of a stake and
extended 50 cm belowthe nominal vertical location ofa stake. The horizontal (vertical) centre of the sampling region was
specified as the average (average less 50 cm) of the visually determined location of the base of the stake fromthe colorized
PCs fortwo missions acquired during sunny conditions with less than 5cmsnow depth. The 50 cmvertical offsetwas required
to accountforboth PC geolocation uncertainty and local topography (including snow pits due to melt at the based of the stake)
close to the stake. The horizontal major and minor axes of the cylinder were specified to approximate twice the Euclidean
sumof geolocation uncertainty of the PCand the typical geolocation uncertainty of the stake corresponding to the difference
between both reference image locations. These considerations typically resulted in horizontal axes lengths ranging from 10
cmto 24 cmdependingon the precision of the stake geolocation between reference images.

The average overstory vegetation cover in the vicinity of transect sampling locations was estimated for each UAV mission.
Overstory vegetation cover near each stake was estimated fora 1 m radius cylinder centred horizontally at each nominal stake
location as the fraction of grid cells where at least one other point was found vertically above a surface point. A 1 m radius
was usedas anapproximation of points within the field of view ofimages used to map theelevationin the smaller region used

around each stake.

2.8 ASD Estimation from Point Clouds

ASD was estimated foreachtransectusing geolocated PCs. Foreach PC, snow cover points were identified in each sampling
region using points exceeding the 50%ile of the blue band in a sampling region. Thebluebandwas usedas a simple indication
of snow considering that vegetation and shadows should both have substantially lower blue intensity in a region with similar
view geometry andsimilar top of canopy illumination conditions (Milleret al., 1997). To minimize bias due to the presence
of melt depressions at thebaseof each stakeand dueto snow onvegetation, the median elevation of snow cover points within
the sampling region was used to estimate the snow surface elevation at the corresponding stake.

The snow free surface elevation froma PC produced using a UAV flight over snow-free conditions within one week after
complete snowmelt. For each sampling region, the snow free elevation was estimated as the median elevation of all points

unobstructed by points vertically below them. For each UAV flight, the average ASDacross all sampling windows for the
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transect was used to estimate the transect ASD. The precision of ASD was estimated using the central 67.5%ile interval of

sampled ASD within the transectto include both measurementerrorand natural variability.

2.9 Performance Assessments

The performance of geolocated DSMs and ASD, in comparison to reference values from GCPs and in-situ transects
respectively, was quantified in terms of accuracy, precision and uncertainty statistics following ANSI/NCSL (1997). Here
accuracy is defined as the mean difference between sampled validated and reference data (i.e. the bias), precision is the RMSD
after subtracting the accuracy fromthe validated data, and uncertainty is the RMSD between the validated and reference data.
For convenience, we use the term ‘bias’ for accuracy and ‘RMSD’ for uncertainty when discussing DSMs and ASD
performance. In contrast to previous studies that report RMSD in comparison to individual in-situ sample locations,
assessments were performed using transect averages since addressing the broader research goal of combining in -situ and UAV
based ASDrequires an assessment of UAV estimates of ASD over a sampling footprint comparable to the reported in-situ
measurement (i.e. transectaverage atruler locations). Camera calibration performancewas assessed in terms of the percentage
of images (P) successfully calibrated usinga single block adjustment, the number of key point matches perimage and D.

3.0 Results
3.1 Data Acquisition

UAV flights were conducted on 13days at Gatineau and 16 days at Acadia resultingin 74 missions. For brevity, results for
a mission are referenced usingthe site acronymfollowed by the date (e.g. GS 26/01/2016 is the Gatineau South missionfor
26/01/2016). Flights were performed between 10:00and 14:00 localtime. Environmental conditions foreachdate are
provided in Tables 2and 3based on thenearest climate station. Maximum daily temperatures at Gatineau (Acadia) ranged
from-7.6 °C (-9.0 °C) to 14.5 °C (11.5 °C) and can be considered representative of typical temperature variability during late
winterand spring melt periods. Hourly average wind speedat 10ma.g.l. ranged from3 knvhr to 26 kmv/hr although the
highervalue may not be representative of local conditions since flights were not conducted if there was strongevidence of
surface gusts or swaying conifer trunks. Sky conditions included both cloudy and overcast with oneinstance (GN
10/02/2016) where snowwas falling. Snowpack conditions included fresh snow, icy snow, wet snow, patchy snow
(incomplete cover) and snow free. Ephemeral melt, preceded by over 10 mm of rain, occurred at both Gatineau
(02/02/2016) and Acadia (18/02/2019). Three missionswere notprocessed due to issues with the recorded data(see
Supplementary Material Section 6).
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Table 2. Environmental conditions during P3P missions over Gatineau. Rainand snowcorrespondto cumulated totals
since previous mission. Melt periods are in bold font.

DATE Tmax CUM. RAIN CUM. SNOW  WIND SKY SNOW

°C MM CM SPEED CONDITIONS CONDITIONS

KM-HR'?

2016-01-26 -5.5 No data No data 12 Clear lcy
2016-02-02 0.5 10.8 1.6 Clear Wet
2016-02-10 -3.5 0 6.4 4 Snowing Dry
2016-02-12 -5.5 0 2.0 10 Overcast Fresh Snow
2016-02-17 0.5 0 23.6 3 Overcast lcy
2016-02-18 -6.5 0 0.6 7 Clear Dry
2016-02-22 -7.6 10.0 5.4 11 Clear lcy
2016-02-29 0.1 27.4 9.2 9 Overcast Dry
2016-03-04 -6.0 0 9.1 10 Clear lcy
2016-03-17 7 334 0 6 Clear Wet
2016-03-21 4 0 0 18 Clear Wet
2016-03-26 3.8 11.0 5.2 11 Clear Wet
2016-04-19 14.5 72.4 0 22 Clear Bare

5 Table 3. Environmental conditions during P3P missions over Acadia. Rain and snow correspondto cumulated totals
since previous mission. Meltperiods are in bold font.

DATE Tmax CUM. RAIN CUM. SNOW  WIND SKY SNOW
’c MM CM SPEED CONDITIONS CONDITIONS
KM-HR'!

2106-02-10 -3.0 0 22.8 9 Clear Dry
2016-02-18 0 26.1 1.6 11 Clear Wet
2016-02-19 -1.0 22.0 6.0 26 Clear Wet
2016-02-23 -8.0 5.4 0 10 Clear Wet,Patchy
2016-03-04 -3.5 50.0 0 21 Clear Wet,Patchy
2016-03-06 -2.0 0 0 25 Clear Wet,Patchy
2016-03-08 4.0 0 2.0 24 Clear Wet,Patchy
2016-03-10 4.0 55 0 18 Overcast Wet,Patchy
2016-03-11 0 0 4.3 11 Overcast Dry
2016-03-14 0 0 0 13 Clear Dry, Patchy
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2016-03-20 -9.0 0 0 13 Clear Dry
2016-03-23 -1.0 19.0 0 18 Overcast lcy
2016-03-24 -8.0 0.5 12.2 5 Overcast Fresh Snow
2016-03-26 -2.0 11.2 4.0 4 Clear Dry
2016-03-30 3.0 39.3 0 13 Clear Fresh Snow
2016-04-14 111 65.8 0 15 Overcast Bare

3.2 UAV Data Processing

Seventy-onemissions were processed with Pix4D (details in Supplementary Material Section 6). Ofthese, three missions over
GN, corresponding to either snowing or icy snow conditions, resulted in <500 matches/image and subsequently P < 50%.
Two othermissions (GN 29/02/2016) and (AB 08/03/2016) also resulted in P < 50%. During both ofthese missions, there
was spatially uniformfresh snowthat possibly reduced the number of spatial features suitable for matching. The remainder

of the missions were each processed using a single block adjustmentwith amedian P = 97% (minimum = 80% ).

The key point match density varied substantially between missions andsites (Figure 3). Fresh snow or ice conditions resulted
in D < 10 matches/m? irrespective of the site. Season average D was higher over Acadia (83 matches/m?) than Gatineau
(28 matches/m?) even considering only dates without icy or fresh snow (91 matches/m? for Acadia versus 42 matches/m? for
Gatineau). For dates at or exceeding the median D, K ranged from4 to 8 (not shown). Pix4D does not provide a similar
statistic over sub-areas. Missions with differing sky conditions but constantsnowpack conditions only occurred at A A for one
pair of dates (08/03/2016 and 10/03/2016) when missions were repeated dueto instrumentfailure on the first dateat AB. For
these two missions, D was higherunder clear versus overcast conditions butthere was insufficient replication to determine if
this impacted ASD estimation.

Horizontalaccuracy ranged from-0.68 cmto 0.57 cm (median -0.01 cm) and vertical accuracy ranged from -1.10 cmto 0.48
cm (median -0.04 cm) (Figure 4a). There was evidenceofa linear relationship between verticaland horizontal accuracy after
accounting for outliers. Horizontal uncertainty ranged from 0.44 cm to 11 cm with a median of 1.87 cm while the vertical
uncertainty ranged from 0.045 cmto 4.6 cm with a median of 1.02 cm (Figure 4b). Over 75% of missions resulted in a
geolocation uncertainty under 4 cmin both horizontal and vertical. Uncertainty less than 0.5 cm RMSD was only observed
for missions with D > 50 matches/m? but uncertainty was unrelated to D past this matching density. Horizontal precision
ranged from 0.04 cm to 10.7 cm (median 1.76 cm) and vertical precision ranged from 0.04 cm to 4.5 cm (median 0.99 cm)
(not shown). A least absolute residual regression (https://www.mathworks.convhelp/stats/robustfit.html) of vertical versus

horizontal precision gave an adjusted r? of 0.97 with a slope of 1.11 (95% confidence interval [1.04,1.18]). Precision enor
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was closely relatedto uncertainty due to the low bias relativeto uncertainty (notshown). Similar to accuracy, a least absolute
residual regression of vertical versus horizontal precision gave an adjusted r? of 0.95 with a slope of 0.58 (95% confidence
interval [0.54, 0.62]). The effect of sky conditionon geolocation performance was not systematic across the entire dataset.
There were insufficient replicates having the same surface conditions but different sky conditions to performa quantitative
analysis ofthis effect ongeolocation performance.

As expected, micro-topographic roughness increased from qualitatively smooth to rough sites with average RMSD values
under5cm at Gatineau, between5cmand 10 cm at AA and ABand 42cmat AC(Figure 5).  ACindicated the presence of
high spatial frequency variation (length scales < 10 cm) that were due to low vegetation rather than variations in ground surface
elevation perse. Figure 6indicates thatfor conditions other thanicy/freshsnow, except for the forested ACsite, D increased
with micro-topographic roughness. Key point density was lower for icy/fresh snow conditions versus other conditions at all
sites; decreases ranged from~35% at AC to ~1000% at GS. The season average decrease was only different fromzero ata
significance level of 0.05 when the RMSD related to topographic roughness was less than 0.08 (i.e. GN, GS and AA).

The effect of hourly average wind speed on either D , geolocationaccuracy or geolocation uncertainty was also evaluated at
each site using ordinary leastsquares regression. For each site, ther® was below 0.5and the slope was not significantly different
from 0 at p=0.05. As with sky condition there were insufficient trials to control for snow surface condition when evaluating

the effect of wind speed.
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Figure 3. Pix4D automated key point match density for (a) Gatineau and (b) Acadiatogether with an indicator of fresh snow (square
symbols). Missions (solid circular symbols) for the same site are connected by lines. Redsquares indicated overcast conditions.
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the entire transectis alsoindicated. AC is truncated as the transect consisted of shorter line segments.
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transect for icy and fresh snow missions (hollow triangles) and “other” missions with snow cover (solid circles) duringsnow cowered
periods. The difference in season average matchingdensity between icy/fresh snow and “other” was statistically significant at p=0.05
for RMSD<0.8 (plots GN, GS, AA) but not statistically different at p=0.15for RMSD<0.8 plots AB, AC).

3.2 ASD Mapping Performance

The performance of ASD mapping was evaluated in terms of both changes between successive dates and changes betweena
given date and snow free conditions. Figure 7a shows the ASD between successive dates for each transect. Vertical
(horizontal) bars indicating the one standard deviation confidence interval due to within transect variation in ASD from the

image data (in-situ data). Thebars indicate that spatial variability in ASD within a transectwas often larger than the 2.6cm (1
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standard deviation) uncertainty forin-situ ASD estimation foratransect assuming no spatial variability. As such, the in-situ
measurement method was considered sufficiently precise for reference estimates. Nevertheless, due to within transect variation
in ASD, the precision of both in-situ and image based methods was often similar in magnitude to observed ASDso that
statistically significant comparisons could not be conducted for individual dates. Rather, in-situ and image based ASD were
compared usingstatistics based on differences observedforall dates foreach transect. In this case, uncertainty ranged from
2.54 cmto 5.12 cmfor the non-forested sites to 8.68cmat AC. The temporal bias was substantially smaller than uncertainty,
ranging frombetween -0.80cmat GS to 0.35 cmat AC. As suchthe precision error was only slightly less thanthe uncertainty
(not shown). There were seven instances where the observed difference exceeded 5cm. Four were overestimates ranging
from 5cm to 10cm at Gatineau and the other three were all at AC including the largest residual corresponding to an
underestimate of 20cm. Fourofthese instances, includingthe20cmerror, involved at least one date with eitherextremely icy
snow and another with deep fresh snow. In such cases the D can be low (Figure 3) while the snowpack itself has changed
substantially between dates. Two other cases involved rapid melt leading to exposed ground surfaces on the latter date. We
also noted thatat AC, the identified key points were often at snow-vegetation intersections (not shown), that may differ

systematically in ASD when comparedto thestakes that were placed within openings.

Figure 7b compares ASD between snow covered and snow free conditions (i.e. estimated SD). In this case, the confidence
interval of ASD for a transect was on average +5.2 cm/-6.3 cm for in-situ and +4.1 cn/-7.8 cm for image based estimates.
Uncertainty ranged from1.58 cm at AB to 10.56 cm at GN.  Accuracy varied betweensites. Bias was below 1.2cm for GS
T1, AAand AB. In contrast, bias at the other sites exceed +/-5cm(-10.05cm at GN T1, -6.23cm at GS T1and 5.5CM at AC).
Moreover, the bias was consistent over time with the exception of large (>5cm) under estimates for the date just prior to

snowmelt forall sites except AB.
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4.0 Discussion

4.1 Temporal and Spatial Variation of Snowpack Conditions

Missions were conducted over arange of snowpack conditions including peak snowpack with both fresh and aged snow, ice
covered snow, partial snow cover during melt and snow free just after melt. In this sense, the experiment offers a realistic
sampling of ephemeral snow packs for the temperate climate regions of our study sites. In contrast to studies reviewed in
Section 1, snow pack conditions were oftenicy (50f 29 dates) and patchy (6 of 29 dates) dueto frequent rain on snow events.
Ideally, the temporal sampling could have been enhanced by adding additional missions during the same day or adjacent days
to assess the impact of sky and weather conditions on ASD estimates.

The uncertainty of in-situ ASD was primarily due to precision error fromspatial variability rather than measurement error.
This aspect is important when evaluating image based estimates of ASD since the difference between a single in-situ and
remote measurement will include some element of spatial uncertainty due to differences in the compared area. A number of
previous studies havedirectly reported the RMSD between image based ASD and pointmeasurements (e.g. Nolan et al. 2014;
Harder et al. 2016; Vander Jagt et al., 2016). One may argue that single measurement comparisons includes the horizontal
uncertainty of the image based map but practically speakingusers of ASD maps are likely interested in the transectaverage in
the same manner that users of currentin-situ networks require transect averages rather than the spatial distributionof ASD at
cmresolution. Nevertheless, thewithin transect range of ASD from both in-situandimage based approaches is important for
understanding the representativeness of the measurements as well as potential biases. In this regard, the within transect
variation for image based ASD was approximately the same magnitude as for in-situ ASD but skewed towards lowerASD
when considering snow depth dueto local positivebiases in the snow free DSM in the presence of vegetation. Similar biases
have beenreportedin previous studies (Vander Jagtetal., 2016; Gindrauxetal., 2017).

4.2 SfM Performance with Snowpack Condition, Micro-topography and Wind Speed

The mission performance of the consumer-grade UAV was encouraging given that it was often operated at the edge of its
performance envelopein terms of wind speedandair temperature and under varyingillumination conditions. The percentage
of calibrated images and D decreased substantially in the presence of precipitation or very smooth surface conditions suchas
fresh snoworice. The decreasewas greatestover sites with low micro-topographic roughness(GN, GS and AA) although the

lack of statistical significance for the decreaseat ABand AC may be due tothe limited number of icy/freshsnow dates (three).
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Qualitative assessment of imagery duringsnow covered conditions indicated that, in contrastto ABand AC that had substantial
exposed vegetation and rough topography, key points at the other sites were chiefly foundalong ridges and shadows castby
snowdrifts. Blhleretal. (2017) and Gindrauxetal. (2017) reported similar findings with other UAV systems for fresh snow
butnot for glacierice. Inourstudy, ice was typically in the formofa flat surface pond or smoothed snow pack while in these
studies ice was the surface of a glacier that included topographic roughness. In any case, the lower key point density in both
theirstudyand ours was due tosmooth surfaces. In principle one couldinterpolate ASD across smoothregionsusingthe ASD
attheir perimeter. Otherwise, the percentage of calibrated images did not vary substantially across sites and was consistently

nota limiting factor in terms of performance (i.e. >97%).

Key point density decreased by almost one order of magnitude when comparing missions flown with snow more than 1 day
old and missions with either deep fresh snow or smooth icy snow packs. Previous studies have identified the drop in both
elevation and SD accuracy due to deep freshsnow (Nolan et al. 2014; Avanzietal. 2017) and icy conditions (Gindrauxetal.,
2017). Here we demonstrate that D may be a useful indicator of such conditions and hence anindicator of the quality of ASD
estimates. The experiment did not control for sky conditions. The one pair of missions with similar snow conditions but
different sky conditions did not show substantial changes in either the percentage of calibrated images or D . Nevertheless,
the lack of dense canopy conditions and controlled sky conditions means that this study does not address the issue of large cast
shadows (or lack thereof) on estimating snow depth changes usinga low flying UAV. Bihleretal. (2017) reported that digital
surface models fromUAYV images acquired in cast shadows appeared to be qualitatively noisier thanthose without shadows
and resultedin unrealistic (both negativeand very high) estimates of SD after differencing fromaccuracy bare earth modek.
They suggested that a combination of visible and near-infrared imagery might reduce uncertainty in areas of cast shadow.
Alternatively, measurements during overcast conditions may be sufficientto map ASD with sufficient accuracy in areas of

persistent shadows.

Previous studies have not systematically evaluated the sensitivity of ASD estimation to micro-topography or vegetation
density. The sitesselectedforthis experiment were nominally flat at length scales of tens of metres, except in the vicinity of
GS T3. However, micro-topography varied between sites. Allofthe Gatineau sites had little or no micro-topographic variation
while the Acadia sites progressed fromtree stumps (AA) to mounds covered with shrubs (AB) to mounds covered with shrubs
and a regenerating canopy (AC). Overstory vegetation cover was less than 10% along transects except at AC where cover
withina 1 m radius vertical cylinder centred at each stake was estimated to average 38% ( range [0%, 52%]). However, GN
and GS T1 has substantial thatch exceeding 5cmin height under the snow thatwas presentduring the snow free mission while
AC had cover of understory herbs low shrubs ranging from5cmto 10cm in height. As such, this experiment provides new
results forarange of micro-topography and understory/low vegetation butis limited in terms of over story cover. As previously
indicated, this was a conscious decision due to thedifficulty of adequate non-destructive in-situ sampling in forested areas and

25



10

15

20

25

30

ourdesire notto further complicate the point cloud processing when having to deal with snow on vegetation. Excluding fresh
and icy snow, that varied in frequency between Gatineau and Acadia, D was generally proportional to micro-topographic
roughness for sites without overstory. The behaviour with overstory (AC) may have been due more to our inclusion of
vegetation PC points within our micro-topography indexsince the matching density at AC was similar to AB where the
understory and surface topography was subjectively similar. Assuming this is the case, these results suggest a compensating
effect between increasing variability in ASD due to micro-topographic complexity and increasing D that may explain why,
outsideoficy and freshsnow, RMSD and accuracy was similar across sites when estimating ASD change.

The absence of a statistically significant linear relationship between hourly average wind speed and either D or geolocation
performance was not surprising. Firstly, we did not performmissions where all other factors butwind speed were controlled.
In addition, ourwind speed data may not have beenrepresentative of actual conditions. Daily maximum gusts, corresponding
to instantaneous recordings, were oftentwice the magnitude of hourly average wind speed suggesting that the UAV may have
experienced higher wind speeds during its mission on calmer days. Additionally, missions were delayed if extreme local gusts
were observed. Wealso did not control forsnowand illumination conditions when considering the effect of wind speed (eg.
by performing missions on subsequent days with different wind speed by same illumination). We hypothesize that, except
for very large gusts, the PIX4D block adjustment procedure is capable of accounting for uncertainty in camera attitude and
location since we observed little or no sensitivity of either D or geolocation performance when using imagery with our without
ephemeris (not shown). Rather, the major difference was the decrease in time for key point matching and block adjustrrent
when providingaccurate ephemeris in comparisonto no ephemeris information exceptforthe time of acquisition.

4.2 Geolocation and ASD Validation

The geolocation performance of derived DSMs was exceptional considering that the UAVwas a consumer grade device. Bias
errors were smaller than the precision of the GCPs themselves suggesting that spatial variationin DSM errors may have a large
randomcomponent. We could not test this hypothesis as we had limited control points that were allin relatively open areas.
The DSM accuracy over GCPs was higher than reported in other studies over natural landscapes (e.g. Nolan, 2015; Harder,
2016; Gindraux2017) butsimilar to performance over fabricated targets (Nasrullah et al., 2016). This is partly explained by
the high spatial resolution of the imagery in our study but we hypothesize it was also due to use of easily visible elevated GCP
targets that were identified in many images. For example, the number of image matches at GCPs ranged from 10 to 30.
Assuming independenterrors at each GCP the numberimage matches corresponds to a theoretical ratio of vertical to horizontal
accuracy of between 0.9to 5at asingle point or0.42to 2.2 over five GCPs. The observed ratio based on a robust line fit was

1.1 indicating agreementwith theory. The strong correlation observed between horizontal and vertical accuracy error was ako
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in line with the theoretical errormodel. We did not have sufficientspatial sampling of surface elevations over snow covered
areas to test the model in terms of snow surface elevation. This should be performed in future studies using reference
measurements fromsurfaceinstruments (e.g. Avanziet al., 2017).

Validation of ASD requires minimally invasive reference estimates using methods that also does notsubstantially change the
performance of UAV estimates. Considering the potential for large variations in SD and ASD with microtopography we
decided to control the reference locations by using fixed stakes. This strategy could have led to an (artificial) increase in
precision if the stakes led to an increase in the D as well as an increase if accuracy if the same key points on stakes were
detected in multiple images within or between missions. Examination of maps of automated key points a posterioriindicated
that the PI1X4D algorithmrarely found a key pointalong a stake (e.g. Supplementary Material Section 7). Furthermore, the
few caseswhere a key point was identified on a stake correspondedto locations with exposed vegetationaround the stake that
would potentially exhibit a match in any event. PIX4D Mapper uses a proprietary implementation of a reduced setof features
derived fromthe Scale Invariant Feature Transformation (SIFT) (Strecha, 2011). SIFT features are defined to specifically
eliminate key points that have poorly determined locations but highedge responses; especially corner features (Lowe, 2004).
We hypothesize that, especially for snow covered conditions, the relatively narrow stakes correspondto such features and are
subsequently avoided by PIX4D Mapperwhenidentifying key points. Ifso, our results may actually be somewhat pessimistic

since there are potentially fewer key points near stakes.

Validation of weekly ASD indicates that bias across all sites and dates was smaller than the typical uncertainty for a given
transect both fromin-situ orimage based methods and ofthe same order of magnitude of conventional automated or manual
measurements at point locations. There was evidence oftwo larger (>5 cm) overand underestimates at the forested AC site
that may be due to snow presenton vegetation near the ground (overestimates) or under sampling of the PCdue to fresh snow
(underestimates). There were also instances of underestimates exceeding5cm during melt over the Gatineau sites. Both of
these cases corresponded to icy anterior conditions that may have favoured point cloud matches in areas with rougher snow
that had not yet melted. Ineachofthesecases, one ofthecomparedelevationsurfaces had far lower D that typical for the site
suggesting that D may be a useful indicator of confidence in estimated ASD. Notwithstanding these issues, the typical
uncertainty of ASD was close to the theoretical error of ~2.44 cm for a single estimate. This suggests that sources of error
within a transectare likely correlated since one would expectsubstantial reduction in the ASD for the transect considering that
100s of PC samples are averaged. Thecorrelation is potentially explained by the fact thatthe stakes in each transect share the
same images for the most part and therefore potentially suffer the same lateral displacementerrors.

Validation of SD (comparing snowand snow free conditions) indicatedthat the range of RMSD (from ~1.5cmto ~10.5cm)

falls within the +/-10cm uncertainty reported in previous studies (see Section 1) with a tendency for underestimation in areas
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with substantial ground thatch layer. The underestimate in these conditions was approximately the same magnitude of the
thatch height leading us to hypothesize that they are related to an overestimate in thelocal DSM height as previously suggested
(Nolan etal., 2014; Avanzietal., 2017). This hypothesis could be tested in future studies using supplementary in-situ elevation
measurements (e.g. Avanzi et al., 2017) althoughiit is also consistent with the relatively unbiased estimate of ASD changes
between snow covered dates. We also hypothesize thatthe overestimate at AC may be due to snow covered vegetation being
included inthe sampled PCaround each stake when estimating the DSM for snow covered areas. Harderet al. (2016) noted
a similar bias due to stubble protruding fromshallow snow packs. Here, we usedthemedian snow surfaceelevation based on
PC colour processing that seemed to avoid this effect for other sites. More sophisticated algorithms for separating snow
covered surfaces fromover story vegetation should be evaluated.

5.0 Conclusions

Snow depth is an important geophysical quantity that exhibits substantial variation in space over distances of metres and in
time overdaily intervals. Systematic snow depth monitoring to date has emphasized temporal resolution. This study evaluated
the potential for light-weight UAV imagery, processed using off-the-shelf SfM software, for mapping the change in snow
depth over natural vegetated landscapes. The primary goal ofthis study was to compare this approach when mapping changes
in snow depth between successive snow covered dates versus between a snow covered and snow free date over land cover with
varying vegetation density and micro-topography and with ephemeral snow packs. The sampled sites exhibited only modest
variation in overstory vegetation cover (from 0% to 38% averaged over a transect) but substantial variability in micro -
topography including tree stumps, hummocky terrain and mowed pasture. The study also addressed a second goal of
comparing observedaccuracy and precision of snow depth changeand associated surface elevations with estimates based on

photogrammetric theory.

Atotalof 71 UAV missions were flown in a range of conditions with surface elevation maps derived at between 2cmand 3
cm horizontal ground sampling distance and with median (range) of horizontal and vertical uncertainty of 1.87 cm (0.44 cm
to 11 cm) and 1.02 cm (0.045 cmto 4.6 cm) respectively in comparison to man-made ground control points. Validation over
five different study sites frommid-winter to snow free conditions indicated an uncertainty of 6.45 cm (1.58 cmto 10.56 cm)
and accuracy of 3.33 ¢cm (-10.05 to 5.05 cm) for the average snow depth over a ~50m long transect. Snow depth was
systematically underestimated over sites with dense low vegetationby ~5¢cm. As the underestimate was the same magnitude
as the vegetation height during snow free conditions we hypothesize the underestimate is related to an overestimate of the
snow free ground elevation. Validation forthe average change of snowdepth overatransect between successive (~weekly)
missions indicated uncertainty of 3.40 cm (2.54 cm to 8.68 cm) and accuracy of0.31cm (-0.19 cmto 0.80 cm).
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Observed uncertainty for snow depth change agreed with the theoretical uncertainty (mean valueof2.44 cm and range of 1.2
cmto 5.25 cm dependingonthe number of matches at a key point) when considering the difference between two snow covered
dates. In general, uncertainty in associated surface elevations agreed with theoretical es timates both in magnitudeand in tems
ofthe expected correlation between horizontal and vertical errors. Theobserved uncertainty in absolute snow depth was larger
than theoretical uncertainty chiefly due to bias in estimates ofthe bare ground elevation in the presence of vegetation within
the snowfree reference image. In this case the bias is likely to be specific to local conditions and it may be possible to use
in-situ measurements to calibrating for this bias if UAV based estimates of snow depth are combined with in-situ
measurements. Even so, the uncertainty of UAV based weekly snow depth change is comparable to typical in-situ
measurements approaches suggesting that a combination of both measurements should be considered for producing high
spatiotemporal resolution maps of snow depth change in complexterrain. We recommend that future studies consider the
potential of using UAVinformation on snow depth change rather than absolute snow depth.

Furtherstudies are requiredto investigate the performance of snow depth change mapping using similar UAV data in terms of
sensitivity to changes in key pointsampling density due to changing illumination and wind speed, in terms of the precision of
snow depth change estimates under denser canopies where the non-vegetated surface is substantially obscured, and to quantify
performance as a function of UAVmission and SfM software parameters. Nevertheless, the results fromour multi-site/multi-
operator study suggest that UAVbased estimates of snow depth and snow depth change over areas corresponding to a typical
in-situ transect have comparable uncertainty to current manual in-situ estimates while offering substantially greater coverage.
Moreover, the technology can be applied with widely available off the shelf equipmentand software. While ourstudy hada
~10ha limit dueto using asingle mission, spatial coverage canbe extended to line of site using multiple missions or multiple
cameras on the same UAV or even past line of sight given adequate certification. Moreover in-situ GPS targets may not be
required if baseline networks can be processed using post processed kinematic methods.  Assuming these results are
representative of wider landscapes and snow conditions we recommend that subsequent studies address the problem of
combining airborne UAV survey based information on snow depth change with high temporal sampling satellite and in situ
information to improve snowpack characterization and reduce uncertainty in estimates of streamflow.
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