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Abstract. Differencing of digital surface models derived from Structure from Motion (SfM) processing of airborne imagery 

has been used to produce SD maps with between ~2 cm to ~15 cm horizontal resolution and accuracies of +/-10 cm over 10 

relatively flat surfaces with little or no vegetation and over alpine regions.   This study builds on these findings by testing two 

hypotheses across a broader range of conditions: i) that the vertical accuracy of SfM processing of imagery acquired by 

commercial low-cost UAV systems can be adequately modelled using conventional photogrammetric theory and ii) that SD 

change can be more accurately estimated by differencing snow covered elevation surfaces rather than based on differencing a 

snow covered and snow free surface.    Seventy one UAV missions were flown over five sites, ranging from short grass to a 15 

regenerating forest, with ephemeral snow packs.  Point cloud geolocation performance agreed with photogrammetric theory 

that predicts uncertainty is proportional to UAV altitude and linearly related to horizontal uncertainty.    The root mean square 

difference (RMSD) over the observation period, in-comparison to the average of in-situ measurements along ~50 m transects, 

ranged from 1.58 cm to 10.56 cm for weekly SD and from 2.54 cm to 8.68 cm for weekly SD change. RMSD was not related 

to micro-topography as quantified by the snow free surface roughness.  SD change uncertainty was unrelated to vegetation 20 

cover but was dominated by outliers corresponding to rapid in-situ melt or onset;  the median absolute difference of SD change 

ranged from 0.65 cm to 2.71 cm.  These results indicate that the accuracy of UAV based estimates of weekly snow depth 

change was, excepting conditions with deep fresh snow, substantially better than for snow depth and was comparable to in-

situ methods. 

1 Introduction 25 

 

The temporal and spatial pattern of snow depth (SD) is of importance to hydrological, ecological and climate studies (GCOS, 

2016).  Together with representative estimates of snow density, time series of SD are indicative of changes in s now water 
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equivalent that in turn are of importance to streamflow forecasting and management of hydroelectric resources (Clyde, 1939; 

Barnett et al., 2005; DeWall and Rango, 2008).  In many ecosystems, SD is an important determinant of winter habitat in terms 

of range and access to forage (Bokhorst et al., 2016).  Snow depth also exerts an influence on local climate through insulation 

of permafrost and ice and global climate through its role in snow albedo feedbacks (IPCC, 2013; IPCC, 2014; Bokhorst et al., 

2016).   5 

 

Systematic monitoring of SD is currently performed using in-situ networks (e.g. Worley et al., 2015; Reges et al., 2016; 

https://globalcryospherewatch.org/projects/snowreporting.html) providing daily measurements using automated sensors and 

less frequent measurements using manual sampling with rulers.  The former are typically fixed in location with spatial sampling 

footprints from 1 m2 to 10 m2 (e.g. Ryan et al. 2008; de Haij, 2011) with the exception of global positioning system (GPS) 10 

instruments that can estimate the mean snow depth over a footprint of ~104 m2 (Larson et al. 2014).   The sampled footprint 

for manual measurements is typically under 10 m2 (US Department of Commerce, 1997; Ryan et al., 2008; Meteorological 

Service of Canada, 2016).  While in-situ monitoring networks offer frequent temporal sampling, with the exception of GPS 

approaches, their spatial sampling can be imprecise and are often biased in terms of their representativeness of surrounding 

landscapes (Gelfan et al. 2004; Essery and Pomeroy, 2004; Neumann et al. 2010; Wrzesien et al., 2017).   GPS survey may 15 

offer a solution for an average SD estimation over open terrain although measurement error is larger than manual methods 

(e.g. Larson et al. (2014) report bias and precision of -5.7 cm and 10.3 cm respectively when estimating SD of a snowpack 

typically under 1 m in depth).  Irrespective of measurement method, in-situ SD monitoring sites can have vastly different 

microclimates and topographic conditions than less accessible areas nearby thus increasing the potential for biases in estimated 

SD (Brown et al., 2003).  One solution to address the limitation of sparse and potentially spatially biased in-situ SD monitoring 20 

is to estimate the spatiotemporal SD pattern by combining in-situ SD time series and maps of SD change (∆𝑆𝐷) derived from 

remote sensing methods (e.g. Liu et al. 2017).     Remote 𝑆𝐷 mapping at a similar or better resolution of automated in-situ 

measurements (i.e. <1 m2) can be performed using airborne survey with LIDAR (e.g. Deems et al., 2013) or photogrammetric 

imaging (e.g. Nolan et al., 2015).  Here we consider photogrammetric imaging approaches due to both their potential cost 

effectiveness and the widespread availability of unmanned aerial vehicle (UAV) systems.  Nolan et al. (2015) used Structure 25 

from Motion (SfM; Westoby et al., 2012) processing of 15 cm ground sampling distance (GSD) digital images from a manned 

aircraft at an altitude of ~750m above ground level (a.g.l.) to map 𝑆𝐷 with an accuracy (precision) of +/-10 cm (8 cm at one 

standard deviation) in comparison to individual probe measurements over relatively flat surfaces.  Similar results were 

subsequently reported using UAV systems, with GSD ranging from ~2cm to ~10cm and altitude from 60 m a.g.l.  to 130 m 

a.g.l., over prairies (Harder et al. 2016), alpine shrub lands (Buhler et al. 2016; De Michele et al. 2016; Harder et al. 2016; 30 

Avanzi et al. 2017) and glaciers (Gindraux et al., 2017).  Even greater accuracy (1.5 cm to 3.8 cm) and precision (4.2 cm to 

9.8 cm at 1 standard deviation) have been reported for ∆𝑆𝐷 mapping over tundra (Cimoli et al. 2015) and alpine terrain (Vander 

Jagt et al., 2015) when using very low (10 m a.g.l. – 30 m a.g.l.) altitude acquisitions with GSD less than 4 cm.  

https://globalcryospherewatch.org/projects/snowreporting.html
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While current studies provide increasing evidence of the potential for 𝑆𝐷 mapping over certain landscapes using multi-date 

UAV imagery there are a number of issues that must be addressed if this approach is to be applicable for routine seasonal 

estimation of 𝑆𝐷 or ∆𝑆𝐷 over natural landscapes.  A pressing issue is the need to test the performance of this approach over a 

range of snowpack, vegetation and terrain conditions (de Michele et al., 2016).  Studies  indicate the presence of large (>10cm) 5 

errors under specific illumination, snowpack, vegetation or terrain conditions.  The reduced contrast in imagery of homogenous 

snowpacks (due to fresh snow covering all vegetation) under overcast conditions results in reduced point cloud density (Nolan 

et al. 2015; Buhler et al. 2017) and can lead to the failure of commercial SfM algorithms (Harder et al., 2016).  While this 

issue may be partly addressed by using both visible and near-infrared imaging (Buhler et al. 2017), it may also be less of a 

factor when there is structure in the snowpack due to emergent vegetation and when GSD is sufficiently high to identify the 10 

intersection of snow and vegetation.  Dense low vegetation compressed by the snowpack can result in SD underestimates due 

to a positive elevation bias in the snow free reference image (Nolan et al., 2015; Buhler et al. 2016;  Cimoli et al. , 2015;   Di 

Michele et al., 2016).    Vegetation above the snowpack can result in local overestimates of SD if they are incorrectly interpreted 

as the snowpack surface (Nolan et al., 2015; Harder et al., 2016).  Topographic shadowing can have the same impact as overcast 

conditions when estimating SD over homogenous snow packs (Buhler et al. 2017).  However, the shading from vegetation and 15 

micro-topography on 𝑆𝐷 estimates has not been studied systematically in the sense of considering different terrain roughness 

under the same snowpack and acquisition conditions.    

 

A second issue that has yet to be addressed is the performance of UAV imaging approaches for estimating ∆𝑆𝐷 between two 

dates with partial or complete snow cover. Current UAV imaging methods may have a practical lower limit of ~30cm 𝑆𝐷 due 20 

to the combined errors in estimating the snow covered and snow free surface elevation  (Harder et al., 2016; Schrimer and 

Pomeroy, 2018).  However, in many circumstances ∆𝑆𝐷 may still have relevance (e.g. for temporal monitoring or for 

estimating 𝑆𝐷 using a single reference snow covered date where 𝑆𝐷 is well-approximated using in-situ methods).   Errors due 

to factors such as vegetation and terrain may be spatially correlated so that estimates of ∆𝑆𝐷 between short periods (e.g. 

weekly) may be substantially more accurate that estimates of SD itself.  There is a need to compare the relative accuracy and 25 

temporal precision of 𝑆𝐷 and ∆𝑆𝐷 estimates, especially for areas with ephemeral snow packs. 

 

A third issue is the need to model the uncertainty of elevation estimates as a function of UAV mission parameters.  This is 

required both to guide mission parameters and to understand the potential limits of current technologies and prospects for 

improvements as UAV performance and camera systems improve.  Nasrullah (2016) demonstrated that photogrammetric 30 

theory could be used for this purpose when estimating the elevation of fabricated targets using UAV imagery and SfM over 

fabricated targets.  A similar modelling approach has yet to be tested over snow covered surfaces.        
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A fourth issue is the need to have robust low-cost equipment and software for data acquisition and processing (Nolan et al. 

2015).  Lightweight systems that require minimal flight certification are especially desirable considering that snow surveys 

may be episodic in both time and space.  Nasrullah (2016) found that using commercial SfM software (Pix4D Version 2.1.100) 

with imagery from off-the-shelf UAV systems weighing less than 2kg and costing under $US 1000  (Phantom 2 Vision+) 

provided comparable performance to larger drones.  There is a need to evaluate similar systems for ∆𝑆𝐷 mapping over a range 5 

of environmental and surface conditions.   

 

The issues that remain to be addressed regarding UAV based mapping of SD require multiple experimental treatments 

including climate and snow conditions that cannot easily be controlled and land surface conditions that can be controlled.  Here 

we chose to control the survey methodology by using a single low-cost commercially available solution for UAV based 10 

mapping of three dimensional point clouds and select mission parameters that should maximize the accuracy of elevation 

estimation based on photogrammetric theory, even if the solution may not be optimal in the sense of logistical constraints of 

time or cost.  Secondly we select sites with a range of micro-topography and vegetation cover but limit vegetation cover to 

<50% and only validate SD in openings.  This strategy simplifies the approach used to extract surface locations within three 

dimensional point clouds leaving the issue of UAV based SD mapping under closed canopies for further study.   Thirdly we 15 

locate the sites within regions of ephemeral snowpack since this should correspond to a worst case assessment of uncertainty, 

especially with respect to ∆𝑆𝐷.  Given these limitations, the initial broad research question regarding snow depth mapping is 

refined into two specific research questions addressed in this study: 

 

 20 

 What is the accuracy and uncertainty of 𝑆𝐷 and weekly ∆𝑆𝐷 maps derived using small commercial UAV and commercial 

SfM technology as a function of varying micro-topography and snowpack condition in sparsely vegetated regions with 

ephemeral snow packs?  

 

How well does the uncertainty of ∆𝑆𝐷 maps and their corresponding digital surface models correspond to a priori estimates 25 

based on photogrammetric theory? 

  

Our null hypothesis is that SD accuracy will be similar to previous studies, with greater biases in the presence of vegetation , 

but the accuracy of weekly  ∆𝑆𝐷 will be lower due to correlated errors related to surface conditions.  Further, we hypothesize 

that, except for very smooth snow pack conditions, the accuracy of weekly ∆𝑆𝐷 and digital surface models will correspond to 30 

the expected accuracy from photogrammetric theory.  For very smooth snow pack conditions we hypothesize that there will 

be a decrease in key point matching density (as observed over glaciers by Gindraux et al. 2017) that in turn will result in 

accuracy less than expected from theory. 
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In Sect. 2 the study sites and methods used to estimate and validate ∆𝑆𝐷 maps are described.  A theoretical estimate of the 

precision of ∆𝑆𝐷 as a function of mission parameters is also proposed. Results are presented in Sect. 3.  Sect. 4 discusses these 

results in the context of the experimental conditions and their applicability to the research question.   Conclusions with respect 

to the two research questions are given in Sect. 5. 5 

2 Methods 

 

2.1 Study Sites 

 

Five study sites were located in two study regions: Gatineau and Acadia.  To simplify the acquisition of permits  for in-situ and 10 

UAV surveys, both study regions corresponded to land owned by the Government of Canada.  The separation between regions 

was partly due to the availability of staff to perform surveys but also due to a desire to sample different snowpack and land 

surface conditions.   Climate and weather data were acquired from the based on Environment and Climate Change Canada 

data (http://climate.weather.gc.ca/historical_data/search_historic_data_e.html).   

 15 

The Gatineau region (Figure 1) was located at 45°35' N latitude and 75°54' W longitude in Gatineau Park (a 391 km2 federal 

park near Ottawa, Canada).  The region consisted of land used for hay production with the meandering Meech Creek flowing 

across the southern half.   Table 1 indicates recorded and climatological monthly rain, snow and temperatures for the nearest 

climate station (Chelsea, Quebec at 45°31' N, 75°47' W, 112.50 m above sea level (a.s.l.)).  During 2016, monthly air 

temperature was similar to the climate normal but rain (snow) was substantially higher (lower) than normal for March and 20 

lower (higher) for April.   Two sites with alternatively flat and hilly macro-topography were established in the Gatineau region. 

 

Gatineau North (GN) was a rectangular site of ~2.0 ha with grass cover less than 5 cm high over a flat surface.  Gatineau South 

(GS) was a rectangular site of ~3.2 ha centred on Meech Creek.  The northern portion of GS (Figure 1) shared the same 

conditions as GN.   The centre and southern portion of GS covered the river valley including spur hillslopes.   Northern 25 

hillslopes where in-situ transects were located, were covered by low shrubs and grasses (<10 cm).  Shrubs up to 1 m in height 

covered southern hillslopes.  A small forested area was located at the South West corner of GS. 

 

The Acadia region (Figure 1) was located at 45°58' N latitude and 66°19' W longitude in the Acadian Research Forest (a 

91.6km2 managed forest near Fredericton, Canada).  The region consisted of three parcels of managed forest land, 30 
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corresponding to sites Acadia A (AA), Acadia B (AB) and Acadia C (AC)  respectively, separated by mature forest boundaries 

on gently undulating terrain.  Table 1 indicates recorded and climatological monthly rain, snow and temperatures for the nearest 

climate station (Fredericton, New Brunswick at 45°52'08" N, 66°32'14" W, 20.70 m a.s.l.).  During 2016, air temperature was 

similar to the climate normal but rain (snow) was substantially lower (higher) than normal from February to April.   

 5 

AA was a relatively flat trapezoidal site of ~3ha with grass (<5 cm) and stumps (<20 cm).  AB was hummocky rectangular 

site of ~4.5ha with stumps (<20 cm) and substantial brush and shrubs (<1 m) left over from clearing. AC was a rectangular 

site of ~4.5ha with recently planted Balsam Fir (Abies balsamea (L.) Mill.) ranging from 1 m to 5 m in height.  AC was also 

hummocky although shrubs and herbs had covered most stumps.  The sites were separated by mature mixed wood stands up 

to 20 m in height with balsam fir, red maple (Acer rubrum L.), and white birch (Betula papyrifera Marsh.). 10 

Table 1.  Monthly climate data representative of study sites.  Normals correspond to 1981 to 2010. 

 

 

MONTH 

Chelsea, Quebec (Gatineau Region) Fredericton, New Brunswick (Acadia Region) 

T (⁰C) Rain Fall (mm) Snow Fall (mm) T (⁰C) Rain Fall (mm) Snow Fall (mm) 

2016 Normal 2016 Normal 2016 Normal 2016 Normal 2016 Normal 2016 Normal 

JANUARY -9.2 -11.0 37.2 22.7 29.2 47.9 -6.5 -9.4 25.4 42.4 10.7 59.5 

FEBRUARY -9.8 -8.8 10.0 20.5 41.0 38.7 -5.4 -7.5 12.0 31.7 89.9 38.4 

MARCH 1.9 -3.0 106.9 34.6 5.2 26.5 -2.1 -2.2 7.2 45.2 82.0 44.9 

APRIL 2.5 5.7 21.4 68.4 27.4 6.0 3.7 4.8 20.4 68.1 23.9 13.5 

MAY 12.4 12.6 7.3 89.0 0 0 11.8 11.3 56.7 103.1 0 0.7 
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Figure 1.  (a) Gatineau region showing GN (pink) and GS (yellow) sites and (b) Acadia Region showing AA (red), AB (magenta) and 

AC (gold) sites.   Also indicated are ground control points (hollow circles) and in-situ transects (blue lines).  Map data: Google, 
Digital Globe. 

 5 

 

 



8 

 

 

2.2 Ground Control Points 

 

Ground Control Points (GCPs) were established for each site for geolocation of UAV imagery and derived maps.  The number 

and location of GCPs were determined based on Tonkin and Midgley (2016) who assessed the performance of a digital surface 

model (DSM) derived from SfM processing of UAV imagery acquired at 100m a.g.l. over a grassy landscape.  Following their 5 

recommendation at least 5 GCPs were positioned within the UAV coverage at each site and at least one GCP near the corner 

of each site.  AC was an exception as GCPs could not be located at the northern edge due to access constraints. Six GCPs were 

located in GN and 10 GCPs in GS with 95% circular error probably of less than 2.05 cm (Prevost, 2016a).   For Acadia, four 

GCPs were located in AA, five GCPs in AB and two GCPs in AC with a 95% circular error probable of less than 2.46 cm 

(Prevost, 2016b).  GCP targets of either 30 cm square plywood or 15 cm diameter plastic disks suspended between 1 m and 10 

1.3 m above ground level to avoid artificially increasing the accuracy of SD estimates by placing control points on the  

snowpack surface (Supplementary Material Section 1).  GCPs were located using ASHTECT Zextreme dual frequency 

instruments using precise point positioning.   

 

2.3 In-Situ ∆𝑺𝑫 Measurement 15 

 

Transects of ~50 m length (see Figure 1) were positioned at each site within 5 m of a GCP.  Each site had one transect except 

for GS where two transects were located (GS-1 in the flat northern portion and GS-2 along and across a spur hillslope leading 

into the floodplain).  Along each transect, twelve 48” x 2” x 1” wooden stakes were placed equally spaced apart ~10 cm deep 

and approximately vertical.   The attitude of the stakes was measured at the start and end of the field season using a digital 20 

level to a precision of 0.1⁰. The elevation of the stakes above the soil layer was measured at the end of the field season using 

a plumb line and tape measure to a precision of better than +/-0.5 cm (95% confidence interval).    In-situ ∆𝑆𝐷 was estimated 

at each stake using the protocol described in Oakes et al. (2016) to process digital images of stakes taken using a 14Mpixel 

camera with telephoto lens (Supplementary Material Section 2).  When comparing snow covered conditions, the uncertainty 

for measuring the ∆𝑆𝐷 assuming independent errors in determining the exposed stake freeboard is ~2.06 cm (95% confidence 25 

interval) for typical uncertainties in delineating the snowpack at the base of a stake and measuring the stake angle (Oakes et 

al. 2016).   As both sources of uncertainty are spatially random the uncertainty in estimating the average snow depth using all 

12 stakes in a transect is  estimated at ~0.60 cm (95% confidence interval).    

 

 30 
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2.4 UAV Missions 

 

Missions were performed weekly at Gatineau (26/01/2016 to 19/04/2016) and Acadia (10/02/2016 to 14/04/2016), during 

periods without precipitation at the start of the mission, using a Phantom Pro 3 Plus UAV (https://www.dji.com/phantom-3-

pro; P3P).  The same UAV was used for all missions in a region.   Imagery was acquired using the provided gimbal mounted 5 

12.4 Mpixel rolling-shutter camera with a f2.8 fixed aperture in auto-exposure mode recording in 4K MPEG-4 AVC/H.264 

format (MP4) (see Supplementary Material Table S1).  MP4 was used in preference to full resolution photographs since i) the 

system firmware limited the maximum photograph sampling rate to 1 frames/2s and ii) the 4K video frames have almost 

identical resolution to the full resolution photographs (Leblanc, 2018).   Auto-exposure mode was used since the flights 

encountered rapid variations between sunlit and shaded snow and vegetation areas making it challenging to adjust exposure 10 

manually during the flight.  

 

Lichee V3.0.4 (https://flylitchi.com/new) flight planning software was used to create flight plans.  The same flight plan was 

used for all missions at a site.  Flight plans were defined using equally spaced parallel linear tracks flying oriented North to 

ensure consistent locations of shadows between dates.  The exception was AC where tracks were oriented parallel to the GPS 15 

targets at AB to maximize overlap over these targets.  Cross tracks were not used since this would increase flight time and 

since Nasrullah (2016) found that they did not significantly improve point cloud accuracy or density when using data acquired 

using a similar consumer grade UAV and SfM software.  Flight plans , using nadir view geometry, were defined to cover 

rectangular (triangular in the case of AA) regions with a buffer of 100 m to ensure adequate side views at the edges of each 

study area and to include GCPs from adjacent sites.  Flights were planned such that the UAV was always flying along the 20 

vertical axis of the camera to minimize post processing complexity.  Turns were limited to 90⁰ with smoothing of arcs to 

provide adequate side overlap during the turn.   

 

Mission parameters were optimized to minimize the vertical precision error in altitude 𝐻 (𝜎𝐻) derived from the block 

triangulation of images at matching key points covering a nominal mapped extent of 10ha  assuming a 15 minute flight 25 

(Supplementary Material Section 3).  For a matching key point found in  𝐾 images each acquired at a lateral distance of 𝑑𝑘 

from the key point (Forstner, 1998): 

 

𝜎𝐻 =
𝐻2

𝑐

𝜎𝑥√12

√∑ 𝑑𝑘
𝐾
𝑘=1

            (1) 

 30 

where 𝜎𝑥 is the average horizontal uncertainty when matching the location in each image pair on the camera focal plan e and 𝑐 

is the lens focal length.   Ignoring edges of flight tracks, {𝑑𝑘} and therefore 𝜎𝐻  will be a function of the along track image 

https://www.dji.com/phantom-3-pro
https://www.dji.com/phantom-3-pro
https://flylitchi.com/new
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spacing (𝑏𝑦 ), the across track image spacing (𝑏𝑥) and 𝐻.   With 4K video it is generally possible to choose a frame sampling 

rate 𝑓 such that 𝑏𝑦 ≤ 𝑏𝑥.  

 

Eq. 1 assumes that matches are found in all overlapping images.  Based strictly on geometric considerations, for the P3P with 

𝐻 ≤ 100𝑚 and 𝑏𝑥<40 m we expect 𝐾 > 20 𝑚atches.  In practice, 𝐾 is much less than 20 due to the difficulty in matching the 5 

same feature in multiple images (Nasrullah, 2016).  Adopting the worst case assumption that the matched images are closest 

to the key point location and assuming similar along and across track spacing, from Forstner (1998): 

 

𝜎𝐻 ≤
𝐻2

𝑐𝑏𝑥

𝜎𝑥√12

√𝐾(𝐾2−1)
           (2) 

 10 

Here,  𝜎𝑥  was estimated as the Euclidean sum of the mean reprojection error after block adjustment 𝜎𝑟𝑒  , the uncorrected 

motion blur during integration of the detector signal (𝜎𝑚), and the uncorrected rolling shutter motion (𝜎𝑟𝑠). 

 

𝜎𝑥
2 = 𝜎𝑟𝑒

2 + 𝜎𝑚
2 + 𝜎𝑟𝑠

2            (3) 

 15 

Mean reprojection error is computed during block adjustment by the PIX4D Mapper Pro.  Motion blu r is given by 

 

𝜎𝑚 =
𝑣𝑦𝑐𝜏𝑒

𝐻𝑙
            (4) 

 

where 𝑣𝑦 is the along track velocity, 𝑐 is the lens focal length,   𝜏𝑒 is the exposure time and 𝑙 is the detector size along track.  20 

Rolling shutter correction error is determined by the uncertainty in 𝑣 and the sensor readout time 𝜏𝑠: 

 

𝜎𝑟𝑠 = 𝜎𝑣
𝑐𝜏𝑠

𝐻𝑙
            (5) 

 

Estimates of 𝐾,  𝜎𝑟𝑒,   𝜎𝑚 and   𝜎𝑟𝑠 were required to model 𝜎𝐻.  Trial flights (Supplementary Material Section 3) were used to 25 

determine ranges for 𝐾 (4.3 matches to 7.4 matches)  𝜎𝑟𝑒  ( 0.179 pixels to 0.209 pixels) and 𝜏𝑒 ( 0.017 s to 0.005 s).  Worst 

case values of 𝜎𝑟𝑒   = 0.25 pixels and 𝜏𝑒  = 0.02 s were used for selecting flight parameters.  We did not have sufficiently accurate 

on-board sensors to provide reference values of 𝜎𝑣.   Instead, we relied on a published comparison of 𝑣 based on imagery from 

a PIX4D block adjustment and on-board measurement (Vautherin et al., 2016) indicating 𝜎𝑣 ≈ 0.05 𝑣. 
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Using measurements from the training flights the relationship between 𝜎𝐻 and 𝐻 was modelled for the average and extreme 

values of  𝐾 using the 10ha minimum area constraint to relate 𝑣𝑦 to 𝑏𝑥.  Figure 2 indicates that 𝜎𝐻 increases almost linearly 

with 𝐻 for any given 𝐾 although the rate of increase is steeper for low  𝐾 .  This result indicates it is critical to select the lowest 

feasible 𝐻.  At 𝐻 = 50 𝑚  the sensitivity of 𝜎𝐻 to 𝑏𝑥 is negligible (<10% 𝜎𝐻) for 15 𝑚 ≤ 𝑏𝑥 ≤ 30 𝑚.  Here we selected 𝑏𝑥 =5 

15 𝑚 to maximize across track overlap since we were able to increase 𝑓 to achieve a constant along track overlap irrespective 

of 𝑏𝑥. This was important since the density of key point matches per square metre mapped (𝐷) increases with overlap with all 

other parameters fixed (Nasrullah 2016).  The selected flight parameters predict a 𝜎𝐻 = 1.44 𝑐𝑚 for 𝐾 = 5 𝑚atches (ranging 

from 𝜎𝐻 = 0.92 𝑐𝑚  for 𝐾 = 8 matches to 𝜎𝐻 = 3.73 𝑐𝑚 for 𝐾 = 3) matches.  As ∆𝑆𝐷  was later estimated by computing the 

temporal difference of DSM (Sect. 2.7) the precision error in∆𝑆𝐷, assuming uncorrelated errors in 𝐻 between two dates, 10 

corresponds to the Euclidean sum of 𝜎𝐻 for each date.  Ignoring uncertainty due to surface roughness for snow free conditions, 

𝜎∆𝑆𝐷 = 1.2 𝑐𝑚 where both dates have 𝐾 = 8 𝑚atches, 𝜎∆𝑆𝐷 = 2.14 𝑐𝑚 where both dates have 𝐾 = 5 𝑚atches and a worst 

case 𝜎∆𝑆𝐷 = 5.25 𝑐𝑚 where both dates have 𝐾 = 3 𝑚atches.   

 

Each UAV mission resulted in two consecutive MP4 videos (due to a limitation of 3.91Gbytes for a single MP4 file) and an 15 

ephemeris file providing the P3P position and attitude with a temporal resolution of about 0.1s.  Data from each mission was 

processed in Pix4D Mapper PRO Version3.2 (https://pix4d.com/product/pix4dmapper-photogrammetry-software/) as 

described in Supplementary Material Section 5.   

 

 20 

https://pix4d.com/product/pix4dmapper-photogrammetry-software/
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Figure 2.  Theoretical relationship between vertical uncertainty and UAV height.  Solid lines correspond to five matching images 
per key point.  Upper (lower) bars correspond to three (eight) matching images per key point. 

 

 5 

2.6     Assessment of Micro-topography 

 

Micro-topography was assessed for each transect within each site using a snow free PC acquired within one week of complete 

snowmelt.  Compressed vegetation was included within micro-topography since it also acts to bias estimates of 𝑆𝐷 (Harding 

et al. 2016).  Micro-topography was quantified as the deviation from a local robust linear slope trend (MATLAB function 10 

‘lmfit’ with robust option, https://www.mathworks.com/help/stats/fitlm.html) with a 15 m moving window oriented along the 

transect.   Deviations greater than the maximum snowpack elevation at each transect during the season were removed when 

computing the RMSD over a transect to eliminate overstory vegetation that normally would be above the snowpack. 
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2.7  Elevation and Overstory Cover Extraction 

 

Surface elevations were extracted from each PC in a sampling region at a constant sampling region around each stake.  The 

sampling region corresponded to a 2 m tall vertical elliptic cylinder centred on the nominal horizontal location of a stake and 

extended 50 cm below the nominal vertical location of a stake.   The horizontal (vertical) centre of the sampling region was 5 

specified as the average (average less 50 cm) of the visually determined location of the base of the stake from the colorized 

PCs for two missions acquired during sunny conditions with less than 5 cm snow depth.   The 50 cm vertical offset was required 

to account for both PC geolocation uncertainty and local topography (including snow pits due to melt at the based of the stake) 

close to the stake.  The horizontal major and minor axes of the cylinder were specified to approximate twice the Euclidean 

sum of geolocation uncertainty of the PC and the typical geolocation uncertainty of the stake corresponding to the difference 10 

between both reference image locations.  These considerations typically resulted in horizontal axes leng ths ranging from 10 

cm to 24 cm depending on the precision of the stake geolocation between reference images.   

 

The average overstory vegetation cover in the vicinity of transect sampling locations was estimated for each UAV mission.  

Overstory vegetation cover near each stake was estimated for a 1 m radius cylinder centred horizontally at each nominal stake 15 

location as the fraction of grid cells where at least one other point was found vertically above a surface point.   A 1 m radius 

was used as an approximation of points within the field of view of images used to map the elevation in the smaller region used 

around each stake.   

 

2.8 ∆𝑺𝑫 Estimation from Point Clouds 20 

 

∆𝑆𝐷 was estimated for each transect using geolocated PCs.  For each PC, snow cover points were identified in each sampling 

region using points exceeding the 50%ile of the blue band in a sampling region.  The blue band was used as a simple indication 

of snow considering that vegetation and shadows should both have substantially lower blue intensity in a region with similar 

view geometry and similar top of canopy illumination conditions (Miller et al., 1997).   To minimize bias due to the presence 25 

of melt depressions at the base of each stake and due to snow on vegetation, the median elevation of snow cover points within 

the sampling region was used to estimate the snow surface elevation at the corresponding stake. 

 

The snow free surface elevation from a PC produced using a UAV flight over snow-free conditions within one week after 

complete snowmelt.  For each sampling region, the snow free elevation was estimated as the median elevation of all points 30 

unobstructed by points vertically below them.   For each UAV flight, the average  ∆𝑆𝐷 across all sampling windows for the 
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transect was used to estimate the transect ∆𝑆𝐷.  The precision of ∆𝑆𝐷 was estimated using the central 67.5%ile interval of 

sampled ∆𝑆𝐷 within the transect to include both measurement error and natural variability. 

   

2.9 Performance Assessments 

 5 

The performance of geolocated DSMs and ∆𝑆𝐷 , in comparison to reference values from GCPs and in-situ transects 

respectively, was quantified in terms of accuracy, precision and uncertainty statistics following ANSI/NCSL (1997).  Here 

accuracy is defined as the mean difference between sampled validated and reference data (i.e. the bias), precision is the RMSD 

after subtracting the accuracy from the validated data, and uncertainty is the RMSD between the validated and reference data.  

For convenience, we use the term ‘bias’ for accuracy and ‘RMSD’ for uncertainty when discussing DSMs and ∆𝑆𝐷 10 

performance. In contrast to previous studies that report RMSD in comparison to individual in -situ sample locations, 

assessments were performed using transect averages since addressing the broader research goal of combining in-situ and UAV 

based ∆𝑆𝐷 requires an assessment of UAV estimates of ∆𝑆𝐷 over a sampling footprint comparable to the reported in-situ 

measurement (i.e. transect average at ruler locations).  Camera calibration performance was assessed in terms of the percentage 

of images (𝑃) successfully calibrated using a single block adjustment, the number of key point matches per image and 𝐷.   15 

3.0 Results 

 3.1 Data Acquisition 

UAV flights were conducted on 13 days at Gatineau and 16 days at Acadia resulting in 74 missions.    For brevity, results for 

a mission are referenced using the site acronym followed by the date (e.g. GS 26/01/2016 is the Gatineau South mission for 

26/01/2016).  Flights were performed between 10:00 and 14:00 local time.  Environmental conditions for each date are 20 

provided in Tables 2 and 3 based on the nearest climate station.  Maximum daily temperatures at Gatineau (Acadia) ranged 

from -7.6 ⁰C (-9.0 ⁰C) to 14.5 ⁰C (11.5 ⁰C) and can be considered representative of typical temperature variability during late 

winter and spring melt periods.  Hourly average wind speed at 10m a.g.l. ranged from 3 km/hr to 26 km/hr although the 

higher value may not be representative of local conditions since flights were not conducted if there was strong evidence of 

surface gusts or swaying conifer trunks.  Sky conditions included both cloudy and overcast with one instance (GN 25 

10/02/2016) where snow was falling.  Snowpack conditions included fresh snow, icy snow, wet snow, patchy snow 

(incomplete cover) and snow free.  Ephemeral melt, preceded by over 10 mm of rain, occurred at both Gatineau 

(02/02/2016) and Acadia (18/02/2019).  Three missions were not processed due to issues with the recorded data (see 

Supplementary Material Section 6). 
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Table 2.  Environmental conditions during P3P missions over Gatineau.  Rain and snow correspond to cumulated totals 
since previous mission.  Melt periods are in bold font. 

DATE T MAX 

⁰C 

CUM. RAIN 

MM 

CUM. SNOW 

CM 

WIND 

SPEED 

KM·HR-1 

SKY 

CONDITIONS 

 

SNOW 

CONDITIONS 

 

2016-01-26 -5.5 No data No data 12 Clear Icy 

2016-02-02 0.5 10.8 1.6 3 Clear Wet 

2016-02-10 -3.5 0 6.4 4 Snowing Dry 

2016-02-12 -5.5 0 2.0 10 Overcast  Fresh Snow 

2016-02-17 0.5 0 23.6 3 Overcast Icy 

2016-02-18 -6.5 0  0.6 7 Clear Dry 

2016-02-22 -7.6 10.0 5.4 11 Clear Icy 

2016-02-29 0.1 27.4 9.2 9 Overcast  Dry 

2016-03-04 -6.0 0 9.1 10 Clear Icy 

2016-03-17 7 33.4 0 6 Clear Wet 

2016-03-21 4 0 0 18 Clear Wet 

2016-03-26 3.8 11.0 5.2 11 Clear Wet 

2016-04-19 14.5 72.4 0 22 Clear Bare 

 

Table 3.  Environmental conditions during P3P missions over Acadia. Rain and snow correspond to cumulated totals 5 

since previous mission.  Melt periods are in bold font. 

DATE T MAX 

⁰C 

CUM. RAIN 

MM 

CUM. SNOW 

CM 

WIND 

SPEED 

KM·HR-1 

SKY 

CONDITIONS 

SNOW 

CONDITIONS 

 

2106-02-10 -3.0 0 22.8 9 Clear Dry 

2016-02-18 0 26.1 1.6 11 Clear Wet 

2016-02-19 -1.0 22.0 6.0 26 Clear Wet 

2016-02-23 -8.0 5.4 0 10 Clear Wet,Patchy 

2016-03-04 -3.5 50.0 0 21 Clear Wet,Patchy 

2016-03-06 -2.0 0  0 25 Clear Wet,Patchy 

2016-03-08 4.0 0 2.0 24 Clear Wet,Patchy 

2016-03-10 4.0 5.5 0 18 O vercast Wet,Patchy 

2016-03-11 0 0 4.3 11 Overcast  Dry 

2016-03-14 0 0 0 13 Clear Dry, Patchy 
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2016-03-20 -9.0 0 0 13 Clear Dry 

2016-03-23 -1.0 19.0 0 18 Overcast  Icy 

2016-03-24 -8.0 0.5 12.2 5 Overcast  Fresh Snow 

2016-03-26 -2.0 11.2 4.0 4 Clear Dry 

2016-03-30 3.0 39.3 0 13 Clear Fresh Snow 

2016-04-14 11.1 65.8 0 15 Overcast  Bare 

 

3.2 UAV Data Processing 

 

Seventy-one missions were processed with Pix4D (details in Supplementary Material Section 6).  Of these, three missions over 

GN, corresponding to either snowing or icy snow conditions, resulted in <500 matches/image and subsequently 𝑃 < 50% .  5 

Two other missions (GN 29/02/2016) and (AB 08/03/2016) also resulted in 𝑃 < 50%.    During both of these missions, there 

was spatially uniform fresh snow that possibly reduced the number of spatial features suitable for matching.  The remainder 

of the missions were each processed using a single block adjustment with a median  𝑃 = 97% (minimum = 80% ).   

 

The key point match density varied substantially between missions and sites (Figure 3).  Fresh snow or ice conditions resulted 10 

in 𝐷 < 10 matches/m2 irrespective of the site.  Season average 𝐷 was higher over Acadia (83 matches/m2) than Gatineau 

(28  matches/m2) even considering only dates without icy or fresh snow (91 𝑚atches/m2 for Acadia versus 42 matches/m2 for 

Gatineau).   For dates at or exceeding the median 𝐷,  𝐾  ranged from 4 to 8 (not shown).  Pix4D does not provide a similar 

statistic over sub-areas.  Missions with differing sky conditions but constant snowpack conditions only occurred at AA for one 

pair of dates (08/03/2016 and 10/03/2016) when missions were repeated due to instrument failure on the first date at AB.    For 15 

these two missions, 𝐷 was higher under clear versus overcast conditions but there was insufficient replication to determine if 

this impacted ∆𝑆𝐷 estimation.   

 

Horizontal accuracy ranged from -0.68 cm to 0.57 cm (median -0.01 cm) and vertical accuracy ranged from -1.10 cm to 0.48 

cm (median -0.04 cm) (Figure 4a).  There was evidence of a linear relationship between vertical and horizontal accuracy after 20 

accounting for outliers.  Horizontal uncertainty ranged from 0.44 cm to 11 cm with a median of 1.87 cm while the vertical 

uncertainty ranged from 0.045 cm to 4.6 cm with a median of 1.02 cm (Figure 4b).  Over 75% of missions resulted in a 

geolocation uncertainty under 4 cm in both horizontal and vertical.  Uncertainty less than 0.5 cm RMSD was only observed 

for missions with 𝐷 > 50 matches/m2 but uncertainty was unrelated to 𝐷 past this matching density.    Horizontal precision 

ranged from 0.04 cm to 10.7 cm (median 1.76 cm) and vertical precision ranged from 0.04 cm to 4.5 cm (median 0.99 cm) 25 

(not shown).   A least absolute residual regression (https://www.mathworks.com/help/stats/robustfit.html) of vertical versus 

horizontal precision gave an adjusted r2 of 0.97 with a slope of 1.11 (95% confidence interval [1.04,1.18]).   Precision error 
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was closely related to uncertainty due to the low bias relative to uncertainty (not shown).  Similar to accuracy, a least absolute 

residual regression of vertical versus horizontal precision gave an adjusted r2 of 0.95 with a slope of 0.58 (95% confidence 

interval [0.54, 0.62]).    The effect of sky condition on geolocation performance was not systematic across the entire dataset.  

There were insufficient replicates having the same surface conditions but different sky conditions to perform a quantitative 

analysis of this effect on geolocation performance.    5 

 

As expected, micro-topographic roughness increased from qualitatively smooth to rough sites with average RMSD values 

under 5 cm at Gatineau, between 5 cm and 10 cm at AA and AB and 42 cm at AC (Figure 5).    AC indicated the presence of 

high spatial frequency variation (length scales < 10 cm) that were due to low vegetation rather than variations in ground surface 

elevation per se.    Figure 6 indicates that for conditions other than icy/fresh snow, except for the forested AC site, 𝐷 increased 10 

with micro-topographic roughness.  Key point density was lower for icy/fresh snow conditions versus other conditions at all 

sites; decreases ranged from ~35% at AC to ~1000% at GS.  The season average decrease was only different from zero at a 

significance level of 0.05 when the RMSD related to topographic roughness was less than 0.08 (i.e. GN, GS and AA).     

 

The effect of hourly average wind speed on either 𝐷 , geolocation accuracy or geolocation uncertainty was also evaluated at 15 

each site using ordinary least squares regression.  For each site, the r2 was below 0.5 and the slope was not significantly different 

from 0 at p=0.05.  As with sky condition there were insufficient trials to control for snow surface condition when evaluating 

the effect of wind speed.   
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Figure 3.  Pix4D automated key point match density for (a) Gatineau and (b) Acadia together with an indicator of fresh snow (square 
symbols).  Missions (solid circular symbols) for the same site are connected by lines.  Red squares indicated overcast conditions. 
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Figure 4.  (a) Accuracy and (b) uncertainty of absolute geolocation for digital surface models based on cross-validation with GCPs.  
Symbol area proportional to mission average key point match density.   
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Figure 5.  Deviations from local robust linear trend (based on 15 m moving window) of densified point cloud elevations along each 

transect.  O nly the first 15 m of each transect are shown for clarity.  The root mean square deviation (RMSD) for elevations over 
the entire transect is also indicated. AC is truncated as the transect consisted of sh orter line segments. 
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Figure 6.  Season average key point matching density versus root mean square deviation (RMSD) of e levation deviation along 

transect for icy and fresh snow missions (hollow triangles) and “other” missions with  snow cover (solid circles) during snow covered 
periods.  The difference in season average matching density between icy/fresh snow and “other” was statistically significant at p=0.05 
for RMSD<0.8 (plots GN, GS, AA) but not statistically different at p=0.15 for RMSD<0.8  plots AB, AC). 5 

 

3.2 ∆𝑺𝑫 Mapping Performance 

 

The performance of ∆𝑆𝐷 mapping was evaluated in terms of both changes between successive dates and changes between a 

given date and snow free conditions.  Figure 7a shows the ∆𝑆𝐷 between successive dates for each transect.  Vertical 10 

(horizontal) bars indicating the one standard deviation confidence interval due to within transect variation in ∆𝑆𝐷 from the 

image data (in-situ data). The bars indicate that spatial variability in ∆𝑆𝐷 within a transect was often larger than the 2.6 cm (1 
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standard deviation) uncertainty for in-situ ∆𝑆𝐷 estimation for a transect assuming no spatial variability.  As such, the in-situ 

measurement method was considered sufficiently precise for reference estimates.  Nevertheless, due to within transect variation 

in ∆𝑆𝐷, the precision of both in-situ and image based methods was often similar in magnitude to observed ∆𝑆𝐷 so that 

statistically significant comparisons could not be conducted for individual dates.  Rather, in -situ and image based ∆𝑆𝐷 were 

compared using statistics based on differences observed for all dates for each transect.  In this case, uncertainty ranged from 5 

2.54 cm to 5.12 cm for the non-forested sites to 8.68 cm at AC.  The temporal bias was substantially smaller than uncertainty, 

ranging from between -0.80 cm at GS to 0.35 cm at AC.  As such the precision error was only slightly less than the uncertainty 

(not shown).   There were seven instances where the observed difference exceeded 5cm.  Four were overestimates ranging 

from 5cm to 10cm at Gatineau and the other three were all at AC including the largest residual corresponding to an 

underestimate of 20cm.  Four of these instances, including the 20cm error, involved at least one date with either extremely icy 10 

snow and another with deep fresh snow.  In such cases the 𝐷 can be low (Figure 3) while the snowpack itself has changed 

substantially between dates.  Two other cases involved rapid melt leading to exposed ground surfaces on the latter date.  We 

also noted that at AC, the identified key points were often at snow-vegetation intersections (not shown), that may differ 

systematically in ∆𝑆𝐷 when compared to the stakes that were placed within openings.   

 15 

Figure 7b compares  ∆𝑆𝐷 between snow covered and snow free conditions (i.e. estimated 𝑆𝐷).  In this case, the confidence 

interval of ∆𝑆𝐷 for a transect was on average +5.2 cm/-6.3 cm for in-situ and +4.1 cm/-7.8 cm for image based estimates.  

Uncertainty ranged from 1.58 cm at AB to 10.56 cm at GN.   Accuracy varied between sites. Bias was below 1.2cm for GS 

T1, AA and AB.  In contrast, bias at the other sites exceed +/-5cm (-10.05cm at GN T1, -6.23cm at GS T1 and 5.5CM at AC).   

Moreover, the bias was consistent over time with the exception of large (>5cm) under estimates for the date just prior to 20 

snowmelt for all sites except AB.   
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Figure 7.  Validation of (a) snow depth change for successive (~weekly) measurements  and (b) corresponding snow depth over 

transects.  Shaded symbols correspond to icy or fresh snow conditions.  Horizontal (vertical) bars correspond to +/-34%ile interval 
of within transect in-situ (UAV) snow depth estimates. 
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4.0 Discussion 

 

4.1 Temporal and Spatial Variation of Snowpack Conditions  

 

Missions were conducted over a range of snowpack conditions including peak snowpack with  both fresh and aged snow, ice 5 

covered snow, partial snow cover during melt and snow free just after melt.  In this sense, the experiment offers a realistic  

sampling of ephemeral snow packs for the temperate climate regions of our study sites.  In contrast to studies reviewed in 

Section 1, snow pack conditions were often icy (5 of 29 dates) and patchy (6 of 29 dates) due to frequent rain on snow events.  

Ideally, the temporal sampling could have been enhanced by adding additional missions during the same day or adjacent days 

to assess the impact of sky and weather conditions on ∆𝑆𝐷 estimates. 10 

 

The uncertainty of in-situ ∆𝑆𝐷 was primarily due to precision error from spatial variability rather than measurement error.  

This aspect is important when evaluating image based estimates of ∆𝑆𝐷 since the difference between a single in-situ and 

remote measurement will include some element of spatial uncertainty due to differences in the compared area.  A number of 

previous studies have directly reported the RMSD between image based ∆𝑆𝐷 and point measurements (e.g. Nolan et al. 2014; 15 

Harder et al. 2016; Vander Jagt et al., 2016).  One may argue that single measurement comparisons includes the horizontal 

uncertainty of the image based map but practically speaking users of ∆𝑆𝐷 maps are likely interested in the transect average in 

the same manner that users of current in-situ networks require transect averages rather than the spatial distribution of ∆𝑆𝐷 at 

cm resolution.  Nevertheless, the within transect range of ∆𝑆𝐷 from both in-situ and image based approaches is important for 

understanding the representativeness of the measurements as well as potential biases.  In this regard, the within transect 20 

variation for image based ∆𝑆𝐷 was approximately the same magnitude as for in-situ ∆𝑆𝐷 but skewed towards lower ∆𝑆𝐷 

when considering snow depth due to local positive biases in the snow free DSM in the presence of vegetation.  Similar biases 

have been reported in previous studies (Vander Jagt et al., 2016; Gindraux et al., 2017). 

 

4.2 SfM Performance with Snowpack Condition, Micro-topography and Wind Speed 25 

 

The mission performance of the consumer-grade UAV was encouraging given that it was often operated at the edge of its 

performance envelope in terms of wind speed and air temperature and under varying illumination conditions.  The percentage 

of calibrated images and 𝐷 decreased substantially in the presence of precipitation or very smooth surface conditions such as 

fresh snow or ice.  The decrease was greatest over sites with low micro-topographic roughness (GN, GS and AA) although the 30 

lack of statistical significance for the decrease at AB and AC may be due to the limited number of icy/fresh snow dates (three).  
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Qualitative assessment of imagery during snow covered conditions indicated that, in contrast to AB and AC that had substantial 

exposed vegetation and rough topography, key points at the other sites were chiefly found along ridges and shadows cast by 

snowdrifts.  Bühler et al. (2017) and Gindraux et al. (2017) reported similar findings with other UAV systems for fresh snow 

but not for glacier ice.  In our study, ice was typically in the form of a flat surface pond or smoothed snow pack while in these 

studies ice was the surface of a glacier that included topographic roughness. In any case, the lower key point density in both 5 

their study and ours was due to smooth surfaces.  In principle one could interpolate ∆𝑆𝐷  across smooth regions using the ∆𝑆𝐷 

at their perimeter.  Otherwise, the percentage of calibrated images did not vary substantially across sites and was consistently 

not a limiting factor in terms of performance (i.e. >97%).   

 

Key point density decreased by almost one order of magnitude when comparing missions flown with snow more than 1 day 10 

old and missions with either deep fresh snow or smooth icy snow packs.  Previous studies have identified the drop in both 

elevation and SD accuracy due to deep fresh snow (Nolan et al. 2014; Avanzi et al. 2017) and icy conditions (Gindraux et al., 

2017).   Here we demonstrate that 𝐷 may be a useful indicator of such conditions and hence an indicator of the quality of ∆𝑆𝐷 

estimates.  The experiment did not control for sky conditions.  The one pair of missions with similar snow conditions but 

different sky conditions did not show substantial changes in either the percentage of calibrated images or 𝐷 .  Nevertheless, 15 

the lack of dense canopy conditions and controlled sky conditions means that this study does not address the issue of large cast 

shadows (or lack thereof) on estimating snow depth changes using a low flying UAV.  Bühler et al. (2017) reported that digital 

surface models from UAV images acquired in cast shadows appeared to be qualitatively noisier than those without shadows 

and resulted in unrealistic (both negative and very high) estimates of SD after differencing from accuracy bare earth models.  

They suggested that a combination of visible and near-infrared imagery might reduce uncertainty in areas of cast shadow.  20 

Alternatively, measurements during overcast conditions may be sufficient to map ∆𝑆𝐷 with sufficient accuracy in areas of 

persistent shadows.   

 

Previous studies have not systematically evaluated the sensitivity of ∆𝑆𝐷 estimation to micro-topography or vegetation 

density.  The sites selected for this experiment were nominally flat at length scales of tens of metres, except in the vicinity of 25 

GS T3.  However, micro-topography varied between sites.  All of the Gatineau sites had little or no micro-topographic variation 

while the Acadia sites progressed from tree stumps (AA) to mounds covered with shrubs (AB) to mounds covered with shrubs 

and a regenerating canopy (AC).   Overstory vegetation cover was less than 10% along transects except at AC where cover 

within a 1 m radius vertical cylinder centred at each s take was estimated to average 38% ( range [0%, 52%]).  However, GN 

and GS T1 has substantial thatch exceeding 5cm in height under the snow that was present during the snow free mission while 30 

AC had cover of understory herbs low shrubs ranging from 5cm to 10cm in height.  As such, this experiment provides new 

results for a range of micro-topography and understory/low vegetation but is limited in terms of over story cover.  As previously 

indicated, this was a conscious decision due to the difficulty of adequate non-destructive in-situ sampling in forested areas and 
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our desire not to further complicate the point cloud processing when having to deal with snow on vegetation.  Excluding fresh 

and icy snow, that varied in frequency between Gatineau and Acadia, 𝐷 was generally proportional to micro-topographic 

roughness for sites without overstory.  The behaviour with overstory (AC) may have been due more to our inclusion of 

vegetation PC points within our micro-topography index since the matching density at AC was similar to AB where the 

understory and surface topography was subjectively similar.  Assuming this is the case, these results suggest a compensating 5 

effect between increasing variability in ∆𝑆𝐷 due to micro-topographic complexity and increasing 𝐷 that may explain why, 

outside of icy and fresh snow, RMSD and accuracy was similar across sites when estimating ∆𝑆𝐷 change. 

 

The absence of a statistically significant linear relationship between hourly average wind speed and either 𝐷 or geolocation 

performance was not surprising.  Firstly, we did not perform missions where all other factors but wind speed were controlled.  10 

In addition, our wind speed data may not have been representative of actual conditions. Daily maximum gusts, corresponding 

to instantaneous recordings, were often twice the magnitude of hourly average wind speed suggesting that the UAV may have 

experienced higher wind speeds during its mission on calmer days.  Additionally, missions were delayed if extreme local gusts 

were observed.  We also did not control for snow and illumination conditions when considering the effect of wind  speed (e.g. 

by performing missions on subsequent days with different wind speed by same illumination).   We hypothesize that, except 15 

for very large gusts, the PIX4D block adjustment procedure is capable of accounting for uncertainty in camera attitude and 

location since we observed little or no sensitivity of either 𝐷 or geolocation performance when using imagery with our without 

ephemeris (not shown).  Rather, the major difference was the decrease in time for key point matching and block adjustment 

when providing accurate ephemeris in comparison to no ephemeris information except for the time of acquisition.   

 20 

4.2 Geolocation and ∆𝑺𝑫 Validation 

 

The geolocation performance of derived DSMs was exceptional considering that the UAV was a consumer grade device. Bias 

errors were smaller than the precision of the GCPs themselves suggesting that spatial variation in DSM errors may have a large 

random component.  We could not test this hypothesis as we had limited control points that were all in relatively open areas.   25 

The DSM accuracy over GCPs was higher than reported in other studies over natural landscapes (e.g. Nolan, 2015; Harder, 

2016; Gindraux 2017) but similar to performance over fabricated targets (Nasrullah et al., 2016).  This is partly explained by 

the high spatial resolution of the imagery in our study but we hypothesize it was also due to use of easily visible elevated GCP 

targets that were identified in many images.  For example, the number of image matches at GCPs ranged from 10 to 30.  

Assuming independent errors at each GCP the number image matches corresponds to a theoretical ratio of vertical to horizontal 30 

accuracy of between 0.9 to 5 at a single point or 0.42 to 2.2 over five GCPs .  The observed ratio based on a robust line fit was 

1.1 indicating agreement with theory.  The strong correlation observed between horizontal and vertical accuracy error was also 
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in line with the theoretical error model.  We did not have sufficient spatial sampling of surface elevations over snow covered 

areas to test the model in terms of snow surface elevation.  This should be performed in future studies using reference 

measurements from surface instruments (e.g. Avanzi et al., 2017). 

 

Validation of ∆𝑆𝐷 requires minimally invasive reference estimates using methods that also does not substantially change the 5 

performance of UAV estimates.  Considering the potential for large variations in 𝑆𝐷 and ∆𝑆𝐷 with microtopography we 

decided to control the reference locations by using fixed stakes.  This strategy could have led to an (artificial) increase in 

precision if the stakes led to an increase in the 𝐷 as well as an increase if accuracy if the same key points on stakes were 

detected in multiple images within or between missions.  Examination of maps of automated key points a posteriori indicated 

that the PIX4D algorithm rarely found a key point along a stake (e.g. Supplementary Material Section 7).  Furthermore, the 10 

few cases where a key point was identified on a stake corresponded to locations with exposed vegetation around the stake that 

would potentially exhibit a match in any event.  PIX4D Mapper uses a proprietary implementation of a reduced set of features 

derived from the Scale Invariant Feature Transformation (SIFT) (Strecha, 2011).  SIFT features are defined to specifically 

eliminate key points that have poorly determined locations but high edge responses; especially corner features (Lowe, 2004).  

We hypothesize that, especially for snow covered conditions, the relatively narrow stakes correspond to such features and are 15 

subsequently avoided by PIX4D Mapper when identifying key points.  If so, our results may actually be somewhat pessimistic 

since there are potentially fewer key points near stakes.   

 

Validation of weekly ∆𝑆𝐷 indicates that bias across all sites and dates was smaller than the typical uncertainty for a given 

transect both from in-situ or image based methods and of the same order of magnitude of conventional automated or manual 20 

measurements at point locations.  There was evidence of two larger (>5 cm) over and underestimates at the forested AC site 

that may be due to snow present on vegetation near the ground (overestimates) or under sampling of the PC due to fresh snow 

(underestimates).  There were also instances of underestimates exceeding 5 cm during melt over the Gatineau sites.  Both of 

these cases corresponded to icy anterior conditions that may have favoured point cloud matches in areas with rougher snow 

that had not yet melted.  In each of these cases, one of the compared elevation surfaces had far lower 𝐷 that typical for the site 25 

suggesting that 𝐷  may be a useful indicator of confidence in estimated ∆𝑆𝐷.  Notwithstanding these issues, the typical 

uncertainty of ∆𝑆𝐷 was close to the theoretical error of ~2.44 cm for a single estimate.  This suggests that sources of error 

within a transect are likely correlated since one would expect substantial reduction in the ∆𝑆𝐷 for the transect considering that 

100s of PC samples are averaged.  The correlation is potentially explained by the fact that the stakes in each transect share the 

same images for the most part and therefore potentially suffer the same lateral displacement errors.   30 

 

Validation of 𝑆𝐷 (comparing snow and snow free conditions)  indicated that the range of RMSD (from ~1.5cm to ~10.5cm) 

falls within the +/-10 cm uncertainty reported in previous studies (see Section 1) with a tendency for underestimation in areas 
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with substantial ground thatch layer.    The underestimate in these conditions was approximately the same magnitude of the 

thatch height leading us to hypothesize that they are related to an overestimate in the local DSM height as previously suggested 

(Nolan et al., 2014; Avanzi et al., 2017).  This hypothesis could be tested in future studies using supplementary in-situ elevation 

measurements (e.g. Avanzi et al., 2017) although it is also consistent with the relatively unbiased estimate of ∆𝑆𝐷 changes 

between snow covered dates.   We also hypothesize that the overestimate at AC may be due to snow covered vegetation being 5 

included in the sampled PC around each stake when estimating the DSM for snow covered areas.  Harder et al. (2016) noted 

a similar bias due to stubble protruding from shallow snow packs.  Here, we used the median snow surface elevation based on 

PC colour processing that seemed to avoid this effect for other sites.   More sophisticated algorithms for separating snow 

covered surfaces from over story vegetation should be evaluated.   

5.0  Conclusions 10 

 

Snow depth is an important geophysical quantity that exhibits substantial variation in space over distances of metres and in 

time over daily intervals.  Systematic snow depth monitoring to date has emphasized temporal resolution.  Th is study evaluated 

the potential for light-weight UAV imagery, processed using off-the-shelf SfM software, for mapping the change in snow 

depth over natural vegetated landscapes.  The primary goal of this study was to compare this approach when mapping changes 15 

in snow depth between successive snow covered dates versus between a snow covered and snow free date over land cover with 

varying vegetation density and micro-topography and with ephemeral snow packs.   The sampled sites exhibited only modest 

variation in overstory vegetation cover (from 0% to 38% averaged over a transect) but substantial variability in micro -

topography including tree stumps, hummocky terrain and mowed pasture.  The study also addressed a second goal of 

comparing observed accuracy and precision of snow depth change and associated surface elevations with estimates based on 20 

photogrammetric theory.  

 

A total of 71 UAV missions were flown in a range of conditions with surface elevation maps derived at between 2 cm and 3 

cm horizontal ground sampling distance and with median (range) of horizontal and vertical uncertainty of 1.87 cm (0.44 cm 

to 11 cm) and 1.02 cm (0.045 cm to 4.6 cm) respectively in comparison to man-made ground control points.  Validation over 25 

five different study sites from mid-winter to snow free conditions indicated an uncertainty of 6.45 cm (1.58 cm to 10.56 cm) 

and accuracy of 3.33 cm (-10.05 to 5.05 cm) for the average snow depth over a ~50m long transect.  Snow depth was 

systematically underestimated over sites with dense low vegetation by ~5 cm.  As the underestimate was the same magnitude 

as the vegetation height during snow free conditions we hypothesize the underestimate is related to an overestimate of the 

snow free ground elevation.  Validation for the average change of snow depth over a transect between successive (~weekly) 30 

missions indicated uncertainty of 3.40 cm (2.54 cm to 8.68 cm) and accuracy of 0.31 cm (-0.19 cm to 0.80 cm).    
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Observed uncertainty for snow depth change agreed with the theoretical uncertainty (mean value of 2.44 cm and range of 1.2 

cm to 5.25 cm depending on the number of matches at a key point) when considering the difference between two snow covered 

dates.  In general, uncertainty in associated surface elevations agreed with theoretical es timates both in magnitude and in terms 

of the expected correlation between horizontal and vertical errors.  The observed uncertainty in absolute snow depth was larger 5 

than theoretical uncertainty chiefly due to bias in estimates of the bare ground elevation in the presence of vegetation within 

the snow free reference image.   In this case the bias is likely to be specific to local conditions and it may be possible to use 

in-situ measurements to calibrating for this bias if UAV based estimates of snow depth are combined with in-situ 

measurements.  Even so, the uncertainty of UAV based weekly snow depth change is comparable to typical in-situ 

measurements approaches suggesting that a combination of both measurements should be considered for producing high 10 

spatiotemporal resolution maps of snow depth change in complex terrain.  We recommend that future studies consider the 

potential of using UAV information on snow depth change rather than absolute snow depth.    

 

Further studies are required to investigate the performance of snow depth change mapping using similar UAV data in terms of 

sensitivity to changes in key point sampling density due to changing illumination and wind speed, in terms of the precision of 15 

snow depth change estimates under denser canopies where the non-vegetated surface is substantially obscured, and to quantify 

performance as a function of UAV mission and SfM software parameters.  Nevertheless, the results from our multi-site/multi-

operator study suggest that UAV based estimates of snow depth and snow depth change over areas corresponding to a typical 

in-situ transect have comparable uncertainty to current manual in-situ estimates while offering substantially greater coverage.   

Moreover, the technology can be applied with widely available off the shelf equipment and software.  While our study had a 20 

~10ha limit due to using a single mission, spatial coverage can be extended to line of site using multiple missions or multiple 

cameras on the same UAV or even past line of sight given adequate certification.  Moreover in-situ GPS targets may not be 

required if baseline networks can be processed using post processed kinematic methods.   Assuming these results are 

representative of wider landscapes and snow conditions we recommend that subsequent studies address the problem of 

combining airborne UAV survey based information on snow depth change with high temporal sampling satellite and in -situ 25 

information to improve snowpack characterization and reduce uncertainty in estimates of streamflow.   
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