
Supporting Information for

Iron oxides in the cryoconite on the glaciers over Tibetan Plateau: abundance, speciation and implications

Zhiyuan Cong^{1, 5,*}, Shaopeng Gao¹, Wancang Zhao³, Xin Wang⁴, Guangming Wu^{1, 6}, Yulan

Zhang², Shichang Kang^{2, 5, *}, Yongqin Liu¹, and Junfeng Ji³

- 1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- 2 State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- 3 Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
- 4 Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- 5 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
- 6 University of Chinese Academy of Sciences, Beijing 100049, China

Figure S1. The calibration curve for 450 nm (red) and 600 nm (blue) against black carbon standards (fullerene soot). The solid curves were derived from best-fit of third-order polynomial between loading and attenuation, with the correlation coefficient (r) of 0.99.