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Abstract. The measurement of glacier velocity fields using repeat satellite imagery has become a standard method of cryospheric

research. However, the reliable discovery of important glacier velocity variations on a large scale is still problematic, because

time series span different time intervals and are partly populated with erroneous velocity estimates. In this study we build

upon existing glacier velocity products from the GoLIVE data set (https://nsidc.org/data/golive) and compile a multi-temporal

stack of velocity data over the Saint Elias Mountain range and vicinity. Each layer has a time separation of 32 days, making5

it possible to observe details such as within-season velocity change over an area of roughly 150 000 km2. Our methodology

is robust as it is based upon a fuzzy voting scheme applied in a discrete parameter space, and thus is able to filter multiple

outliers. The multi-temporal data stack is then smoothed to facilitate interpretation. This results in a spatio-temporal dataset

where one can identify short-term glacier dynamics on a regional scale. The goal is not to improve accuracy or precision, but to

enhance extraction of the timing and location of ice flow events such as glacier surges. Our implementation is fully automatic10

and the approach is independent of geographical area or satellite system used. We demonstrate this automatic method on a

large glacier area in Alaska/Canada. Within the Saint Elias and Kluane mountain ranges, several surges and their propagation

characteristics are identified and tracked through time, as well as more complicated dynamics in the Wrangell mountains.
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1 Introduction15

Alaskan glaciers have a high mass turn-over rate (Arendt, 2011) and contribute considerably to sea level rise (Arendt et al.,

2013; Harig and Simons, 2016). Monitoring changes in ice flow is thus of importance, especially since the velocity of these

glaciers fluctuates considerably. Many of the glaciers have been identified as surge-type based on direct observations or from

their looped moraines (Post, 1969; Herreid and Truffer, 2016). Furthermore, glacier elevation change in this region is het-

erogeneous (Muskett et al., 2003; Berthier et al., 2010; Melkonian et al., 2014), providing another indication of complicated20
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responses. Gaining a better understanding of causes of glacier mass re-distribution is necessary in order to separate surging and

seasonal variation from longer term trends.

Glacier velocity monitoring through satellite remote sensing has proven to be a useful tool to observe velocity change on a

basin scale. Several studies have focused on dynamics of individual glaciers in Alaska at an annual or seasonal resolution (Fat-5

land and Lingle, 2002; Burgess et al., 2012; Turrin et al., 2013; Abe and Furuya, 2015; Abe et al., 2016). Such studies can give

a better understanding of the specific characteristics of a glacier, and which circumstances are of importance for this behaviour

and response. Region-wide annual or “snapshot” velocities also have been estimated over the Saint Elias Mountain range in

previous studies (Burgess et al., 2013; Waechter et al., 2015; Van Wychen et al., 2018). The results give a first-order estimate

of the kinematics at hand. With frequent satellite data coverage, one study found it is possible to detect the time of glacier10

speed-ups to within a week (Altena and Kääb, 2017b), although this study did not include an automated approach. In the most

recent work, regional analyses have been conducted over sub-seasonal (Moon et al., 2014; Armstrong et al., 2017) and multi-

decadal (Heid and Kääb, 2012a; Dehecq et al., 2015) periods. With such data one is able to observe the behaviour of groups

of glaciers that experience similar climatic settings. Consequently, surges and other glacier-dynamical events can be put into a

wider spatio-temporal perspective.15

Since the launch of Landsat 8 in 2013 a wealth of high-quality medium-resolution imagery is being acquired over the

cryosphere on a global scale. Onboard data storage and rapid ground-system processing have made it possible to almost con-

tinuously acquire imagery. The archived data has enormous potential to advance our knowledge of glacier flow. Extraction of

glacier velocity is one of the stated mission objectives of Landsat 8 (Roy et al., 2014). The high data rate far exceeds the pos-20

sibilities for manual interpretation. Fortunately, automatically generated velocity products are now available (Scambos et al.,

2016; Rosenau et al., 2016), though at this point sophisticated quality control and post processing methods are still being de-

veloped.

Up to now, most studies of glacial velocity have had an emphasis on either spatial or temporal detail. When temporal detail25

is present, studies focus on a single or a handful of glaciers (Scherler et al., 2008; Quincey et al., 2011; Paul et al., 2017).

On the other hand, when regional assessments are the focus, studies limited themselves to cover a single period with only an

annual resolution (Copland et al., 2009; Dehecq et al., 2015; Rosenau et al., 2015). Most studies rely on filtering in the post-

processing of vector data by using the correlation value (Scambos et al., 1992; Kääb and Vollmer, 2000) or through median

filtering within a zonal neighborhood (Skvarca, 1994; Paul et al., 2015). Some sophisticated post-processing procedures are30

available (Maksymiuk et al., 2016), but rely on coupling with flow models. Alternatively, geometric properties can be taken into

account during the matching to improve robustness and reduce post-processing efforts, such as reverse-correlation (Scambos

et al., 1992; Jeong et al., 2017) or triangle closure (Altena and Kääb, 2017a).
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While glacier velocity data is increasingly available, in general post-processing is not at a sufficient level to directly exploit35

the full information content within these products. In this study we describe the construction of a post-processing chain that

is capable of extracting temporal information from stacks of noisy velocity data. Our emphasis is on discovering temporal

patterns over a mountain-range scale. Analysis of the details of glacier-dynamical patterns identified by this processing will be

considered in later work. For a single glacier, it is certainly possible to employ manual selection of low-noise, good-coverage

velocity data sets. However, such a strategy will not be efficient when multiple glaciers or mountain ranges are of interest. In5

this contribution we want to develop the methodological possibilities further and try to construct glacier velocities at a monthly

resolution over large areas. Therefore, our implementation focuses on automatic post-processing, without the help of expert

knowledge or human interaction. Our method retains spatial detail present in the data and does not simplify the flow structure

to flowlines. This methodology can generate products that improve our knowledge about the influence and timing of tributary

and neighbouring ice flow variations.10

We start by discussing the data used and provide background on the area under study. We then introduce the spatio-temporal

structure of the data, followed by an explaination of our process for vector “voting” and vector field smoothing. The final

section highlights our results and our validation and assessment of the performance of the method.

15

2 Data and study region

2.1 GoLIVE velocity fields

The Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE) velocity fields used in this study are based upon repeat opti-

cal remote sensing imagery and are distributed through the National Snow and Ice Data Center (NSIDC; https://nsidc.org/data/golive)

(Scambos et al., 2016). These velocity fields are derived from finding displacements between pairs of Landsat 8 images, using20

the panchromatic band with 15 meter resolution. A high-pass filter of one kilometer spatial scale is applied before processing.

Normalized cross-correlation is applied between the image pairs on a sampling grid with 300 meters spacing (Fahnestock et al.,

2016; Scambos et al., 1992) and a template size of 20 pixels (or 300 m). The resulting products are grids with lateral displace-

ments, the absolute correlation value, signal-to-noise ratio and ratio between the two best matches. At the time of writing,

displacement products can cover a time interval from 16 days up to 96 days. For a detailed description of the processing chain25

see Fahnestock et al. (2016).

The Landsat 8 satellite has a same-orbit revisit time of 16 days and a swath width of 185 km. Only scenes which are at

least 50% cloud-free are used (as determined by the provided estimate in the metadata for the scenes). Consequently, not every

theoretical pair combination is processed, and no pairs of overlapping images different orbits (paths) are used (cf. (Altena and

Kääb, 2017a)) to avoid more complicated viewing geometry adjustments. Georeference errors are compensated by the estima-

tion of a polynomial bias surface through areas outside glaciers (i.e., assumed stable). The glacier mask used for that purpose

3
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Figure 1. Nominal Landsat 8 footprints used over the study region. The purple text annotates the different satellite paths of LANDSAT, while

the black text indicates the relative overpass time in days in respect to path 63.

is from the Randolph Glacier Inventory (RGI) (Pfeffer et al., 2014). The resulting grids come in Universal Transverse Mercator

(UTM) projection and if orthorectification errors are minimal, displacements for precise georeferencing require only horizon-5

tal movement of a few meters (generally <10 m). In total we use twelve Landsat path/row tiles to cover our study area (Figure 1).

2.2 Study region

The region of interest covers the Saint Elias, Wrangell and Kluane Mountain ranges, as well as some parts of the Chugach

range. Many surge-type glaciers are located in the Saint Elias Mountains (Post, 1969; Meier and Post, 1969). These ranges10

host roughly 42 000 km2 of glacier area with roughly 22% of the glacier area connected to marine terminating fronts draining

into the Gulf of Alaska (Molnia, 2008). The glaciers in this area are diverse, as a wide range of thermal conditions (cold and

warm ice) and morphological glacier types (valley, icefields, marine terminating) occur in these mountain ranges (Clarke and

Holdsworth, 2002). This diversity is in part due to the large precipitation gradient over the mountain range. The highest amount

of precipitation falls in summer or autumn. The study area covers mountain ranges with two distinct climates. Along the coast15

one finds a maritime climate with a small annual temperature range. These mountains function as a barrier, and the mountain

ranges behind, in the interior, have a more continental climate (Bieniek et al., 2012).
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graph of temporal displacements:
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t3 0 0 0 0 1
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

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indirect observation of velocity between t2 & t3

direct observation of velocity between t2 & t3

Figure 2. Graphical and matrix representation of a network. Here acquisition pairs within a network are illustrated and written down in an

adjacency matrix (AG). The dark gray squares indicate acquisitions within a period to be estimated. The connecting colors symbolize an

open (red) or closed (blue) selection of displacements to be used for the velocity estimation over this period (v).

3 Methodology

GoLIVE and other similar velocity products are derived from at least two satellite acquisitions. When images from multiple5

time instances are used, combinations of displacements, with different (overlapping) time intervals can be constructed. In or-

der to be of use for time series analysis, detailed velocity fields with different time spans need to be combined into a dataset

with regular timesteps. To reduce the noise, the temporal configuration of overlapping products can be used to synthesize am

improved multi-temporal velocity field.

10

3.1 Temporal network configuration

At the latitude of Southern Alaska, scenes from adjacent tracks have an overlap of 60%. Looking at one track only (or Landsat

path), the 16-day revisit makes several matching combinations of integer multitudes of 16 days possible. For example, suppose

that over a 64-day period (∆t), five images are acquired from one satellite track and their potential pairing combinations can

be illustrated as a network (Figure 2). In this network, every acquisition (at time t) is a node, and these nodes are connected15

through an edge that represents a matched pair leading to a collection of displacements (d) with associated similarity mea-

sures (ρ).

When velocities over different timespans are estimated, this network has in theory a great amount of redundancy. However

in practice this is complicated, as combinations of images are not processed when there is too much obstruction by clouds.20

Furthermore, individual displacements can have gross errors, as an image match was not established due to surface change

or lack of contrast and thus loss of similarity. Consequently, when data from such a network is combined to synthesize one
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consistent velocity time series the estimation procedure needs to be able to resist multiple outliers or be able to identify whether

displacement estimates could be extracted at a reliable level at all.

5

The network shown in Figure 2 can be seen as a graph; nodes correspond to timestamps and edges to matched image pairs.

Such a graph can be transformed into an adjacency matrix (AG, see Figure 2). In this matrix the columns and rows represent

different timestamps. The edges can be directed, indicating which acquisition is the master (reference) or the slave (search)

image during the matching procedure. For the GoLIVE data, the oldest acquisition is always the reference image, hence within

the matrix only the upper triangular part has filled entities. The spacing of the timesteps is 16 days and the number of days is set10

into the corresponding entries when a time step is covered by an edge. Individual days are specified so that adjacency matrices

from different tracks which have different acquisition dates can be merged. If partial overlap of an edge occurs, then the time

steps are proportionally distributed. For example, for a small network of three nodes, velocity (v) can be estimated through

least-squares adjustment of the displacements (d) through the following systems of equations (Altena and Kääb, 2017a),

y = Av, where y =




d12

d23

d13


 , A =




∆t12 0

0 ∆t23

∆t12 ∆t23


 , v =


v12
v23


 , (1)15

Here the subscript denotes the timespan given by the starting and ending timestamps of the interval. This relational struc-

ture of displacements is similar to a leveling network. When the adjacency matrix is converted to an incidence matrix, then

this matrix is the design matrix (A) (Strang and Borre, 1997). This makes the generation of such network adjustments easily

implemented.

20

This formulation of the temporal network makes it possible to estimate the unknown parameters, i.e. the temporal compo-

nents of the velocity time series, through different formulations. This is illustrated in Figure 2, where a velocity (between t2

& t3) is estimated. Displacements that fall between the two images can be used for the estimation (here blue), which we here

call a “closed” network. But as can be seen in the figure as red connections, other displacements from outside the time span

are over-arching and stretching further than the initial time interval. Such measurements can be of interest as they can fill in25

gaps or add redundancy, but the glacier flow record obtained will be aliased compared to the real motion. Consequently, we

call such a network configuration an “open” network (here red).

3.2 Voting

The velocity dataset we use (like any) contains a large number of incorrect or noisy displacements. Typically, the distribution30

of displacements has a normal distribution but with long tails. Moreover, a least-squares adjustment is very sensitive to outliers

contained in the data to be fitted. Therefore, direct least-squares computation of velocity through the above network is not

easily possible and some selection procedure is needed to exclude gross errors. Outlier detection within a network such as in
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Figure 3. On the left is a graphical representation of Landsat 8 acquisitions at different times (t) illustrated as nodes and matching solutions

with displacements (d) are shown as edges, within a network. The subscript for the displacement denotes the time interval. The velocities (v)

are estimated through the collection of all these displacements. On the right the mathematical representation or its parameter (Hough) space

for voting of displacements over two time instances is shown, in this case the parameter space of only v0,1 & v1,2 are shown.

equation 1 can be done through statistical testing (Baarda, 1968; Teunissen, 2000), assuming measurements (d) are normally

distributed. However, such procedures are less effective when several gross errors are present within the set of observations.5

Extracting information from highly contaminated data is therefore an active field of research. For example, robust estimators

change the normal distribution to a heavy tailed distribution. Nevertheless, such estimations typically still start with normal

least-squares adjustment based on the full initial set of observations, and only in the next step the weights are iteratively ad-

justed according to the amount of misfit. Hence, such methods are still restricted to robust a-priori knowledge or a data-set with

relatively small amounts of contamination by gross errors.10

Another common approach to cope with the adjustment of error-rich observations is through sampling strategies such as

least-median of squares (Rousseeuw and Leroy, 2005), or random sampling and consensus (RANSAC) (Fischler and Bolles,

1981). A minimum number of observations are picked randomly to solve the model. The estimated parameters are then used

to assess how the initial model fits in respect to all observations. Then the procedure is repeated with a new set of observations.15

The sampling procedure is stopped when a solution is within predefined bounds, or executed a defined number of times after

which the best set is taken. Such methods are very popular as they can handle high contamination of data (up to 50%) and

still result in a correct estimate. Put differently, the break-down point is .5 (Rousseeuw and Leroy, 2005). However, we use a

different approach as these methods implement polynomial models. Our data set benefits from including conditional equations

as well.20

The equations that form the model can be seen as individual samples that populate the parameter space. In such a way the

individual relations within the equation propagate into points, lines, or surfaces depending on their dimensions and relation

7



given by the equation. Hence, measurements can be transformed into a shape that is situated within the parameter space (which

has a finite extent and resolution). The collection of shapes will be scattered throughout this parameter space, but such shapes5

converge at a common point which is most likely the correct parameter values. This transformation is the Hough transform and

is commonly used in image processing for the detection of lines and circles.

However, the Hough transform is discrete while the measurements are noisy, thus the shapes should also be fuzzy. In this

study we follow this latter direction and after discretizing the displacement-matching search-space, we exploit a voting strategy.10

Because the shapes in parameter space are blurred, a fuzzy Hough transform (Han et al., 1994) is implemented. Our matching

search space is simply the linear system of equations of the network described above. To illustrate the system, an example of a

network with four displacements (d) is shown in Figure 3. These displacements can be placed within a discrete grid that spans

a large part of the parameter space (in this example two dimensional). For the short time span displacements, this results in

vertical or horizontal lines (blue, purple and orange). The lines originate from the ambiguity, which is also in the entries of the15

design matrix (A) as 0 entries. For the overarching displacement (in red) the displacement is a combination of both velocities.

Only the total displacement is known, thus the line results in a diagonal orientation (5 + 2 can be a solution as well as 1 + 6, or

a non-integer combination).

In this toy example, the lines concentrate around 3 for both velocities, but with a slight preference to the upperleft. This lo-20

cation indicates a slight speed-up between these two time spans. For this case, the blue line is an outlier; it does not contribute

to crossings in this zone, and instead creates single crossings with other correct displacements at other locations within the

parameter space. Apart from the blue line, the other crossings are concentrated around a zone, but are not perfectly intersecting

at a single point. This is due to noise present in every displacement measurement. To simulate this noise, the lines are perturbed

with a Gaussian function, as for the toy example shown in Figure 4a. In this case, every observation will fill the parameter25

space with a discretized weighting function. This fuzziness in the Hough space makes it possible to find the intersection while

noise is present. The dimension of the Hough space depends on the formulation of the network. In principle it can have any

dimension; in one dimension this is a simple histogram, but in higher dimensions this will translate into a line which radially

decreases in weight. For this study we implement a three-dimensional Hough space, which for our toy example will look like

Figure 4b, though due to visualization limitations, the fuzzy borders are not included.30

The advantage of a Hough search space is the resistance to multiple outliers. It builds support and is not reliant on the whole

group of observations. When a second or third dimensional space is used, the chances of random (line) crossing decreases

significantly in the parameter space, and such events will stand out when multiple measurements do align. Random measure-

ment errors can be incorporated through introducing a distribution function. In our implementation this is a Gaussian, but other

functions are possible as well. The disadvantage of the fuzzy Hough transform is its limitation in implementing a large and

detailed search space, as the dimension and resolution depend on the available computing resources.
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Figure 4. Two modifications used in this study, which deviate from the standard Hough-transform as given by the toy example in figure 3.

(a) the change from a clear ideal line, towards fuzzy weights. (b) the extension towards a higher dimension, in this case the lines transform

to planes, that intersect with each other.

The fuzzy Hough transform functions as a selection process to find observations which are to a certain extent in agreement.5

With this selection of inliers the velocity can finally be estimated through ordinary least-squares estimation. The model is the

same as used to construct the network. However, the observations without consensus (i.e. outliers) are not used. The remaining

observations can, nevertheless, still be misfits, such as from shadow casting, as no ice flow behavior is prescribed in the design

matrix of equation 1.

10

3.3 Smoothing

Because the voting and least-squares adjustment in our implementation has no neighborhood constraints but is rather strictly

per matching grid point, the velocity estimates contain systematic, gross and random errors, though reduced with respect to the

initial data set. This least-squares adjustment with voted displacements results in a spatio-temporal stack of velocity estimates

that have a regular temporal spacing. However, due to undersampling as a result of cloud cover or lack of consensus between15

the displacement acquisitions, the stack might have holes or ill-constrained estimates. We apply a spatial-temporal smoothing

taking both spatial and temporal information into account using the Whitacker approach that tries to minimize the following

function (S),

S =
∑

i

wi(x̂i −xi)
2 +λ

∑

i

(∆2xi)
2. (2)

This formulation is the one dimensional case, where for every location (x, where i denotes the index of the grid) an estimate

(denoted by ·̂) is searched for that minimizes S. Here ∆ denotes the difference operator, thus ∆xi = xi+1−xi. Similarly, ∆2 is
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Figure 5. Experimental variograms over a slice of the stack and over a subset of the spatio-temporal stack.The colorbar along the axis of

figure 5a, is used for the coloring of figure 5b. The aspect ratio of figure 5b is at the resolution of the produced data-cube (32 days by 300

meters). In order to make this isotropic, the vertical axis needs to enlarge, so the spread in variance is similar in any direction (isotropic).

the double difference, describing the curvature of a signal (∆2xi = x+1 − 2xi +xi−1). For the implementation of this method5

we use the procedure presented by Garcia (2010). This routine has an automatic procedure to estimate the smoothing param-

eter (λ) and has robust adaptive weighting (w). Its implementation uses a Discrete Cosine Transform (DCT), which eases the

computational load. The discrete cosine transform operates both globally and locally, and in multiple dimensions. In order to

include all data at once, the vector field is configured as a complex number field.

10

The smoothing parameter (λ) is operating over both space (2 dimensions) and time (1 dimension), but the smoothing param-

eter is a single scalar. In this form it would be dependent on the choice of grid resolutions in time and space. In order to get rid

of this dependency and fulfill the isotropy property, the spatial and temporal dimensions are scaled. For this scaling estimation

we construct an experimental variogram and look at its distribution (Wackernagel, 2013). A sub-sample of the dataset with

least-squares velocity estimates is taken for this purpose, which is situated over the main trunk and tributaries of Hubbard15

Glacier. Along the spatial axis, the variogram in Figure 5a shows spatial correlation up to about 10 kilometers. This sampling

interval is then used to look at the spatio-temporal dependencies, as illustrated in Figure 5b. At around a year temporal distance

one can see a clear correlation which corresponds to the seasonal cycle of glacier velocity. From this variogram a rough scaling

was estimated, and the anistropy was set towards a factor of four. In our case the pixel spacing is 300 meters and the time

separation is 32 days.

10
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Figure 6. Least-squares estimates of velocities for the region shown in Figure 1 with different network configurations. See Figure 3 for a toy

example of the terminology. The study region spread over several UTM zones, hence the dataset is in Albers equal-area projection (ALB)

with North American Datum 83. White regions correspond to data without an estimate.

4 Results5

4.1 Method performance

Two different temporal networks (combinations of time intervals) can be formulated in order to calculate a velocity estimate, as

is described in section 3.1. The “open” configuration includes a greater number of velocity estimates from image pairs, but this

has consequences. It results in a more complete dataset, with coherent velocity fields, but when short-term glacier dynamics

occur, temporal resolution of the event may be aliased.10

Our methodology thrives when several displacement estimates are present, otherwise testing is not possible. This prerequi-

site is especially apparent when a “closed” configuration is used, then the collection of displacements are reduced. In order to

show this dependency a slice is shown in Figure 6. In this time interval the western side has several overlapping displacement

estimates in space and time, while this is limited at the eastern side. The exact distribution of the available data for this time15

interval is also highlighted in Figure A1, within the appendix. The lack of data can be seen at the western border of both

estimates. On the eastern side the glacier velocity structure is more clearly visible, especially in the “open” configuration .

In Figure 7 more details of the two different configurations are shown. By including more imagery as with an open config-

uration, the velocity estimates are more complete, as can be seen along the outlets of Guyot Glacier. In the same subsection,20

the completeness increases and so does the consistency, which is most apparent in the coherent low velocities over stable

ground. With more displacement vectors in the configuration, smaller-scale details, such as tributaries flowing into the large

Kaskawulsh glacier, become more evident.
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The spatio-temporal least-squares estimates still have to some extent variation in direction and amplitude as well as outliers.

Therefore spatial-temporal smoothing is applied, in order to extract a better overview from the data, as is described in sec-5

tion 3.3. The results of this smoothing for the same time interval as in Figure 6 is shown in Figure 7.

In the smoothing procedure the surroundings of glaciers, which are stable- or slow moving terrain, are included. Conse-

quently, high speed-ups such as on the surge bulge on the Steele glacier are dampened, as in this case it has a confined snout

within a valley. They do not disappear, as the signal is strong and persistent over time, but damping does occur. An aspect10

of concern is the retreat of the high velocity termini of many outlet glaciers; their fronts with large velocities seem to retreat

in the smoothed version, while this is not the case for the original least-squares estimate (see example in Appendix B). This

effect is caused by surrounding zero-valued water bodies. Damping also occurs at turns such as at Hubbard glacier, where the

mask reduces the effect of stable terrain, but has no specific glacial properties. The isotropy function included in the smoother

might work for a local neighborhood, but breaks down for fast moving outlets. For this smoother, weights are given in relation15

to a neighborhood. However for glacier flow, the magnitude might be more similar in the direction of flowlines, while in the

cross-flow direction the flow orientation might be more similar. This relation is not included in the smoother, causing damping

of the gradients. There is a trade-off between the damping effect of the smoothing and the advantage of having a clear image

over large areas.

20

Because the surrounding terrain, which has no movement, impacts the smoothed glacier velocity estimates, in particular for

surge and calving fronts (i.e. for strong spatial velocity gradients), the smoothing can be supported by a glacier mask. In our

case, this mask is a rasterization of the Randolph Glacier Inventory (Pfeffer et al., 2014), with an additional dilation operation,

to take potential advance or errors in the inventory into account. The difference in result using this masking procedure is shown

in Figure 7, with some highlights. In general, the mask does compensate a little bit for the damping, but because the regions25

are mostly covered with ice its effect is small.

4.2 Validation over stable terrain

A first component for validation is an analysis of the stable ground, and the effect of the smoothing of the voted estimates. The

non-glaciated terrain is taken from a mask. A similar mask, also based on the Randolph glacier inventory, is used within the30

GoLIVE pipeline. Here, displacements over land and non-glaciated terrain are used to co-align the imagery (Fahnestock et al.,

2016), as geo-location errors might be present in the individual Landsat images. The fitting is done through a polynomial fit;

in general these offsets should be random with a zero mean.

The distribution of these stable terrain measurements, more than 65 million in total, are illustrated in Figure 8. Similar to

the visual inspection already illustrated in Figure 6b, the distributions also show a clear improvement, even though the voted

12
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Figure 7. Overview map of different sections for the time interval which is similar to Figure 6 (i.e: 21st of June till 23th of July 2015). The

surrounding zoom-ins are from the same time period, but with different configurations (open vs closed) or smoothing settings (glacier mask

vs. no-mask).
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Figure 8. Distribution of the speed over stable terrain, for displacements extracted from the voting process, or after spatial temporal smooth-

ing. The mask used is within the inset.

estimates still seem to be noisy with significant outliers.

5

4.3 Validation of post-processing procedures

The voting used in our procedure is assessed through validation with an independent velocity estimate. Terrestrial measure-

ments are limited in the study area, hence we use satellite imagery from RapidEye satellites over a similar timespan. Data

from this constellation has a resolution of 5 meters and through processing in a pyramid fashion, a detailed flow field can be

extracted. This velocity field functions as a baseline dataset to compare the GoLIVE and the synthesized data. Here we will10

look at a section of Klutlan Glacier, which flows from west to east and is thus aligned with one map axis. The velocity of this

glacier is, due to its surge, of significant magnitude, and therefore will have a wide spread in the voting space.

The two RapidEye images used over Klutlan Glacier were taken on 7th of September, and on 7th of October 2016. To retrieve

the most complete displacement field of the glacier, we used a coarse-to-fine image matching scheme. The search window de-15

creased stepwise (Kolaas, 2016) and the matching itself was done through Orientation Correlation (Heid and Kääb, 2012a).

At every step a local post-processing step (Westerweel and Scarano, 2005) was implemented, to filter outliers. The resulting

displacement field over one axis (that is x, the general direction of flow) for this period is illustrated in the upperleft inset of

Figure 9.

20

For the voting of the Landsat 8-based GoLIVE data, an overlapping time period was chosen, from the 11th of September up

to the 13th of October 2016, nearly but not exactly overlapping with the RapidEye pair. An “open” configuration was used,

meaning all GoLIVE displacement fields covering this time period were used, resulting in a total of 36 velocity fields involved

in the voting. The voted estimates and scores are illustrated in the lower panels of Figure 9. Voting scores are high over the

stable terrain, but low over the glacier trunk. To some extent this can be attributed to the surge event. The median over the stack

and the median of absolute differences (MAD) are shown on two panels on the right side of Figure 9. These two measures are
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Figure 9. Monthly displacement in x-direction over the Klutlan Glacier (for location see Figure 7) using several data sources and velocity

assessment schemes. The top panel shows velocities derived from two RapidEye images (a). Glacier borders are outlined in red. The second

figure shows displacement estimates from a GoLIVE dataset ((b),input), and the resulting voted estimate (c) of a combination of 36 GoLIVE

datasets (output). Its corresponding voting score (f) of these estimates is shown in the lower right figure. The two upper right most figures

show the median (d) and the median of absolute deviation (MAD) (e) over the full dataset. These last two results would typically be used for

data exploration.

frequently used to analyze multi-temporal datasets (Dehecq et al., 2015).

5

When looking at this time period for the GoLIVE data, a clear displacement field is shown, as both images (11th Sept., 13th

Oct.) from Landsat 8 were cloud free. The pattern is in close agreement with the RapidEye version. When looking at the voted

estimate a similar pattern is observable but more corrupted. In some respects the median estimate captures the direction of flow,

but overestimates the velocity, probably due to the surge that occurs. The spread might confirm this, as shown by the MAD, as

this is considerable and will not help to justify which displacement is correct. Furthermore, the voted estimate is an estimate5

over a short interval, while the median estimate is calculated over the full stack.

To better assess these results, the distribution of both two-dimensional displacement fields are illustrated in Figure 10a and

10b. Two groups of displacement regimes are clearly visible, a cluster showing little movement, and a group of displace-

ments with a dominant movement eastwards. The voted distribution has more spread, and outliers are present, but in general10

the mapping has the correct direction and magnitude. When the x-component of these displacements is compared against the

RapidEye displacements, the median of this difference is 0.45 m/day for the voting and 0.27 m/day for the good GoLIVE pair.

A similar trend can be seen in Figure 10c, which again shows the distributions are similar. The illustrated validations do show

the voting scheme is able to capture the general trend of the short term glacier flow through a large stack of corrupted velocity

fields. While the voted estimate is worse than the clean GoLIVE estimate, we stress that the chosen GoLIVE dataset is one15
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Figure 10. Figure 10a & 10b show the distribution of velocities for a section of Klutlan glacier, their map view are shown in Figure 9. In

figure 10c the same x-component data as in Figure 9 is shown, but now the distributions are shown.

clean example within a large collection of partly corrupted displacement fields. Hence it is a step towards efficient information

extraction, though the implemented voting has many potential areas for improvement.

4.4 Glaciological observations

When looking at the spatio-temporal dataset some patterns that have been observed by others also appear in our dataset. For20

example, the full extent of Bering glacier slows down, as highlighted by Burgess et al. (2012), however our time series covers

a period where the full deceleration towards a quiescent state can be seen. This observation of a slow down can also be made

for Donjek Glacier (Abe et al., 2016) and Logan Glacier (Abe and Furuya, 2015), see supplementary video. In the time period

covered by our study some surges appear to initiate. For example, our dataset captures a surge traveling along the main trunk

of Klutlan Glacier (see Figures B1&B2 in the appendix).
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Figure 11. Snapshots of ice speeds at different time instances from a data compilation for the summer 2016 surge occurring on Klutlan

Glacier (for location see Figure 7). The used GoLIVE data configuration is shown in Figure A1, and the data is from the smoothed dataset.
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For the surge of Klutlan Glacier, the dataset shows the evolution of its dynamics, as can be seen by some velocity time

stamps in Figure 11. The surge initiation seems to happen in the central trunk of the glacier, and the surge front progresses

downwards from there (with steady bulk velocities around four meters per day). The surge also propagates upwards mainly into5

the westernmost basin. The eastern basin does increase in speed, but to a lesser extent, while the middle basin of this glacier

system does not seem to be affected significantly. The up-glacier velocity increase is limited and does not reach the headwalls

of any basin. In Landsat imagery of late 2017, there is no indication of any heavily crevassed terrain in the upper parts of these

basins, which supports the hypothesis of a partially developed surge.

10
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(a) Speed along flowline of Klutlan Glacier, line given in Figure 11a.
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20 km

ice flow

(b) Moraine positions

Figure 12. The speed over the central flowline of Klutlan Glacier. The markings of this flowline are shown in figure 11a. In Figure 12b the

convergence of different basins of the Klutlan glacier is shown, data is from a RapidEye acquisition on the 5th of September 2013 and at the

23rd of September 2017. For comparison the 2013 image is overlain with the two moraine positions.

When looking at the velocities over the flowline of the Klutlan glacier, as in Figure 12a, both the extension downstream as

well as the upstream progression of the surge can be seen. Most clearly, the surge front seems to propagate downwards with

a steady velocity, but appears to slow down around the 50 km mark (see dashed line in Figure 12a), as shown by the break in

slope. Here, the glacier widens into a lobe at the terminus. This can suggest ice thickness is homogeneous here or ice thickness

does not seem to play an important role in surge propagation.15

At the end of the summer of 2016 the tributary just north of the 20 kilometer mark of Klutlan Glacier seems to increase in

speed. This can be confirmed by tracing the extent of the looped moraines, as in Figure 12b. In the same imagery the medial

moraines of the meeting point of all basins are mapped as well. Here, the moraine bands before and after the event align well

at the junction, indicating a steady or similar contribution over the full period, or an insignificant effect, as the surge has not20

been developing into very fast flow. In contrast, the lower part of this glacial trunk has moraine bands that do not align.
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The surge behavior we observe for Klutlan Glacier, especially the propagation, can be observed at other glaciers within the

study area. For Fisher Glacier, a similar increase in speed is observed within the main trunk that later propagates downstream

as well as upstream. This also seems to be the case for Walsh Glacier, where a speed increase in the eastern trunk leads to a

surge on the northern trunk and a glacier-wide acceleration. On its way the fast flowing ice initiates surges in tributaries down-5

flow, but the surge extent also moves upslope and tributaries that were further up-glacier from the initial surge start to speed

up. This is also seen for Steele Glacier, which develops a surge and Hodgson Glacier is later entrained into the fast flow as well.
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Figure 13. Spread of variation in flow speed (using the difference between the 20th and 80th percentile) over the observed period (2013-2018).

Different dynamic glaciers are encircled, and the square indicates the tributary glacier shown in Figure C1.

These events are best observed with the help of an animation (see supplement) but the initial identification was done through

a simple visualization of the spread of flow speed (see Figure 13). Here the surging glaciers stand out, as do most of the10

tidewater glaciers, which have a highly dynamic nature at their fronts. Dynamics in smaller tributaries are visible as well, for

example, a tributary of the Chitina Glacier seems to have pushed itself into the main trunk within a two-year time-period, see

figure C1 in the appendix.
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5 Discussion

Synthesized velocity time series estimated from our post-processing chain of GoLIVE image-pair velocity determinations are

dependent on the number and distribution of measured displacements (see Appendix A). It may be possible to improve these

time series in several ways. Surface features imaged in the same season have similar appearances, allowing good displacement

fields to be produced from images which are a year apart, as is typical working practice (Heid and Kääb, 2012b; Dehecq et al.,5

2015). Annual displacements fields could be helpful when areas are cloud covered for long periods, as these estimates can

function as gap fillers in the least-squares estimation. Because the adjustment model assigns equal weighting to individual

displacements if no other information is available, some velocity changes might be missed or blurred in time. Such a drawback

might be overcome with spatial constraints, such as an advection pattern imposed on the data, although this would increase the

amount of post-processing.10

Another limitation of our method concerns the glacier kinematics that are constrained by our model. In the current imple-

mentation the deviation (σ) is dependent on the time interval. From a measurement perspective this makes sense, but the model

does not inherently account for speed change. For long time intervals the fuzzy function forces the deviation to become small.

This reduces the ability to get a correct match when glacier-dynamical changes are occurring. It might be helpful to explore15

the improvement when a fixed deviation is set instead. In addition, low scores over glaciated terrain might indicate that the de-

viation of the displacement is set too tight. When this deviation is given higher bounds, the score increases, and such behavior

can then be used as a meaningful measure.

The smoothing parameter used is a single global parameter that assumes isotropy. In order to fulfill this property the spatio-20

temporal data has been scaled accordingly. However, when severe data gaps are present, the velocity dataset still shows jumps.

This will improve when more data is available, for example by including Sentinel-2 data or incorporating across-track match-

ing (Altena and Kääb, 2017a). An increase in votes will result in a better population of the vote space, as can be seen in

Figure 6. In addition, the voting score, that is the consensus score in the Hough space, can be used as the initial weighting for

the smoothing procedure (w in equation 2). This might reduce the number of iterations used by the robust smoother. Improve-25

ment can be made to the smoother, as our initial implementation has a simple neighborhood function and has no knowledge of

glacier specific properties.

The input data has some possibility of systematic effects that propagate into the synthesized velocity time series. PyCORR-

generated displacement is based upon pattern matching methods applied to optical images. Normalized cross-correlation is30

most sensitive to large intensity variations within the image chips (Debella-Gilo and Kääb, 2011; Fahnestock et al., 2016).

Thus specifically for glacierized regions, low solar illumination angle in winter can cause the pattern matching to fix on

shadow edges. Similarly, snow cover and melt-out edges (which occur in autumn and spring) can cause false correlations due

to strong contrast in the image chips. To reduce these effects the GoLIVE correlator uses high-pass filtered imagery (Scambos
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et al., 1992). Setting the scale of the filter is a subtle trade-off, as shading and shadowing of smaller surface topography is a cor-

relatable feature, and is particularly useful in low sun angle conditions (e.g., late fall-winter-early spring). In high-radiometry

satellite instruments such as Landsat 8 (and 9), Sentinel 2, and Worldview, information is present in the imagery over shadow

cast terrain (Kääb et al., 2016). Hence, in principle frequency based orientation correlation (Heid and Kääb, 2012a) might5

perform better for this specific issue.

6 Conclusions

In five years the increase in the number of high quality optical satellite systems have made it possible to extract detailed and

frequent velocity fields over glaciers, ice caps and ice sheets. The GoLIVE dataset is a repository of such velocity fields de-10

rived from Landsat 8, available at low latency for analysis by the community. Discovery and exploration of this resource can be

complicated due to its vast and growing volume, and the complexity of spatio-temporal changes of glacier flow fields. In this

study we introduce an efficient post-processing scheme to combine ice velocity data from different overlapping time-spans.

The presented methodology is resistant to multiple outliers, as voting is used instead of testing. However, since cloud cover or

changes in surface characteristics can hamper velocity estimation and spatial flow relations are not incorporated, the resulting15

synthesized time series still have gaps or outliers. We use a data-driven spatio-temporal smoother to address this issue and

enhance the visualization of real glacier flow changes.

Our synthesized time series has a monthly (32 days) temporal interval and 300 meter spatial resolution. The time series

spans 2013 to 2018 and covers the Saint Elias Mountains and vicinity. Within this study area, we identify several surges of20

different glaciers at different times and their development over time can be observed. Such details can even be extracted for

small tributary glaciers. More surprisingly, velocities for the snow-covered upper glacier areas are in general estimated accu-

rately. Thus our synthesized time series can provide an overview of where and when interesting glacier dynamics are occurring.

This study is a demonstration of the capabilities of the new GoLIVE-type remote sensing products combined with an ad-25

vanced data filtering and interpolation scheme. We demonstrate that our method can be implemented with ease for a large

region, covering several mountain ranges. The derived smoothed time series data contains many subtle additional changes that

could be investigated. If this time series is combined with digital elevation model (DEM) time series (Wang and Kääb, 2015),

it becomes possible to look at changes in ice mass in great detail.

30

The presented velocity time series has a high temporal dimension, especially in respect to the sensor 16-day orbit repeat cy-

cle. Though temporal or spatial data-gaps are still present (due to the short temporal interval, cloud cover or visual coherence

loss) this might partly be addressed by enlarging the temporal resolution or through additional data, such as from Sentinel-

2 (Altena and Kääb, 2017a). Fortunately, harmonization with other velocity datasets can be easily implemented, because our
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Figure A1. Node network of the velocity fields used in this study, a total of 2736 velocity fields. The gray bars span the time interval used

for the generation of the different velocity products used in the figures in the main text. The specific numbering is given by their annotation,

which is also in gray.

procedure uses only geometric information and is not dependent on sensor type. With our framework it is thus possible to make5

a consistent time series composed of a patchwork of optical or SAR remote sensing products.

Data availability. The Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE) data is available at nsidc.org/data/golive

(dx.doi.org/10.7265/N5ZP442B)

Appendix A: Velocity pairs used10

The GoLIVE velocity fields used in this study are of a considerable amount. In order to get an overview of the data used, the

velocity pairs are plotted as a network of edges through time, in Figure A1. Every red arch corresponds to a displacement esti-

mate over a certain period, with a specific footprint (a given path row combination, see Figure 1 for localization). The general

statistics of the collection of used GoLIVE displacement pairs are given in the table A1.

21



time-interval 60 61 62 63 64 65 66 path

in days ↓ 18 17 18 17 18 17 18 17 18 17 18 17 row

16 34 45 43 43 47 41 43 41 38 42 29 41

32 34 40 37 46 49 46 39 38 34 40 27 39

48 33 46 43 41 47 43 40 43 31 38 28 38

64 27 47 42 41 42 44 40 36 26 38 25 38

80 26 41 37 42 45 47 38 41 31 37 22 35

96 21 38 38 38 43 42 40 40 35 30 21 35
Table A1. number of GoLIVE displacement products used in the generation of the product, ordered by location through path, row and by

relative time-interval.

Appendix B: Corrections done by smoothing5

In the following section plots are given of speed variations over selected areas of interest, the locations are denoted in Fig-

ure 11a by black crosses. Every plot has a bloxplot with the least-squares estimate of a selection of observations. This selection

was done through consensus, by voting as described in the paper. The gray lines indicate the smoothed spatio-temporal ve-

locity. These are multiple lines, as not one estimate is used, but a surrounding area of 5x5 pixels wide neighborhood is taken.

This is done in order to have sufficient data points and see the spread of the observations and the influence of the smoother.

A comparison between both estimated and smoothed version is shown in the right graph of each figure, where the white line

indicates the 1:1.

Figure B3 shows the velocity evolution of the ocean terminating part of Hubbard Glacier (see figure 7 for specific localiza-5

tion). This glacier is seen from path 61&62 and is in row 18. Data is coming from the GoLIVE dataset and an open configuration

is used for the estimation of the velocity. Aliasing occurs both in the slow moving part (0-4 km) and the fast moving part (5-

7 km). The availability of displacement data from GoLIVE is highest in the winter, as can be seen in Figure A1. Late in 2015

the Hubbard Glacier seems to slow down completely. However, at the same period the amount of GoLIVE displacement data is

relatively sparse. When a lack of data occurs, it is very difficult to establish consensus and extract information. To some degree10

this seems to occur for other autumn seasons as well.

Appendix C: Tributary dynamics

From the constructed multi-temporal time series the variance of a low and high quantile can be estimated. This gives an

overview of ice masses with a highly dynamic nature. Through this simple analysis, an unknown tributary surge was identified.5

The push of this tributary into the medial moraine and its velocity record over time can be seen in Figure C1.
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Figure B3. B3a) Landsat 8 acquisition on the 5th of September 2013 over Hubbard Glacier, in red is the centerline used for the sampling

which is plotted in figure B3b&B3c. B3b) velocity estimates using the data of displacements that had consensus during the voting step. B3c)

smoothed estimate of velocity evolution over time, using spatial and temporal data and assisted by an off-glacier mask.
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Figure C1. A tributary of Chitina Glacier surged in the period 2015-2016. Images are both acquired by Landsat 8, its location is indicated

by a square in figure 13. The location of the time series in figure C1b, is indicated by a red dashed circle in figure C1a.
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