
 1 

 

Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of 

supraglacial lakes in Greenland 

Andrew G. Williamson1, Alison F. Banwell1,2, Ian C. Willis1,2, Neil S. Arnold1  

1Scott Polar Research Institute, University of Cambridge, Cambridge, UK  5 

2Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA 

Correspondence to: Andrew G. Williamson (agw41@alumni.cam.ac.uk) 

Abstract. Remote sensing is commonly used to monitor supraglacial lakes on the Greenland Ice Sheet; however, most satellite 

records must trade-off higher spatial resolution for higher temporal resolution (e.g. MODIS) or vice versa (e.g. Landsat). Here, 

we overcome this issue by developing and applying a dual-sensor method that can monitor changes to lake areas and volumes 10 

at high spatial resolution (10–30 m) with a frequent revisit time (~3 days). We achieve this by mosaicking imagery from the 

Landsat 8 OLI with imagery from the recently launched Sentinel-2 MSI for a ~12,000 km2 area of West Greenland in the 2016 

melt season. First, we validate a physically based method for calculating lake depths with Sentinel-2 by comparing 

measurements against those derived from the available contemporaneous Landsat 8 imagery; we find close correspondence 

between the two sets of values (R2 = 0.841; RMSE = 0.555 m). This provides us with the methodological basis for automatically 15 

calculating lake areas, depths and volumes from all available Landsat 8 and Sentinel-2 images. These automatic methods are 

incorporated into an algorithm for Fully Automated Supraglacial lake Tracking at Enhanced Resolution (FASTER). The 

FASTER algorithm produces time series showing lake evolution during the 2016 melt season, including automated rapid (≤ 4 

day) lake-drainage identification. With the dual Sentinel-2–Landsat 8 record, we identify 184 rapidly draining lakes, many 

more than identified with either imagery collection alone (93 with Sentinel-2; 66 with Landsat 8), due to their inferior temporal 20 

resolution, or would be possible with MODIS, due to its omission of small lakes < 0.125 km2. Finally, we estimate the water 

volumes drained into the GrIS during rapid lake-drainage events and, by analysing downscaled regional climate-model 

(RACMO2.3p2) runoff data, the water quantity that enters the GrIS via the moulins opened by such events. We find that during 

the lake-drainage events alone, the water drained by small lakes (< 0.125 km2) is only 5.1% of the total water volume drained 

by all lakes. However, considering the total water volume entering the GrIS after lake drainage, the moulins opened by small 25 

lakes deliver 61.5% of the total water volume delivered via the moulins opened by large and small lakes; this is because there 

are more small lakes, allowing more moulins to open, and because small lakes are found at lower elevations than large lakes, 

where runoff is higher. These findings suggest that small lakes should be included in future remote sensing and modelling 

work. 

1  Introduction  30 

In the summer, supraglacial lakes (hereafter “lakes”) form within the ablation zone of the Greenland Ice Sheet (GrIS), 

influencing the GrIS’s accelerating mass loss (van den Broeke et al., 2016) in two main ways. First, because the lakes have 

low albedo, they can directly affect the surface mass balance through enhancing ablation relative to the surrounding bare ice 

(Lüthje et al., 2006; Tedesco et al., 2012). Second, many lakes affect the dynamic component of the GrIS’s mass balance when 

they drain either “slowly” or “rapidly” in the mid- to late melt season (e.g. Palmer et al., 2011; Joughin et al., 2013; Chu, 2014; 35 
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Nienow et al., 2017). Slowly draining lakes typically overtop and incise supraglacial streams in days to weeks (Hoffman et 

al., 2011; Tedesco et al., 2013), while rapidly draining lakes drain by hydrofracture in hours to days (Das et al., 2008; Doyle 

et al., 2013; Tedesco et al., 2013; Stevens et al., 2015). 

Rapid lake drainage plays an important role in the GrIS’s negative mass balance because the large volumes of lake water 

can reach the subglacial drainage system, perturbing it from a steady state, lowering subglacial effective pressure, and 40 

enhancing basal sliding over hours to days (Shepherd et al., 2009; Schoof, 2010; Bartholomew et al., 2011a, 2011b, 2012; 

Hoffman et al., 2011; Banwell et al., 2013, 2016; Tedesco et al., 2013; Andrews et al., 2014), particularly if the GrIS is 

underlain by sediment (Bougamont et al., 2014; Kulessa et al., 2017; Doyle et al., 2018; Hofstede et al., 2018). Rapid lake-

drainage events also have two longer-term effects. First, they open moulins, either directly within lake basins (Das et al., 2008; 

Tedesco et al., 2013) or in the far field if perturbations in stress exceed the tensile strength of ice (Hoffman et al., 2018), 45 

sometimes leading to a cascading lake-drainage process (Christoffersen et al., 2018). These moulins deliver the bulk of surface 

meltwater to the ice-sheet bed (Koziol et al., 2017), explaining the observations of increased ice velocities over monthly to 

seasonal timescales within some sectors of the GrIS (Zwally et al., 2002; Joughin et al., 2008, 2013, 2016; Bartholomew et 

al., 2010; Colgan et al., 2011; Hoffman et al., 2011; Palmer et al., 2011; Banwell et al., 2013, 2016; Cowton et al., 2013; Sole 

et al., 2013; Tedstone et al., 2014; Koziol and Arnold, 2018). Second, the fractures generated during drainage allow surface 50 

meltwater to reach the subfreezing ice underneath, potentially increasing the ice-deformation rate over longer timescales 

(Phillips et al., 2010, 2013; Lüthi et al., 2015), although the magnitude of this effect is unclear (Poinar et al., 2017). 

Alternatively, the water might promote enhanced subglacial conduit formation due to increased viscous heat dissipation 

(Mankoff and Tulaczyk, 2017). Although rapidly and slowly draining lakes are distinct, they can influence each other 

synoptically if, for example, the water within a stream overflowing from a slowly draining lake reaches the ice-sheet bed, thus 55 

causing basal uplift or sliding, and thereby increasing the propensity for rapid lake drainage nearby (Tedesco et al., 2013; 

Stevens et al., 2015). 

While lake drainage is known to affect ice dynamics over short (hourly to weekly) timescales, greater uncertainty surrounds 

its longer-term (seasonal to decadal) dynamic impacts (Nienow et al., 2017). This is because the subglacial drainage system 

in land-terminating regions may evolve to higher hydraulic efficiency, or water may leak into poorly connected regions of the 60 

bed, producing subsequent ice-velocity slowdowns either in the late summer, winter or longer term (van de Wal et al., 2008, 

2015; Bartholomew et al., 2010; Hoffman et al., 2011, 2016; Sundal et al., 2011; Sole et al., 2013; Tedstone et al., 2015; de 

Fleurian et al., 2016; Stevens et al., 2016). Despite this observed slowdown for some of the GrIS’s ice-marginal regions, 

greater uncertainty surrounds the impact of lake drainage on ice dynamics within interior regions of the ice sheet, since 

fieldwork and modelling suggest that increased summer velocities may not be offset by later ice-velocity decreases (Doyle et 65 

al., 2014; de Fleurian et al., 2016), and it is unclear whether hydrofracture can occur within these regions, due to the thicker 

ice and limited crevassing (Dow et al., 2014; Poinar et al., 2015). These unknowns inland add to the uncertainty in predicting 

future mass loss from the GrIS. There is a need, therefore, to study the seasonal filling and drainage of lakes on the GrIS, and 

to understand its spatial distribution and inter-annual variation, in order to inform the boundary conditions for GrIS hydrology 

and ice-dynamic models (Banwell et al., 2012, 2016; Leeson et al., 2012; Arnold et al., 2014; Koziol et al., 2017). 70 

Remote sensing has helped to fulfil this goal (Hock et al., 2017; Nienow et al., 2017), although it usually involves trading-

off either higher spatial resolution for lower temporal resolution, or vice versa. For example, the Landsat and ASTER satellites 

have been used to monitor lake evolution (Sneed and Hamilton, 2007; McMillan et al., 2007; Georgiou et al., 2009; Arnold et 

al., 2014; Banwell et al., 2014; Legleiter et al., 2014; Moussavi et al., 2016; Pope et al., 2016; Chen et al., 2017; Miles et al., 

2017; Gledhill and Williamson, 2018; Macdonald et al., 2018). While this work involves analysing lakes at spatial resolutions 75 

of 30 or 15 m, respectively, the best temporal resolution that can be achieved using these satellites is ~4 days and is often much 
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longer due to the satellites’ orbital geometry and/or site-specific cloud cover, which can significantly affect the observational 

record on the GrIS (Selmes et al., 2011; Williamson et al., 2017). This presents an issue for identifying rapid lake drainage 

with confidence since hydrofracture usually occurs in hours (Das et al., 2008; Doyle et al., 2013; Tedesco et al., 2013). An 

alternative approach involves tracking lakes at high temporal (sub-daily) resolution but at lower spatial resolution (~250–500 80 

m) using MODIS imagery (Box and Ski, 2007; Sundal et al., 2009; Selmes et al., 2011, 2013; Liang et al., 2012; Johansson 

and Brown, 2013; Johansson et al., 2013; Morriss et al., 2013; Fitzpatrick et al., 2014; Everett et al., 2016; Williamson et al., 

2017, 2018). However, this lower spatial resolution means that lakes < 0.125 km2 cannot be confidently resolved (Fitzpatrick 

et al., 2014; Williamson et al., 2017) and even lakes that exceed this size are often omitted from the satellite record (Leeson 

et al., 2013; Williamson et al., 2017). 85 

Because of the problems associated with the frequency or spatial resolution of these satellite records, it has been suggested 

that greater insights into GrIS hydrology might be gained if the images from multiple satellites could be used simultaneously 

(Pope et al., 2016). Miles et al. (2017) were the first to present such a record of lake observations in West Greenland, combining 

imagery from the Sentinel-1 Synthetic Aperture Radar (SAR) (hereafter “Sentinel-1”) and Landsat 8 Operational Land Imager 

(OLI) (hereafter “Landsat 8”) satellites, and developing a method for tracking lakes at high spatial (30 m) and temporal 90 

resolution (~3 days). Using Sentinel-1 imagery facilitated lake detection through clouds and in darkness, enabling, for example, 

lake freeze-over in the autumn to be studied. This approach permitted the identification of many more lake-drainage events 

than would have been possible if either set of imagery had been used individually, as well as the drainage of numerous small 

lakes that could not have been identified with MODIS imagery (Miles et al., 2017). Monitoring all lakes, including the smaller 

ones, many of which may also drain rapidly by hydrofracture, is important since recent work shows that a key determinant on 95 

subglacial-drainage development is the density of surface-to-bed moulins opened by hydrofracture, rather than the 

hydrofracture events themselves (e.g. Banwell et al., 2016; Koziol et al., 2017). However, since Miles et al. (2017) used radar 

imagery, lake water volumes could not be calculated, restricting the type of information that could be obtained. 

The Sentinel-2 Multispectral Instrument (MSI) comprises the Sentinel-2A (launched in 2016) and Sentinel-2B (launched 

in 2017) satellites, which have 290 km swath widths, a combined 5-day revisit time at the equator (with an even shorter revisit 100 

time at the poles), and 10 m spatial resolution in the optical bands; Sentinel-2 also has a 12-bit radiometric resolution, the same 

as Landsat 8, which improves on earlier satellite records with their 8-bit (or lower) dynamic range. Within glaciology, Sentinel-

2 data have been used to, for example, map valley-glacier extents (Kääb et al., 2016; Paul et al., 2016), monitor changes to 

ice-dammed lakes (Kjeldsen et al., 2017), and cross-compare ice-albedo products (Naegeli et al., 2017); this research indicates 

that Sentinel-2 can be reliably combined with Landsat 8 since they produce similar results. Thus, Sentinel-2 imagery offers 105 

great potential for determining the changing volumes of lakes on the GrIS, for resolving smaller lakes, and for calculating 

volumes with higher accuracy than is possible with MODIS (Williamson et al., 2017).  

In this study, our objective is to present an automatic method for monitoring the evolution and drainage of lakes on the 

GrIS using a combination of Sentinel-2 and Landsat 8 imagery, which will allow the mosaicking of a high spatial resolution 

(10–30 m) record, with a frequent revisit time (approaching that of MODIS), something only possible by using the two sets of 110 

imagery simultaneously. The objective is addressed using four aims, which are to:  

1. Trial new methods for calculating lake areas, depths and volumes from Sentinel-2 imagery and assess their accuracy 

against Landsat 8 for two days of overlapping imagery in 2016.  

2. Apply the best methods for Sentinel-2 from (1), alongside existing methods for calculating lake areas, depths and 

volumes for Landsat 8, to all of the available 2016 melt season (May–October) imagery for a large study site (~12,000 115 
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km2) in West Greenland. The aim is to apply these methods within an automated lake-tracking algorithm to produce 

time series of water-volume measurements for each lake in the study region to show their seasonal evolution. 

3. Identify lakes that drain rapidly (in ≤ 4 days) using the automatic algorithm, separating these lakes into small (< 0.125 

km2) and large (≥ 0.125 km2) categories, based on whether they could be identified with MODIS. 

4. Quantify the runoff volumes routed into the GrIS both during the lake-drainage events themselves, and afterwards 120 

via moulins opened by hydrofracture, for the small and large lakes. 

2  Data and methods 

Here, we describe the study region (Sect. 2.1), the collection and pre-processing of the Landsat 8 and Sentinel-2 imagery (Sect. 

2.2), the technique for delineating lake area (Sect. 2.3), the methods used to calculate lake depth and volume (Sect. 2.4), the 

approaches for automatically tracking lakes and identifying rapid lake drainage (Sect. 2.5), and the methods used to determine 125 

the runoff volumes that are routed into the GrIS’s internal hydrological system following the opening of moulins by 

hydrofracture (Sect. 2.6).  

2.1  Study region 

Our analysis focuses on a ~12,000 km2 area of West Greenland, extending ~110 km latitudinally and ~90 km from the ice 

margin, with this spatial extent chosen based on the full coverage of the original Sentinel-2 tiles (Fig. 1; Sect. 2.2.2). The 130 

region is primarily a land-terminating sector of the ice sheet, extending from the Sermeq Avannarleq outlet, which is just north 

of Jakobshavn Isbræ, near Ilulissat, to just south of Store Glacier in the Uummannaq district. We chose this study location 

because it is an area of high lake activity, having been the focus of many previous remote-sensing studies with which our 

results can be compared (e.g. Box and Ski, 2007; Selmes et al., 2011; Fitzpatrick et al., 2014; Miles et al., 2017; Williamson 

et al., 2017, 2018).  135 
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Figure 1: The ~12,000 km2 study site within Greenland (inset). The background image is a Sentinel-2 RGB image from 11 

July 2016 (see Table S1 for image details). The green box and enlarged subplot show a rapidly draining lake and the red circle 

shows a non-rapidly draining lake (cf. Fig. 5).  

2.2  Satellite imagery collection and pre-processing 140 

2.2.1  Landsat 8  

17 Landsat 8 images from May to October 2016 (Table S2) were downloaded from the USGS Earth Explorer interface 

(http://earthexplorer.usgs.gov). These were level-1T, radiometrically and geometrically corrected images, which were 

distributed as raw digital numbers. We required the 30 m resolution data from bands 2 (blue; 0.452–0.512 µm), 3 (green; 

0.533–0.590 µm), 4 (red; 0.636–0.673 µm) and 6 (shortwave infrared (SWIR); 1.566–1.651 µm), and the 15 m resolution data 145 

from band 8 (panchromatic; 0.503–0.676 µm). We used all available 2016 imagery that covered at least a portion of the study 

site, regardless of cloud cover. Since Landsat 8 images cover greater areas than Sentinel-2 images, we batch cropped the 

Landsat 8 images to the extent of the Sentinel-2 images using ArcGIS’s ‘Extract by Mask’ tool. All of the tiles were reprojected 

(using bilinear resampling) to the WGS 84 UTM 22N geographic coordinate system (EPSG: 32622) for consistency with the 

Sentinel-2 images, and ice-marginal areas were removed with the Greenland Ice Mapping Project (GIMP) ice-sheet mask 150 

(Howat et al., 2014). The raw digital numbers were converted to top-of-atmosphere (TOA) reflectance using the image 

metadata and the USGS Landsat 8 equations (available at: https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-

5). Landsat 8 TOA values adequately represent surface reflectance in Greenland (Pope et al., 2016) and have been used 

previously for studying GrIS hydrology (Pope et al., 2016; Miles et al., 2017; Williamson et al., 2017, 2018; Macdonald et 

al., 2018). Our cloud-masking procedure involved marking pixels as cloudy when their band-6 (SWIR) TOA reflectance value 155 

exceeded 0.100 (Fig. 2), a method used for MODIS imagery albeit requiring a higher threshold value of 0.150 (Williamson et 

al., 2017). We chose this lower threshold based on manual inspection of the pixels marked as cloudy against clouds visible on 

the original images. To reduce any uncertainty in the cloud-filtering technique, we then dilated the cloud mask by 200 m (just 
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over six Landsat 8 pixels), so that we could be confident that all clouds and their nearby shadows had been marked as ‘no data’ 

and would not affect the subsequent analyses. The images were manually checked for shadowing elsewhere, with any shadows 160 

filtered where present. 

2.2.2  Sentinel-2  

39 Sentinel-2A level-1C images from May to October 2016 (Table S1) were downloaded from the Amazon S3 Sentinel-2 

database (http://sentinel-s2-l1c.s3-website.eu-central-1.amazonaws.com). The Sentinel-2 data were distributed as TOA 

reflectance values that were radiometrically and geometrically corrected, including ortho-rectification and spatial registration 165 

to a global reference system with sub-pixel accuracy. We note that Sentinel-2 and Landsat 8 images are ortho-rectified using 

different DEMs, which may produce slight offsets in lake locations (Kääb et al., 2016; Paul et al., 2016); two contemporaneous 

image pairs (1 July and 31 July 2016) were therefore manually checked prior to analysis, but no obvious offset was observed. 

We included all Sentinel-2 images from 2016 that had ≥ 20% data cover of the study region and ≤ 75% cloud cover. This 

resulted in using 39 images from the 77 in total available in 2016, reducing the average temporal resolution from 2.0 to 3.9 170 

days. We downloaded data from Sentinel-2’s 10 m resolution bands 2 (blue; 0.460–0.520 µm), 3 (green; 0.534–0.582 µm) and 

4 (red; 0.655–0.684 µm), and 20 m resolution data from band 11 (SWIR; 1.570–1.660 µm). Ice-marginal areas were removed 

using the GIMP ice-sheet mask (Howat et al., 2014). We used a cloud-masking procedure similar to that for Landsat 8, where 

pixels were assumed to be clouds and were marked as ‘no data’ when the TOA value exceeded a threshold of 0.140 in band 

11 (SWIR), after the band-11 data had been interpolated (using nearest-neighbour resampling) to 10 m resolution for 175 

consistency with the optical bands (Fig. 2). This threshold was chosen by manually comparing the pixels identified as clouds 

against background RGB images. As with the Landsat 8 images, we dilated the cloud mask by 200 m (10 Sentinel-2 pixels) to 

account for any uncertainty in the cloud-masking procedure, and again the images were manually checked for shadowing 

elsewhere, with any shadows filtered where present. 
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Figure 2: Summary of the methods applied to the Sentinel-2 and Landsat 8 input data to calculate lake areas using the NDWI 

and depths using the physically based (“PB” in this figure) method. In this figure, the interpolation techniques used are 

indicated by “NN” for nearest neighbour or “B” for bilinear. The methods applied to Landsat 8 are shown only once the images 

had been reprojected and batch cropped to the same extent as the Sentinel-2 images (Sect. 2.2.1). The lake-area outputs are 

compared between the two datasets as described in Sect. 2.3, and the physically based lake-depth outputs are compared as 185 

outlined in Sect. 2.4. When the empirical lake depth method for calculating Sentinel-2 lake depths was also evaluated, the final 

Landsat 8 depths at 10 m resolution were directly compared against the original Sentinel-2 input band data (at native 10 m 

resolution) within the lake outlines defined with the NDWI.  

2.3  Lake-area delineation  

Figure 2 summarises the overall method used to calculate lake areas and depths for the Landsat 8 and Sentinel-2 imagery, 190 

including the cloud-masking procedure described above, and the resampling required because the data were distributed at 

different spatial resolutions. We derived lake areas for the two sets of imagery using the Normalised Difference Water Index 

(NDWI) approach, which has been widely used previously for medium- to high-resolution imagery of the GrIS (e.g. Moussavi 

et al., 2016; Miles et al., 2017). There were two stages involved here. First, we applied various NDWI thresholds to the 

Sentinel-2 and Landsat 8 images, and compared the delineated lake boundaries against the lake perimeters in the background 195 

RGB images. We then qualitatively selected the NDWI threshold for each type of imagery based on the threshold that produced 

the closest match between the two. Based on this qualitative analysis, we chose NDWI thresholds of 0.25 for both types of 

imagery (Fig. 2). By varying the thresholds from these values to 0.251 and 0.249, respectively, the total lake area calculated 

across the whole image only changed by < 2%. The second stage involved comparing the areas of 594 lakes defined using the 

NDWI for the contemporaneous Landsat 8 and Sentinel-2 images from 1 July (collected in < 90 minutes of each other) and 31 200 

July (collected in < 45 minutes of each other). This gave an extremely close agreement between the two sets of lake areas (R2 

= 0.999; RMSE = 0.007 km2, equivalent to seven Sentinel-2 pixels) without any bias, so we were confident that the NDWI 

approach applied to the two types of imagery reproduced the same lake areas (Fig. S1). Using these NDWI thresholds, we 

created binary (i.e. lake and non-lake) masks for each day of imagery for the two satellites. Since the Landsat 8 optical-band 

data were at 30 m native resolution, we resampled them to 10 m resolution (using nearest-neighbour resampling) for 205 
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consistency with the resolution of the Sentinel-2 data (Fig. 2). From the binary images, we removed groups of < 5 pixels in 

total and linear features < 2 pixels wide, since these were likely to represent areas of mixed slush or supraglacial streams, as 

opposed to lakes (Pope, 2016; Pope et al., 2016). 

2.4  Lake depth and volume estimates 

2.4.1  Landsat 8 210 

For each Landsat 8 image, we calculated the lake depths and volumes using the physically based method of Pope (2016) and 

Pope et al. (2016), based on Sneed and Hamilton’s (2007) original method for ASTER imagery. This approach is based on the 

premise that there is a measurable change in the reflectance of a pixel within a lake according to its depth, since deeper water 

causes higher attenuation of the optical wavelengths within the water column. Lake depth (𝑧) can therefore be calculated based 

on the satellite-measured reflectance for a pixel of interest (𝑅#$%) and other lake properties:  215 

𝑧 =
[() 	(,-	.	/0)	.	() 	(/234	.	/0)]

6
,          (1) 

where 𝐴8 is the lake-bottom albedo, 𝑅9 is the reflectance for optically deep (> 40 m) water, and 𝑔 is the coefficient for the 

losses in upward and downward travel through a water column. For Landsat 8, we followed Pope et al.’s (2016) 

recommendation, taking an average of the depths calculated using the red and panchromatic band TOA reflectance data within 

the boundaries of the lakes (before they had been resampled to 10 m resolution for comparing the Sentinel-2 and Landsat 8 220 

lake areas; Sect. 2.3) defined by the method described in Sect. 2.3. Since the panchromatic-band data were at 15 m resolution, 

we resampled them using bilinear interpolation to match the 30 m red-band resolution (Fig. 2). 𝐴8 was calculated as the average 

reflectance in the relevant band for the ring of pixels immediately surrounding a lake, 𝑅9 was determined from optically deep 

water in proglacial fjords on a scene-by-scene basis for each band, and we used 𝑔 values for the relevant Landsat 8 bands from 

Pope et al. (2016). Lake volume was calculated as the sum of lake depths, multiplied by the pixel area, within the lake outlines. 225 

We treated these Landsat 8 depths and volumes as ground-truth data as in Williamson et al. (2017). 

2.4.2  Sentinel-2 

Since no existing work has derived lake depths using Sentinel-2, we needed to formulate a new method. For this purpose, we 

used the Landsat 8 lake depths as our validation dataset. We conducted the validation on the two dates (1 July and 31 July 

2016) with contemporaneous Landsat 8 and Sentinel-2 images (as described in Sect. 2.3). We chose to test both physically 230 

based and empirically based techniques to derive Sentinel-2 lake depths, noting at the outset that physical techniques are 

generally thought to be preferable over empirical ones since they do not require site- or time-specific tuning. 

For the physically based technique, we tested whether the same method as applied to Landsat 8 (Eq. (1)) could be used on 

the Sentinel-2 TOA reflectance data. However, since Sentinel-2 does not collect panchromatic band measurements, we could 

only use individual Sentinel-2 bands to calculate lake depths. We applied this physically based technique to the red- and green-235 

band data within the lake outlines defined with the NDWI (Sect. 2.3). We derived the value for 𝑅9 as described above for 

Landsat 8. Since the lake-depth calculations are particularly sensitive to the 𝐴8 value (Pope et al., 2016), it was critical to 

ensure that the lake-bottom albedo was correctly identified. Thus, to define  𝐴8, we dilated the lake by a ring of two pixels, 

and not one, to ensure that shallow water was not included due to the finer pixel resolution and due to any errors in the lake 

outlines derived using the NDWI. We also calculated new 𝑔 values for Sentinel-2’s red and green bands using Pope et al.’s 240 

(2016) methods (Sect. S1).  
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Our empirically based approach involved deriving various lake depth-reflectance regression relationships, to determine 

which explained most variance in the data. We used the Landsat 8 lake depth data (dependent variable) and the Sentinel-2 

TOA reflectance data for the three optical bands (independent variables) for each pixel within the lake outlines predicted in 

both sets of imagery, to determine which band and relationship produced the best match between the two datasets. To compare 245 

these values, we first resampled (using nearest-neighbour interpolation) the Landsat 8 depth data from 30 m to 10 m to match 

the resolution of the Sentinel-2 TOA reflectance data (Fig. 2).  

To evaluate the performance of the empirical versus physical techniques, we calculated goodness-of-fit indicators for the 

Sentinel-2 and Landsat 8 measurements derived from the empirically based technique (applied to all optical bands) and 

physically based method (applied to the red and green bands) for the two validation dates (1 July and 31 July 2016) when 250 

contemporaneous Landsat 8 and Sentinel-2 images were available. 

As for Landsat 8, Sentinel-2 lake volumes were calculated as the sum of the individual lake depths, multiplied by the pixel 

areas, within the lake boundaries. 

2.5  Lake evolution and rapid lake-drainage identification  

2.5.1  Time series of lake water volumes  255 

Once validated, the new techniques to calculate lake areas, depths and volumes from Sentinel-2, as well as the existing methods 

for Landsat 8 (Sect 2.4), were applied to the satellite imagery within the Fully Automated Supraglacial lake Tracking at 

Enhanced Resolution (FASTER) algorithm to produce cloud- and ice-marginal-free 10 m resolution lake area and depth arrays 

for each day of the 2016 melt season for which either a Landsat 8 or Sentinel-2 image was available (Fig. 2). For the days (1 

July and 31 July) when both Landsat 8 and Sentinel-2 imagery was available (as used for the comparisons above), in the 260 

FASTER algorithm, we used only the higher-resolution Sentinel-2 images. The FASTER algorithm is an adapted version of 

the Fully Automated Supraglacial lake Tracking (FAST) algorithm (Williamson et al., 2017), which was developed for MODIS 

imagery. The FASTER algorithm involves creating an array mask to show the maximum extent of lakes within the region in 

the 2016 melt season, by superimposing the lake areas from each image. Within this maximum lake-extent mask, changes to 

lake areas and volumes were tracked between each consecutive image pair, with any lakes that were obscured (even partially) 265 

by cloud marked as ‘no data’. We only tracked lakes that grew to ³ 495 pixels (i.e. 0.0495 km2) at least once in the season, 

which is identical to the minimum threshold used by Miles et al. (2017), and is based on the minimum estimated lake size 

(approximated as a circle) required to force a fracture to the ice-sheet bed (Krawczynski et al., 2009). It is encouraging that 

this minimum threshold size for lake tracking was over seven times larger than the error (0.007 km2) associated with calculating 

lake area (Sect. 2.3; Fig. S1). While a lower tracking threshold could have been used, it would have significantly increased 270 

computational time and power required, alongside adding uncertainty to whether the tracked groups of pixels actually 

represented lakes. This tracking procedure produced time series for all lakes to show their evolution over the whole 2016 melt 

season.  

2.5.2  Rapid lake-drainage identification  

From the time series, a lake was classified as draining rapidly if two criteria were met: (i) it lost > 80% of its maximum seasonal 275 

volume in ≤ 4 days (following Doyle et al., 2013; Fitzpatrick et al., 2014; Miles et al., 2017; Williamson et al., 2017, 2018); 

and (ii) it did not then refill on the subsequent day of cloud-free imagery by > 20% of the total water volume lost during the 

previous time period (following Miles et al., 2017); the aim here was to filter false positives from the record. However, we 

also tested the sensitivity of the rapid lake-drainage identification methodology by varying the threshold by ± 10% (i.e. 70–
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90%) for the critical-volume-loss threshold, ± 10% (i.e. 10–30%) for the critical-refilling threshold, and ± 1 day (i.e. 3–5 days) 280 

for the critical-timing threshold. 

To determine how much extra information could be obtained from the finer spatial resolution satellite record, we compared 

the number of rapidly draining lakes identified that grew to ≥ 0.125 km2 (which would be resolvable by MODIS) with the 

number that never grew to this size (which would not be resolvable by MODIS) at least once in the season. We defined the 

drainage date as the midpoint between the date of drainage initiation and cessation, and identified the precision of the drainage 285 

date as half of this value. We conducted three sets of analyses: one for each set of imagery individually, and a third for both 

sets together; the intention here was to quantify how mosaicking the dual-satellite record improved the identification of lake-

drainage events compared with using either record alone. The water volumes reaching the GrIS’s internal hydrological system 

from the small and large lakes during the drainage events themselves were determined using the lake-volume measurements 

on the day of drainage. 290 

2.6 Runoff deliveries following moulin opening  

Using the dual Sentinel-2 and Landsat 8 record, the locations and timings of moulin openings by ‘large’ and ‘small’ rapidly 

draining lakes were identified. Then, at these moulin locations, the runoff volumes that subsequently entered the ice sheet were 

determined using statistically downscaled daily 1 km resolution RACMO2.3p2 runoff data (Noël et al., 2018). Here, “runoff” 

was defined as melt plus rainfall minus any refreezing in snow (Noël et al., 2018). These data were reprojected from Polar 295 

Stereographic (EPSG: 3413) to WGS 84 UTM zone 22N (EPSG: 32622) for consistency with the other data, and resampled 

to 100 m resolution using bilinear resampling. Then, the ice-surface catchment for each rapidly draining lake was delineated 

using MATLAB’s ‘watershed’ function, applied to the GIMP ice-surface-elevation data (Howat et al., 2014). The elevation 

data were first coarsened using bilinear resampling to 100 m resolution from 30 m native resolution. For each of the days after 

rapid lake drainage had finished, it was assumed that all of the runoff within a lake’s catchment reached the moulin in that 300 

catchment instantaneously (i.e. no flow-delay algorithm was applied) and entered the GrIS. This method therefore assumes 

that once a moulin has opened at a lake-drainage site, it remains open for the remainder of the melt season. This allowed first-

order comparisons between cumulative runoff routed into the GrIS via the moulins opened by small and large lake-drainage 

events. 

3  Results 305 

3.1  Sentinel-2 lake-depth estimates 

Table 1 shows the results of the lake-depth calculations using the physically and empirically based techniques applied to 

imagery from 1 July and 31 July 2016 when contemporaneous Landsat 8 and Sentinel-2 images were available. The physically 

based method applied to the red and green bands (Figs. 3 and S2, respectively) performed slightly worse (for the red band: R2 

= 0.841 and RMSE = 0.555 m; for the green band: R2 = 0.876 and RMSE = 0.488 m) than the best empirical method (Fig. 4) 310 

when a power-law regression was applied to the data (R2 = 0.889 and RMSE = 0.447 m). Figures S3 and S4 respectively show 

the data for the empirical technique applied to the Sentinel-2 TOA reflectance and Landsat 8 lake depths for the worse-

performing Sentinel-2 green and blue bands (Table 1). The physically based method applied to the red-band data performed 

better on 1 July, where the relationship between Sentinel-2-derived depths and Landsat 8 depths was more linear (Fig. 3, blue 

markers) than on 31 July (Fig. 3, red markers), where the relationship was more curvilinear. This is because the depths 315 

calculated with Sentinel-2 on 31 July were limited to ~3.5 m, while higher depths (> 4 m) were reported on 1 July (Fig. 3). 

Although less distinct, the best empirical relationship also differed slightly in performance between the two dates (Fig. 4). 

Section 4.1 discusses the possible reasons for the under-measurement of lake depths with Sentinel-2 on 31 July compared with 
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1 July. The physically based method applied to the green-band data performed similarly on both validation dates (Fig. S2). 

Although application of the physically based technique to the green band produced a slightly higher R2 and lower RMSE 320 

compared with the physically based method applied to the red-band data, the depths estimated with Sentinel-2 were 

unrealistically high compared with those from Landsat 8: Sentinel-2 reports a maximum depth of ~19 m, comparing with an 

equivalent value of ~5.5 m for Landsat 8 (Fig. S2). This produced more scatter for the green band than the red band physical 

method (Table 1).   

Although the physically based method performed slightly worse than the empirical techniques, the physical method is 325 

preferable because it can be applied across wide areas of the GrIS and in different years without site- or time-specific tuning; 

it is likely that a different empirical relationship would have better represented the data for a different area of the GrIS or in a 

different year. We therefore carried forward the physically based method applied to the red band into the lake-tracking 

approach. We selected the red band instead of the green band because of the large difference between the depths calculated 

with the two satellites at higher values when using the green band. We defined the error on all of the subsequently calculated 330 

lake-depth (and therefore lake-volume) measurements for Sentinel-2 using the RMSE of 0.555 m, and treated the Landsat 8 

measurements as ground-truth data, meaning they did not have errors associated with them. 

 

Figure 3: Comparison of lake depths calculated using the physically based method for Sentinel-2 (with the red band) and for 

Landsat 8 (with the average depths from the red and panchromatic bands). Degrees of freedom (“df” in this figure) = 513,093. 335 

The solid black line shows an ordinary least-squares (OLS) linear regression and the dashed black line shows a 1:1 relation. 

The R2 value indicates that the regression explains 84.1% of the variance in the data. The RMSE of 0.555 m shows the error 

associated with calculating the Sentinel-2 lake depths using this relationship.  

R2 = 0.841
RMSE = 0.555 m
df = 513093

1 July
31 July
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Figure 4: The empirical power law regression (solid black curve, equation 𝑦 = 0.2764𝑥.C.DEFG) between Sentinel-2 red band 340 

TOA reflectance and Landsat 8 lake depth. Degrees of freedom (“df” in this figure) = 430,650. The R2 value indicates that the 

regression explains 88.9% of the variance in the data. The RMSE of 0.447 m shows the error associated with calculating the 

Sentinel-2 lake depths using this relationship.  

Table 1: Goodness-of-fit indicators for the empirical and physical techniques tested in this study for deriving Sentinel-2 lake 

depths, with validation against the Landsat 8 lake depth measurements, on 1 July and 31 July 2016. R2 is the coefficient of 345 

determination, RMSE is the root mean square error, and SSE is the sum of squares due to error. The best performing (red 

band) regression relationship (i.e. the one with highest R2, and lowest RMSE and SSE) among the empirical techniques is 

shown in bold italicised text. Data for the physical relation applied to Sentinel-2’s green band are presented in Fig. S2, and 

data for the empirical relation applied to Sentinel-2’s green and blue bands are presented in Figs. S3 and S4, respectively. 

Sentinel-2 
 band 

(technique) 

Goodness-of-fit 
indicator 

OLS  
regression 

Power-law  
regression 

Exponential  
regression 

Red 
(empirical) 

R2 0.702 0.889 0.842 
RMSE 0.734 0.448 0.534 

SSE (m3) 2.39 × 105 8.62 × 104 1.23 × 105 

Green 
(empirical) 

R2 0.782 0.768 0.829 
RMSE 0.627 0.647 0.556 

SSE (m3) 1.69 × 105 1.80 × 105 1.33 × 105 

Blue 
(empirical) 

R2 0.647 0.622 0.673 
RMSE 0.799 0.826 0.768 

SSE (m3) 2.75 × 105 2.94 × 105 2.54 × 105 

Red 
(physical) 

R2 0.841 
– – RMSE 0.555 

SSE (m3) 1.58 × 105 

Green 
(physical) 

R2 0.876 
– – RMSE 0.488 

SSE (m3) 1.22 × 105 
 350 

1 July
31 July
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3.2  Lake evolution  

Having verified the reliability of the lake area and depth techniques for both Sentinel-2 and Landsat 8, the automatic calculation 

methods were included in the FASTER algorithm to derive seasonal changes to lake areas and depths, and therefore volumes. 

The FASTER algorithm was applied to the Landsat 8 and Sentinel-2 image batches individually, as well as to both sets when 

combined into a dual record. Using the dual-satellite image collection produced an improvement to the temporal resolution of 355 

the dataset over the melt season (1 May to 30 September) from averages of 9.0 days (for Landsat 8) and 3.9 days (for Sentinel-

2) to 2.8 days (for the dual record). The months of June and July had the most imagery available (both with 14 images) within 

the dual-satellite analysis. For the Landsat 8 individual analysis, the algorithm tracked changes to 453 lakes that grew to ≥ 

0.0495 km2 once in the season; equivalent numbers were 599 lakes for the Sentinel-2 analysis, and 690 lakes for the dual-

satellite analysis. Using the dual record therefore involved tracking an additional 237 (or 91) lakes over the season than was 360 

possible with Landsat 8 (or Sentinel-2) alone.  

The largest lake size varied between the analyses: 4.0 km2 for Landsat 8 (recorded on 16 July 2016), and 8.6 km2 for 

Sentinel-2 (recorded on 21 July 2016), which may be because there were no Landsat 8 images close to 21 July 2016. The 

maximum lake volumes recorded also varied between the two platforms: 1.1 × 107 m3 for Landsat 8 (recorded on 15 July 

2016) and 1.2 × 107 m3 for Sentinel-2 (recorded on 14 July 2016). The mean lake size across all of the images from the dual 365 

Sentinel-2–Landsat 8 record was 0.137 km2 (25th and 75th percentiles = 0.0075 km2 and 0.129 km2, respectively). This value 

is therefore just above (by 0.012 km2) the threshold reporting size of MODIS, assuming two 250 m MODIS pixels are required 

to confidently classify lakes (Fitzpatrick et al., 2014; Williamson et al., 2017). Unpaired Student’s 𝑡-tests between Sentinel-2 

and Landsat 8 lake areas and volumes (from all of the imagery) confirmed that they were not significantly different with > 

99% confidence (𝑡 = 6.5, degrees of freedom = 9503 for areas; 𝑡 = 11.4, degrees of freedom = 6859 for volumes), justifying 370 

using the two imagery types together despite their resolution difference (10 m versus 30 m).  

Using the full Sentinel-2–Landsat 8 dataset, the FASTER algorithm produced time series that documented changes to 

individual lake volumes over the season, samples of which are shown in Fig. 5. Total areal and volumetric changes across the 

whole region were calculated by summing the values for all lakes in the region. However, we found that cloud cover (which 

was masked from the images) often affected the observational record, and there were time periods, such as early July and the 375 

end of August, with a lot of missing data (Fig. 6). Figure 7 was therefore produced to normalise total lake areas and volumes 

against the proportion of the region visible, and this shows the estimated pattern of lake evolution on the GrIS: there was 

virtually no water in lakes before June, steady increases in total lake area and volume until the middle of July, and then a 

gradual decrease in total lake area and volume through the remainder of the season, with most lakes emptying by early 

September (Figs. 6 and 7). Dates with seemingly low total lake areas and volumes were usually explained by the low portion 380 

of the whole region visible in those images (Figs. 6 and 7). Finally, as in previous studies (e.g. Box and Ski, 2007; Georgiou 

et al., 2009; Williamson et al., 2017), we found a close correspondence between lake areas and volumes: comparing lake area 

and volume values from all dates produced an R2 value of 0.73 (𝑝 = 1.03 × 10-10).  



 14 

 

Figure 5: Sample time series of lake volume to show seasonal changes for (a) a non-rapidly draining lake (Fig. 1, red circle) 385 

and (b) a rapidly draining lake (Fig. 1, green box). Lines connect points without any data smoothing. Error bars were calculated 

by multiplying the lake-depth RMSE of 0.555 m (Sect. 3.1) by the pixel size and the number of pixels in the lake on each 

image. 

 

Figure 6: Evolution to total lake area and volume across the whole study region during the 2016 melt season. “Portion of 390 

region visible” measures the percentage of all of the pixels within the entire region that are visible in the satellite image, i.e. 

which are not obscured either by cloud (or cloud shadows) or are not missing data values. Figure 7 presents total lake area and 

volume after normalising for the proportion of region visible. Blue error bars for lake area were calculated by multiplying the 

lake-area RMSE of 0.007 km2 (Sect. 2.3) by the number of lakes identified on each image; red error bars for total lake volume 

were calculated by multiplying the lake-depth RMSE of 0.555 m (Sect. 3.1) by the pixel size and the number of pixels identified 395 

as water-covered on each image.  
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Figure 7: Estimates of evolution to total lake (a) area and (b) volume across the whole study region during the 2016 melt 

season after daily values were normalised against the proportion of the region visible of the region visible on that day (i.e. not 

obscured by cloud or missing data). Values are derived by dividing the daily total lake area and volume by the portion of the 400 

region visible on that day (cf. Fig. 6).  

3.3  Rapid lake drainage  

Table 2 shows the results of the identification of rapidly draining lakes using the three different datasets, and indicates that the 

dual-satellite record was better for identifying rapidly draining lakes than the individual records. This was for two main reasons. 

First, the dual-satellite record identified 118 (or 91) more rapidly draining lakes than the Landsat 8 (or Sentinel-2) record in 405 

isolation (Table 2). When either record was used alone, Sentinel-2 (or Landsat 8) performed better (or worse), identifying 

50.5% (or 35.9%) of the total number of rapidly draining lakes identified by the dual-satellite record. Second, with the dual-

satellite dataset, drainage dates were identified with higher precision (i.e. half of the number of days between the date of 

drainage initiation and cessation; Sect. 2.5.2) than with the Sentinel-2 analysis (Table 2). However, the precision appears 

higher for the Landsat 8 analysis than either the dual-satellite or Sentinel-2 analysis, and this is because nearly all Landsat 8 410 

lake-drainage events occurred on two occasions when the pair of images was only separated by a day, on 8–9 July (small lakes) 

and 13–14 July (large lakes) (Table 2).  

The dual-satellite record also identified the rapid drainage of many small lakes (< 0.125 km2) that would not be visible 

with MODIS imagery due to the lower limit of its reporting size (Table 2), thus presenting an advantage of the dual-satellite 

record over the MODIS record of GrIS surface hydrology. These smaller lakes tended to drain rapidly earlier in the season 415 

(mean date = 8 July for the dual-satellite record) than the larger lakes (mean date = 11 July for the dual-satellite record), 

although the difference in dates is small, with most lakes draining in early to mid-July (Table 2; Fig. 8). In general, lakes closer 

to the ice margin tended to drain earlier than those inland (Fig. 8).  

Finally, we tested how adjusting the thresholds used to define rapidly draining lakes would impact rapid lake-drainage 

identification. Changing the critical volume loss required for a lake to be identified as having drained from 80% to 70% and 420 

90% resulted in the identification of only six more and four fewer rapid lake-drainage events, respectively. Similarly, changing 

the critical-refilling threshold from 20% to 10% and 30% resulted in identifying only eight fewer and five more rapidly draining 

lakes. However, adjusting the timing over which this loss was required had a larger impact, with adjustments from 4 to 3 and 

5 days producing 37 fewer and 65 more rapid lake-drainage events, respectively.  
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Table 2: Properties of rapid lake-drainage events identified using the satellite datasets individually and when as part of a dual-425 

satellite dataset. Large lakes are defined as ≥ 0.125 km2 (identifiable by MODIS), while small lakes are defined as < 0.125 

km2 (omitted by MODIS). “DoY” refers to day of year in 2016.  

Analysis type Property Large lakes Small lakes Total/overall 

Sentinel-2 

Number of drainage events 45 48 93 
Percentage of total lakes 7.5 8.0 15.5 
Mean drainage date (DoY) ± mean 
precision 193.4 ± 1.8 188.2 ± 1.6 190.7 ± 1.7 

Minimum drainage volume (105 m3) 0.020 0.006 0.006 
Maximum drainage volume (105 m3) 90.1 2.1 90.1 
Mean drainage volume (105 m3) 7.5 0.2 3.7 
Median drainage volume (105 m3) 1.3 0.2 0.3 
Total drainage volume (105 m3) 337.3 11.7 349.0 

Landsat 8 

Number of drainage events 30 36 66 
Percentage of total lakes 6.6 7.9 14.6 
Mean drainage date (DoY) ± mean 
precision 196.8 ± 0.6 190.5 ± 0.5 193.4 ± 0.5 

Minimum drainage volume (105 m3) 0.100 0.050 0.050 
Maximum drainage volume (105 m3) 19.8 1.1 19.8 
Mean drainage volume (105 m3) 4.2 0.4 2.1 
Median drainage volume (105 m3) 1.6 0.4 0.6 
Total drainage volume (105 m3) 126.8 14.1 140.9 

Dual  

Sentinel-2  

and  

Landsat 8 

Number of drainage events 79 105 184 
Percentage of total lakes 11.4 15.2 26.7 
Mean drainage date (DoY) ± mean 
precision 193.1 ± 1.1 190.1 ± 1.0 191.4 ± 1.1 

Minimum drainage volume (105 m3) 0.006 0.007 0.006 
Maximum drainage volume (105 m3) 91.0 1.6 91.0 
Mean drainage volume (105 m3) 7.4 0.3 3.4 
Median drainage volume (105 m3) 1.8 0.2 3.9 
Total drainage volume (105 m3) 586.1 31.2 617.3 
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 430 

Figure 8: Dates of rapid drainage events for small (circles) and large (triangles) lakes in 2016. The panel coverage and 

background are the same as that shown in Fig. 1. The extreme colour bar values include those dates outside of the range shown 

(i.e. before 19 June and after 5 September, respectively).  

3.4 Runoff deliveries and moulin opening by rapid lake drainage  

Each rapid lake-drainage event from the dual-satellite record delivered a mean water volume of 3.4 × 105 m3 (range = 0.006–435 

91.0 × 105 m3; σ = 10.2 × 105 m3) into the ice sheet (Table 2; Fig. 9). Figure 9 shows the patterns of runoff delivery across the 

region, suggesting that small (< 0.125 km2) and large (≥ 0.125 km2) rapidly draining lakes were randomly distributed across 

the region, although there were more numerous smaller lakes at lower elevations in the north. Figure 10 shows that large lakes 

generally contained more water than small lakes, as might be expected, but also shows that large lakes contained a higher 

range of water volumes than small lakes, producing an overlap between the lake types for the lower water-volume values. 440 

Thus, although large lakes each covered a higher area, some large lakes must have been relatively shallow, as also suggested 

by the red to yellow coloured triangles on Fig. 9.  

Using the data from the dual-satellite record, and considering just the water volumes delivered into the GrIS during lake-

drainage events (and not subsequently via the moulins opened), the drainage of small (< 0.125 km2) lakes delivered a total 

runoff volume of 31.2 × 105 m3 into the GrIS, which is just 5.1% of the total volume (617.3 × 105 m3) delivered into the GrIS 445 

during the drainage of all lakes across the region (Table 2). Although this volume is low, small lake-drainage events, like large 

lake-drainage events, are additionally important because they are associated with the opening of moulins that transport surface 

runoff into the GrIS, and perhaps to the bed, for the remainder of the season, assuming that the moulin remains open (e.g. 

Banwell et al., 2016; Koziol et al., 2017). Associating lake drainages with moulin opening in this way means that the dual-

satellite record found an additional 105 moulins (Table 2) that would not have been identified by MODIS; this is greater than 450 

the total number of moulins associated with large lake-drainage events (79) that could have been identified by MODIS, 

assuming MODIS can identify all lakes > 0.125 km2, which itself is unlikely (Leeson et al., 2013; Williamson et al., 2017). 

Figure 11 shows that the moulins opened by the rapid drainage of small lakes allowed a higher total volume of runoff to enter 

the GrIS than that routed via moulins opened by rapidly draining large lakes; in total, moulins opened by small (or large) lakes 

channelled 1.61 × 1011 (or 1.04 × 1011) m3 of runoff into the GrIS’s internal hydrological system. Thus, moulins opened by 455 

small (or large) lakes delivered 61.5% (or 38.5%) of the total runoff into the GrIS after opening. Moreover, moulins opened 
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by small lakes delivered more runoff into the GrIS than those opened by large lakes across all ice-elevation bands, although 

this finding is more pronounced at lower elevations than higher elevations, i.e. below and above 800 m a.s.l. respectively (Fig. 

11). The runoff into the moulins opened by small lakes also tended to reach the GrIS’s internal hydrological system earlier in 

the season than that delivered into the moulins opened by large lakes, because these small lakes tended to drain slightly earlier 460 

(Fig. 11).  

 

Figure 9: Lake water volumes measured using the physically based technique on the days prior to rapid drainage, categorised 

into small (< 0.125 km2 in area; circles) and large lakes (≥ 0.125 km2 in area; triangles). Each point shown is also assumed to 

represent the location at which a moulin is opened by hydrofracture during rapid lake drainage, which then remains open for 465 

the remainder of the melt season. The panel coverage and background are the same as that in Fig. 1. 
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Figure 10: Frequency distribution of water volumes prior to rapid drainage for small and large lakes to show the lower and 

more tightly clustered water volumes contained within small lakes compared with large lakes. Natural logs of water volumes 

were taken for presentation purposes. 470 

 

Figure 11: Cumulative runoff volume, from RACMO2.3p2 data (Noël et al., 2018), entering the GrIS over the remainder of 

the melt season via the moulins opened by rapid lake drainage for small (< 0.125 km2) and large (≥ 0.125 km2) lakes for 

different ice-surface-elevation bands, derived from Howat et al. (2014), shown in m a.s.l. in the legend and line labels. Runoff 

volume is derived within the ice-surface catchments of lakes and is assumed to reach the moulin instantaneously on each day, 475 

without any flow delay.  

4  Discussion  

4.1  Sentinel-2 lake-depth estimates 

The first and second aims of this study involved trialling and then applying a new method for calculating lake depths from 

Sentinel-2 imagery. We found an RMSE of 0.555 m for lake depths calculated with the physically based method applied to 480 

Small < 400 m

Large < 400 m

Small 400-800 m

Small 1201-1600 m
Large 1201-1600 m
Small 801-1200 m
Small > 1600 m
Large 801-1200 m
Large 400-800 m
Large > 1600 m

)
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Sentinel-2’s red band when compared with lake depths calculated for Landsat 8 using existing methods (Pope et al., 2016). 

When we applied the physically based method to Sentinel-2’s green band and compared the depths with Landsat 8 

measurements, we found a slightly lower RMSE, but the Sentinel-2 depths were unrealistically high compared with Landsat 

8 values, and so this method was excluded (Table 1; Fig. S2). We selected the physical method over the empirical one because 

the empirical method cannot be applied without the site- or time-specific adjustments suggested in previous research (e.g. 485 

Sneed and Hamilton, 2007; Pope et al., 2016; Williamson et al., 2017), and might therefore perform more poorly in other years 

and/or for other regions of the GrIS. Given that the performance of the two methods was very similar, it therefore seemed most 

sensible to use the more robust physically based technique. In addition, the RMSE value (0.555 m) obtained here using the 

physically based method applied to the red band is only slightly higher than the error on lake-depth calculations using the 

physical method for similar-resolution Landsat 8 data (0.28 m for the red band and 0.63 m for the panchromatic band; Pope et 490 

al., 2016). However, the RMSE on Sentinel-2 lake depths is less than half both that produced using the physically based 

method applied to coarser-resolution (250 m) MODIS red band data (1.27 m; Williamson et al., 2017) and that produced using 

an empirical depth-reflectance relationship for MODIS (1.47 m; Fitzpatrick et al., 2014). Therefore, using the Sentinel-2–

Landsat 8 record over the MODIS one produces a much more reliable measure of lake-water depths on the GrIS because of 

the improved spatial resolution. The dual-satellite record is even further strengthened by its high temporal resolution, which 495 

approaches that of MODIS (Sect. 4.2).  

Despite the low overall error for the physically based lake-depth calculations from Sentinel-2, we observed different 

performances on the two validation dates (1 July and 31 July; Sect. 3.1): the depths calculated for Sentinel-2 and Landsat 8 

showed closer agreement on 1 July than on 31 July (Fig. 3). This is likely because clouds obscured a large portion of the image 

from 1 July. Although the lakes used for comparison were cloud-free and pixels within 200 m of a cloud-marked area were 500 

filtered, there were likely adjacency effects (at distances > 200 m from the clouds) associated with the cloud, which had more 

of an impact for Sentinel-2 than for Landsat 8. For example, the pixel brightness might have been reduced in locations relatively 

close to the clouds, consequently producing higher lake depths with the seemingly darker water (Fig. 3). Similar cloud 

adjacency effects have been recorded with other satellites, such as MODIS (Feng and Hu, 2016), and Landsat 8 and RapidEye 

(Houborg and McCabe, 2017). The depths calculated with the physical method on 31 July (Fig. 3), when there was less cloud 505 

cover, are therefore more likely to be true depths than the depths from 1 July when the image was affected by the cloud, even 

though the 1 July depths appear to be more correct. Assuming this is the case, our results indicate that Sentinel-2 may not 

accurately record deeper water (> ~3.5 m; Fig. 3) using the physical method applied to the red band. This is perhaps because 

the red wavelengths become saturated (i.e. fully attenuated) within the water column at higher depths, a result similar to that 

observed for lake-depth measurements from WorldView-2 and Landsat 8 (Moussavi et al., 2016; Pope et al., 2016; Williamson 510 

et al., 2017). This is also likely to explain the lower maximum lake volume recorded in this study (1.2 × 107 m3) compared 

with previous work, including the maximum lake volume of 5.3 × 107 m3 identified by Box and Ski (2007).  

Alternatively, the presence of clouds on the 1 July image might be indicative of a difference in the atmospheric composition 

on that day, which could have affected the lake-depth calculations with Sentinel-2, but not to the same degree with Landsat 8. 

This might be because of the difference in bandwidths between the satellites, or because Landsat 8’s panchromatic band (used 515 

for calculating lake depths) is less sensitive to the presence of clouds on an image, therefore producing more reliable lake-

depth measurements. The effect of clouds on the atmosphere could have been better accounted for if the Sentinel-2 TOA 

reflectance data had been first converted to bottom-of-atmosphere (i.e. surface-reflectance) measurements. However, while 

surface-reflectance data are available for Landsat 8’s optical bands, they are not for its panchromatic band, meaning that the 

lake-depth calculation method used here could not have been applied to generate reliable ground-truth data. We therefore 520 

intentionally chose not to perform this correction on the Sentinel-2 TOA data because we wished to directly compare the 

measurements from the two satellites. 
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Finally, in this study, the Sentinel-2 lake depths were validated using Landsat 8 measurements, which were regarded as 

ground-truth data, in line with a previous study involving validation of depths calculated with MODIS (Williamson et al., 

2017). This approach was justified since previous work (Pope et al., 2016) indicated a close agreement between Landsat 8 525 

lake depths and DEM measurements. However, it is important to note that the Landsat 8 data have errors associated with them, 

including a possible under-measurement of the deepest water due to saturation of the red band within the water column 

(Moussavi et al., 2016; Pope et al., 2016). Future work involving Sentinel-2 lake-depth calculations could therefore 

alternatively validate Sentinel-2 lake-depth estimates using different ground-truth validation data, such as higher-resolution 

(e.g. WorldView-2) satellite imagery, high-resolution DEM measurements of lake basins, or field lake-depth measurements.  530 

4.2  Lake evolution  

The second aim of this research was to apply the new methods for calculating lake areas, depths and volumes from Sentinel-2 

imagery alongside those for Landsat 8 within the FASTER algorithm to produce time series for the evolution of all lakes. 

Applying this algorithm to the dual-satellite record allowed us to track the evolution of 690 lakes. The mean lake size (0.137 

km2) was just above the threshold (0.125 km2) of lake size that MODIS can identify. Using a dual-satellite record, we were 535 

therefore able to achieve both high temporal (2.8 days) and spatial resolution (10–30 m). Previous studies (e.g. Selmes et al., 

2011, 2013; Fitzpatrick et al., 2014; Miles et al., 2017; Williamson et al., 2017) have acknowledged that MODIS is useful 

because it can provide very high temporal resolution (up to sub-daily repeat site imaging) since the GrIS’s surface hydrology 

can change quickly. However, because of the coarse spatial resolution, lake area and depth can only be calculated with large 

errors: for example, Williamson et al. (2017) calculate errors on MODIS lake areas of 0.323 km2 (nearly fifty times larger than 540 

the value derived in the present study) and on MODIS lake depths of 1.27 m (twice that obtained in this study). The minor loss 

of temporal resolution (i.e. a reduction from daily to 2.8 days) by using the dual-satellite record rather than MODIS is therefore 

overcome by the record’s improved reliability for resolving lake areas and depths. The use of Sentinel-2B data (available from 

2017) alongside the Sentinel-2A data used here would allow further improvements to the dual record’s temporal resolution; 

for example, in 2017, the temporal resolution of the Sentinel-2 data could be improved to an average of 1.4 days (if including 545 

all cloud-covered images) or 1.9 days (if excluding near-100% cloud-covered images) (Williamson, 2018a). 

4.3  Rapid lake drainage  

The third and fourth aims of the work were to identify the lakes tracked by the FASTER algorithm that drained rapidly, and 

to investigate the quantity of runoff reaching the GrIS’s internal hydrological system both during the drainage events 

themselves and subsequently via the moulins opened by rapid lake drainage, since recent work (Banwell et al., 2016; Koziol 550 

et al., 2017) has shown that the moulins opened by rapid lake-drainage events allow much greater runoff volumes to reach the 

subglacial system than the volumes released during the actual drainage events themselves. Most research to date has used 

MODIS imagery to identify rapidly draining lakes because the high temporal resolution is required to separate rapidly draining 

lakes from those draining slowly. Although this MODIS-based research has been helpful for quantifying the characteristics of 

relatively large lakes (≥ 0.125 km2) and the potential controls on their rapid drainage (Box and Ski, 2007; Morriss et al., 2013; 555 

Fitzpatrick et al., 2014; Williamson et al., 2017, 2018), such work has been unable to study smaller (< 0.125 km2) lakes.  

Rapid drainage of both large and small lakes can be identified using the FASTER algorithm with the dual-satellite record. 

Although the water volumes associated with the drainage of small lakes into the GrIS amount to just 5.1% of the total water 

volume associated with the drainage of all lakes across the region, rapid drainage of small lakes is important because, like 

large lakes, they open moulins that can direct surface runoff into the GrIS’s internal hydrological system over the remainder 560 

of the season. This assumes that the moulins remain open for the rest of the melt season, and we note that this may vary across 

the study region according to ice thickness or stress state. However, acknowledging this assumption, with the dual-satellite 
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record, we identified 105 small rapid lake-drainage events, thus providing 105 more input locations for surface runoff to reach 

the ice sheet’s internal hydrological system than would be identified by MODIS. The moulins opened by small lake-drainage 

events are particularly important because in total they deliver over half (61.5%) of the total runoff delivered via all moulins 565 

into the GrIS’s internal hydrological system. This is because the small rapidly draining lakes are more numerous (105 

compared with 79) and tend to be at lower elevations than the larger lakes (small lake mean elevation = 697 m a.s.l. and σ = 

514 m a.s.l.; large lake mean elevation = 848 m a.s.l. and σ = 563 m a.s.l.), where surface melting is higher. Moreover, small 

lakes tend to drain slightly earlier in the melt season (Table 2), meaning that the moulins they open can receive runoff for a 

slightly greater proportion of the melt season. In addition, the moulins opened by small lake-drainage events tend to result in 570 

higher volumes of runoff reaching the GrIS’s internal hydrological system earlier rather than later in the season (Fig. 11), 

which may be important because the subglacial system is likely to be less hydraulically efficient at this time (e.g. Bartholomew 

et al., 2010; Sole et al., 2011; Sundal et al., 2011; Banwell et al., 2013, 2016; Chandler et al., 2013; Andrews et al., 2014). 

Therefore, by including these rapidly draining small lakes, the FASTER algorithm with the dual-satellite record could be used 

to provide a better dataset than previously for the testing of lake-filling and -draining models (e.g. Banwell et al., 2012; Arnold 575 

et al., 2014), or alternatively to specify the input locations and water volumes for the forcing of subglacial-hydrology models 

with much greater confidence than would be possible with MODIS alone. Further work is still required, however, to determine 

whether the water volumes delivered by these small lakes during the drainage process are capable of temporarily pressurising 

the subglacial drainage system, such that ice velocity speed-up events may occur, and to determine whether the associated 

deviations from background stresses in the far field would be sufficient to open moulins outside the basins of small lakes or to 580 

trigger chain-reaction-style rapid lake drainage (cf. Christoffersen et al., 2018; Hoffman et al., 2018).  

Over the 2016 melt season, 27% of all lakes detected in the region drained rapidly, compared with 21% that drained rapidly 

in 2014 across the slightly smaller Paakitsoq region contained within the region of this study (Williamson et al., 2017). 

However, that earlier study used MODIS imagery, so it omitted the rapid drainage of small lakes, which could explain the 

lower percentage if it is assumed that these small lakes are more likely to drain rapidly than the large ones, relative to the total 585 

numbers of lakes in each category. Therefore, considering just the rapid drainage of large lakes (i.e. which could be identified 

by MODIS) we found that 18% of large lakes drained rapidly, which is similar to the 21% value in Williamson et al. (2017).  

The 27% value in this study compares well with that of 22% from Miles et al. (2017), who also tracked changes to small lakes 

using a similar tracking threshold to that used here, albeit for a different combination of satellite platforms (Landsat 8 and 

Sentinel-1), and for a larger region of West Greenland in the 2015 melt season. The precision of rapid lake-drainage dates in 590 

this study (± 1.1 days) is higher than that identified by Miles et al. (2017) (± 4.0 days); this likely results from the different 

temporal resolution of Sentinel-1 compared with Sentinel-2, and because Miles et al. (2017) were forced to discard some 

images before conducting their analysis, reducing the average temporal resolution and so the ability to identify rapid lake 

drainage dates confidently. Thus, although Sentinel-1 can image through clouds, the Sentinel-1 record suffers from separate 

issues that offset this advantage. The shorter time interval for repeat lake imaging offered by the FASTER algorithm is likely 595 

to help reduce the observation bias associated with the longer time intervals of existing remote-sensing (e.g. MODIS-based) 

work (Cooley and Christoffersen, 2017). Finally, we also offer an advance with the dual-satellite method since we can calculate 

the water volumes delivered into the GrIS by rapid lake drainage (because of the use of optical satellite data), in addition to 

the lake-area changes that could be tracked previously (e.g. Miles et al., 2017).   

5  Conclusions 600 

We have presented the results of the first approach to combine two medium-resolution optical satellite datasets (Sentinel-2 

and Landsat 8) to generate the highest spatial- and temporal-resolution record of lake area and volume evolution on the GrIS 

to date. To achieve this, we have exploited the increasing availability of medium- to high-resolution satellite imagery, and then 
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combined these newly available data with recent techniques for automatically tracking changes to lake areas and volumes, and 

for identifying rapid lake drainage. The resultant FASTER algorithm allows lake areas and volumes to be calculated with high 605 

accuracy from Sentinel-2. For lake area, the RMSE is 0.007 km2 when compared with that derived from Landsat 8 data, which 

is nearly fifty times lower than the error associated with MODIS. For lake depth, the RMSE is 0.555 m, under half that 

associated with MODIS. The techniques for lake-area and lake-depth calculation from Sentinel-2, when combined with similar 

techniques applied to Landsat 8 data, yielded a dual-satellite record with comparable temporal resolution (2.8 days) to that of 

MODIS (daily). Thus, the FASTER algorithm applied here reduces the large errors associated with calculating lake depth and 610 

lake area using the ancestral FAST algorithm applied to the coarser spatial resolution MODIS imagery (Williamson et al., 

2017). In addition, the FASTER algorithm provides a similarly frequent site revisit time as MODIS, allowing rapid lake 

drainage to be identified with high precision (± 1.1 days). Our work shows that using both sets of high-resolution satellite 

imagery together provides better insights into lake filling and drainage than using either one in isolation. With the availability 

of Sentinel-2B data from summer 2017 to supplement the Sentinel-2A data used in this study, the three datasets could be used 615 

together to generate an even higher temporal resolution record. In the future, the dual-satellite record presented here is therefore 

likely to be able to replace, or at least supplement, the MODIS record used to investigate lakes on the GrIS. 

We have additionally taken advantage of new, and increasingly reliable, downscaled regional climate-model 

(RACMO2.3p2) output data (Noël et al., 2018) to provide insights into the runoff volumes entering the GrIS’s englacial or 

subglacial hydrological systems after moulin opening was identified using the FASTER algorithm. Our results show that the 620 

water volumes released into the GrIS by small lakes during the lake-drainage events themselves are small (only 5.1%) relative 

to the volumes released by all lake-drainage events, suggesting small lakes are less important in this sense. However, of the 

total water volume that subsequently reaches the GrIS’s internal hydrological system via all moulins opened by lake drainage 

(from both large and small lakes), moulins opened by small lakes deliver 61.5% of the total water volume. This suggests that 

small lakes are important to include in future remote-sensing and modelling studies.  625 

Resulting from the above, the FASTER algorithm holds great potential for generating novel insights into lake behaviour 

on the GrIS from remote sensing, including for small lakes that change quickly (cf. Miles et al., 2017). Future work should 

focus on applying the FASTER algorithm to wider areas of the GrIS and comparing the results with increasingly available and 

reliable high temporal resolution ice-velocity data (e.g. Joughin et al., 2018) to investigate the influence of lake drainage on 

the observed patterns of intra- and inter-annual velocity variations across the GrIS. Moreover, the high spatial resolution record 630 

could be used to identify the potential controls on the initiation of rapid lake drainage, something that could not be achieved 

with MODIS data, perhaps due to the data’s coarse spatial resolution (Williamson et al., 2018). Finally, the water volumes 

delivered into the GrIS during the rapid lake-drainage events identified with this record, the moulins that are assumed to open 

during such events, and the subsequent runoff that enters the GrIS via these moulins, could be used as forcing or testing data 

for subglacial-hydrology models (e.g. Hewitt, 2013; Banwell et al., 2016) and linked hydrology-ice dynamics models (e.g. 635 

Koziol and Arnold, 2018). Ultimately, applications of the FASTER algorithm such as these could enable the GrIS’s 

supraglacial and subglacial hydrology to be modelled more accurately in order to provide better constraints on future runoff, 

ice discharge and sea-level rise from the GrIS.   

Data availability. All satellite imagery and regional climate-model output data used in the analysis are open access. The full 

MATLAB source code for the FASTER algorithm used to process and analyse the imagery is freely available for download 640 

(Williamson, 2018b). 
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