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Introduction

The contents of this supplement are intended to describe in detail, the numerical methods used in this study, the physical and

empirical parameters and constants employed and additional results that complement those presented in the main portion of

the letter.

S1 Large-eddy simulation - equations and numerical setup5

S1.1 Flow equations

The large-eddy simulation (LES) technique solves three-dimensional filtered Navier-Stokes (N-S) equations in rotational form

for an incompressible flow in hydrostatic equilibrium along with the continuity equation. Advection-diffusion equations for

temperature and specific humidity are solved and resulting buoyancy forces are added to the N-S equations using the Boussinesq

approximation. The equations solved (presented using Einstein’s convention) are as follows.10

∂tũi + ũj(∂j ũi− ∂iũj) =− 1

ρf
∂ip̃∞δi,1−

1

ρf
∂ip̃∗− ∂j τ̃ij + g

( θ̃v −〈θ̃v〉
〈θ̃v〉

)
δi,3 +

1

ρf
Smi , (S1)

∂iũi = 0 , (S2)

∂tθ̃+ ũj∂j θ̃ =−∂j π̃j +
1

ρf cp,f

(
Sh
)
, (S3)

∂tq̃+ ũj∂j q̃ =−∂jΩ̃j +Sq , (S4)

θ̃v = θ̃ (1 + 0.61 q̃) . (S5)15

In the above equations, ui are the three velocity components, θ and θv are the potential and virtual potential temperature

respectively and q is the specific humidity. The overhead tildes ( ã) represent quantities filtered via spectral cutoff while the

brackets (〈a〉) represent horizontal averaging. Note that in this study, since we simulating the atmospheric surface layer,
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temperature and potential temperature are considered to be the same. The modified pressure term p̃∗ consists of static pressure

(p), filtered kinetic energy (0.5 ũiũi) and the trace of the subgrid-scale tensor (τkk/3). The first term on the R.H.S of Eq. (S1) is

the large-scale pressure gradient that is imposed to drive the simulation. Terms τ̃ , π̃, Ω̃ represent the subgrid-scale (SGS) fluxes

for momentum, heat and specific humidity respectively. The source/sink terms Smi , Sh and Sq are included to incorporate the

effect of sublimating particles being transported by the wind on the flow dynamics and thermodynamics. Particles exert drag5

on the flow and exchange heat and mass due to sublimation/deposition. In accordance with the incompressible assumption,

we consider the density of the fluid ρf to remain constant. The specific heat capacity of air cp.f is considered to be constant

irrespective of the value of specific humidity.

S1.2 SGS model

The deviatoric part of the SGS flux tensor for momentum is computed using a dynamic Smagorinsky-type model, while the10

scalar SGS fluxes are related to the momentum fluxes using fixed turbulent Prandtl (Pr) and Schmidt (Sc) numbers. The

equations used for SGS fluxes are

τij =−2νT S̃ij =−2c2s∆
2|S̃|S̃ij , (S6)

πj =− νT
Pr

∂j θ̃ , (S7)

Ωj =−νT
Sc
∂j q̃ , (S8)15

where, νt is the turbulent viscosity of air which is parametrized using a Smagorinsky-type eddy-viscosity approach. In this

approach, νT is considered to be equal to the product of a length scale cs∆ times a velocity scale cs∆|S̃ij |. S̃ij is symmetric

part of the strain rate tensor and |S̃ij |=
√

2 S̃ijS̃ij is the Galilean invariant estimate of S̃ij . The Smagorinsky coefficient, cs is

estimated dynamically using resolved velocity values through applying the Germano identity along trajectories of lagrangian

fluid particles. This approach, known as the Lagrangian Scale-Dependent Dynamic Smagorinsky (LASD) SGS model was20

developed by Bou-Zeid et al. (2005), where detailed derivations and applications for LES can be found.

S1.3 Lower-boundary condition for Eulerian quantities

For the surface boundary conditions for velocity, a non-slip condition is imposed for the vertical velocity and for the horizontal

components of the momentum equation an equivalent shear stress is imposed using the log-law with correction for the presence

of particles between the surface and the first grid point based on Shao and Li (1999),25

τi,3(x,y,z1) =

[√(̂̃u21 + ̂̃u22)
ln(z1/z0)

]2
ni +

1

ρf
Smi (x,y,z1)z1 , (S9)

where i represents the direction in the plane parallel to the surface (i= 1, 2), and ni is a unitary directional vector defined as:

ni = ̂̃ui/√̂̃u21 + ̂̃u22. The shear stress is imposed at z1 = ∆z/2. Recall that (1/ρf ) Smi is the sink of momentum due to drag

forces from the flow-particle interaction. In the case with no particles, the stress term reconciles with the standard log law
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whereas in the presence of the particles, the stress at the surface decreases (Smi is negative). The
(̂̃u) operator represents a

double filtering operation (at 2∆ grid spacing) on horizontal components of the flow, which is equivalent to a local average. The

surface roughness is constant over the entire numerical domain and has a value of z0 = 10−5m. For the numerical integration of

the momentum equation, the vertical derivatives of the horizontal velocity components are also needed. These are parametrised

at the first grid point also using Monin-Obukhov similarity theory,5

∂3ũi(x,y,z1) =

(√
τi,3

κz1

)
ni, (S10)

with τ =
√
τ21,3 + τ22,3 and κ is the von Karman constant = 0.4. The kinematic sensible

(
w′θ′

)
and latent

(
w′q′

)
heat fluxes are

zero.

S1.4 Surface-flow coupling

Ice grains lying on the surface enter into the overlying, usually turbulent fluid through mechanisms of aerodynamic, rebound10

and splash entrainment from the surface. These mechanisms and the accompanying models used in this work are described in

detail in the following paragraphs. There are some common elements in these models. All particles are assumed to enter the

flow at a height of hinit = 4 〈dp〉 above the surface. Each of these models provides the number of particles per unit area that

enter into the flow, along with the initial conditions for both velocity magnitude and direction for the lagrangian particle.

S1.4.1 Aerodynamic entrainment15

Initiation of aeolian transport of particles occurs due to entrainment of particles by the fluid when the stress at the surface

τf,surface increases above a threshold value (τthreshold) and particles from the surface are dislodged to relieve stress at the

surface. Bagnold (1941) derived an expression for the threshold stress as

τthreshold =A2g 〈dp〉(ρp− ρf ) (S11)

where g is the acceleration due to gravity, 〈dp〉 is the mean particle diameter of all particles present on the surface, ρp and ρf20

are the density of the particles and the fluid respectively. The coefficient A is an empirical parameter taken to be equal to 0.2

based on wind tunnel experiments of drifting and blowing snow by Clifton et al. (2006).

From each computational grid point on the surface, the number of particles entering the fluid due to aerodynamic entrainment

at each time-step can then be computed using the expression of Anderson and Haff (1991) as

Nae =
Ce

8π 〈dp〉2
(τf,surface− τthreshold)∆x∆y∆t , (S12)25

where Ce is an empirically derived constant of proportionality ( equal to 1.5, according to Doorschot and Lehning (2002);

Groot Zwaaftink et al. (2014) and ∆x and ∆y are the grid step sizes in the streamwise and cross-stream directions respectively

and ∆t is the simulation time-step. Once the number of particles has been calculated, for each particle entrained into the flow,

the diameter is sampled from the log-normal distribution of the particle size distribution (characterized by the 〈dp〉 and σdp ).

3



The particle is initialized at height hinit and provided with an initial velocity magnitude sampled from a log-normal distribution

characterized by mean velocity of 3.5u∗ and a standard deviation of 2.5u∗ . The ejection angle is sampled from a lognormal

distribution with a mean angle as a function of mean particle diameter as follows,

〈αae,ejection〉= 75− 55

(
1− exp

−〈dp〉
175× 10−6

)
. (S13)

Thus, at any given time-step, based on the stress at the wall, the number of particles entering the fluid along with the initial5

position and velocity can be simulated.

S1.4.2 Rebound and splash entrainment

A particle, once entrained within the turbulent fluid, may impact the bed upon which it may rebound back into the fluid (known

as rebound entrainment) as well as dislodge particles present in the bed that get entrained into the fluid as well (known as

splash entrainment).10

Consider a particle with diameter di that impacts the bed with velocity magnitude vi at a verticle impact angle of αi. The

probability that the particle shall rebound following impact (Pr) is given by Anderson and Haff (1991)

Pr = Pm
(
1− e−γvi

)
(S14)

where Pm is the maximum probability that is assumed to be equal to 0.9 for snow (Groot Zwaaftink et al., 2011) and γ is

a empirical coefficient equal to 2 according to Anderson and Haff (1991). Once the particle rebounds, its velocity must be15

re-initialized. The rebound velocity magnitude vr is taken to be half of vi. The vertical rebound angle (αr) is sampled from

an exponential distribution of mean angle equal to 45◦ following (Kok and Renno, 2009). The particle is assumed to remain in

the same vertical plane before and after the collision for simplicity.

As mentioned earlier, the impacting particle may break inter-particle bonds present in the snowbed and dislodge additional

additional particles into the overlying turbulent flow. The number of particles dislodged Nsplash =min(NE ,NM ), where,20

NE =
(1−Prεr − εf )d3i v

2
i

2〈v〉2
(
〈d〉+ σ2

d

〈d〉

)31 + rE

√
5

[
1 +

(
σd

〈d〉

)2]9
− 5

+ 2φ

, (S15)

NM =
(1−Prµr −µf )d3i vi cosαi

〈v〉
(
〈d〉+ σ2

d

〈d〉

)3〈cosα〉〈cosβ〉+ rM

√[
1 +

(
σd

〈d〉

)2]9
− 1

 (S16)

In the above equations, Pr is the probability of rebound of the impacting grain, calculated using Eq. (S14); εf and εr are

the fractions of impact energy lost to the bed due to friction and that retained by the rebounding particle respectively. The

corresponding fractions of impact momentum are denoted as µf and µr respectively. The mean and standard deviation of the25

ejecta’s diameter are represented by 〈d〉 and σd. 〈v〉 is the mean velocity of the ejecta with α and β being the vertical and
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horizontal ejection angles of ejected particles. Cohesion of the snow bed is represented by φ. Correlation coefficient between

the ejected mass m and velocity v2 is rE while rM is the corresponding correlation coefficient between m and v.

The splashed particles are initialized at a height similar to the aerodynamically entrained particles at the height of hinit.

The initial velocity magnitude is assumed to follow an exponential distribution with a mean value of 0.25v0.3i . The vertical

entrainment angle α is chosen as a random number that is drawn from an exponential distribution with a mean value of 50◦. The5

horizontal splash angle βn is sampled from a Gaussian distribution with a mean value of the horizontal angle of the impacting

particle and a standard deviation of 15◦.

Models for splash entrainment are dervied by Comola and Lehning (2017) and similar models have previously been imple-

mented by Groot Zwaaftink et al. (2014). Additional references can be found in these works.

S1.5 Dynamics of particles in flow10

Once the ice grain is entrained within the turbulent flow, its fate is determined by solving the equations of motion. The only

forces we included in our calculations are drag forces and gravity. The drag forces are computed by considering the ice grains

to be spherical and use well-known bulk parametrizations of drag on a sphere in a turbulent flow (Clift et al., 1978). The

equations for motion are as follows

dup,i
dt

=
(
1 + 0.15Re0.687p

) 1

tp
(ũi +usgs,i−up,i)− gδi,3 , (S17)15

tp = ρpd
2
p /18ρfνa , (S18)

where, up,i are the velocity components of the particle, ũi is the filtered velocity solved in Eq. (S1),Rep is the particle Reynolds

number (defined later), νa is the kinematic viscosity of air and usgs,i is the SGS fluid velocity computed along the path of the

particle’s motion. We use the equation for SGS velocities from Weil et al. (2004) as follow,

dusgs,i =−f usgs,i
Tf

dt +
1

2

(
1

σ2

dσ2

dt
usgs,i +

∂σ2

∂xi

)
dt+

(
f

2σ2

Tf

)1/2

dξi , (S19)20

where σ2 = 2e/3 is the variance of the SGS velocity, which is directly proportional to the SGS turbulence kinetic energy

(TKE) e. The fraction of TKE present in subgrid scales is represented by f. dξi is a normally distributed random number with

zero mean and a variance of dt. The velocity autocorrelation timescale (Tf = 2σ2/Coe) is used to consider the effect of heavy

particles as opposed to purely lagrangian particles without inertia.

The mass exchange between the ice grain and the surrounding fluid is driven by the difference between the vapour density25

at the surface of the particle (which is considered to be saturated) and the vapour density in the fluid at the particle location.

We assume that the total density of the fluid ρf is constant and thus can directly write the mass balance equation as a function
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of specific humidity as follows

dmp

dt
= πDdpρf (q̃− qp,surface)Sh,

qp,surface =
MW

RuTpρf
es,a exp

[
LsMw

Ru

(
1

Tf
− 1

Tp

)]
, (S20)

es,a (Tf ) = 611.15exp

[(
23.036− Tf − 273.15

333.7

)(
Tf − 273.15

6.67 +Tf

)]
.

In above equation,mp is the mass of the particle, D is the diffusion coefficient of vapour in air, q̃ is the filtered specific humidity5

computed using Eq. (S4), Sh is the Sherwoord number (described later) and qp,surface is the specific humidity at the surface,

which is computed using the ideal gas law and the Clasius-Clayperon equation, integrated between the particle surface and

the mass-boundary layer. MW is the molecular weight of water, Ru is the universal gas constant and Ls is the latent heat of

sublimation. The saturation vapour pressure with respect to ice, es,a is computed using the Arden-Buck equation for ice.

The temperature of the particle evolves according to a balance between the latent heat due to mass exchange and the con-10

vective heat transfer between the ice grain and the surrounding fluid and can be expressed as,

cimp
dTp
dt

= Ls
dmp

dt
+πK dp

(
θ̃−Tp

)
Nu, (S21)

where ci is the specific heat capcity of ice, K is the thermal conductivity of the air, θ̃ is the filtered potential temperature

obtained by solving Eq. (S3) and Nu is the Nusselt number.

The effect of turbulence on momentum, heat and mass transfer is neatly encompassed in three non-dimensional parame-15

ters, namely the Reynolds, Nusselt and Sherwood numbers respectively. We use the following expressions to calculate these

numbers.

Rep =
d |urel|
νair

, (S22)

Nu= 1.79 + 0.606Re1/2p Pr1/3 , (S23)

Sh= 1.79 + 0.606Re1/2p Sc1/3 , (S24)20

The coupling between the particles and the flow occurs through the source/sink terms in equations for momentum (Eq. (S1),

Sm), temperature (Eq. (S3), Sh) and specific humidity (Eq. (S4), Sq). Consider a particle lying at a point within in the fluid. The

eight closest points of the LES discretized grid shall necessarily form a cube considering that we use a structured Cartesian grid.

The point force due to drag upon the particle is simply extrapolated onto these eight points using inverse distance weighting.

The total force at any LES grid point is a summation of all such extrapolated forces. If an LES grid point has Np particles25
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contributing to the total force at it’s location, the source/sink terms can be simply represented as

Smi =−
Np∑
β=1

wβ
∆V

(
mp

dup.i
dt

+
dmp

dt
up.i

)
β

,

Sh =−
Np∑
β=1

wβ
∆V

(
πK dp

(
θ̃−Tp

)
Nu
)
β
, (S25)

Sq =−
Np∑
β=1

wβ
∆V

1

ρf

(
dmp

dt

)
β

.

In the above equation, wβ is the weight for the extrapolation operation computed using inverse distance weighting.5

S1.6 Numerics

The flow equations ( Eq.(S1), (S3) and (S4) ) are solved in the Eulerian frame of reference using a pseudo-spectral collocation

method in the same fashion as that introduced by Moeng (1984) and Albertson and Parlange (1999). In this approach, the

horizontal gradient operations are computed using fourier methods while vertical gradients are computed using second order

finite differences. Because of the fourier based methods in both horizontal directions, the domain is fully periodic and no10

lateral boundary conditions are needed, and hence, the domain size tends to infinity in practical effects. The use of fourier

methods is quite useful for SGS modelling is because allows the direct use of spectral cut-off for filtering the flow quantities.

The horizontal grid is uniform with equal discretizations in the both the streamwise and cross-stream directions. In the vertical

direction we use hyperbolic tangent function based grid stretching. This to insure that there are sufficient grid points within

the saltation region. Incompressibility is enforced through a prediction-correction approach where the velocity is marched in15

time and the poisson equation is used to solve for the dynamic pressure field. To maintain proper consistency in numerics for

solving the poisson equation, the vertical grid is staggered to ensure second-order accuracy.

Integration in time is done using a second-order Adams-Bashforth scheme. In addition, the non-linear convective terms are

dealaised with the 3/2 rule (Canuto et al., 1988). The code is fully parallelised using Message Passing Interface (MPI), and the

FFTW library (Frigo and Johnson, 2005) is employed for the Fourier transforms. The pressure solver is based on the pipeline20

Thomas algorithm (Povitsky and Morris, 2000) and is used to enforce incompressibility implied by Eq. (S2).

The equation of motion for particles (Eq. (S17)) along with equations for heat and mass budgets (Eq. (S20) and (S21)) are

solved using a simple first-order time stepping using forward euler method. At each timestep, information from the Eulerian

LES grid is translated to locations of the lagrangian particles using simple linear interpolation. The source/sink terms due

to the flow-particle coupling are translated back to the Eulerian frame of reference using linear extrapolation as described in25

Eq. (S25).

All simulations in this study are driven by an imposed large-scale pressure gradient P =−(1/ρf )∂p̃∞/∂x in the stream-

wise direction. This quantity is kept constant throughout the simulation. Upon choosing values of the surface friction velocity

u∗, the imposed pressure gradient can be computed as P = u2∗/Lz , where Lz is the vertical extent of the computational

domain.30
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S2 Physical constants and numerical parameters used in the study

Table S1. Important Physical Parameters and Constants

Parameter Symbol [Units] Value

Latent heat of sublimation Ls
[
J kg−1

]
2835.49×103

Prandtl number Pr [−] 0.72

Schmidt number Sc [−] 0.63

Molecular Weight of Water Mw

[
kg mol−1

]
0.018015

Density of ice ρp
[
kg m−3

]
918.4

Density of air ρf
[
kg m−3

]
1.34

Specific heat capacity of air cp,f
[
J kg−1 K−1

]
1.005×103

Specific heat capacity of ice ci
[
J kg−1 K−1

]
2.0357×103

Roughness length z0 [m] 1.0× 10−5

Cohesion Strength φ [J] 10−10

Diffusivity of vapor in air D
[
m2 s−1

]
1.96× 10−5

Thermal conductivity of air K
[
W m−1 K−1

]
0.023

Universal Gas Constant Ru
[
J mol−1 K−1

]
8.314

Kinematic Viscosity of air νa
[
m2 s−1

]
1.24 ×10−5

Table S2. Details of the numerical setup

Parameter Symbol [Units] Value

Streamwise extent of domain Lx [m] 6.4

Cross-stream extent of domain Ly [m] 6.4

Vertical extent of domain Lz [m] 6.4

Grid points in horizontal directions {nx, ny} [−] 64

Grid points in vertical direction nz [−] 128

Vertical grid stretching {zmin , zmax} [m] {0.01 , 0.1}
Time step ∆t [µs] 50

Total time T [s] 1200
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S3 Supplementary results

0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

Figure S1. The total mass of snow presented in the fluid at any given time of the simulation for three different forcing conditions. The vertical

blue line denotes the commencement of surface erosion.
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Figure S2. Evolution of the friction velocity at the surface (u∗). The vertical blue line denotes the commencement of surface erosion which

until this point in time has been artificially restricted.

We present here two results that supplement the results presented in the main portion of the letter. While these results are

not critical to discussions presented in the letter, they are nevertheless interesting in their own right and help justify certain

assumptions used in the simulation setup.

Fig. S1 shows evolution of the total air-borne mass of snow under three different forcing conditions. It shows that that once5

surface erosion is allowed to occur, there is a rapid increase in the total mass present in the atmosphere, following which, it

slowly decays to reach its asymptotic value at approximately 300 seconds. All the three forcings, marked by the three initial

u∗ values of 0.4 (UL), 0.6 (UM) and 0.8 (UH) show similar behaviour with larger mass entrained by the air with increasing u∗
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values as expected. The results in Fig. S1 explain the increase in errors in the mass-loss rate with increasing u∗ values between

the Nu-TM and TM approaches as discussed in Fig. 3 of the letter.

In Fig. S2, the evolution of the surface friction velocity is shown as a function of time. The vertical blue line marks the

beginning of surface erosion. It shows that irrespective of the forcing used to drive the flow, once saltation begins, the friction

velocity at the surface drops to that of u∗,threshold. The value of u∗,threshold , computed using Eq.(S11) for τthreshold and by5

considering that u∗,threshold =
√
τthreshold/ρf is found to be equal to 0.232. The rate at which the surface friction velocity

decays is dependent on the forcing used with larger forcing decaying more rapidly to the asymptotic value of u∗,threshold.

This result is important since the surface friction velocity dictates the turbulent exchange between the surface and the overlying

turbulent fluid. A drop in the surface friction velocity shows during drifting and blowing snow events, the heat and mass transfer

between the surface and the atmosphere can be neglected as a first-order approximation and can be modelled using fixed stress10

values in more detailed studies.
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