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Abstract. Accurate description of snow and firn processes is necessary for estimating the fraction of glacier surface melt that

contributes to runoff. Most processes in snow and firn are to a great extent controlled by the temperature therein and in the

absence of liquid water, the temperature evolution is dominated by the conductive heat exchange. The latter is controlled by the

effective thermal conductivity k. Here we reconstruct the effective thermal conductivity of firn at Lomonosovfonna, Svalbard,

using an optimization routine minimizing the misfit between simulated and measured subsurface temperatures and densities.5

The optimized k∗ values lie in the range from 0.2 to 1.6 J (s m K)−1 increase downwards and over time. The results are

supported by uncertainty quantification experiments, according to which k∗ is most sensitive to systematic errors in empirical

temperature values and their estimated depths, particularly in the lower part of the vertical profile. Compared to commonly

used density-based parameterizations our k values are consistently larger, suggesting a faster conductive heat exchange in firn.

1 Introduction10

Glaciers and ice sheets are important indicators of past and ongoing climate changes. Under the influence of temperature fluc-

tuations at the surface the subsurface glacier temperature also changes. As a basic physical property of a medium temperature

of snow, firn and ice controls multiple processes occurring therein and at the glacier surface.

Climate-induced glacier mass change is strongly affected by the state of snow and firn, where liquid water generated at

the surface of glaciers during the ablation period can be refrozen, by this reducing runoff. The magnitude of liquid water15

refreezing is largely dependent on the subsurface temperature (e.g., Trabant and Mayo, 1985). A snow/firn pack reaching lower

temperatures during the winter season is able to refreeze a larger amount of water during and after the ablation season. Warmer

snow and firn experience faster metamorphism (e.g., Jordan et al., 2008) and gravitational densification (Ligtenberg et al.,

2011). The distribution of temperature under the glacier surface also defines the ground heat flux, which contributes to the

energy balance at the surface, and is thus important for simulation of the surface energy fluxes and melt rates. In addition, cold20

ice is more viscous and less prone to deformation (e.g. Weertman, 1983). Therefore, a cold glacier can be expected to exhibit

lower flow velocities, provided that other environmental parameters are equal. Thus the processes of mass and energy exchange
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occurring at glaciers are in tight interaction with the subsurface temperature, which needs to be either measured or simulated,

if measurements are not possible.

In the absence of liquid water the changes in subsurface temperature are defined by the process of thermal conduction

described by Fourier’s law (Cuffey and Paterson, 2010), according to which the heat flux (Q) is proportional to its thermal

conductivity (k) and to the spatial temperature gradient (∇T ): Q = −k∇T . Since most temperature fluctuations occur at5

the surface, the dominant direction of heat flux is vertical: Q=−k dT
dz , where z is the vertical coordinate. Several processes

contribute to the temperature changes occurring in the porous snow and firn, namely: conduction through the rigid ice matrix,

conduction through the air in pores and latent heat transport through the pores due to sublimation and condensation of water

vapour (e.g., Sturm et al., 1997). To underline that fact and because all three processes are essentially driven by the temperature

gradient (e.g., Bartelt and Lehning, 2002) the term effective thermal conductivity (here k) is used to describe the ability of10

snow, firn and ice to transport thermal energy. Along with density (ρ) and specific heat capacity (C) k is used to calculate

thermal diffusivity (κ) as κ= k (ρ C)−1.

Due to the direct connection between k of a medium and temperature changes therein, most empirical estimates of k are

based on temperature measurements (Sturm et al., 1997). Continuous measurements of natural temperature fluctuations in

snow and firn allow to derive κ and k values either using Fourier-type analysis or optimization techniques. Diurnal temperature15

fluctuations penetrate down to ca 1 m and the associated phase lag and/or amplitude dampening occurring with depth can be

used to reconstruct the effective thermal conductivity of seasonal snow (e.g., Sergienko et al., 2008; Osokin and Sosnovsky,

2014). Annual fluctuations penetrate down to ca 10 m and thus k estimates for thick firn packs using the method require a

long data series undisturbed by the influence of liquid water (Dalrymple et al., 1966; Weller and Schwerdtfeger, 1971; Giese

and Hawley, 2015). Alternatively, κ and k values in the heat equation can be determined by minimizing the misfit between20

simulated and measured natural evolution of temperature in snow and firn (e.g., Tervola, 1989; Zhang and Osterkamp, 1995;

Yang, 1998). Brandt and Warren (1997) applied this method for near-surface snow at the South Pole, Sergienko et al. (2008)

for the snow pack on a drifting iceberg and Oldroyd et al. (2013) for the seasonal snow pack on an Alpine glacier.

Another option is to induce a heat flux in the snow pack using a heat source and register the temperature response in either an

object with well-known properties that is in contact with both the heat source and the snow or in snow pack itself. The former25

method is known as the needle probe technique and is widely used to measure in-situ effective thermal conductivity of porous

materials including snow (e.g., Lange, 1985; Singh, 1999; Morin et al., 2010). In the latter case the snow sample is placed on a

heated plate controlling the vertical heat flux and the respective temperature gradient is measured and the relation between the

two values yields k (e.g., Calonne et al., 2011; Riche and Schneebeli, 2013). Sturm et al. (1997) provide an extensive overview

of the above named methods and associated uncertainties.30

A novel technique for estimation of k of snow was suggested by Kaempfer et al. (2005) and further developed by Calonne

et al. (2011) and Riche and Schneebeli (2013). The method relies on numerical simulation of processes contributing to the heat

flux driven by the temperature gradient based on detailed 3-D X-ray micro-tomography images of the snow matrix. It allows

to obtain the k tensor for relatively small snow samples.
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Published k values for snow and firn vary from 0.1 to 2.5 J (s m K)−1 with a strong correlation with density, which justifies

the use of density as a proxy to calculate the effective thermal conductivity for modelling purposes (e.g., Sturm et al., 1997;

Riche and Schneebeli, 2013). The considerable spread in values suggested by different parameterizations is explained by

the inconsistency in applied measurement techniques and associated uncertainties and also by the influence of snow and firn

parameters other than density. That can be temperature, grain size and contact area, pore diameter and interconnectivity and5

anisotropy of the k property.

The purpose of the present study is to reconstruct the values of effective thermal conductivity of a thick snow and firn pack at

Lomonosovfonna, Svalbard, based on evolution of subsurface temperature and firn density measured in 2012–2015. Effective

thermal conductivity of firn is derived for five distinct periods by minimizing the misfit between the measured and simulated

subsurface temperature evolution. The method is promising, particularly for thick firn packs, to our knowledge is has not been10

applied for the purpose so far, although Sergienko et al. (2008) employed similar routines for a seasonal snow pack. Fourier

analysis applied earlier for a thick firn pack at the summit of the Greenland ice sheet (Giese and Hawley, 2015) can not be used

here due to the influence of melt water and retrieving snow samples for direct measurements using heated plate or needle probe

methods is logistically challenging. Estimates of the firn k values are complemented by uncertainty quantification experiments

exploring propagation of possible biases in empirical data through the applied models.15

2 Field data

We use data on subsurface density and temperature evolution collected at Lomonosovfonna, Svalbard, a flat ice field nourishing

several outlet glaciers. The field site is at 78.824◦N, 17.432◦E, 1200 m asl, which is well above the equilibrium line, estimated

to be at ca 720 m asl (Van Pelt et al., 2012). The local glacier thickness is 192±5.1 m (Pettersson, 2009, unpublished dataset;

Van Pelt et al., 2013) of which the firn layer constitutes ca 20 m (Wendl, 2014). The accumulation and melt rates estimated20

respectively from repeated radar surveys (Pälli et al., 2002; Van Pelt et al., 2014) and modeled surface energy and mass fluxes

(Van Pelt et al., 2012) are 0.58–0.75 and 0.34 m w.e.year−1, respectively. The net annual accumulation rates resulting in the

relative vertical shifts of the glacier surface are estimated at 1.12 (April 2012–2013), 1.32 (April 2013–2014) and 0.9 (April

2014–2015) m. The first two values are based on readings at mass balance stake S11 (see Fig. 1a in Marchenko et al., 2017a)

and the last one is derived by minimizing the misfit between temperature profiles measured in April 2015 by the thermistor25

strings installed in April 2014 and in April 2015. The firn pack at Lomonosovfonna is heavily influenced by the percolation and

refreezing of melt water (Marchenko et al., 2017b) which results in prominent local scale variability of subsurface stratigraphy

(Marchenko et al., 2017a).

2.1 Subsurface density

Four shallow firn cores (9.5 cm diameter) were drilled at Lomonosovfonna in April 2012 - 2015 using a Kovacs core drill. The30

density and stratigraphy profiles (Figure 1) for the first three cores were presented in detail by Marchenko et al. (2017a) along

with the details on field and laboratory procedures applied. Similar routines were applied in 2015.
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2.2 Subsurface temperature

2.2.1 Equipment

Subsurface temperature was measured using multiple thermistors grouped in several strings. They were placed in boreholes

with 5.5 cm diameter drilled by a Kovacs auger. The boreholes were then backfilled by drill chips and loose snow to minimize

the perturbation of the snow and firn media. In 2012–2014 nine thermistor strings were placed in a rectangular 3 × 3 grid with5

a separation of 3 m between neighboring boreholes (Marchenko et al., 2017a, b). In April 2015 only one thermistor string was

installed.

All thermistor strings were custom manufactured at Uppsala University using a multi-leaded cable with PVC jacket and uni-

curve NTC thermistors. In 2015 the cable was placed in multiple 2 m long rigid plastic tubes to ensure a precise and constant

separation between neighboring sensors. The sensors were fed through holes in the tubes and fixed at their outer surface for a10

better contact with the sounded environment.

The thermistor strings were scanned using a Campbell Scientific CR10X data logger and several relay multiplexors. Each

thermistor was connected in series with a reference resistor and precisely measured excitation voltage was applied to the circuit.

Voltage drop over the reference resistor was measured and then converted first to corresponding resistances of the sensors and

then to temperature values using Ohm’s law and recommendations provided by thermistor manufacturer.15

The evolution of subsurface temperature was recorded during four time periods: 21 April – 19 October 2012, 22 April – 12

July 2013, 17 April 2014 – 11 April 2015 and 15 April – 9 July 2015. The frequency of measurements is shown by the color

bar in bottom of Figure 2. During the first two periods it was once every 3 h, during the fourth period it was once every 1 h.

During the third period the frequency varied and was once every 1 h during 17 April–31 July 2014 and 15 April–9 July 2015,

once every 3 h during 1 August–31 October 2014 and once every 12 h from 1 November 2014 to 14 April 2015. The strings20

installed in 2012, 2013 and 2014 contained up to 128 thermistors covering depth from 0.5 to 12 m with a vertical separation

varying from 0.25 to 2 m (Marchenko et al., 2017b; see Figure 2 therein). In 2015 the string contained 31 sensors separated by

0.25–1 m covering a similar depth interval.

2.2.2 Data post-processing

Several post-processing routines were applied to the measurements of the subsurface temperature evolution. Firstly, the indi-25

vidual thermistors were calibrated against 0 ◦C by applying an offset defined as the mode (most frequent value) of the values

measured during July 1–September 1. During this period subsurface temperature is most likely to reach 0 ◦C. The value serves

as a natural upper limit for the snow and firn temperature and is well interpreted from plots of measured values against time.

Secondly, spline interpolation was applied to interpolate the data from each thermistor string to a common vertical grid with

0.1 m spacing between neighboring nodes. During April 2012–2015 the subsurface temperature was simultaneously measured30

by several thermistor strings and thus the interpolated dataset was subsequently averaged horizontally to produce a single series
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τ describing subsurface temperature changes in time (superscript n) and depth (subscript i):

τni =
1
q

q∑

m=1

τnim, (1)

where τnim is the temperature measured by the m-th thermistor string and q is the total number of strings. In 2015 only one

thermistor string was installed and thus no averaging was applied. To characterize the spread in temperature values measured

at the same depth and time but by different instruments the corresponding standard deviations were calculated as5

(σnτi)
2 =

1
q− 1

q∑

m=1

(τnim− τni )2. (2)

3 Modelling

The evolution of subsurface temperature in the upper 10–15 m of a glacier is mostly controlled by two processes: conductive

heat flow and refreezing of liquid water accompanied by release of the latent heat (Cuffey and Paterson, 2010). Configuring

the computational domains to minimize the influence of non-conductive heat fluxes, we compute the effective thermal conduc-10

tivities for the firn profile at Lomonosovfonna and assess their sensitivity to errors in empirical data used in the simulations.

The computational procedure is as follows. Within the forward model (see Sect. 3.1) the heat equation is approximated

numerically and then solved for the temperature with a given conductivity k and density ρ. The two parameters are then

iteratively adjusted to derive conductivity k∗ and density ρ∗ minimizing the difference between the simulated and measured

subsurface temperature and density (see Sect. 3.2). To quantify the uncertainties associated with k∗ we first define the feedback15

of simulated temperature to change in individual conductivity values. These results are then used to compute the sensitivity of

conductivity to errors in the empirically derived:

– temperature values (see Sect. 3.3.1),

– in depths of temperature values (see Sect. 3.3.2) and

– density values (see Sect. 3.3.3).20

These routines were coded using MATLAB R-2018a software. All computations on a laptop with four cores Intel(R) i7-4600

CPU 2.1GHz are obtained in less than 10 s.

The time periods are chosen to minimize the influence of water refreezing on the evolution of subsurface temperature. They

are referred to as "spring 2012", "spring 2013", "spring 2014", "fall 2014" and "spring 2015" and cover correspondingly 21

April – 19 June 2012, 22 April – 1 June 2013, 18 April – 4 July 2014, 25 September 2014 – 11 April 2015 and 15 April – 9 July25

2015. Furthermore, temperature above -2 ◦C are excluded from the analysis to avoid the influence of latent heat fluxes from

firn volumes with increased water content as the freezing front propagates through them. To minimize the potential influence

of near surface processes (radiation penetration, wind effects) on the results, we disregard the temperature values measured

above the depth of 1 m referenced to the glacier surface at the moment of instrument installation.
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3.1 Conduction model setup

The model is based on Fourier’s law of heat conduction. The temperature of the firn T (◦C) at depth z (m) and time t (s) is

governed by the one dimensional equation:

ρ(z) C
∂T

∂t
=

∂

∂z
(k(z)

∂T

∂z
), (3)

where ρ is the subsurface density (kg m−3),C = 2027 J (kg K)−1 is the specific heat capacity calculated using the temperature5

dependent function from (Cuffey and Paterson, 2010) for the temperature of -10◦C, and k is the effective thermal conductivity

(J (s m K)−1). Given k(z), ρ(z) along with initial and boundary conditions, Eq. (3) is solved forward in time for T (z, t).

The numerical solution of the Eq. (3) is based on a discretization with the time step ∆t and space step ∆z. The spatial

and temporal derivatives are approximated using the Crank-Nicolson method (Dahlquist and Björck, 2003) with central finite

differences in space and trapezoidal rule in time. Let Tni be the temperature T (zi, tn) at tn = n∆t, n= 1, . . . ,N and zi =10

i∆z, i= 1, . . . ,Mn. The number of time steps is N and the number of nodes in space Mn varies in time. The solution at zi is

advanced in time from tn to tn+1 as:

ρiC
Tn+1
i −Tni

∆t
=

1
2
(
DTn+1

i + DTni
)
, n= 1, . . . ,N − 1, (4)

where DTni is the spatial temperature derivative at zi approximated by:

DTni =
(ki+1 + ki)(Tni+1−Tni )− (ki + ki−1)(Tni −Tni−1)

2∆z2
. (5)15

Collecting terms in (4) with Tn+1 on the left hand side and terms with Tn on the right hand side, a tridiagonal system of linear

equations can de derived and solved for Tn+1
i by a direct method. The time integration is unconditionally stable and second

order accurate in space and time (Dahlquist and Björck, 2003).

At each time step the computations are performed for Mn nodes from the top at z1 = 1 m to the bottom at zMn where the

temperature is just below -2◦C, which minimizes the influence of the latent heat release at the freezing front. Thus the depth20

of the lower boundaries of the simulation domains zMn increases over time following the downward propagation of the -2◦C

isotherm as shown by the white curves in Figure 2. The vertical step (∆z) follows the depth interval in the empirical dataset

and is 0.1 m. The chosen time step is 1 h and in case the measurement period is larger than that, linear interpolation is used to

derive the values missing in the upper and lower boundary conditions. The model is initialized in each of the five time periods

using measured temperature values τ1
i . The upper and lower boundary conditions are of Dirichlet type and are determined by25

the temperatures measured at z1 and zMn : Tn1 = τn1 and TnMn = τnMn .

The density ρ(z) and effective thermal conductivity k(z) at depths zi are constrained using piecewise linear interpolation

based on J nodes vertically spaced by 1 m interval. For the domains covering spring seasons J equals 8 and is 6 in fall

2014 with the uppermost value corresponding to the upper boundary of the computational domain. The choice of J value

is a compromise between coarse vertical resolution of the optimized parameters (low J) and insufficient amount of data to30

constrain a very detailed k∗ profile (high J). Too large J will result in an oscillatory optimal solution for k.
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3.2 Inverse routine

The effective thermal conductivity k in (5) is unknown. Therefore, the above described forward model is used in an optimiza-

tion routine to iteratively derive the values of the effective thermal conductivity and density that minimize objective function

Fτ,ς(k,ρ). Following Smith (2013), the latter is defined by the sums of squared differences between the simulated and measured

temperature and density:5

Fτ,ς(k,ρ) =
N∑

n=1

Mn∑

i=1

1
(στni )2

(Tni (k,ρ)− τni )2 + γ

Mn∑

i=1

1
(σ%i)2

(ρi− %i)2 , (6)

and the optimization routine attempts to minimize Fτ,ς(k,ρ) by adjusting the conductivity k and density ρ values used in

simulations. In Eq. (6) Tni (k,ρ) and τni are the simulated and measured temperature values at time tn and depth zi, %i is the

density measured at depth zi. For the spring domains % profiles are taken from the cores drilled within a couple of days from the

start of simulation and for the fall 2014 domain we reuse the density data from the core drilled in April 2014. The deviations10

of the simulated temperature values from empirical data are weighted by the variances (στni )2 in temperature values from

different thermistor strings but at the same time and depth (see Eq. (2)). This results in lower significance of simulation errors

when the measurements are less certain. It is thus assumed that measurement errors are independent and normally distributed

with zero mean and variance (στni )2. Since no empirical data is available to quantify the errors in density measurements, the

weighting term σ%i was set to 1. The value γ = 10 is chosen to keep the balance between the temperature and density terms in15

F and depends on N , Mn as well as on the magnitudes of τ and %.

The primary aim here is to derive the optimal k values at J nodes. Optimization of the densities used by the model is included

to allow for flexibility, since the measurements in firn cores are uncertain and the errors remain largely unknown. Including the

term with the measured density in F can be interpreted as a Bayesian prior guess (Smith, 2013; Calvetti and Somersalo, 2007)

adding extra information about ρ or a regularization of the density according to Tikhonov (Calvetti and Somersalo, 2007).20

Introduce the vectors:

T = (T 1
1 ,T

2
1 , . . . ,T

N
1 ,T 1

2 , . . . ,T
N
2 ,T 1

3 , . . . ,T
N
M )T ,

τ = (τ1
1 , τ

2
1 , . . . , τ

N
1 , τ

1
2 , . . . , τ

N
2 , τ

1
3 , . . . , τ

N
M )T ,

ρ= (ρ1,ρ2, . . . ,ρM )T ,

%= (%1,%2, . . . ,%M )T ,

where M = maxnMn. Let the diagonal matrices W have Wjj = 1/(στni )2, j =N(i− 1) +n, n= 1, . . . ,N, i= 1, . . . ,Mn,

and Wjj = 0, j =N(i− 1) +n, n= 1, . . . ,N, i=Mn + 1, . . . ,M, on the diagonal. Then F in Eq. (6) can be written as:

Fτ,ς(k,ρ) = (T − τ)TW (T − τ) + γ(ρ− %)T (ρ− %). (7)25

The diagonal elements of W vanish when i >Mn since the sums in Eq. (6) are restricted to i≤Mn.

The optimal k∗ and ρ∗ minimize F in Eq. (6) and (7) and the solution of the nonlinear least squares optimization problem

can be written as:

(k∗,ρ∗) = argmin
k,ρ

Fτ,ς(k,ρ). (8)
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It is solved by the lsqnonlin function in MATLAB.

3.3 Uncertainty quantification

Results of the optimization routine largely rely on the empirical data used to guide the routine. The sensitivity of optimized k∗

values is explored separately for the errors in measured temperature, depths of empirically derived temperature values (both

affecting the vertical temperature gradient) and measured density values by applying uncertainty quantification techniques5

described in (Smith, 2013). The results of the sensitivity estimates are only valid for relatively small errors on the order of ca

5 – 10 % of the parameter value in question.

3.3.1 Temperature

Errors δτ in the measured temperature values τ in Eq. (6) propagate to the effective thermal conductivities k∗ derived from the

optimization problem in Eq. (8). Here we first inverse the logic and calculate the feedback of simulated temperature values T10

to relatively small perturbations in individual k∗ values. These results are then used to define the response of optimized thermal

conductivities to possible errors in temperature data.

In general, temperature deviations resulting from perturbation δk in the effective thermal conductivity vector k∗ can for time

tn and depth zi be described by the equation:

Tni (k∗ + δk,ρ∗)−Tni (k∗,ρ∗) =
J∑

j=1

Anijδkj , (9)15

where Anij represent the local temperature responses at tn and zi to unit perturbations in kj , j = 1, . . . ,J . The full sensitivity

matrix A describes the spatio-temporal distribution of the deviations between temperature simulations done using perturbed

and not perturbed effective thermal conductivities and is defined as:

A=

A1
11 A1

12 · · · A1
1J

...
...

AN11 AN12 · · · AN1J

A1
21 A1

22 · · · A1
2J

...
...

ANM1 ANM2 · · · ANMJ

. (10)

Each row corresponds to specific indices in time, n= 1, . . . ,N , and space, i= 1, . . . ,M and columns corresponds to different20

k values j = 1, . . . ,J and in a general case J is not fixed to 6 or 8 and can be equal to M . Then the matrix form of Eq. (9) is:

T (k∗ + δk,ρ∗) = T (k∗,ρ∗) +Aδk. (11)

To derive the J columns in the sensitivity matrixA in Eq. (10) the forward model (see Eq. (3)) was run J times consecutively

perturbing the individual thermal conductivities k∗ j , j = 1, 2 . . . ,J by the value ∆k. The elements of A are approximated by

8
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the finite difference formula:

Anij =
Tni (k∗ + δkj ,ρ∗)−Tni (k∗,ρ∗)

∆k
, (12)

where the entries of δkj are zero except for the j:th one which is ∆k = 10−6J(smK)−1. Note that a perturbation of k∗j will

change all values of k(z) between zj−1 and zj+1 due to the linear interpolation for k. The full matrixA can be used to quantify

deviations in the optimal k∗ given an assumption regarding the possible errors in measured temperature values. Since the upper5

and lower boundary conditions are given by τn1 and τnMn for every k, the elementsAn1j andAnMnj for j = 1, . . . ,J, n= 1, . . . ,N,

in A in Eq. (10) are zero. Consequently, we do not assess the effect of errors in the temperature measurements on k∗ through

the values used to initialize and force the forward model.

If we now assume that δτ are perturbations in the temperature data τ , that will result in deviations δk of the optimized

thermal conductivity values from the original estimate k∗. The optimization problem in Eq. (8) now has the solution:10

k∗ + δk = argmin
k

Fτ+δτ,ς(k,ρ∗). (13)

If δτ in Eq. (13) is small and ρ∗ is fixed, then using Eq. (7) and Eq. (11) one can show that δk in Eq. (13) satisfies:

ATWAδk =ATWδτ. (14)

By linearising the dependence of Tj(k∗ + δk,ρ∗)−T (k∗,ρ∗) on δk in Eq. (11), we arrive at a linear least squares problem to

solve for δk in Eq. (14):15

δk = (ATWA)−1ATWδτ =Aτδτ. (15)

The weight matrix W in Eq. (15) is used to select only those values of δτ that are inside the computational domain. Columns

in the sensitivity matrix Aτ correspond to the different k∗j nodes and individual element express the feedback to be expected

from the respective thermal conductivity value to unit perturbations at different depths and moments in time.

It is further assumed that errors in temperature measurements δτ are independent in space and constant in time and can be20

expressed as:

δτ = Eδς, (16)

where the elements of column vector δς are normally distributed random variables δςi ∼N (0,s2i ), i= 1, . . . ,M , with zero

mean and standard deviations si. The elements of the MN ×M matrix E are zero except for Eki = 1, k =N(i− 1) +n, n=

1, . . . ,N, i= 1, . . . ,M . Then the error in τni is δτni = δςi. The expected values of δk can be evaluated using Eq. (15) and Eq.25

(16):

E[δk] =AτEE[δς] = 0, (17)

and the variances are found on the diagonal of the covariance matrix

Cov[δk] = E[(Aτδτ)(Aτδτ)T ] =AτE[δτδτT ]ATτ
=AτEE[δςδςT ]ETATτ =AτESETATτ ,

(18)
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where S is a square, diagonal M ×M matrix with s2i on the diagonal. In the numerical experiments for the first four time

periods when nine thermistor strings were used si is taken as the time average of στni in Eq. (2): s2i =
1
N

∑N
n=1σ

2
τni

and for

spring 2015 when only one thermistor string was used as a vertically uniform value of s2i = 0.02.

3.3.2 Depth of temperature sensors

The process of conductive heat flow is governed by the spatial temperature gradient
∂T

∂z
. Uncertainty in the empirical estimates5

of the gradient depends not only on the accuracy and precision of the measured temperature values, but also on the possible

biases in the estimates of the depths of the sensors. Real positions of the latter may differ from the ones assumed according

to the original design due to the curvature of the thermistor cable in the borehole. Here possible biases in z are converted to

possible biases in T using the definition of the temperature gradient and the uncertainty in k∗ is quantified using Aτ in Eq.

(15).10

The error in vertical separation of the temperature values attributed to depths zi and zi+1 is assumed to be constant in time

and is denoted by δεi+1. Then

zi+1 = zi + ∆z+ δεi+1 = z1 + i∆z+
i+1∑

j=1

δεj = z1 + i∆z+ δzi+1, (19)

where i= 1, . . . ,Mn− 1, δzi is the cumulative error in depth. At z1 we have the error δz1 = δε1. If δεi, i= 1, . . . ,Mn, are

normally distributed random variables independent of each other and with the mean values ε and variances σ2
z , δεi ∼N (ε,σ2

z),15

then δzi ∼N (iε, iσ2
z). With the lower triangular M ×M matrix R in

R=




1 0 · · · 0

1 1 · · · 0
...

1 1 · · · 1



,

the relation between local (δε) and cumulative (δz) depth errors is δz =Rδε.

Temperature perturbation value δτni can be expressed using the temperature gradient and the position error δzi as

δτni = δzi
∂T

∂z

∣∣∣∣
z=zi,t=tn

. (20)20

Let the elements of the matrix T be zero except for Tki = ∂T
∂z

∣∣
z=zi,t=tn

, where k =N(i− 1) +n, n= 1, . . . ,N, i= 1, . . .M .

Then δτ = T δz = T Rδε. Thus, the minimal δk in Eq. (13) satisfies Eq. (14) with the solution

δk = (ATWA)−1ATWT Rδε=Azδε, (21)

with elements of the matrix Az expressing the response of the k∗ value in question to unit perturbations in depths of empirical

temperature values (cf. with Aτ in Eq. (15)). The expected value of δk is25

E[δk] =AzE[δε] = εAzeM , (22)
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where eM is a vector of length M with elements 1. Since stretching of the cable in a borehole is not likely, both δε and E[δk]

values are rather negative than positive.

In line with Eq. (18), the covariance in δk is

Cov[δk] =AzCov[δε]ATz = σ2
zAzA

T
z . (23)

The variances of δk are found on the diagonal of Cov[δk]5

Var[δkj ] = σ2
z

Mn∑

i=1

A2
zji (24)

and tell how the variances σ2
z are magnified through δε and to the variances in thermal conductivity estimates.

In the absence of empirical estimates of deviation of the real depths of sensors with respect to the designed ones, the

quantification of ε is based on the fact that the vertical deviation of the direction of cable with thermistors is constrained by the

walls of the borehole separated by diameter d= 0.05 m. The uncertainty ε can be expressed as:10

ε= L −
√
L2− d2, (25)

where L is the typical separation between two points on the cable where it touches the walls of the borehole. In case L is

assumed to be equal to 1 m, ε is 1.3 mm.

3.3.3 Density

Both the forward model and the optimization routine rely on the empirical data on the subsurface density. To assess the15

sensitivity of optimized thermal conductivity values k∗ to errors in density data % we first assess the feedback of simulated

errors to deviations in ρ∗ and then translate these results to perturbations δk using the matrix Aτ (see Eq. (15)).

The sensitivity of the temperature due to perturbations δρ in ρ is computed following the logic of Eq. (9). The sensitivity

matrix B is defined as:

Tni (k∗,ρ∗ + δρ) = Tni (k∗,ρ∗) +
J∑

j=1

Bnijδρj , (26)20

or in matrix form:

T (k∗,ρ∗ + δρ) = T (k∗,ρ∗) +Bδρ, (27)

with the elements Bnij in B calculated and ordered in the same manner as in A in Eq. (10) and (12). A perturbation δρ can

be interpreted as a perturbation in the temperature δτ =−Bδρ in the first term of (7) and by Eq. (15) it follows that the

perturbation in k∗ will be25

δk =−(ATWA)−1ATWBδρ=−Aρδρ. (28)

The second term in Eq. (7) has no influence on the solution here since we minimize over k.

11

The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-294
Manuscript under review for journal The Cryosphere
Discussion started: 16 January 2019
c© Author(s) 2019. CC BY 4.0 License.



4 Results and discussion

4.1 Measured subsurface density and temperature

The subsurface glacier profile observed in the cores consists of snow and firn with multiple ice lenses (Figure 1). The measured

snow and firn density (%) varies from 350 to 900 kg m−3 with a gradual increase downward and occasional spikes corresponding

to the ice layers apparent from the stratigraphical record. Compared with the measured values, the optimized densities (ρ∗)5

show similar ranges and the overall pattern of an increase with depth (Figure 1).

The evolution of subsurface temperature τni measured during five periods used for the simulations is shown in Figure 2.

The position of the upper boundary shifts upward following the snow accumulation at the surface. The evolution of deep

temperature outside of the melt season generally follows the surface temperature with significant dampening with depth and

time delay of the amplitude. During fall 2014 temperature continuously decreases at all depths. During the four spring seasons10

the same patter in observed only below ca 3-4 m, while the upper part of the profile experienced warming. The measured

temperature generally increases with depth, however, the opposite tendency is observed for the upper ca 1-2 m of the profile

in the spring seasons, particularly towards the end of the simulation periods. The simulation domains where Eq. (3) is solved

and k and ρ are optimized in Eq. (8) are bound by the white curves limiting the area with temperature values colder than

-2◦C and depths at the time of instrument installation larger than 1 m. The snow and firn temperature measured in April–May15

2014 is significantly lower than the values registered at similar depths below the surface in April–May of the following year

(Figure 2). Based on this finding we suggest that the late part of the winter season in 2014 (February–April) was colder than

in 2015. This finding is supported by the data from an AWS at Nordenskiöldbreen (600 m asl), according to which in 2015

March and April were warmer than in 2014 by 2.5 and 6◦C correspondingly (description of AWS and data can be found at:

http://www.projects.science.uu.nl/iceclimate/aws/). The vertical temperature gradients measured in 2015 on April 11 and 15 by20

the thermistor strings installed a year earlier and by the new installation are in good correspondence (Figure 2). This suggests

that during one year (April 2014–April 2015) gravitational densification of snow and firn did not result in significant change

of the separation between sensors and justifies the usage of time-constant density profiles in our simulations.

4.2 Optimized thermal conductivity values k∗

The effective thermal conductivities k∗ optimized according to the Eq. (8) range from 0.2 to 1.6 J (s m K)−1 and are presented25

in Figure 3B. The values consistently increase with depth at the rate of ca 0.11 J (s m2 K)−1 on average and somewhat slower

in the fall of 2014. The temporal change in k∗ values can also be assessed with reference to Figure 3B since the profiles for

different domains are plotted with a vertical offset accounting for the surface accumulation. The overall tendency is increase

in k∗ over time with an average rate of 0.09 J (s m K year)−1. Provided that the surface accumulation rates at the field site are

slightly above 1 m, this is less than the expected value from the vertical gradient in k∗. In the absence of a physical process that30

could result in a decrease of the firn effective thermal conductivity k∗ over time, the apparent lowering of optimized k∗ values,

such as seen between 8 and 10 m from spring 2012 to spring 2013, is attributed to the uncertainties in empirical data such as

temperature readings, depths of individual sensors, density measurements and estimates of the surface accumulation rate.
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The uncertainty bar for each k∗ value is calculated following Eq. (18) and denotes the intervals of one standard deviation

from the mean value. The bars take into account only the possible errors in subsurface temperature measurements quantified

through the time-averaged standard deviations in values from different thermistor strings (Figure 3A). Compared with the k∗,

the uncertainty values are generally small and are between ca 0.03 and 0.25 J (s m K)−1. The overall increase in uncertainty

of k∗ values with depth is due to the downward decrease in temporal and spatial temperature gradients and also in the number5

of measurements with temperature below -2 ◦ C. Altogether this results in reduction of chances for the optimization routine

to converge to a "wrong" k∗ value based on biased temperature simulations resulting from it, as the biases are smaller and

lesser in number than in the upper part of the profile. The deepest k∗ values in spring 2012 and 2013 exhibit outstandingly

high uncertainty values, which is explained by the fact that the values are found at depths where temperature never reaches

below -2 ◦ C and are thus constrained only through the part of the linear fit to the k∗ value above that lies within the simulation10

domain. Due to the lack of data and large variances of the temperature measurements deep down, the deepest k∗ values in each

of the two domains in 2012 and 2013 are likely not reliable.

4.3 Sensitivity of k∗ to errors in temperature measurements

The results of sensitivity experiments exploring the feedback (Aτ in Eq. (15)) of k∗ values to errors in subsurface temperature

measurements τni are presented in Figure 4. The black markers close to the right border of each dataset show the positions of15

k∗ points. The color at any specific point in depth zi and time tn corresponds to the response of the k∗ j value at the depth

indicated by the black circle marker to a unit change in temperature (1 ◦C) at depth zi and time tn. The sensitivity is set to zero

outside of the computational domain, the lower boundary of which is shown by the black curves.

It can also be noted that here we analyse the k∗ feedback to errors in individual temperature values within the dataset used

to constrain the optimization routine. For the first four calculation domains (spring 2012-2014 and fall 2014) this data is the20

result of lateral averaging of data from nine (q = 9 in Eq. (1)) thermistor strings. Although the strings are coupled to the same

data logger, the errors in temperature measurements can be assumed to be at least partly independent. Thus sensitivities Aτ to

temperature errors coming from single thermistor strings and not laterally averaged datasets can be expected to be lower than

indicated by color coding in Figure 4 by a factor of
√
q = 3.

Optimized k∗ values are not very sensitive to single errors in subsurface temperature data: for j = 1 . . .7 (panels A - G in25

Figure 4) the expected response of the thermal conductivity values k∗j to a 1 ◦C error varies between−1.1·10−3 and 1.1·10−3

J(K m s)−1, corresponding to the Āτj −3σAτj and Āτj + 3σAτj , where Āτj and σAτj are the mean and standard deviation of

the Aτj values. However, as it was demonstrated earlier (see the error bars in Figure 3B), a systematic time-independent bias

in temperature data can result in notable deviations of the k∗ estimates.

Sensitivities Aτ for the fall 2014 domain exhibit a distinctively different range and pattern of spatiotemporal change of30

values with respect to the spring seasons. The reasons for that are not completely understood and elucidation may require

additional empirical data from other fall seasons. It can be noted that during the period from September 2014 to April 2015

the dominant tendency in the change of surface temperature was decrease, which induced continuous cooling of the subsurface

profile.
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Several patterns in the spatiotemporal distribution of the sensitivitiesAτ can be noted. In most cases the sign of the sensitivity

is positive between the depths of k∗ j−1 and k∗ j and negative between the depths of k∗ j and k∗ j+1 if k∗ j is the k value

being tested for sensitivity (depth is marked by the black circle in Figure 4). This pattern is reversed when considering depth

levels further away from the circles (between k∗ j−2 and k∗ j−1 and between k∗ j+1 and k∗ j+2) and the period of alternation

roughly corresponds to the spacing between k∗ values which is 1 m. This result is explained through changes in the vertical5

temperature gradient induced by the temperature perturbations. The overall pattern in the vertical change of temperature is to

increase downwards, thus a temperature increase at a certain depth results in increase of the temperature gradient just above and

decrease just below that depth. These changes in temperature gradient are respectively compensated by negative and positive

deviations in k values. Due to the piecewise-linear interpolation of k profile based on J k∗ values, a perturbation in k∗j also

affects the thermal conductivities below and above it. Therefore k∗ j−1 and k∗ j+1 adjacent to k∗ will display the tendency10

opposite to the one demonstrated by k∗ j to compensate for the associated changes in the heat flux. This pattern is also apparent

when comparing different panels in Figure 4.

In most cases k∗ is most sensitive to temperature errors ca 0.5 – 1 m above and below its evaluation level, which is evidenced

by the more intense colors in the sensitivity fields found in vicinity of the black circle markers. The amplitude of cycles with

alternating sign demonstrated by the sensitivityAτ fades away with distance from the perturbed k∗. The k∗ values found deeper15

down in the vertical profile appear to be more sensitive to errors in temperature, as is seen in more intensive colors around the

circular markers in panels E - H of Figure 4 compared to panels A - D in the same figure.

4.4 Sensitivity of k∗ to errors in depths of temperature measurements

The feedback of optimized thermal conductivities to errors in depths of temperature values used to constrain the optimization

routine (Az in Eq. (21)) is presented in Figure 5, where different panels show results for the five simulation domains. The color20

of a point corresponding to index j and depth z indicates the expected bias in k∗ j found at depth highlighted by the black circle

in column j given a negative bias of -1 cm in depth of temperature values at depth z. The sensitivities Az for the lowermost

k∗j values (j = 8 for the spring domains and j = 6 for the fall 2014) are significantly larger than for other k∗j nodes due to

propagation of the corresponding high Aτ values (Figure 4 G, H) to the Az matrices as is shown in Eq. (15) and (21). These

results are not shown.25

In Figure 5 blue anomalies in vicinity of the markers indicate that the largest response of k∗j can be expected to depth errors

just below and just above the depth zj . This pattern is expected since the assumed depth perturbations are negative, which

increases the vertical temperature gradient and is compensated by lower k∗ values to keep the same heat flux. Secondly, the

alternating pattern in the sensitivity of k∗, noted in the previous section, can also be seen in the Az matrices, particularly for

the deeper thermal conductivities with larger indices j: farther away in the vertical direction from the circular markers the30

negative anomalies in Az are replaced by less negative and even positive values and then switch back to significantly negative

range. This behaviour of the sensitivity is caused by the piecewise linear interpolation applied to derive the 0.1 m-spaced k

profile used in the forward model from 1 m-spaced optimized k∗ values. In an attempt to preserve the heat flux and minimize

the misfit between measured and simulated measurements the optimization routine will tend to overestimate the k∗ j+1 and
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k∗ j−1 values in case k∗ j is forced to be too low due to the perturbation in depths of temperature values. The uncertainties

Az in Figure 5 are notably larger above the circular markers The thermal conductivities are much more sensitive to errors in

depths of temperature values occurring above the depth level than below because of the accumulation of the position errors

from upper levels to the bottom. Another reason is probably that the vertical temperature gradients are larger in the upper part

of the profile. At the same time, due to the influence of the cable weight, thermistor strings can be expected to experience less5

coiling in the shallow part of a borehole, possibly compensating the larger Az values there.

Assuming that thermistor strings are in contact with the borehole walls every L= 1 m (see Eq. (25)), the mean values of δk

in Eq. (22) are on the order of -0.02—0.07 J (s m K)−1 for k∗1 – k∗6 and significantly larger lower down in the profile, where

temperature gradients are lower and the amount of available empirical data is less (Table 1). The expected uncertainty is 3–8

times larger for the domain covering fall 2014, which is most likely caused by the larger temperature gradients during the early10

period of subsurface cooling. It can be noted that the uncertainty δk in Eq. (22) is scaled by ε in Eq. (25), suggesting that if

L = 0.5 m, the values in Table 1 will increase almost by a factor of two. The results for the variance in Table 1 using Eq. (24)

show how the variance σ2
z in the positional error is magnified as a variance of the error in k. If σz ≈ ε then

√
Var[δk]≈ 0.01

for most k-values, a rather small standard deviation.

4.5 Sensitivity of k∗ to errors in density15

The results of experiments exploring the sensitivity of optimized thermal conductivities to possible errors in density are pre-

sented in Figure 6. All panels in the figure are dominated by colors corresponding to the positive sensitivity values, suggesting

that the general tendency is an increase in k∗ in response to an overestimation of density in the empirical dataset. Negative

values correspond to k∗j values found in the lower part of the profile (j = 6 . . .8), which are generally less reliable.

Thermal conductivity appears to be more sensitive to density errors occurring above the depth level in question. This par-20

ticularly applies to the biases in ρ2. It is still in the upper part of the subsurface profile were density is relatively low and

the relative importance of 1 kgm−3 mistake in density is large. These values are not exceeded by the Aρ1 found above, most

probably, because of the constraints imposed by the upper boundary condition on temperature errors: Aτ is always zero at the

upper boundary of the calculation domain.

In the absence of empirical data to quantify possible errors in density, it can be noted thatAρ values presented in Figure 6 can25

be scaled by any assumed value E[δρ] to derive errors E[δk] to be expected from k∗ values. It follows that a bias of 50 kgm−3

will result in k∗ deviation of up to 0.1 J (s m K)−3.

4.6 Comparison of k∗ with earlier published results

The relation between optimized effective thermal conductivities and densities is shown in Figure 7 using markers and the

associated linear fit:30

k = 0.301 · 10−2ρ− 0.724 (29)
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is illustrated by the thick black line. Also shown are the predictions from similar fits by Sturm et al. (1997) and Calonne et al.

(2011). While Sturm et al. (1997) based their approximation on multiple needle probe measurements, Calonne et al. (2011)

used numerical modelling of the effective thermal conductivity tensor based on detailed three-dimensional micro tomographic

models of the snow samples. Almost all k∗ values are larger than the effective thermal conductivities predicted by the other

two parameterizations and the difference increases for larger densities. Note, that both presented parameterizations are based5

on k measured in seasonal snow and the datasets included only a few samples with density higher than 500 kgm−3, while

our results are based on measurements in firn with generally higher density. It is also obvious that the dependence between

k∗ and ρ∗ values varies for different domains. It is thus suggested that the derived vertical dynamics in the effective thermal

conductivity may be caused not only by the changes in density.

The findings regarding effective thermal conductivity values presented above can also be compared with the results of Giese10

and Hawley (2015), who applied Fourier analysis to continuous temperature measurements and derived the thermal diffusivity

value (κ) of 25 ± 3 m2 year−1 in the top 30 m of firn pack at summit on the Greenland ice sheet. Based on our optimized

effective thermal conductivity (k∗) and density (ρ∗) values and the specific heat capacity of ice (C) at -10 ◦ C (Cuffey and

Paterson, 2010), the thermal diffusivity (κ∗) is calculated as κ∗ = k∗ (ρ∗ C)−1. The resulting κ∗ values lie in the range from

7.55 to 48.77 m2year−1 with the mean value and standard deviations of 25.48 and 7.52 m2year−1 respectively, providing a15

prominent match with the results from Giese and Hawley (2015). It can be noted that quantification of k∗ using optimization

technique requires a much less extensive dataset in terms of time and depth coverage. Furthermore, since infiltration of melt

water in the summer interrupts the conductive heat exchange in firn at Lomonosovfonna, it is not possible to apply Fourier

analysis used by Giese and Hawley (2015) on our data.

5 Conclusions20

The evolution of subsurface temperature was measured in firn at Lomonosovfonna, Svalbard, using several thermistor strings

during April 2012 and July 2015. The data covers five periods when the subsurface profile is at least partly at subfreezing con-

ditions. Combined with the density measurements from four cores it was used to reconstruct the effective thermal conductivity

and the density of the firn layers. For that we applied an optimization routine minimizing the mean squared difference between

the measured and simulated temperature evolutions and the measured and computed density.25

The optimized effective thermal conductivity k∗ of the firn pack at Lomonosovfonna varies from 0.4 to 1.05 J (s m K)−1

increasing downwards in a maximal likelihood approach for all the time periods. According to the results of sensitivity analysis,

k∗ is not very sensitive to systematic temperature offsets. Overestimation of the separation between sensors resulting from

possible tortuosity of the cable in the borehole leads to overestimation of the k∗ values. Positive deviation in density estimates

also result in overestimation of the k∗ values, while negative density biases lead to an underestimation of effective thermal30

conductivity.

The k∗ results are notably higher than the k values predicted by widely used empirical parameterizations based on the firn

density measurements (Sturm et al., 1997; Calonne et al., 2011) and originally constrained by measurements of ρ and k in
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seasonal snow. This suggests a possible underestimation of the subsurface heat fluxes by firn models relying on the equations.

In regions with climate similar to the one observed in Svalbard this is of particular importance for the cold season as the

period of conductive cooling is significantly longer than conductive warming occurring in spring before the onset of melt. Our

results show that the refreezing capacity of the firn pack at Lomonosovfonna by the onset of melt can be underestimated when

simulated using the parameterizations by Sturm et al. (1997) and Calonne et al. (2011).5
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Table 1. Expected deviations of thermal conductivities (E[δk] in Eq. (22)) and the corresponding standard deviations (
√

Var[δk], see Eq.

(23), (24)) given the magnitude of thermistor string coiling in the boreholes is expressed by L= 1 m (see Eq. (25)) and σz = 1 cm.

E[δk] k∗1 k∗2 k∗3 k∗4 k∗5 k∗6 k∗7 k∗8

Spring 2012 -0.046 -0.040 -0.051 -0.050 -0.045 -0.002 0.054 1.575

Spring 2013 -0.051 -0.044 -0.024 -0.018 -0.008 0.037 0.217 0.926

Spring 2014 -0.021 -0.042 -0.028 -0.045 -0.028 0.010 0.111 -0.103

Fall 2014 -0.118 -0.132 -0.187 -0.230 -0.244 -0.131

Spring 2015 -0.029 -0.069 -0.020 -0.039 -0.032 -0.016 0.069 0.138√
Var[δk] k∗1 k∗2 k∗3 k∗4 k∗5 k∗6 k∗7 k∗8

Spring 2012 0.073 0.063 0.077 0.069 0.068 0.074 0.123 1.779

Spring 2013 0.085 0.076 0.041 0.035 0.036 0.07 0.237 1.063

Spring 2014 0.042 0.063 0.051 0.065 0.047 0.061 0.146 0.196

Fall 2014 0.175 0.189 0.258 0.316 0.331 0.344

Spring 2015 0.051 0.1 0.035 0.06 0.048 0.042 0.087 0.153
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Figure 1. Subsurface stratigraphy and density in four cores recovered in April 2012 (A), 2013 (B), 2014 (C) and 2015 (D). Also shown are

the density profiles simulated using maximum likelihood approach in Eq. (8).
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Figure 2. Measured evolution of subsurface temperature. The horizontal axis is referenced to the 21th April 2012, the vertical axis - to the

glacier surface in April 2015. Measurements cover the periods: 21 April – 19 June 2012 ("spring 2012"), 22 April – 1 June 2013 ("spring

2013"), 18 April – 4 July 2014 ("spring 2014"), 25 September 2014 – 11 April 2015 ("fall 2014") and 15 April – 9 July 2015 ("spring 2015").

White curves indicate the upper and lower boundaries of the simulation domains. The color bars along the horizontal axis show the intervals

between measurements: yellow - 1 h, blue - 3 h and green - 12 h.
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Figure 3. A: Time-averaged standard deviations in subsurface temperature measured by different thermistor strings (si). B: Optimized

effective thermal conductivity values (k∗) calculated following Eq. (8) with error bars according to Cov[δk] in Eq. (18) assuming temperature

errors shown in panel A.
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Figure 4. Sensitivity (Aτ in Eq. (15)) of effective thermal conductivities (k∗j) to errors in the temperature measurements. Panels A, B - H

correspond to j = 1,2, . . . ,8, in each case the depth of k∗ j is highlighted by black circle, depths of other k∗ values are shown by black dots.

The color at a certain point in depth and time corresponds to the feedback of the k∗ j value found at the depth shown by the black circle to

a unit error in temperature (+ 1 ◦C) at that depth and time. Black curves indicate the lower boundaries of the computational domains, below

them the sensitivity is set to 0.
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Figure 5. Sensitivity (Az in Eq. (21)) of effective thermal conductivities k∗j to errors in depths of temperature values. Panels correspond to

different calculation domains: spring 2012 (A), spring 2013 (B), spring 2014 (C), fall 2014 (D) and spring 2015 (E). In all panels the color of

a point in column j and depth z shows the feedback on effective thermal conductivity value k∗j found at the depth highlighted by the black

(white in D) circle to an error in depth of temperature value (1 cm) made at depth z.
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Figure 6. Sensitivity (Aρ in Eq. (28)) of effective thermal conductivities k∗j to errors in density. Panels correspond to different calculation

domains: spring 2012 (A), spring 2013 (B), spring 2014 (C), fall 2014 (D) and spring 2015 (E). In all panels the color of a point in column j

and depth z shows the feedback of effective thermal conductivity value k∗j found at the depth highlighted by the white circle to a unit error

in density (1 kgm−3) made at depth z.
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Figure 7. Relation between effective thermal conductivities k and densities ρ. Markers illustrate the results of optimization routine, thin lines

of corresponding colors show the respective linear fits and the thick black line shows the linear fit based on all k∗-ρ∗ pairs. The light blue

and ruby curves show quadratic k = f(ρ) functions according to (Sturm et al., 1997) and (Calonne et al., 2011).
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